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Abstract
Smooth tropical cubic surfaces are parametrized by maximal cones in the unimodular
secondary fan of the triple tetrahedron. There are 344 843 867 such cones, organized
into a database of 14 373 645 symmetry classes. The Schläfli fan gives a further refine-
ment of these cones. It reveals all possible patterns of lines on tropical cubic surfaces,
thus serving as a combinatorial base space for the universal Fano variety. This arti-
cle develops the relevant theory and offers a blueprint for the analysis of big data in
tropical geometry.

Keywords Tropical algebraic geometry · Regular triangulations · Polyhedral
computation · Lines in cubic surfaces

1 Introduction

A cubic surface in projective 3-space P3 is the zero set of a cubic polynomial

c0w
3 + c1w

2z + c2wz2 + c3z3 + c4w
2y + c5wyz + c6yz2 + c7wy2

+ c8y2z + c9y3 + c10w
2x + c11wxz + c12xz2 + c13wxy

+ c14xyz + c15xy2 + c16wx2 + c17x2z + c18x2y + c19x3.

(1)
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Here (w : x : y : z) are homogeneous coordinates on P
3. George Salmon and Arthur

Cayley discovered in the 1840s that every smooth cubic surface contains 27 lines.
Ludwig Schläfli studied the combinatorics of the lines in his 1858 article [22]. The
name of that Swiss mathematician appears in our title.

This article is dedicated to the memory of Branko Grünbaum. Grünbaum is famous
for his work on polytopes and arrangements, especially those that admit a high degree
of symmetry. In the literature on these geometric figures, one sees a direct line con-
necting Ludwig Schläfli to Branko Grünbaum. This is highlighted by the use of the
Schläfli symbol for symmetries of polyhedra.

The combinatorial strand of algebraic geometry underwent a major shift during
the past two decades, thanks to the advent of tropical geometry [17]. The following
question emerged early on during the tropical revolution:What are all shapes of smooth
cubic surfaces in tropical 3-space, and which arrangements of tropical lines occur on
such surfaces? A first guess is that there are 27 lines, just like in the classical case. But
this is false. Vigeland [23] showed that the number of lines can be infinite. A textbook
reference is [17, Thm. 4.5.8].

The aim of this article is to give a comprehensive answer to the questions above.
We will do so via a computational study of all smooth tropical cubic surfaces. These
surfaces are dual to unimodular regular triangulations of the triple tetrahedron 3Δ3,
which is the Newton polytope of the cubic polynomial seen in (1). The relevant defi-
nitions will be reviewed in Sect. 2.

Our point of departure is the article [21], which classifies the tenmotifs that describe
the potential positions of a tropical line on a cubic surface. These motifs are denoted
3A, 3B, . . . , 3J. They are shown in Table 1. The advance we report in this paper is a
large-scale computation that identifies the motifs of all lines that actually occur on the
many tropical smooth cubic surfaces.

Our contribution rests on earlier work by Jordan et al. [15] who developed highly
efficient tools for enumerating triangulations. Their count for 3Δ3 in [15, Thm. 19]
shows that there are 14 373 645 combinatorial types of smooth tropical cubic surfaces.
Here, the types are the orbits of the symmetric group S4 permuting w, x, y, z in the
20 terms of (1). Adding up the sizes of all S4-orbits, we obtain the total number
344 843 867 of smooth tropical cubics.

This article is organized as follows. In Sect. 2 we fix notation, we discuss unimodu-
lar triangulations of the tetrahedron 3Δ3, and we review basics on lines and surfaces in
tropical projective space TP3. We also recall the classification of motifs in [21]. Sec-
tion 3 furnishes our classification of smooth tropical cubic surfaces. This is presented
in Theorem 3.1, and it is followed by a detailed explanation of the methodology that
underlies our work and its results.

Section 4 studies occurrences of motifs in the unimodular triangulations of 3Δ3.
Our main result is Theorem 4.1. We present an algorithm for computing occurrences.
This rests on several lemmas that describe geometric constraints. The algorithm is
applied to all triangulations in Theorem 3.1. As a consequence, we get a complete list
of occurrences of motifs for each of the 14 373 645 types.

In Sect. 5 we zoom in on particular secondary cones. For each cubic surface of one
type, an occurrence of a motif may be visible or not. Being visible means that there
exists a line for that motif. Hence, for any specific surface, only a subset of the motifs
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Table 1 The ten motifs from [21] for tropical lines on generic cubic surfaces

Marked Lines Associated Motifs Necessary Conditions

Isolated Lines

j

i

l

k

3A

A

B

C

D

E
F

Exits: AB ⊆ Fi , BD ⊆ Fj ,
AC ⊆ Fk , EF ⊆ Fl ,

AD ⊆ {x i + x j = 1}, CD⊆ {x l = 1},
A �= E, F and B �= C .

j

i

l

k

3B

A
B

C

F
D

E Exits: AB ⊆ Fi , AC ⊆ Fj ,
DF ⊆ Fk , EF ⊆ Fl ,

BC ⊆ {x i + x j = 1}, DE ⊆ {x k + x l = 1},
A �= D, E , F �= B, C and A �= F.

j

i

l

k

3C

A
B

C

F
D

E
G Exits: AB ⊆ Fi , AC ⊆ Fj,

DE ⊆ Fk , FG ⊆ Fl ,
BC ⊆ {x i + x j = 1}, DE ⊆ {x l = 1} ∩ Fk,

A �= D, E .

j

i

l

k

3D

A

B

C

D

E F

G Exits: CE ⊆ Fi , AB ⊆ Fj ,
DE ⊆ Fk , FG ⊆ Fl ,

CD ⊆ {x j = 1}, DE ⊆ {x l = 1} ∩ Fk,
E �= A, B.

j

i

l

k

3E
A

B

C

D
E

F G
Exits: AB ⊆ Fi , AC ⊆ Fj ,

DE ⊆ Fk , FG ⊆ Fl ,
BC ⊆ {x k = 1} ∩ {x l = 1}.

j

i

l

k

3F

A
B

C

D

E

F
G
H

Exits: CD⊆ Fi , AB ⊆ Fj,
EF ⊆ Fk , GH ⊆ Fl ,

CD ⊆ {x j = 1} ∩ Fi , EF ⊆ {x l = 1} ∩ Fk.

j

i

l

k

3G

A

B

C

D
E

F
Exits: CD ⊆ Fk , EF ⊆ Fl ,

ABCD has exits also in Fi and Fj ,
CD ⊆ {x l = 1} ∩ Fk.

j

i

l

k

3H

A

B

C

D
E

Exits: CE ⊆ Fk , DE ⊆ Fl,
ABCD has exits also in Fi and Fj,
CD ⊆ {x k + x l = 1}, E �= A, B.

Families of Lines

j

i

l

k

3I

A

B

C

D
Exits: CD ⊆ Fk ∩ Fl ,

ABCD has exits also in Fi and Fj.

j

i

l

k

3J A

B
C

D

E
Exits: BC ⊆ Fi ∩ Fj, DE ⊆ F k ∩ F l,

AD ⊆ {x j = 1}, AE ⊆ {x i = 1}.
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occurring in the triangulation is visible. The regions on which that subset is constant
are convex polyhedral cones. These form the Schläfli fan. Thus, each of the 14 373 645
secondary cones is divided into its Schläfli cones. We present and discuss the result
of that computation.

Our combinatorial and computational study in this paper lays the foundation for
future work on the nonarchimedean geometry of classical cubic surfaces over a valued
field. In Sect. 6 we take a step into that direction.We discuss the universal Fano variety
and the universal Brill variety, and we examine the tropical discriminants of these
universal families. The first version of this article had a Sect. 7 which proposed a
normal form for cubic surfaces, called the eight-point model. This was deleted in this
final version because an even better such model was found in the subsequent project
[20] with Emre Sertöz.

The methods from computer algebra and polyhedral geometry which led to our
results are at the forefront of what is currently possible in terms of hardware, algo-
rithms and software. For instance, to determine and analyze the regular unimodular
triangulations of 3Δ3 took more than 200 CPU days on an Intel Xeon E5-2630 v2
cluster. Yet the most difficult question we had to answer was how tomake the results of
such a large computation available to others. For this we set up apolymake extension
TropicalCubics [16] and a database within the polyDB framework [19]. They
can be accessed via polymake [7]. The database can also be used via an independent
API. We believe that this approach can serve as a model for sharing “big data” in
mathematical research.

2 Triangulations, Cubic Surfaces and Tropical Lines

In this section we review the basics and known results on which our study rests. For
conventions on tropical geometry we follow the textbook by Maclagan and Sturmfels
[17]. Our tropical semiring is the min-plus algebra (R ∪ {∞},⊕,�). We use upper
case letters to denote tropical variables and coefficients. Our orderings of variables and
monomials are consistent with the conventions used by polymake [7]. For instance,
here is a homogeneous tropical cubic polynomial:

44W 3 ⊕ W 2Z ⊕ 1W Z2 ⊕ 15Z3 ⊕ 19W 2Y ⊕ W Y Z ⊕ 9Y Z2

⊕ 2W Y 2 ⊕ 4Y 2Z ⊕ Y 3 ⊕ 38W 2X ⊕ W X Z ⊕ 15X Z2 ⊕ 16W XY

⊕ 4XY Z ⊕ 1XY 2 ⊕ 33W X2 ⊕ 16X2Z ⊕ 14X2Y ⊕ 29X3.

(2)

The expression (2) is evaluated in classical arithmetic as follows:

min
{
44 + 3W , 2W + Z , 1 + W + 2Z , 15 + 3Z , . . . , 14 + 2X + Y , 29 + 3X

}
.

The surface defined by (2) is the set of all points (W , X , Y , Z) for which this minimum
is attained at least twice. That tropical cubic surface lives in the tropical projective
torus R4/R1, but it also has a natural compactification in the tropical projective space
TP

3. The latter is described in [17, Chap. 6].
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Astandard reference for thematerial that follows next is the textbook byDeLoera et
al. [4]. Reading the coefficients of the tropical polynomial as a height function defines
a regular polyhedral subdivision of the 20 lattice points in 3Δ3. If the coefficients
are generic enough then the dual subdivision is a triangulation. For now the latter
property may be taken as a definition for generic; it is a main point of later sections to
refine this. If each of its tetrahedra has unit normalized volume, then the triangulation is
unimodular and the tropical cubic surface is smooth. Every unimodular triangulation T
of the configuration 3Δ3 has the same f-vector f (T ) = (20, 64, 72, 27). Its boundary
has the f-vector f (∂T ) = (20, 54, 36). From this we conclude that every smooth
tropical cubic surface has 27 vertices, 36 edges, 36 rays, 10 bounded 2-cells, and
54 unbounded 2-cells. This is the case d = 3 in [17, Thm. 4.5.2]. Specifically, the
64− 54 = 10 interior edges of T correspond to the bounded polygons in the surface.
These 10 polygons form the bounded complex of the tropical surface. This is also
known as the tight span. For cubics, it is contractible. We define the B-vector of the
triangulation T to be (b3, b4, b5, . . .), where b j denotes the number of j-gons in the
tight span. The GKZ-vector is (g0, g1, . . . , g19), where gi is the number of tetrahedra
containing point i .

Example 2.1 The tropical cubic polynomial in (2) is identified with its coefficient
vector (44, 0, 1, 15, 19, 0, 9, 2, 4, 0, 38, 0, 15, 16, 4, 1, 33, 16, 14, 29). This defines a
unimodular triangulation T of 3Δ3. Its 27 tetrahedra are given by their labels:

{0, 1, 4, 10}, {1, 2, 5, 11}, {1, 4, 7, 13}, {1, 4, 10, 16}, {1, 4, 13, 19},
{1, 4, 16, 19}, {1, 5, 9, 11}, {1, 7, 9, 15}, {1, 7, 13, 18}, {1, 7, 15, 18},
{1, 9, 11, 15}, {1, 11, 15, 18}, {1, 11, 18, 19}, {1, 13, 18, 19}, {2, 3, 6, 14},
{2, 3, 11, 14}, {2, 5, 9, 11}, {2, 6, 8, 14}, {2, 8, 9, 14},
{2, 9, 11, 15}, {2, 9, 14, 15}, {2, 11, 14, 15}, {3, 11, 12, 14},
{11, 12, 14, 17}, {11, 14, 15, 17}, {11, 15, 17, 18}, {11, 17, 18, 19}.

(3)

The GKZ-vector equals (1, 14, 9, 3, 5, 3, 2, 4, 2, 7, 2, 14, 2, 4, 9, 9, 2, 4, 7, 5). The
last entry 5 means that the label 19 occurs five times in (3). The B-vector of (3)
is (2, 4, 2, 2). To see this, we list the ten interior edges and their links:

{1, 13}, [4, 7, 18, 19], {1, 15}, [7, 9, 18, 11], {1, 18}, [7, 13, 19, 11, 15],
{2, 14}, [3, 6, 8, 9, 15, 11], {2, 15}, [9, 11, 14], {5, 11}, [1, 2, 9],
{9, 11}, [1, 5, 2, 15] {11, 18}, [1, 15, 17, 19], {11, 14}, [2, 3, 12, 17, 15],
{11, 15}, [1, 9, 2, 14, 17, 18].

The link of an edge e in T is the graph of all edges in T whose union with e is a
tetrahedron in T . If e is an interior edge of T , then this graph is a cycle. For instance,
the link of {9, 11} is the 4-cycle {{1, 5}, {5, 2}, {2, 15}, {15, 1}}. The corresponding
bounded 2-cell in the tropical cubic surface is a quadrilateral. The triangulation (3)
lies in the same S4-orbit as the one featured in [13, Sect. 6.2].

Each of the 36 bounded edges of the surface determines a linear inequality among
the coefficients C0, C1, . . . , C19, expressing that the edge has positive length. The
secondary cone sec(T ) is the set of solutions to these inequalities. This set is a full-
dimensional cone in R

20 with 4-dimensional lineality space. The number of facets
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ωj

ωi

ωl

ωk

qij qkl

Fig. 1 A non-degenerate tropical line of labeled type i j |kl in 3-space

of sec(T ) is between 16 and 36. The secondary cone of the triangulation (3) has 16
facets. It contains the coefficient vector of (2).

The symmetric group S4 acts naturally on the 20 points in 3Δ3. This induces an
action on the set of all triangulations. Note that S4 also acts on the set of GKZ-vectors.
The S4-orbit of the triangulation T from (3) has size 24. Equivalently, the stabilizer
of T is trivial. The census of unimodular triangulations and associated cubic surfaces
is presented in Theorem 3.1.

We now come to tropical lines in 3-space. Vigeland started the classification of
how such lines can lie on generic smooth tropical cubic surfaces. Based on a massive
random search with polymake, Simon Hampe realized that the classification was
not complete. The triangulation (3) occurred in the joint article [13] as the first explicit
counter-example to Vigeland’s list. The final characterization is due to Panizzut and
Vigeland [21]. Their list of ten motifs is reproduced in Table 1. This table forms the
foundation for our present study.

We identifyR3 withR4/R1 by settingω0 = −(e1+e2+e3),ω1 = e1,ω2 = e2, and
ω3 = e3. A tropical line in R

3 is a balanced polyhedral complex given by two 3-valent
adjacent vertices, joined by one bounded edge, and four rays with directions ω0, ω1,
ω2, and ω3. If the bounded edge has length zero, the tropical line is degenerate. Non-
degenerate lines come in three labeled types, given by the direction of the bounded
edge. This direction is either ω0 + ω1 = −ω2 − ω3 or ω0 + ω2 = −ω1 − ω3 or
ω0 + ω3 = −ω1 − ω2. We denote these three types by 01|23, 02|13, and 03|12. This
is shown in Fig. 1.

Each tropical line L inR3 is encoded (up to tropical scaling) by its tropical Plücker
vector P = (P01, P02, P03, P12, P13, P23) ∈ R

6. The six Pi j are the tropical 2 × 2
minors of a 2 × 4 matrix. A vector P ∈ R

6 is the tropical Plücker vector of a line if
and only if it lies on the tropical hypersurface given by

P01 � P23 ⊕ P02 � P13 ⊕ P03 � P12. (4)

This means that the minimum in (4) is attained at least twice. Equivalently, P is a
height function on the six vertices of the regular octahedron which induces a split into
two Egyptian pyramids [17, Fig. 4.4.1]. The tropical hypersurface defined by (4) is
the tropical Grassmannian Trop (G0(2, 4)).

A tropical line L is recovered from its Plücker vector P ∈ R
6 as follows. We

start by identifying the pair of terms in (4) which attains the minimum. Suppose
P01 + P23 = P02 + P13 ≤ P03 + P12, i.e., the labeled type is 03|12. Then, by [17,
Exam. 4.3.19], L consists of the segment joining the two points

123



Discrete & Computational Geometry

q03 = (P02 + P03, P02 + P13, P02 + P23, P03 + P23) and

q12 = (P02 + P13, P12 + P13, P12 + P23, P13 + P23) in R4/R1,
(5)

and the four rays q03 +R≥0 · ω0, q03 +R≥0 · ω3, q12 +R≥0 · ω1, q12 +R≥0 · ω2. The
formulas for the other two labeled types, 01|23 and 02|13, are analogous.

In summary, the vertices qi j and qkl of a tropical line L are computed from the
Plücker coordinates in (5). Conversely, the Plücker vector is obtained by taking the
tropical 2 × 2 minors of the 2 × 4 matrix with rows qi j and qkl .

The article [21] describes the various ways in which a tropical line L can lie on a
smooth cubic surface S in 3-space. Here we require S to be generic in the precise sense
of Sect. 5. On the line L wemark the points where L intersects edges or vertices of the
surface S. These are the bars and dots indicated on the tropical lines in the left column
of Table 1. Each bar is dual to a triangle in T , and each dot is dual to a tetrahedron
in T . Formally, a motif of a tropical cubic surface is one of the ten abstract simplicial
complexes 3A, 3B, . . . , 3J which are listed in the middle column of Table 1. Each is
equipped with a labeling of its vertices by A, B, . . . and a marking of precisely four
edges by i, j, k, l. That this list of ten motifs is complete is the main result of [21].

The number of vertices of the ten motifs ranges between four and eight; the marked
edges are the exits of the motif. The names of the motifs all start with the digit 3 to
indicate the degree of the tropical surface; there are more motifs for other degrees [21,
Table 2]. The article [21] distinguishes between “primalmotifs” and “dual motifs”.We
use the termmotif for what is called “dualmotif” in [21]. Our Table 1 uses xi , x j , xk, xl

for the homogeneous coordinates of the lattice points in 3Δ3, and it uses the notation
Fi = {x ∈ 3Δ3 : xi = 0} for the facets of 3Δ3. The third column of Table 1 gives
additional conditions to be satisfied by some edges in order for the motif to occur in
T . These are derived in [21, Prop. 23]. They will become important in Sect. 4.

3 Data, Software, and Lines on Cubics

A primary goal of the present work is to present a database for smooth tropical cubic
surfaces. We now explain our database and the underlying methodology. We start with
the classification of combinatorial types. The proof of this result is the computation
reported in [15, Thm. 19], plus an analysis of the orbits.

Theorem 3.1 The triple tetrahedron 3Δ3 has precisely 344 843 867 regular unimodu-
lar triangulations. These are grouped into 14 373 645 orbits with respect to the natural
action of S4. The distribution of orbit sizes is shown in Table 2.

Table 2 Distribution of orbit sizes among smooth tropical cubic surfaces: 99.93% of the combinatorial
types have no symmetry, i.e., the orbit size is 24

3 4 6 8 12 24

3 15 25 82 10124 14363396
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Remark 3.2 Each smooth tropical cubic surface in R
4/R1 has four elliptic curves in

its boundary in TP3. These are the tropical plane cubics which are dual to the induced
triangulations of the ten lattice points in the triple triangle 3Δ2. That configuration
has precisely 79 unimodular triangulations, all of which are regular. They are grouped
into 18 orbits with respect to the natural action of S3. Hence, we encounter at most
794 = 38 950 081 triangulations of the boundary ∂(3Δ3). This means that, on the
average, more than eight regular unimodular triangulations of 3Δ3 induce the same
boundary triangulation.

Before we enter the technical details, we briefly pause to reflect on the nature of a
result like Theorem 3.1, how it can be useful, and to what extent it can be trusted.
Theorem 3.1 is a highly condensed statement which was derived from massive com-
putations, partially on large clusters, and the total time spent exceeds several months.
Most readers will not have access to these types of hardware and technical resources
and therefore will be unable to repeat these computations on their own. As we see
it, the bulk of the data is the actual theorem. Theorem 3.1 is a mere corollary which
follows from something which is too large to write down in any article. That data and
more is made publically available at

https://db.polymake.org/ (6)

to allow everyone to derive their own corollaries. We stress that all the software that
was used in the process is open source. Therefore, the entire proof of Theorem 3.1,
which consists of software and data (in addition to this text), is available for scrutiny.
Ideally, such a computer proof would be formalized, but currently this seems to be out
of scope for a project of this size. Turning this into a formal proof would be a large
project on its own, probably much larger than flyspeck [24], if feasible at all. This
leaves the question of correctness.

As we see it, making data available and documenting this in an article is a necessary
first step. Everyone is invited to probe the data for its correctness; we prepared various
tools, explained below, to help with the probing. Any errors found in the future will
be corrected in the database. It would be desirable to have a general mechanism for
this, accepted by the mathematical community. Finally, we would like to point out
that it was a massive polymake experiment run by Simon Hampe which lead to the
triangulation (3), which exhibited a flaw in a first version of [21]. That may be seen
as a predecessor to this project.

High-level view on the data computed For each of the 14 373 645 triangulations T
in our database, the following annotations are reported: the GKZ-vector, the B-vector,
the orbit size with respect to the S4-action, and a unique identifier. The identifier is
an integer between 1 and 14 373 645, which can be used to retrieve the triangulation
and data derived. Frequently we will use the symbol ‘#’ for marking identifiers. The
triangulation (3) has the identifier #5054117. The facets of each triangulation are listed
in lexicographic order. The representative for a combinatorial type is chosen so that the
GKZ-vector is lexicographically minimal. Another important item in our database is
a vector C ∈ N

20 of minimum coordinate sum in the interior of each secondary cone.
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Table 3 Data for some triangulations

Identifier Canonical Hash Altshuler Determinant

#5054117 81 541 384 614 912

#12369387 1 464 729 205 0

#1957163 1 000 016 429 278 528

#3315847 1 000 016 429 684 032

#10720721 1 000 063 702 560 512

#14051499 1 000 063 702 560 512

The first row is the triangulation (3), and the second one is the honeycomb triangulation from Example 3.3
below. The next two are combinatorially non-isomorphic but share the same canonical hash values. The
final two are combinatorially isomorphic but in distinct orbits

In order to find this vector, we had to solve an integer linear programming problem.
We did this using the software SCIP [10]. The coefficients of the tropical polynomial
(2) were derived from the triangulation (3) in this way. Note that, by construction, C
is always generic in the sense that the regular subdivision induced is a triangulation.
However, it is not generic as defined in Sect. 5.

Exploring the database We now describe how to access the data we produced. We
offer a collection SchlaefliFanwithin the database Tropical of polyDB [19].
The simplest possible access is by directing a standardwebbrowser to (6).However, for
best results, we recommend the concurrent use of a recent version of polymake [7].
The new polymake extension TropicalCubics [16] is the software companion
to this paper. It is available from and further explained at https://polymake.org/doku.
php/extensions/tropicalcubics. Future additions will deal with other aspects of tropical
cubic surfaces.

One pertinent question is how to find a given triangulation T in the database. The
user is unlikely to know the search key, and T may be given by its list of facets as in
(3). One way is to compute the GKZ-vector and to then generate the lexicographically
minimal representative within its S4-orbit. This is the preferred method since it identi-
fies the regular triangulation uniquely. Thus, in practice, the lex-minimal GKZ-vector
works as another search key. An alternative method is to find a canonical form of T as
a simplicial complex. This means identifying the isomorphism type of the incidence
graph of the 20 vertices and the 27 tetrahedra. The software nauty [18] is a standard
tool for this task. It computes a canonical hash value, which is a 64-Bit integer that
encodes the isomorphism type. This hash value is also stored in our database. It can
be used as an index to retrieve a triangulation instantly; cf. Table 3.

The canonical hash value is a combinatorial invariant, but it is not unique. Table 3
shows two triangulations with the same hash value. Nonetheless, they are not isomor-
phic as abstract simplicial complexes, as can be seen as follows. Let v1, v2, . . . , vk

and t1, t2, . . . , tl be an ordering of the vertices and the facets, respectively, of a sim-
plicial complex T . The incidence matrix J is the 0/1-matrix with Ji j = 1 if vertex vi

lies on the facet t j and Ji j = 0 otherwise. We define the Altshuler determinant of T
to be max (|det J J	|, |det J	J |). This number does not depend on the orderings [1,
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Thm. 3]. It is a combinatorial invariant of T . This distinguishes the third and fourth
triangulations in Table 3. Our database can be queried for Altshuler determinants
directly.

It also happens that two abstractly isomorphic triangulations lie in different S4-
orbits.Apair of examples is given at the endofTable 3.Altogether there are 79 572hash
values (i.e., about 0.5%) that correspond to two or more S4-orbits of triangulations.
The maximal multiplicity of any hash value is four. So, with high probability, nauty
identifies the triangulation uniquely.

Lines in surfaces We now shift gears, with a discussion of the following basic
problem. Given a non-degenerate tropical line L and a tropical cubic surface S, decide
whether S contains L . We present an algorithm that solves this.

Let �(t) = [�0(t), �1(t), . . . , �m(t)] be an ordered list of linear polynomials �i (t) =
αi t + βi . An interval U in R is covered by �(t) if the minimum value in the list �(u)

is attained at least twice for all u ∈ U . This can only happen if some �i (t) appears
multiple times in �(t). We introduce the coincidence partition

{0, 1, . . . , m} = σ1 ∪̇ σ2 ∪̇ . . . ∪̇ σr , (7)

where (i ∈ σk and j ∈ σl ) implies (�i = � j if and only if k = l). We write �σk (t) for
the linear function �i (t) with i ∈ σk . The tropical polynomial function R → R

m+1,
t �→ min �(t), defines a partition into smaller intervals,

U = U1 ∪ U2 ∪ . . . ∪ Us, (8)

with the following property: on each Ui precisely one function �σk(i) attains the mini-
mum among our r linear functions. Then �(t) covers U if and only if

|σk(i)| ≥ 2 for all i ∈ {1, 2, . . . , s}. (9)

Our discussion translates into an algorithm called the Covering Subroutine. Its input is
an interval U inR and a list �(t) of linear polynomials, and its output is a yes-no deci-
sionwhetherU is covered by �(t). In the no-case, the Covering Subroutine also outputs
a rational number u ∈ U such that the minimum in �(u) is attained only once. In the
yes-case, the Covering Subroutine outputs the list of index sets σk(1), σk(2), . . . , σk(s),
along with the corresponding tropical roots of min �(t). We call this list the covering
certificate. We next present an algorithm that decides whether a given non-degenerate
tropical line lies on a given tropical cubic surface. It makes five calls to the Covering
Subroutine. An illustration of Algorithm 1 is given in Example 3.3.

Example 3.3 Fix the line L with P = (26, 6, 17, 7, 18, 0) and the cubic F with

C = (32, 17, 20, 41, 26, 17, 32, 33, 36, 54, 8, 1, 14, 4, 7, 18, 0, 0, 0, 0). (10)

This vector induces the honeycomb triangulation #12369387 from [21, Sect. 6]:
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Algorithm 1 Deciding if a tropical line L lies on a tropical surface S in R3

Input: The tropical Plücker vector P for L , and a tropical polynomial F that defines S.
Output: Either a certificate that L lies in S, or a point in the set difference L\S.
1: Determine the labeled type i j |kl of L .
2: Compute the vertices qi j and qkl of L via the formulas in (5).
3: Find parametrizations for the bounded edge and the four rays of L . These are linear maps: [0, 1] →

[qi j , qkl ] and [0,∞) → qi j + R≥0 · ωi and . . . and [0, ∞) → qkl + R≥0 · ωl .
4: for each of the five linear maps above do
5: Substitute the map into F . Get an interval U and a list �(t) of linear polynomials.
6: Apply the Covering Subroutine to (U , �(t)) and obtain the answer yes or no.
7: if no then obtain u ∈ U , plug into linear map, and output resulting point in L \ S.
8: end if
9: if yes then obtain the covering certificate (σk(1), σk(2), . . . , σk(s)) and save it.
10: end if
11: end for
12: if all five answers were yes then
13: Output the covering certificates for the bounded edge and the four rays of L .
14: end if

{0, 1, 4, 10}, {1, 2, 5, 11}, {1, 4, 5, 13}, {1, 4, 10, 13}, {1, 5, 11, 13}, {1, 10, 11, 13},
{2, 3, 6, 12}, {2, 5, 6, 14}, {2, 5, 11, 14}, {2, 6, 12, 14}, {2, 11, 12, 14} {4, 5, 7, 13},
{5, 6, 8, 14}, {5, 7, 8, 15}, {5, 7, 13, 15}, {5, 8, 14, 15}, {5, 11, 13, 14}, {5, 13, 14, 15},
{7, 8, 9, 15}, {10, 11, 13, 16}, {11, 12, 14, 17}, {11, 13, 14, 18}, {11, 13, 16, 18},
{11, 14, 17, 18}, {11, 16, 17, 18}, {13, 14, 15, 18}, {16, 17, 18, 19}.

The tropical line L is non-degenerate and of labeled type 01|23 because P02 + P13 =
P03 + P12 = 24 < 26 = P01 + P23. Using (5) we find q01 = (19, 20, 0, 11) and
q23 = (17, 18, 0, 11). In all five iterations through steps 4–11, the answer is yes. The
covering certificates σ are:

[q01, q23] has s = 1 and σ = ({14, 15}),
q01 + R≥0ω0 has s = 1 and σ = ({14, 15}),
q01 + R≥0ω1 has s = 2 and σ = ({14, 15}, {5, 8}),
q23 + R≥0ω2 has s = 2 and σ = ({14, 18}, {11, 17}),
q23 + R≥0ω3 has s = 1 and σ = ({15, 18}).

(11)

There are two special points where min �(t) is attained four times. At the point q23,
the minimum is attained thrice. The relevant index sets are cells in the triangulation:
two tetrahedra {5, 8, 14, 15} and {11, 14, 17, 18}, and the triangle {14, 15, 18}. These
data identify an occurrence of the motif 3D in Table 1.

Remark 3.4 Algorithm1 can be turned into amethod for identifying all non-degenerate
tropical lines in a given tropical surface S in R3. Here is an alternative method for the
same task. Let F be the tropical polynomial defining S. First we compute the dome
{(x, y) : x ∈ R

3, y ≤ F(x)}. This is an unbounded polyhedron inR4 which represents
F . We obtain a description of the surface S as a polyhedral complex by projecting the
codimension 2 skeleton of the dome. The maximal cells of S are obtained by a convex
hull computation [13, Sect. 3]. From this we enumerate the poset of all cells of S; cf.
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Fig. 2 The distributions of the total number of motifs, counting triangulations. The highest frequency is 45
motifs, which occur in 17 900 688 triangulations. These form 745 927 orbits, which is 5.12% of orbits of
regular unimodular triangulations of 3Δ3. The minimum at 27 is attained by 34 096 triangulations in 1426
orbits, and the maximum at 128 by 15 triangulations in two orbits

[14, Algorithm 1]. Each pair of cells is a candidate for possible locations of the two
vertices qi j and qkl . These points are described as convex combinations of the cells’
vertices with unknown coefficients. Whether or not they form the two vertices of a
tropical line in S can be decided by checking the feasibility of a linear program.

Simon Hampe implemented a similar approach for tropical cubic surfaces. This is
the function lines_in_cubic in the polymake extension a-tint [12], which
is slightly different from our Algorithm 1. First, lines_in_cubic also computes
degenerate lines; second, that function is tailored to the cubic case.

4 Motifs and Their Occurrences

We now turn to the ten motifs in Table 1. We are interested in their occurrences in
the 14 373 645 unimodular regular triangulations of 3Δ3. As before, our goal is the
complete classification of all possibilities. We begin by stating our main result. The
proof is given by exhaustive computations using Algorithm 2.

Theorem 4.1 The number of occurrences of all motifs in the unimodular regular tri-
angulations of 3Δ3 varies between 27 and 128, as shown in Fig. 2. There are no
triangulations with precisely 122, 124, 125, or 127 occurrences.

We now define the notion of occurrence. Fix a regular unimodular triangulation
T of 3Δ3. Let R be a motif, viewed as a labeled simplicial complex. An occurrence
of R in T is a simplicial map from R to T that satisfies the conditions in the third
column of Table 1. These conditions include a bijection between the set {i, j, k, l} of
exits and the four facets of 3Δ3. Such a simplicial map sends vertices ofR to vertices
of T , while faces are mapped to faces. Often occurrences are embeddings, but it can
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Fig. 3 Two distinct 3D motifs in the honeycomb triangulation supported by the same set of vertices
(cf. Example 4.2). Exit edges are marked

happen that two vertices of R are mapped to the same vertex of T . We shall see this
in Example 4.4.

An occurrence of a motif R in T is a map of simplicial complexes. The definition
above is subtle. One might think that such a map is determined by the image of the
set of vertices ofR. This is not true! The same subcomplex of T may support several
occurrences of a motif. We now present an example.

Example 4.2 The line L in Example 3.3 gives an occurrence of the motif 3D in the
honeycomb triangulation. The corresponding simplicial map is given by

A = 11, B = 17, C = 18, D = 14, E = 15, F = 5, G = 8,

i = 3, j = 2, k = 0, l = 1.
(12)

This uses our fixed ordering of the lattice points in 3Δ3, so the vertices are

A = (1101), B = (0201), C = (0210), D = (0111),

E = (0120), F = (1011), G = (0021).

The left diagram in Fig. 3 helps in verifying the conditions from Table 1:

C E ⊂ F3, AB ⊂ F2, DE ⊂ F0, FG ⊂ F1, C D ⊂ {x2 = 1}, DE ⊂ {x1 = 1}.

The motif (12) is made visible in Example 3.3 by the line L in the surface S. The motif
occurrence seen in the covering certificates (11) given by Algorithm 1. The above
occurrence is special in that the exit edge {15, 18} lies in the edge F0 ∩ F3 of 3Δ3. We
can relabel the points and the exits as follows:

A = 5, B = 8, C = 15, D = 14, E = 18, F = 11, G = 17,

i = 3, j = 1, k = 0, l = 2.
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This is another occurrence of a 3D motif in T , shown on the right in Fig. 3. In
conclusion, the same subcomplex of the honeycomb triangulation supports two distinct
occurrences of themotif 3D.However, it is impossible for both to be visible in the same
cubic surface. To ascertain whether an occurrence of a motif is visible in a specific
cubic surface is our problem in Sect. 5.

We now show all motif occurrences in a given triangulation. As it stands, Algorithm 2
is too naïve to be useful. The number of vertices of a motif varies between four (type
3I) and eight (type 3F). For the 3F motif alone we would need to enumerate and check
208 = 25.6 · 109 potential simplicial maps into T .

Algorithm 2 Finding all motif occurrences
Input: Unimodular regular triangulation T of 3Δ3.
Output: The list of all occurrences of motifs in T .
1: for each motif M do
2: for each mapR from the vertices of M to the 20 lattice points in 3Δ3 do
3: if R is simplicial into T and the conditions in Table 1 are satisfied then
4: outputR.
5: end if
6: end for
7: end for

In practice, it is essential to exploit symmetries and other simplifications. A sym-
metry of a motif R is a simplicial bijection from the labeled simplicial complex R
to itself such that the conditions in the third column of Table 1 are preserved. Two
symmetric occurrences of a motif yield the same line in a given tropical surface (or
none). The symmetries of a motif form a group. The following lemma is derived by
direct inspection from the data in Table 1.

Lemma 4.3 The ten motifs of tropical cubic surfaces have the following symmetry
groups. In each case, generators g1, g2, . . . and a description are given:

(3A) g1 = (E F). Cyclic group of order 2.
(3B) g1 = (B C)(i j), g2 = (A F)(B D)(C E)(i k)( j l). Dihedral group of

order 8.
(3C) g1 = (B C)(i j), g2 = (D E), g3 = (F G). Elementary abelian group of

order 8.
(3D) g1 = (A B), g2 = (F G). Elementary abelian group of order 4.
(3E) g1 = (B C)(i j), g2 = (D E), g3 = (B C)(D F)(E G)(i j)(k l). Nonabe-

lian group of order 16: direct product of an order 2 group 〈g1〉 and a dihedral
group 〈g2, g3〉 of order 8.

(3F) g1 = (A B), g2 = (C D), g3 = (E F), g4 = (G H), and g5 =
(A H)(B G)(C F)(D E)(i k)( j l). Nonabelian group of order 32. Here
g1, g2, g3, g4 span an abelian subgroup of order 16.

(3G) g1 = (A B), g2 = (C D), g3 = (E F). Elementary abelian group of order 8.
(3H) g1 = (A B), g2 = (C D)(k l). Elementary abelian group of order 4.
(3I) g1 = (A B), g2 = (C D). Elementary abelian group of order 4.
(3J) g1 = (B C), g2 = (D E). Elementary abelian group of order 4.
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We next show that occurrences of motifs are generally not embeddings.

Example 4.4 The motif 3F occurs in the triangulation (3) via the labeling

A = 15, B = 18, C = 11, D = 17, E = 14, F = 15, G = 2, H = 9,

i = 2, j = 3, k = 0, l = 1.

In this occurrence, A and F are mapped to the same point, labeled by 15.

To obtain Theorem 4.1, we developed a highly efficient version of Algorithm 2, we
implemented it in polymake, and we applied it to millions of triangulations. This
required substantial speed-ups, based on structural constraints that control the combi-
natorial explosion. In the rest of this section, we present a sample of such constraints,
and we discuss how they are used.

Lemma 4.5 Vertex A is distinct from E and F in any occurrence of motif 3A.

Proof If A coincides with E or F then A has coordinates i , k, and l equal to zero.
Moreover, the condition AD ⊆ {xi + x j = 1} implies that the coordinate j is equal
to one. This is impossible, since the four coordinates sum to three. ��
Our strategy for enumeratingmotif occurrences is to find the possibleways inwhich the
simplices of a motif are mapped into the given triangulation. This leads to more book-
keeping in Algorithm 2, to be used for shortcuts. We exploit the following features
in the motifs. A tetrahedron T is called sided if it has one edge on a facet Fi of 3Δ3
and the opposite edge lies on the plane xi = 1. The associated tropical line contains
the vertex of the surface dual to T in the interior of the ray in direction ωi . We call
T split if it has two opposite edges with prescribed exits. There are two possibilities.
The line has two adjacent rays in directions given by the exits, and one ray contains in
its interior the vertex dual to the split tetrahedron. Or the bounded edge contains the
vertex dual to the split tetrahedron in its interior, and the rays in the directions of the
exits are not adjacent. We say that T is centered if the constraints in Table 1 induce a
bijection between its vertices and the facets of 3Δ3. Its dual vertex lies in the interior
of the bounded edge of the tropical line. Finally, a triangle in a motif is dangling if it
has two edges with required exits. The tropical line has a vertex in the interior of an
edge of the surface. The two rays adjacent to that vertex have direction given by the
exits of the dangling triangle.

The features we defined above occur in the ten motifs as follows:

– The following tetrahedra are sided: C DE F in motif 3A, DE FG in 3C, BC DE
and BC FG in 3E, ABC D and E FG H in 3F, C DE F in 3G, ABC D and ABC E
in 3J.

– Tetrahedron DE FG in 3D is split; so are C DE F in 3F and C DE F in 3G.
– Tetrahedron BC DE in motif 3B is centered.
– Triangle AB D in motif 3A is dangling, likewise ABC and DE F in 3B, ABC in
3C, C DE in 3D, ABC in 3E, and C DE in 3H.

Our strategy for Theorem 4.1 is to first enumerate the features of a triangulation, i.e.,
its sided, split and centered tetrahedra, and its dangling triangles. This is combined
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with searching for occurrences of a motif by local extensions. The following example
illustrates this for the 3A motif with a heuristic estimate for the number of subcases
arising.

Example 4.6 Let T be the triangulation in (3) and in Example 5.3 below. We start out
by finding the candidates for the sided tetrahedron C DE F , with the exit E F on facet
Fl . Considering all labelings, there are 114 choices for this in T . Next we need to find
the candidates for A. Here it suffices to consider those which are in the link of the
edge C D. For instance, the link for {C, D} = {15, 11} has six vertices. The number
six appears to be typical and we use this number for our estimate. By Lemma 4.5, A
must be distinct from E and F , reducing the number of candidates to four. We further
exclude any A where AC does not lie in the boundary of 3Δ3. For the remaining ones
we try the three directions other than l, which is already fixed. The only item missing
is the vertex B. Assuming, e.g., A = 18 we need to check three candidates in the
link of AD (four minus one for C , because A �= C) and two remaining exits. This
leads to 114 · 4 · 3 · 3 · 2 = 8208 cases, including all possible labelings. In fact, the
enumeration is even faster, as many of these cases can be ruled out early while the
various conditions in Table 1 are being checked. Summing up, the number of subcases
considered by this approach is much smaller than 3.3 million subcases for one 3A
motif one sees in a naïve backtracking search.

5 Schläfli Cones

In Sect. 4 we studied the occurrences of motifs in the 14 373 645 types of regular
unimodular triangulations of 3Δ3. Their number per type ranges between 27 and 128.
In this section we focus on individual smooth tropical cubic surfaces from a fixed
secondary cone sec(T ). Every tropical line on a generic surface gives a motif that
occurs in T . But the converse is not true. An occurrence of a motif need not contribute
a tropical line to a given surface.

Let T be a regular unimodular triangulation of 3Δ3. Each point C in the open
secondary cone sec(T ) specifies a smooth tropical cubic surface SC which is dual to
the triangulation T . Given an occurrence R of a motif in T , we say that R is visible
in SC if there is a tropical line L in SC that has the dual complexR. We writeMC for
the set of all motifs that are visible in SC .

In this section we use lowercase letters ci instead of uppercase letters Ci for the
coordinates of the tropical coefficient vector C = (c0, c1, . . . , c19), so as to make our
tables more readable. GivenR, the tropical line L that matches the combinatorics inR
is uniquely determined by its two vertices. Their coordinates are linear forms in C . If
the ci take on values inR then the tropical line may or may not be contained in SC . We
require that it lies in SC as prescribed byR. Each vertex must lie on a cell of SC that is
specified by the equality of two or more of the 20 linear expressions whose minimum
is the tropical cubic polynomial. These linear forms must be equal and bounded above
by the other ones. We consider these linear inequalities together with those that define
the secondary cone. They define the visibility cone of R in sec(T ).
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We look at the facets of a full dimensional visibility cone that are not facets of
sec(T ). Each of them is defined by a linear form in Z[c0, c1, . . . , c19]. This linear
form is unique up to scaling. We identify this linear form with the hyperplane it
defines, and we call it a Schläfli wall for the type T . The collection of all Schläfli walls
defines a hyperplane arrangement in R

20. Each Schläfli wall arises (non-uniquely)
from some motifR that occurs in T . We writeWR for the set of Schläfli walls arising
from the occurrence R of a motif.

The Schläfli fan of the combinatorial type T is the subdivision of sec(T ) induced
by the Schläfli walls of type T . A Schläfli cone is a maximal cone in the Schläfli
fan. The set of motifs in MC with full dimensional visibility cone is constant for all
surfaces SC in a fixed Schläfli cone. That Schläfli cone is the intersection of those
visibility cones corresponding to the motifs in MC . If one crosses from one Schläfli
cone to a neighboring one through the relative interior of a shared facet, then the set
MC changes. A tropical cubic surface SC is generic if its coefficient vector C is in
the interior of a Schläfli cone.

There are 14 373 645 distinct Schläfli fans. Algorithm 3 finds their Schläfli walls.
We coded this in Macaulay2 [11]. Here is one of the results we found:

Theorem 5.1 For each of the 1426 types in Theorem 4.1 with exactly 27 motifs, the
secondary cone remains undivided in the Schläfli fan. Among these, 1396 types feature
isolated tropical lines only. The remaining 30 have precisely one occurrence of motif
3I; in particular, motif 3J does not occur at all.

The situation is different for many triangulations T with more than 27 motif occur-
rences. The Schläfli fan is nontrivial; it does divide sec(T ) into smaller cones,
according to which tropical lines lie on the various cubic surfaces.

Lemma 5.2 LetR be an occurrence of a motif 3F, 3G, or 3I in a type T . ThenWR = ∅.
In other words, R is visible in every tropical cubic surface of type T .

Proof This was shown for the motifs 3G and 3I in [21, Prop. 23]. Now consider the
motif 3F. Suppose thatR is an occurrence of 3F. The three tetrahedra ABC D,C DE F ,
and E FG H are dual to three vertices of SC . The necessary conditions on the edges in
Table 1 allow trespassing segments respectively in the directions ω j , ωi +ω j , and ωl .
Thanks to the exits of the three tetrahedra, these segments can always be completed
to a tropical line, irrespective of the specific values of the parameters ci . ��
Algorithm 3 computes the set of wallsWR for the other motifs.

If all linear inequalities we found are redundant, then the visibility cone equals the
secondary cone. In that case, the motif is visible in each surface SC with C ∈ sec(T ),
and the motif is globally visible. This holds in Theorem 5.1.

IfAlgorithm3finds irredundant linear forms, thenwe distinguish two cases, accord-
ing to the dimension of the visibility cone. If the visibility cone is full dimensional,
then the motif is partially visible. Finally, a visibility cone might not be full dimen-
sional. This means that it is contained in a linear space of positive codimension. A
motif with visibility cone of lower dimension is not visible in generic surfaces. We
therefore call it hardly visible.

We now illustrate these concepts for the tropical cubic surface from (3).
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Algorithm 3 Computing the visibility cone and Schläfli walls of a motif
Input: Secondary cone of a unimodular regular triangulation T of 3Δ3, and an occurrenceR of a motif in T .
Output: Visibility cone and Schläfli walls ofR.
1: Compute the vertices of the tropical line L dual toR.
2: for each vertex V of L do
3: Substitute the coordinates of V in the 20 monomials of the tropical cubic polynomial.
4: Get linear inequalities by requiring that V lies on the prescribed cell of the surface.
5: end for
6: Construct the cone defined by these linear inequalities.
7: Compute the visibility cone by intersecting that cone with the secondary cone.
8: Remove redundant facets.
9: Output the visibility cone and Schläfli walls.

Example 5.3 The triangulation#5054117has 51occurrences of themotifs 3A, 3B, . . . ,

3J. Their frequencies are 6, 5, 0, 24, 0, 2, 4, 7, 2, 1. Lemma 5.2 says that the motifs
3F, 3G, and 3I are globally visible. In Tables 4, 5, and 6 we list all motifs, together
with their sets of Schläfli wallsWR. We describe how the Schläfli walls are computed
for the motifs of type 3H. The motif R consists of a tetrahedron ABC D and a dan-
gling triangle C DE . One of the vertices of the tropical line defined by R is dual to
the tetrahedron. In order for the line to be contained in the surface, the other vertex
must lie on the edge dual to the dangling triangle, i.e., the minimum in the tropical
polynomial must be achieved at the monomials corresponding to C , D, and E . These
linear inequalities define the visibility cone. Note that the occurrence 8 of motif 3H in
Table 6 is hardly visible, since its visibility cone is not full dimensional.

The list of partially visible motifs in Table 5 shows that the Schläfli walls generate
a hyperplane arrangement defined by the seven linear forms:

H0 : c2 − c9 − c11 + c15 − c17 + c18,

H1 : c2 − c9 − c11 + 2c15 − c17 − c18 + c19,

H2 : c1 − c9 − 2c11 + 2c15 + c17 − c18,

H3 : c1 − c9 − 2c11 + c15 + c17 + c18 − c19,

H4 : c1 − c7 + c9 − c11 − c15 + c18,

H5 : c1 − 2c11 − c15 + c17 + 2c18 − c19,

H6 : c4 − c7 − c13 + 2c18 − c19.

We write H+
i and H−

i for the two halfspaces defined by these linear forms.
Let us look at the Schläfli walls from partially visible motifs of type 3B. The

hyperplanes for the Schläfli walls of these motifs are H4 and H5. They divide the
secondary cone into four cells H+

4 H+
5 , H+

4 H−
5 , H−

4 H+
5 , H−

4 H−
5 . These four cells

correspond in Table 5 to the occurrences 8, 6, 7, and 9, in this order. Each motif
occurrence is visible in precisely that cell.

For the motifs of type 3D, we also have two hyperplanes H0 and H2. These give the
Schläfli walls that divide the secondary cone into four cells. In the cells H+

0 H+
2 and

H−
0 H−

2 the motifs 11, 13 and 10, 12 are visible, respectively. In the cell H−
0 H+

2 none
of the partially visible motifs is visible. Finally, on the cell H+

0 H−
2 all the partially
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Table 4 The triangulation #5054117 from (3) has 24 globally visible motifs

Index Points Exits

Motifs 3B

0 9, 15, 7, 1, 18, 19 0, 1, 2, 3

Motifs 3D

1 9, 15, 2, 11, 1, 9, 15 1, 0, 2, 3

2 3, 14, 2, 11, 1, 15, 18 1, 0, 2, 3

3 9, 15, 2, 11, 1, 15, 18 1, 0, 2, 3

4 14, 15, 2, 11, 1, 15, 18 1, 0, 2, 3

5 3, 14, 2, 11, 1, 18, 19 1, 0, 2, 3

6 9, 15, 2, 11, 1, 18, 19 1, 0, 2, 3

7 14, 15, 2, 11, 1, 18, 19 1, 0, 2, 3

8 9, 15, 1, 11, 2, 3, 14 1, 3, 2, 0

9 9, 15, 1, 11, 2, 14, 15 1, 3, 2, 0

10 9, 15, 1, 11, 2, 9, 15 1, 3, 2, 0

11 2, 3, 14, 11, 17, 15, 18 0, 1, 2, 3

12 2, 3, 14, 11, 17, 18, 19 0, 1, 2, 3

Motifs 3F

13 15, 18, 11, 17, 14, 15, 2, 9 2, 3, 0, 1

14 18, 19, 11, 17, 14, 15, 2, 9 2, 3, 0, 1

Motifs 3G

15 9, 15, 2, 11, 3, 14 1, 3, 2, 0

16 9, 15, 2, 11, 14, 15 1, 3, 2, 0

17 9, 15, 1, 11, 15, 18 0, 1, 2, 3

18 9, 15, 1, 11, 18, 19 0, 1, 2, 3

Motifs 3H

19 7, 15, 1, 18, 19 0, 1, 2, 3

20 9, 15, 2, 14, 3 1, 3, 2, 0

Motifs 3I

21 1, 11, 9, 15 1, 2, 0, 3

22 2, 11, 9, 15 1, 2, 0, 3

Motifs 3J

23 11, 9, 15, 1, 2 0, 3, 1, 2

visible motifs are visible. Moreover, when we pass through the Schläfli wall from H−
0

to H+
0 , the motifs 0 and 1 of type 3A are no longer visible, while the motifs 11 and

13 of type 3D become visible.

Remark 5.4 In this section we considered the problem whether a motif is visible on
a certain tropical surface. If the motif is visible, then the next natural step is to ask
whether the tropical line defined by the motif is realizable on a cubic surface defined
over a field with valuation. More precisely, given a tropical line L on a tropical surface
S, we ask whether there exists a line � on a cubic surface S such that trop(�) = L and
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Table 6 The triangulation #5054117 from (3) has 9 hardly visible motifs

Index Points Exits Schläfli walls

Motifs 3D

0 3, 14, 2, 11, 1, 9, 15 1, 0, 2, 3

c12 − 2c14 + c15,
c1 − 3c5 + 2c9 + c11 + c14 − 2c15,
c9 − 2c12 + 3c14 − 3c15 + c17,
c3 − 2c6 + c8, −c3 + 2c6 − c8
equations: c2 − c6 − c11 + c14,
2c3 − 3c6 + c9, c2 + c3 − 2c6 − c11 + c15

1 14, 15, 2, 11, 1, 9, 15 1, 0, 2, 3
c1 − 3c5 + 2c9 + c11 + c14 − 2c15,
−c3 + c9 + c12 + c14 − 2c15
equations: c2 − c9 − c11 − c14 + 2c15

2 15, 18, 1, 11, 2, 3, 14 1, 3, 2, 0

−2c6 + c8 + 2c12 − c17, c8 − c9 − c17 + c18,
c1 − 3c5 + c9 + c11 + c12 − c17,
c9 − c12 − c15 + 2c17 − c18,
equations:
c2 − c3 − c11 + c12, 2c2 − c3 − 2c11 + c17,
2c2 − c3 − 2c11 + c14 − c15 + c18

3 18, 19, 1, 11, 2, 3, 14 1, 3, 2, 0

−2c6 + c8 + 2c12 − c17,
c1 − 3c5 + c9 + c11 + c12 − c17,
c8 − c9 − c17 + c18, −c1 + c11 + c13 − c18,
c9 − c12 + 2c17 − 3c18 + c19,
c5 − c9 − c11 + 2c18 − c19
equations: c2 − c3 − c11 + c12,
2c2 − c3 − c7 − 2c11 + c13 + c14,
2c2 − c3 − 2c11 + c17, c7 − c13 − c15 + c18,
2c7 − 2c13 − c15 + c19

4 15, 18, 1, 11, 2, 9, 15 1, 3, 2, 0

c5 − c11 − c15 + c18,
c1 − 3c5 + c11 + 3c15 + c17 − 3c18
equations: c3 − 2c6 + c8,
2c3 − 3c6 + c9, c2 − c3 − c11 + c12,
c2 − c6 − c11 + c14,
c2 + c3 − 2c6 − c11 + c15,
2c2 − c3 − 2c11 + c17, 2c2 − c6 − 2c11 + c18

5 18, 19, 1, 11, 2, 9, 15 1, 3, 2, 0

−c1 + c11 + c13 − c18, c5 − c11 − c18 + c19,
c1 − 3c5 + c11 + c17 + 3c18 − 3c19
equations: c3 − 2c6 + c8,
2c3 − 3c6 + c9, c2 − c3 − c11 + c12,
c2 − c3 + c6 − c7 − c11 + c13,
c2 + c3 − 2c6 − c11 + c15,
c2 − c6 − c11 + c14, 2c2 − c3 − 2c11 + c17,
2c2 − c6 − 2c11 + c18, 3c2 − c3 − 3c11 + c19

6 15, 18, 1, 11, 2, 14, 15 1, 3, 2, 0

c5 − c11 − c15 + c18,
c1 − 3c5 + c11 + 3c15 + c17 − 3c18
equations: c3 − 2c6 + c8,
2c3 − 3c6 + c9, c2 − c3 − c11 + c12,
c2 − c6 − c11 + c14, c2 + c3 − 2c6 − c11 + c15,
2c2 − c3 − 2c11 + c17, 2c2 − c6 − 2c11 + c18
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Table 6 continued

Index Points Exits Schläfli walls

7 18, 19, 1, 11, 2, 14, 15 1, 3, 2, 0

−c1 + c11 + c13 − c18, c5 − c11 − c18 + c19
c1 − 3c5 + c11 + c17 + 3c18 − 3c19
equations: c3 − 2c6 + c8, 2c3 − 3c6 + c9,
c2 − c3 + c6 − c7 − c11 + c13,
c2 − c3 − c11 + c12, c2 − c6 − c11 + c14,
c2 + c3 − 2c6 − c11 + c15, 2c2 − c3 − 2c11 + c17,
2c2 − c6 − 2c11 + c18, 3c2 − c3 − 3c11 + c19

Motifs 3H

8 9, 11, 1, 15, 7 0, 2, 1, 3
c2 − 3c5 + c7 + c9 + c11 − c15
equation: c1 − c7 − c11 + c15

trop(S) = S. This realizability problem was studied in [2,3]. The authors show that
non-degenerate lines in families of type 3I are not realizable on surfaces over a valued
field of characteristic zero. Geiger [8] extends this result to a valued field with residue
characteristic different from two. She also provides an example of a line of type 3J
which is realizable on a cubic surface over the field of 5-adic numbers.

6 The Universal Fano Variety and its Tropical Discriminant

We now relate our combinatorial results to classical algebraic geometry. The natural
parameter space for our problem is the universal Fano variety. Its points are pairs
consisting of a line and a cubic surface that contains it. The map onto the second
factor is a 27-to-1 cover of P19. The fiber over a smooth cubic surface, regarded as
a point in P

19, is the Fano variety on that surface, i.e., the set of its 27 lines. The
branch locus of the 27-to-1 map is its discriminant, a hypersurface in P

19. We shall
see that the codimension one skeleton of the Schläfli fan plays the role of the tropical
discriminant for this map.

We follow the approach to tropical geometry in the textbook [17]. One starts with a
classical variety, defined by an ideal I in a (Laurent) polynomial ring over a field with
valuation. The tropical variety Trop(I ) is the set of all weight vectors w whose initial
ideal inw(I ) contains no monomials. We would like to apply this to the universal Fano
variety for lines on cubic surfaces, represented by an ideal in the polynomial ring in the
unknowns pi j and ck . This is the homogeneous coordinate ring of P5 × P

19. The first
factor contains the Grassmannian G(2, 4) of lines in P

3 as a quadratic hypersurface
in P5. The quadric defining G(2, 4) is the Pfaffian of the skew-symmetric matrix

P =

⎛

⎜⎜
⎝

0 p01 p02 p03
−p01 0 p12 p13
−p02 −p12 0 p23
−p03 −p13 −p23 0

⎞

⎟⎟
⎠ .
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We have Pfaff(P) = p01 p23 − p02 p13 + p03 p12. The line with Plücker coordinates
(pi j ) is the image in P3 of the column span of the associated rank 2 matrix P .

The second factor P19 parametrizes cubic forms f . Its coordinates are the coeffi-
cients (c0, c1, . . . , c19). Fix a row vector of unknowns λ = (λ0, λ1, λ2, λ3) and form
the vector-matrix product λP . We write f (λP) for the polynomial obtained by replac-
ing (w, x, y, z)with λP . Thus, f (λP) is a homogeneous cubic in λ. Its 20 coefficients
are bihomogeneous forms of degree (3, 1), like

p01 p12 p13c5 − p212 p13c8 + p01 p212c7 − p12 p213c6 − p312c9

+ p01 p213c2 − p201 p12c4 − p201 p13c1 − p313c3 + p301c0.
(13)

We write Iufv for the ideal in Q[p01, p02, . . . , p23, c0, c1, . . . , c19] that is generated
by these 20 polynomials together with the Plücker quadric Pfaff(P).

The zero set of Iufv in P
5 × P

19 is the universal Fano variety of lines on cubic
surfaces. We verified by computations on affine charts that the ideal Iufv defines the
correct scheme. We consider the tropical universal Fano variety

Trop(Iufv) ⊂ TP
5 × TP

19.

By the Structure Theorem [17, Thm. 3.3.5], Trop(Iufv) is a pure 19-dimensional bal-
anced fan. For simplicity, we disregard boundary phenomena, and we replace each
tropical projective space TP

n with its dense tropical torus Rn+1/R1. The former is
compact while the latter is not. For a detailed discussion see [17, Sect. 6.2]. Points
in Trop(Iufv) are pairs consisting of a line in TP

3 and a cubic surface that contains
the line. The tropical line is represented by its Plücker vector P ∈ R

6. The cubic is
represented by its coefficient vector C ∈ R

20. A pair (P, C) lies in Trop(Iufv) if and
only if in(P,C)(Iufv) contains no monomial. We take this initial ideal in the Laurent
polynomial ring. Unlike in previous sections, here the tropical cubic represented by
C might not be tropically smooth. In order to keep our discussion coherent with the
rest of the article, we restrict to points (P, C) ∈ Trop(Iufv) such that the coefficient
vector C lies in a maximal cone of the unimodular secondary fan of 3Δ3.

Example 6.1 The line given by P = (26, 6, 17, 7, 18, 0) lies on the surface given by
C = (32, 17, 20, 41, 26, 17, 32, 33, 36, 54, 8, 1, 14, 4, 7, 18, 0, 0, 0, 0). This pair
corresponds to the motif of type 3D in Example 3.3; see the diagram on the left-hand
side of Fig. 3. We verify the containment algebraically by checking that

in(P,C)(Iufv) = 〈
p03 p12 − p02 p13, p01c5 − p12c8, p13c14 + p12c15,

p03c14 + p02c15, p23c15 + p13c18, p03c11 + p13c17,

p23c14 − p12c18, p02c11 + p12c17
〉

(14)

contains no monomial. This initial ideal lives in the Laurent polynomial ring. For
instance, the ten terms in (13) have weights 68, 68, 73, 75, 75, 82, 85, 87, 95, 110 in
this order, and the resulting initial form equals (p01c5 − p12c8)p12 p13.

The point (P, C) lies in the relative interior of a maximal cell of Trop(Iufv). The
inequality description of this cell is read off from a Gröbner basis of Iufv. For instance,
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the polynomial (13) contributes the equation P01 + C5 = P12 + C8 and eight inequal-
ities, namely, P01 + C5 + P12 + P13 is bounded above by

P01 + 2P12 + C7, 3P12 + C9, P12 + 2P13 + C6, P01 + 2P13 + C2,

2P01 + P12 + C4, 2P01 + P13 + C1, 3P13 + C3, and 3P01 + C0.

Such constraints, derived from polynomials in Iufv, define the cells of Trop(Iufv).

Themaximal cones of Trop(Iufv) represent occurrences ofmotifs in 3Δ3. In particular,
if we could compute this fan, then this would be an ab initio derivation of the motifs
3A, 3B, . . . , 3J. These were found geometrically in [21].

Remark 6.2 Motifs and their occurrences can be identified from initial ideals
in(P,C)(Iufv). For instance, the indices i of the eight unknowns ci in (14) form the
list (A, B, C, D, E, F, G, H) = (11, 17, 18, 14, 15, 5, 8) we saw in Example 4.2.

Unfortunately, it is very difficult to compute with the ideal Iufv. Even finding a single
Gröbner basis is hard. For instance, the computation of (14) only terminated after
we imposed some degree constraints in Macaulay2. One open problem naturally
arising here is to find a tropical basis of Iufv. The Schläfli fan fits into a broader theory,
yet to be developed, for discriminants of morphisms in tropical algebraic geometry.
We propose the following approach. Let X be a tropical variety in TP

d × TP
n and

φ the projection from X onto the second factor TPn . We assume that φ is onto, so
dim(X ) ≥ n. Let X (n−1) be the subcomplex of X consisting of all cells of dimension
at most n − 1. We think of this as the ramification locus of φ. The image φ(X (n−1))

plays the role of the branch locus. We call this image the tropical discriminant of φ.

Example 6.3 Tropical discriminants [5] are a special case of this construction. Let A
be a subset of n + 1 elements in Z

d . Consider hypersurfaces in d-space defined by
Laurent polynomials with these n + 1 terms. We write C = (Ca : a ∈ A) ∈ R

n+1

for the vector of coefficients, and P = (P1, . . . , Pd) for a point in R
d . The universal

tropical hypersurface is the tropical variety X defined by

⊕

a∈A
Ca � Pa =

⊕

a∈A
Ca � P�a1

1 � P�a2
2 � · · · � P�ad

d . (15)

The map φ : X → R
n+1/R1, (C, P) �→ C , is surjective. The fiber φ−1(C) is the

hypersurface inRd whose tropical polynomial has coefficients C . The tropical variety
X has dimension n + d − 1. It is a fan with

(n+1
2

)
maximal cones, one for each pair

of terms in (15). The subfan X (n−1) consists of
(n+1

d+2

)
cones of dimension n − 1. On

each cone, the minimum among the n + 1 terms in (15) is attained by a fixed set of
d + 2 terms. Hence the regular subdivision of A defined by C is not a triangulation.
The image φ(X (n−1)) consists of the cones of codimension ≥ 1 in the secondary fan
of A. In particular, the tropical discriminant defined above contains that of [5]. The
difference arises from the distinction between the A-discriminant and the principal
A-determinant; see [6,9].
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Remark 6.4 The number of cones in X (n−1) is much smaller than that of its image
under the projection φ. This phenomenon is familiar from computer algebra (cf. elim-
ination theory) and optimization (cf. extended formulations). In our context, take
A = 3Δ3 in Example 6.3. The universal cubic surface X has only

(20
2

) = 190 max-
imal cones, whereas its discriminant φ(X (n−1)) forms the walls between many more
than 344 843 867 cones.

We now come to the main theoretical result in this section. The role of points will be
played by lines. An analogous result holds for Fano varieties of arbitrary hypersurfaces
(15). We focus on the case of cubic surfaces in TP3.

Proposition 6.5 Let X = Trop(Iufv) be the tropical universal Fano variety in TP
5 ×

TP
19 and φ the map onto the second factor (space of tropical cubics). The tropical

discriminant of φ is contained in the union of all Schläfli walls.

Proof All cubics C in the interior of one fixed Schläfli cone have the same visible
motifs. The Plücker vectors P of the 27 lines are linear functions in the entries of
C , as long as C stays within one Schläfli cone. Hence the set of cells in X that are
intersected by the fiber φ−1(C) remains constant throughout that Schläfli cone. These
cells all have the full dimension 19. In particular, φ−1(C) is disjoint from X (18) for
C in the interior of a Schläfli cone. This shows that this interior is disjoint from the
tropical discriminant of φ. ��

Weconcludewith a brief discussion of a related universal family. It lives inP3×P
19,

where P3 now parametrizes planes in the ambient 3-space. Each plane {u0x0+u1x1+
u2x2 + u3x3 = 0} intersects a cubic surface in a plane cubic curve. The plane is a
tritangent plane if the plane cubic decomposes into three lines. The universal Brill
variety is the 19-dimensional irreducible variety consisting of all pairs (u, f ), where
u = (u0 : u1 : u2 : u3) is a tritangent plane to the cubic surface { f = 0}. The map
from this variety onto P

19 is a 45-to-1 covering, since a general cubic surface has 45
tritangent planes.

We introduce an ideal Ibri that defines the universal Brill variety. It lives in
Q[u0, u1, u2, u3, c0, c1, . . . , c19], where the last ten unknowns are the coefficients
of a ternary cubic. In these unknowns, we consider the prime ideal of codimension 3
and degree 15 that defines the factorizable cubics. Its variety is an instance of a Chow
variety, and the equations are known as Brill equations [9, Sect. I.4.H]. This prime
ideal is generated by 35 quartics in the 10 unknowns.

We now derive the 35 generators of Ibri. Set x3 = −(u0x0 + u1x1 + u2x2)/u3 in
f , and clear denominators to get a ternary cubic with coefficients Q[u0, u1, u2, u3].
We substitute these cubics into the Brill equations and we remove factors of u3. The
resulting 35 polynomials of bidegree (7, 4) in (u, c) generate our ideal Ibri. We are
interested in the resulting tropical universal Brill variety

X = Trop(Ibri) ⊂ TP
3 × TP

19.

Its points are pairs consisting of a tropical cubic and a tritangent plane. The maximal
cones of Trop(Ibri) represent occurrences of triple motifs in 3Δ3. It would be desirable
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to compute these. We note that the tritangent planes correspond to the 45 triangles in
the Schläfli graph. This is the 10-regular graph whose vertices are the 27 lines, and
whose edges are incident pairs of lines. The motifs and the triple motifs that occur
in a triangulation can be seen as a tropical structure for annotating and extending the
Schläfli graph.

Acknowledgements We are very grateful to Lars Kastner, Benjamin Lorenz and Andreas Paffenholz for
their help with the computations for this project. We thank Sara Lamboglia, Yue Ren and Emre Sertöz
for their comments on a manuscript version of this article. We are also grateful to the two anonymous
referees whose comments helped us improving the article. Michael Joswig was supported by Deutsche
Forschungsgemeinschaft (EXC 2046: “MATH+”, SFB-TRR 195: “Symbolic Tools in Mathematics and
their Application”, and GRK 2434: “Facets of Complexity”). Open Access funding enabled and organized
by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Altshuler, A., Steinberg, L.: Neighborly 4-polytopes with 9 vertices. J. Comb. Theory Ser. A 15,
270–287 (1973)

2. Bogart, T., Katz, E.: Obstructions to lifting tropical curves in surfaces in 3-space. SIAM J. Discrete
Math. 26(3), 1050–1067 (2012)

3. Brugallé, E., Shaw, K.: Obstructions to approximating tropical curves in surfaces via intersection
theory. Can. J. Math. 67(3), 527–572 (2015)

4. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics,
vol. 25. Springer, Berlin (2010)

5. Dickenstein, A., Feichtner, E.M., Sturmfels, B.: Tropical discriminants. J. Am. Math. Soc. 20(4),
1111–1133 (2007)

6. Dickenstein,A., Tabera, L.F.: Singular tropical hypersurfaces.DiscreteComput.Geom. 47(2), 430–453
(2012)

7. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Kalai, G.,
Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation (Oberwolfach 1997). DMV Sem.,
vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

8. Geiger, A.: On realizability of lines on tropical cubic surfaces and the Brundu–Logar normal form
(2019). To appear in Le Matematiche. arXiv:1909.09391

9. Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional
Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)

10. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gottwald, R.L., Hendel, G., Hojny, Ch., Koch, T.,
Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, Ch., Rehfeldt,
D., Schlösser, F., Schubert, Ch., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider,
F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. http://www.optimization-online.org/DB_
FILE/2018/07/6692.pdf

11. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry.
http://www.math.uiuc.edu/Macaulay2

12. Hampe, S.:a-tint: a polymake extension for algorithmic tropical intersection theory. Eur. J. Comb.
36, 579–607 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1909.09391
http://www.optimization-online.org/DB_FILE/2018/07/6692.pdf
http://www.optimization-online.org/DB_FILE/2018/07/6692.pdf
http://www.math.uiuc.edu/Macaulay2


Discrete & Computational Geometry

13. Hampe, S., Joswig, M.: Tropical computations in polymake. In: Bockle, G., Decker, W., Malle,
G. (eds.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, pp.
361–385. Springer, Cham (2017)

14. Hampe, S., Joswig, M., Schröter, B.: Algorithms for tight spans and tropical linear spaces. J. Symb.
Comput. 91, 116–128 (2019)

15. Jordan, Ch., Joswig, M., Kastner, L.: Parallel enumeration of triangulations. Electron. J. Comb. 25(3),
# 3.6 (2018)

16. Joswig,M., Panizzut,M., Sturmfels,B.:polymake extensionTropicalCubics. https://polymake.
org/extensions/tropicalcubics

17. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry Graduate Studies inMathematics, vol.
161. American Mathematical Society, Providence (2015)

18. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)
19. Paffenholz, A.: polyDB: a database for polytopes and related objects. In: Bockle, G., Decker, W.,

Malle, G. (eds.) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory,
pp. 533–547. Springer, Cham (2017)

20. Panizzut, M., Sertöz, E.C., Sturmfels, B.: An octanomial model for cubic surfaces (2019). To appear
in Le Matematiche. arXiv:1908.06106

21. Panizzut, M., Vigeland, M.D.: Tropical lines on smooth tropical surfaces (2019). arXiv:0708.3847
22. Schläfli, L.: An attempt to determine the twenty-seven lines upon a surface of the third order, and to

divide such surfaces into species in reference to the reality of the lines upon the surface. Quarterly
Journal of Pure and Applied Mathematics 2, 55–65 (1858)

23. Vigeland,M.D.: Smooth tropical surfaces with infinitely many tropical lines. Ark.Mat. 48(1), 177–206
(2010)

24. https://github.com/flyspeck/flyspeck

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://polymake.org/extensions/tropicalcubics
https://polymake.org/extensions/tropicalcubics
http://arxiv.org/abs/1908.06106
http://arxiv.org/abs/0708.3847
https://github.com/flyspeck/flyspeck

	The Schläfli Fan
	Abstract
	1 Introduction
	2 Triangulations, Cubic Surfaces and Tropical Lines
	3 Data, Software, and Lines on Cubics
	4 Motifs and Their Occurrences
	5 Schläfli Cones
	6 The Universal Fano Variety and its Tropical Discriminant
	Acknowledgements
	References


