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Abstract—The diagnosability of a system is defined as the maximum number of faulty processors that the system can guarantee to

identify, which plays an important role in measuring of the reliability of multiprocessor systems. In the work of Peng et al. in 2012, they

proposed a new measure for fault diagnosis of systems, namely, g-good-neighbor conditional diagnosability. It is defined as the

diagnosability of a multiprocessor system under the assumption that every fault-free node contains at least g fault-free neighbors, which

can measure the reliability of interconnection networks in heterogeneous environments more accurately than traditional diagnosability.

The k-ary n-cube is a family of popular networks. In this study, we first investigate and determine the Rg-connectivity of k-ary n-cube for

0 � g � n: Based on this, we determine the g-good-neighbor conditional diagnosability of k-ary n-cube under the PMC model and MM�

model for k � 4; n � 3 and 0 � g � n: Our study shows the g-good-neighbor conditional diagnosability of k-ary n-cube is several times

larger than the classical diagnosability of k-ary n-cube.

Index Terms—PMC diagnosis model, MM� diagnosis model, k-ary n-cube, conditional connectivity, fault diagnosability

Ç

1 INTRODUCTION

ADVANCES in the semiconductor technology have made
it possible to develop very high-performance large

multiprocessor systems comprising hundreds of thousands
of processors (nodes). Yet, it is almost impossible to build
such a multiprocessor system without defects. Since all the
processors run in parallel, the reliability of each processor
in multiprocessor systems becomes of central importance
for parallel computing. Therefore, in order to maintain the
reliability of such multiprocessor systems, the fault process-
ors should be found and replaced in time.

The process of identifying faulty nodes is called the diag-
nosis of the system. In 1967, Preparata et al. [37] proposed a
model and a framework, called system-level diagnosis,
which could test the processors automatically by the system
itself. It is well known that system-level diagnosis appears
to be an alternative to traditional circuit-level testing in a
large multiprocessor system. In the more than four decades
following this pioneering work, many terms for system-
level diagnosis have been defined and various models (e.g.,
PMC, BGM, and comparison models) have been considered

in the literature [5], [16], [32], [33], [37]. Among the pro-
posed models, two well-known diagnosis models, i.e., the
Preparata, Metze, and Chien (PMC) model [37] and the
Maeng and Malek (MM) model [32], have been widely
adopted.

In the PMC model, every node u is able to test another
node v if there is a link that connects them, where u is called
the tester and v is called the tested node. The outcome of a
test performed by a fault-free tester is 1 (respectively, 0) if the
tested node is faulty (respectively, fault-free), whereas the
outcome of a test performed by a faulty tester is unreliable.
In [18], Hakimi and Amin prove that a multiprocessor sys-
tem is t-diagnosable if it is t-connected with at least 2tþ 1
nodes. They also give a necessary and sufficient condition
for verifying if a system is t-diagnosable under the PMC
model. Recently, M�anik and Gramatov�a [30], [31] propose a
diagnosis algorithm under the PMC model which use Bool-
ean formalization. Fan et al. show the disjoint consecutive
cycle (DCC, for short) linear congruential graphs,GðF; 2pÞ, is
2t-diagnosable under the PMC model where p � 3 and
2 � t � p� 1 [17]. Ahlswede and Aydinian study the diag-
nosability of largemultiprocessor networks [1]. The diagnos-
ability of the well-known interconnection network
hypercube and its several variations [24], [40] for example,
the crossed cube [13], the M€obius cube [14], and the twisted
cube [20] are shown to be n under the PMCmodel. Amodifi-
cation of the PMCmodel, the BGMmodel, proposed by Barsi
et al. [5], use the same testing strategy as PMC model, but it
assumes that a fault node is always tested as faulty regard-
less of the state of the tester. The rational is that tests consist
of long sequences of stimuli and testing a faulty node is very
likely to result in at least onemismatch, see [2], [5].

In the MM model, a node (called a comparator) sends
the same task to its two neighbors and compares their
responses. A comparison of nodes u and v performed by
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a node w is denoted by ðu; vÞw: A disagreement over a
comparison performed by a fault-free comparator indi-
cates the existence of a faulty node, whereas the outcome
of a comparison performed by a faulty comparator is
unreliable. The main advantage of this model is its sim-
plicity since it is easy to compare a pair of nodes in multi-
processor systems. This approach seems attractive
because no additional hardware is required and transient
and permanent faults may be detected before the compar-
ison program has completed. A paper by Sengupta and
Dahbura [39] revealed important properties of a diagnos-
able system under this model. It suggested a special case
of the MM model, called the MM� model. In this model, a
comparison ðu; vÞw must be performed by w if u and v are
neighbors of w in the system. It also presented a polyno-
mial algorithm to identify faulty nodes in a general sys-
tem under the MM� model if the system is diagnosable.
The MM� model was adopted in [6], [8], [15], [19], [21],
[22], [27], [29].

In classical measures of system-level diagnosability for
multiprocessor systems, it has generally been assumed that
any subset of processors can potentially fail at the same time.
If there is a node v whose neighbors are faulty simulta-
neously, there is no way of knowing the faulty or fault-free
status of v: As a consequence, the diagnosability of a system
is upper bounded by its minimum degree. However, it
always underestimates the resilience of large networks
because the failure probability that all the neighbours of the
same node is very small in many large scale parallel/distrib-
ute system. To overcome the shortcoming, Lai et al. [28] pro-
posed a novel measure of diagnosability, called the
conditional diagnosability, for measuring the diagnosability
of a system under the assumption that for each node u all the
processors directly connected to u cannot fail at the same
time, i.e., at least one of neighbors of u is fault free. They also
obtained conditional diagnosability results for hypercubes
under the PMC model in [28]. In [19], Xu et al. showed the
conditional diagnosability of the n-dimensional hypercube
under the MM� model is 3n� 5 for n � 5: Under the PMC
model, Zhu [47] studied the conditional diagnosability of
bijective connection (BC) networks, which include hyper-
cubes and a variety of hypercube variants, such as crossed
cubes, twisted cubes, M€obius cubes, locally twisted cubes,
and generalized twisted cubes. In [43], Xu et al. further gen-
eralized the previous result by studying this problem in a
family of popular networks, i.e., the Matching Composition
Networks (MCNs). The conditional diagnosability of Cayley
graphs generated by transposition trees was studied first by
Lin et al. [29]. Results concerning the conditional diagnos-
ability of variants of the hypercube network under this
model were also obtained [22], [44], [46], [47].

Motivated by the concepts of forbidden faulty sets, Peng
et al. [36] then proposed the g-good-neighbor conditional
diagnosability: which is defined as the maximum value t
such that a graph G remains t-diagnosable under the condi-
tion that every healthy vertex v has at least g fault-free
neighboring vertices. Besides, they showed that the g-good-
neighbor conditional diagnosability of the n-dimensional
hypercube Qn:

The interconnection network considered in this study
is the k-ary n-cube Qk

n; proposed in [3], which is one of

the most common multiprocessor systems for parallel
computer/communication system. The k-ary n-cube is
2n-regular with kn vertices, edge symmetric, and vertex
symmetric. The three most popular instances of k-ary
n-cube are the ring k ¼ 1, the hypercube k ¼ 2; and the
torus n ¼ 2: A number of distributed memory multiproc-
essors are based on a k-ary n-cube as the underlying
topology, such as the iWarp [23], the J-machine [34], the
Cray T3D [38] and the Blue Gene [7]. Recently, Chang
et al. showed the conditional diagnosability of k-ary
n-cube under the PMC Model is 8n� 7 for k � 4 and
n � 4: Hsieh and Lee [22] showed the conditional diag-
nosability of k-ary n-cube under the MM� Model is
6n� 5 for k � 4 and n � 4:

In this paper, we study the g-good-neighbor conditional
diagnosability under the PMC model and MM� model, and
show that the g-good-neighbor conditional diagnosability of
Qk

n is 2
nð2n� gþ 1Þ � 1 for k � 4; n � 3; 0 � g � n under the

two models, which shows that the corresponding results
based on the traditional fault model (where g is zero) tend
to substantially underestimate network reliability of k-ary
n-cube. The remainder of this paper is organized as follows:
Section 2 provides terminology and preliminaries for diag-
nosing a system. In Section 3, we discuss the Rg-connectivity
of Qk

n: Sections 4 and 5 show the g-good-neighbor condi-
tional diagnosability of Qk

n under the PMC model and the
MM� model, respectively. Finally, our conclusions are given
in Section 6.

2 PRELIMINARIES

2.1 Notations

Throughout this paper, an interconnection network is repre-
sented by an undirected simple graph G with the vertex set
V ðGÞ and the edge set EðGÞ. A subgraph H of G (written
H � G) is a graph with V ðHÞ � V ðGÞ; EðHÞ � EðGÞ and
the endpoints of every edge in EðHÞ belong to V ðHÞ: Given
a nonempty vertex subset V 0 of V ðGÞ; the induced subgraph
by V 0 in G; denoted by G½V 0�; is a graph, whose vertex set is
V 0 and the edge set is the set of all the edges of G with both
endpoints in V 0: The degree dGðvÞ of a vertex v is the
number of edges incident with v: A graph G is said to be
k-regular if for any vertex v; dGðvÞ ¼ k: For any vertex v, we
define the neighborhood NGðvÞ of v in G to be the set of ver-
tices adjacent to v: Let A � G: We use NGðAÞ to denote the
set ð S v2V ðAÞNGðvÞÞ n V ðAÞ; CGðAÞ to denote the set
NGðAÞ [ V ðAÞ: For neighborhoods and degrees, we will
usually omit the subscript for the graph when no confusion
arises. The connectivity kðGÞ of a graph G is the minimum
number of vertices whose removal results in a disconnected
graph or only one vertex left. For graph-theoretical termi-
nology and notation not defined here we follow [4].

2.2 The PMC model

A multiprocessor system is modeled as an undirected graph
G ¼ ðV ðGÞ;EÞ; whose vertices represent processors and
edges represent communication links. In the PMC model [37],
two adjacent processors can perform tests on each other. For
two adjacent vertices u and v in V ðGÞ; the ordered pair ðu; vÞ
represents the test performed by u on v: The outcome of a
test ðu; vÞ is either 1 or 0 with the assumption that the testing
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result is regarded as reliable if the vertex u is fault-free. How-
ever, the outcome of a test ðu; vÞ is unreliable, provided that
the tester u itself is originally a faulty processor. Suppose that
the vertex u of ðu; vÞ is fault-free, then the result would be 0
(respectively, 1) if v is fault-free (respectively, faulty).

A test assignment T for a system G is a collection of tests
for every adjacent pair of vertices. It can be modeled as a
directed testing graph T ¼ ðV ðGÞ; LÞ; where ðu; vÞ 2 L
implies that u and v are adjacent in G: The collection of all
test results for a test assignment T is called a syndrome. For-
mally, a syndrome is a function s : L ! ð0; 1Þ: The set of all
faulty processors in the system is called a faulty set. This
can be any subset of V ðGÞ: The process of identifying all the
faulty vertices is called the diagnosis of the system.

For a given syndrome s; a subset of vertices F � V ðGÞ is
said to be consistent with s if syndrome s can be produced
from the situation that, for any ðu; vÞ 2 L such that
u 2 V � F; sðu; vÞ ¼ 1 if and only if v 2 F: This means that F
is a possible set of faulty processors. Since a test outcome
produced by a faulty processor is unreliable, a given set F
of faulty vertices may produce a lot of different syndromes.
On the other hand, different fault sets may produce the
same syndrome. We use notation sðF Þ to represent the set
of all syndromes which could be produced if F is the set of
faulty vertices.

Two distinct sets F1 and F2 in V ðGÞ are said to be indis-
tinguishable if sðF1Þ \ sðF2Þ 6¼ ;; otherwise, F1 and F2 are
said to be distinguishable. Besides, we say ðF1; F2Þ is an
indistinguishable pair if sðF1Þ \ sðF2Þ 6¼ ;; else, ðF1; F2Þ is a
distinguishable pair.

2.3 The MM� model

In the MM model, to diagnose a system, a vertex sends the
same task to two of its neighbors, and then compares their
responses. To be consistent with the MM model, we have
the following assumptions:

1) All faults are permanent.
2) A faulty processor produces incorrect outputs for

each of its given tasks.
3) The output of a comparison performed by a faulty

processor is unreliable.
4) Two faulty processors given the same input and task

do not produce the same output.
The comparison scheme of a system G is modeled as a

multigraph, denoted by MðV ðGÞ; LÞ; where L is the
labeled-edge set. A labeled edge ðu; vÞw 2 L represents a
comparison in which two vertices u and v are compared by
a vertex w; which implies ðu;wÞ; ðv; wÞ 2 EðGÞ: The collec-
tion of all comparison results in MðV ðGÞ; LÞ is called the
syndrome, denoted by s�; of the diagnosis. The result of the
comparison ðu; vÞw in r is denoted by rððu; vÞwÞ: If the com-
parison ðu; vÞw disagrees, then s�ððu; vÞwÞ ¼ 1; otherwise,
s�ððu; vÞwÞ ¼ 0: Hence, a syndrome is a function from L to
0; 1: The MM� model is a special case of the MM model. In
the MM� model, all comparisons of G are in the comparison
scheme of G; i.e., if ðu;wÞ; ðv; wÞ 2 EðGÞ; then ðu; vÞw 2 L:

For a given syndrome s�; a set of faulty vertices
F 	 V ðGÞ is said to be consistent with s� if s� can be pro-
duced from F; i.e., if the following conditions are satisfied,
according to the assumptions of the MMmodel:

1) if u; v 2 F and w 2 V ðGÞ � F; then s�ððu; vÞwÞ ¼ 1;
2) if u 2 F and v; w 2 V ðGÞ � F; then s�ððu; vÞwÞ ¼ 1;

and
3) if u; v; w 2 V ðGÞ � F; then s�ððu; vÞwÞ ¼ 0:
Since a faulty comparator can lead to an unreliable result,

one set of faulty vertices may produce different syndromes.
Let s�ðF Þ denote the set of all syndromes which F is consis-
tent with. Two distinct sets F1; F2 	 V ðGÞ are said to be dis-
tinguishable if s�ðF1Þ \ s�ðF2Þ ¼ ;: Otherwise, they are said
to be indistinguishable. ðF1; F2Þ is a distinguishable pair
(respectively, an indistinguishable pair) if F1 and F2 are dis-
tinguishable (respectively, indistinguishable).

2.4 Diagnosability

In this section, some known conceptions and results about
the diagnosability of system are listed as follows.

Definition 2.4.1 [11]. A system of n processors is t-diagnosable if
all faulty processors can be identified without replacement, pro-
vided that the number of faults presented does not exceed t: The
diagnosability of a system G denoted as tðGÞ; is the maximum
value of t such that G is t-diagnosable.

In [28], Lai et al. present a sufficient and necessary condi-
tion for a system to be t-diagnosable as follows.

Theorem 2.4.2 [28]. A system G ¼ ðV;EÞ is t-diagnosable if and
only if F1 and F2 are distinguishable, for any two distinct sub-
sets F1 and F2 of V with jF1j � t; jF2j � t:

Note that the diagnosability of a system always underes-
timates the resilience of large networks because the failure
probability that all the neighbours of the same node is very
small in many large scale parallel/distribute system. For
this reason, Lai et al. [28] introduce the conditional diagnos-
ability. They consider the situation that any faulty set cannot
contain all the neighbors of any vertex in a system.

Definition 2.4.3 [28]. A system G ¼ ðV;EÞ is conditionally
t-diagnosable if F1 and F2 are distinguishable, for each pair of
distinct faulty sets F1; F2 � V with jF1j � t; jF2j � t and
F1 + NðvÞ; F2 + NðvÞ for any vertex v 2 V: The conditional
diagnosability tcðGÞ of a graph G is the maximum value of t
such that G is conditionally t-diagnosable.

Motivated by these concepts of conditionally t-diagnos-
ability and forbidden faulty sets [28], [42], Peng et al. [36]
then propose the g-good-neighbor conditional diagnosabil-
ity by claiming that for every fault-free vertex in a system, it
has at least g fault-free neighbors.

Definition 2.4.4 [36]. A faulty set F � V is called a g-good-
neighbor conditional faulty set if jNðvÞ \ ðV � F Þj � g for
every vertex v in V � F:

Definiton 2.4.5 [36]. A system G ¼ ðV ðGÞ; EÞ is g-good-
neighbor conditional t-diagnosable if each distinct pair of
g-good-neighbor conditional faulty sets F1 and F2 of V with
jF1j � t; jF2j � t are distinguishable.

Definiton 2.4.6 [36]. The g-good-neighbor conditional diagnos-
ability tgðGÞ of a graph G is the maximum value of t such that
G is g-good-neighbor conditionally t-diagnosable.

2.5 kkk-ary nnn-cube

The k-ary n-cube Qk
n (k � 2 and n � 1) is a graph consisting

of kn vertices, each of which has the form u1u2 
 
 
un; where
0 � ui � k� 1 for 1 � i � n: Two vertices u ¼ u1u2 
 
 
un and
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v ¼ v1v2 
 
 
 vn are adjacent if and only if there exists an inte-
ger j; 1 � j � n; such that uj ¼ vj � 1 (mod k) and ul ¼ vl for
every l 6¼ j; 1 � l � n: Such an edge ðu; vÞ is called a
j-dimensional edge. For brevity, we omit writing “(mod k)”
in similar expressions for the remainder of the paper. Note
that each vertex ofQk

n has degree 2nwhen k � 3; and nwhen
k ¼ 2: Obviously, Qk

1 is a cycle of length k; Q2
n is an

n-dimensional hypercube, and Qk
2 is a k� k wrap-around

mesh. Fig. 1a shows the four-ary two-cubeQ4
2:

We can partition Qk
n along the dimension j; by deleting

all the j-dimensional edges, into k disjoint subcubes,
Qj½0�; Qj½1�; . . . ; Qj½k� 1� (abbreviated as Q½0�; Q½1�; . . . ;
Q½k� 1�; if there is no ambiguity). It is clear that Qj½i� is a
subgraph of Qk

n induced by fu : u ¼ u1u2 
 
 
uj 
 
 
un 2
V ðQk

nÞ and uj ¼ ig and each Qj½i� is isomorphic to Qk
n�1 for

every 0 � i � k� 1: Moreover, there is a perfect matching
between Qj½i� and Qj½iþ 1� for 0 � i � k� 1.

LetX be a don’t care symbol and let

Xt ¼ XX 
 
 
X|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t

:

For convenience of representation, we denote by an n-length

string of symbols XmalXn�m�l the subgraph in Qk
n induced

by the vertex set fv ¼ u1u2 
 
 
un 2 V ðQk
nÞjumþ1; umþ2; . . . ;

umþl ¼ ag: Let Qj½0�; Qj½1�; . . . ; Qj½k� 1� be a partition of Qk
n

along some dimension j: Clearly, Qj½0�; Qj½1�; . . . ; Qj½k� 1�
can be denoted by Xj�10Xn�j; Xj�11Xn�j; . . . ; Xj�1ðk�
1ÞXn�j; respectively.

The k-ary n-dimensional hypercube Qðn; kÞ is a graph con-
sisting of kn vertices, each of which has the form u1u2 
 
 
un;
where 0 � ui � k� 1 for 1 � i � n: Two vertices
u ¼ u1u2 
 
 
un and v ¼ v1v2 
 
 
 vn are adjacent if and only if
there exists exactly a dimension j; 1 � j � n; such that uj 6¼ vj
and ul ¼ vl for every l 6¼ j: Note that each vertex of Qðn; kÞ
has degree nðk� 1Þ: Obviously, Qðn; 2Þ is an n-dimensional
hypercube Qn, and Qðn; 3Þ is a three-ary n-cube Q3

n: Fig. 1b
shows the four-ary two-dimensional hypercube Qð2; 4Þ:

3 THE RRRg-CONNECTIVITY OF kkk-ARY nnn-CUBE QQQk
n

In order to get the g-good-neighbor conditional diagnosabil-
ity of Qk

n; we first need to discuss the Rg-connectivity of Qk
n;

which is closely related to g-good-neighbor conditional
diagnosability, proposed by Latifi et al. [25]. A g-good-
neighbor conditional cut of a graph G is a g-good-neighbor
conditional faulty set F such that G� F is disconnected.
The cardinality of the minimum g-good-neighbor condi-
tional cut is said to be the Rg-connectivity of G; denoted by

kgðGÞ: As a more refined index than the traditional connec-
tivity, the Rg-connectivity can be used to measure of condi-
tional fault tolerance of networks. There are many results
concerning the Rg-connectivity for particular classes of
interconnection networks and small g’s, such as [9], [12],
[25], [26], [35], [41], [42], [45]. But, with regard to general
integer g; little information has been found. In this section,
we determine the Rg-connectivity of k-ary n-cube Qk

n for
k � 4; n � 3 and 0 � g � n:

The following lemma discusses some properties of the
subgraph of Qk

n; which is isomorphic to the g-dimensional
hypercube Qg; 0 � g � n: By this Lemma, an upper bound-
ary of the Rg-connectivity of Qk

n is obtained.

Lemma 3.1. Let H be an induced subgraph of k-ary n-cube Qk
n

such that H is isomorphic to the g-dimensional hypercube Qg;

and let CQk
n
ðHÞ ¼ NQk

n
ðHÞ [ V ðHÞ; where 0 � g � n; k � 5

and n � 3: Then jNQk
n
ðHÞj ¼ ð2n� gÞ2g and the minimum

degree of Qk
n � CQk

n
ðHÞ is not less than 2n� 2:

Proof. By the symmetry of Qk
n; without loss of generality, let

H ¼ Xg0n�g; where X 2 f0; 1g: We first prove any pair of
vertices in H have no common neighbors in NQk

n
ðHÞ:

Suppose, on the contrary, there are two vertices u; v 2
V ðHÞ such that they have common neighbors in NQk

n
ðHÞ:

Say u ¼ u1u2 
 
 
ug0
n�g; v ¼ v1v2 
 
 
 vg0n�g: Then, by the

definition of k-ary n-cube, we have either there is precise
one dimension i 2 f1; 2; . . . ; gg such that ui 6¼ vi or there
are precise two dimensions i; j 2 f1; 2; . . . ; gg such that
ui 6¼ vi; uj 6¼ vj: Consider the following two cases.

Case 1. There is precise one dimension i 2 f1; 2; . . . ; gg
such that ui 6¼ vi:

In this case, we have ui ¼ vi � 2ðmodkÞ: Since u; v 2
V ðHÞ; it follows that ui; vi 2 f0; 1g and hence ui ¼ vi � 1;
contradicting ui ¼ vi � 2ðmodkÞ:

Case 2. There are precise two dimensions i; j 2
f1; 2; . . . ; gg such that ui 6¼ vi and uj 6¼ vj:

Without loss of generality, let i ¼ 1; j ¼ 2: Then, u and
v precisely have two common neighbors w1 ¼ u1v2u3 . . .
ug0

n�g and w2 ¼ v1u2u3 
 
 
ug0n�g in Qk
n: Since u; v 2

V ðHÞ; it follows that ul; vl 2 f0; 1g for any 1 � l � g:
Therefore, both w1 and w2 belong to V ðHÞ; that is u and v
have no common neighbors inNQk

n
ðHÞ:

Therefore, any pair of vertices in H have no common
neighbors in NQk

n
ðHÞ: Combining this with H ¼ Xg0n�g;

X 2 f0; 1g; it is not difficult to see that (the subgraph
induced by the neighbors ofH is showed in Fig. 2):

Fig. 1. 4-ary 2-cubeQ4
2 and 4-ary 2-dimensional hypercube Q(2,4).

Fig. 2. The subgraph induced by the neighbors NQk
n
ðHÞ of H .
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��NQk
n
ðHÞ��

¼ jV ðXg10n�g�1Þ [ V ðXg010n�g�2Þ
[ 
 
 
 [ V ðXg0n�g�11Þj þ jV ðXgðk� 1Þ0n�g�1Þ
[ V ðXg0ðk� 1Þ0n�g�2Þ [ 
 
 
 [ V ðXg0n�g�1ðk� 1ÞÞj
þ jV ð2Xg�10n�gÞ [ V ðX2Xg�20n�gÞ
[ 
 
 
 [ V ðXg�120n�gÞj þ jV ððk� 1ÞXg�10n�gÞ
[ V ðXðk� 1ÞXg�20n�gÞ [ 
 
 
 [ V ðXg�1ðk� 1Þ0n�gÞj

¼ jV ðXg10n�g�1Þj þ jV ðXg010n�g�2Þj þ 
 
 

þ jV ðXg0n�g�11Þj þ jV ðXgðk� 1Þ0n�g�1Þj
þ jV ðXg0ðk� 1Þ0n�g�2Þj þ 
 
 

þ jV ðXg0n�g�1ðk� 1ÞÞj þ jV ð2Xg�10n�gÞj
þ jV ðX2Xg�20n�gÞ þ 
 
 

þ jV ðXg�120n�gÞj þ jV ððk� 1ÞXg�10n�gÞj
þ jV ðXðk� 1ÞXg�20n�gÞj þ 
 
 

þ jV ðXg�1ðk� 1Þ0n�gÞj

¼ 2g � ðn� gÞ þ 2g � ðn� gÞ þ 2g�1 � gþ 2g�1 � g

¼ 2g � ð2n� gÞ:

We now shall show the minimum degree of

Qk
n � CQk

n
ðHÞ is not less than 2n� 2: For any vertex

x 2 V ðQk
n � CQk

n
ðHÞÞ; assume that x ¼ ðu1u2 
 
 
ugugþ1 
 
 


unÞ: Consider the following six cases:

Case 1. There is precise one element, which is 2 or
k� 1; in fu1; u2; . . . ; ugg; and the others are 0 or 1; there is
precise one element, which is 1 or k� 1 in ugþ1;
ugþ2; ugþ3; . . . ; un; and the others are all 0:

Without loss of generality, let x ¼ ð2u2 
 
 
ug10
n�g�1Þ:

Note k � 5: Then the neighbors of x in CQk
n
ðHÞ are

ð1u2 
 
 
ug10
n�g�1Þ and ð2u2 
 
 
ug0

n�gÞ: So dQk
n�C

Qk
n
ðHÞðxÞ ¼

2n� 2:
Case 2. Each of u1; u2; . . . ; ug is 0 or 1; and precise one

of ugþ1; ugþ2; . . . ; un is 2 or k� 2; and the others are all 0:
Without loss of generality, let x ¼ ðu1u2 
 
 
ug20n�g�1Þ:

Then the neighbor of x in CQk
n
ðHÞ is ðu1u2 
 
 
ug10n�g�1Þ:

So dQk
n�C

Qk
n
ðHÞðxÞ ¼ 2n� 1:

Case 3. All of u1; u2; . . . ; ug are 0 or 1; and there are pre-
cise two elements, which are 1 or k� 1 in fugþ1;
ugþ2; . . . ; ung; and the others are all 0:

Without loss of generality, let x ¼ ðu1u2 
 
 

ug110

n�g�2Þ: Then the neighbors of x in CQk
n
ðHÞ

are ðu1u2 
 
 
ug10
n�g�1Þ and ðu1u2 
 
 
ug010

n�g�2Þ: So
dQk

n�C
Qk
n
ðHÞðxÞ ¼ 2n� 2:

Case 4. Precise two elements of fu1; u2; . . . ; ugg are 2 or
k� 1; and the others are 0 or 1; and all of ugþ1;
ugþ2; . . . ; un are 0:

Without loss of generality, let x ¼ ð22u3 
 
 
ug0
n�gÞ:

Then the neighbors of x in CQk
n
ðHÞ are ð12u3 
 
 
ug0n�gÞ

and ð21u3 
 
 
ug0n�gÞ: So dQk
n�C

Qk
n
ðHÞðxÞ ¼ 2n� 2:

Case 5. Precise one element of u1; u2; . . . ; ug is 3 or k� 2;
and the others are 0 or 1; all of ugþ1; ugþ2; . . . ; un are 0:

Without loss of generality, let x ¼ ð3u2 
 
 
ug0
n�gÞ: If

k ¼ 5; then the neighbors of x in CQk
n
ðHÞ are ð2u2 
 
 


ug0
n�gÞ and ð4u2 
 
 
ug0

n�gÞ: Otherwise, the neighbor of x
in CQk

n
ðHÞ is ð2u2 
 
 
ug0

n�gÞ: So dQk
n�C

Qk
n
ðHÞðxÞ � 2n� 2:

Case 6. x does not satisfy any one of the above five
cases.

Then x is not adjacent to any vertex of CQk
n
ðHÞ: So

dQk
n�C

Qk
n
ðHÞðxÞ ¼ 2n:

The proof is complete. tu
Corollary 3.2. The Rg-connectivity kgðQk

nÞ � ð2n� gÞ2g for
0 � g � n; k � 5 and n � 3:

Proof. Let H be an induced subgraph of k-ary n-cube such
that H ffi Qg: By Lemma 3.1, jNQk

n
ðHÞj ¼ ð2n� gÞ2g and

the minimum degree dðQk
n � CQk

n
ðHÞÞ � 2n� 2: Since

n � 3; it follows that 2n� 2 � n: Thus dðQk
n �NQk

n
ðHÞÞ ¼

dðHÞ ¼ n � g: By the definitions of g-good-neighbor con-
ditional cut and Rg-connectivity, we have NQk

n
ðHÞ is a

g-good-neighbor conditional cut of Qk
n and hence

kgðQk
nÞ � jNQk

n
ðHÞj ¼ ð2n� gÞ2g: The proof is complete. tu

Next, we shall show ð2n� gÞ2g is also the lower
boundary of kgðQk

nÞ for 0 � g � n; k � 5 and n � 3: Before
doing this, we need to have some useful topological
properties of Qk

n:

Lemma 3.3. Let H be a connected subgraph of k-ary n-cube such
that the minimum degree dðHÞ of H is not less than g; where
0 � g � n; n � 3; k � 4: Then jV ðHÞj � 2g:

Proof. The proof is by induction on g: Clearly, the result is
true for the base cases g ¼ 0 and 1: Assume the result is
true for g� 1: We now consider g � 2: Since dðHÞ �
g � 2; Qk

n can be partitioned into Q½0�; Q½1�; . . . ; Q½k� 1�
along some dimension l such that H is not a subgraph of
any Q½i� for i ¼ 0; 1; . . . ; k� 1: By symmetry, without loss
of generality, we may assume V ðHÞ \ V ðQ½i�Þ 6¼ ; for
i ¼ 0; 1; . . . ; p� 1; where 2 � p � k: For 0 � i � p� 1; let
Hi be the induced subgraph Q½i�½V ðHÞ \ V ðQ½i�Þ� and u
be an arbitrary vertex in Hi: It is sufficient to discuss the
following two cases.

Case 1. 2 � p � k� 1:
Clearly, for i ¼ 0 or p� 1;dHi

ðuÞ � dHðuÞ � 1 � g� 1;
and for i ¼ 1; 2; . . . ; p� 2; dHi

ðuÞ � dHðuÞ � 2 � g� 2: It
follows that dðH0Þ � g� 1; dðHp�1Þ � g� 1; and dðHiÞ �
g� 2 for i ¼ 1; 2; . . . ; p� 2: By induction, we have
jV ðH0Þj � 2g�1; jV ðHp�1Þj � 2g�1; and jV ðHiÞj � 2g�2 for
i ¼ 1; 2; . . . ; p� 2: So,

jV ðHÞj ¼ jV ðH0Þj þ jV ðH1Þj þ 
 
 
 þ jV ðHp�1Þj
� 2g�1 � 2 ¼ 2g:

Case 2. p ¼ k:
Clearly, dHi

ðuÞ � dHðuÞ � 2 � g� 2: It follows that
dðHiÞ � g� 2 for i ¼ 0; 1; . . . ; k� 1: By induction,
jV ðHiÞj � 2g�2; and hence

jV ðHÞj ¼ jV ðH0Þj þ jV ðH1Þj þ 
 
 
 þ jV ðHk�1Þj
� 2g�2 � k � 2g:

The proof is complete. tu
Lemma 3.4. Let Qi½0�; Qi½1�; . . . ; Qi½k� 1� be the decomposition

of Qk
nðk � 5; n � 3Þ along some dimension i and let A be a

YUAN ET AL.: THE ggg-GOOD-NEIGHBOR CONDITIONAL DIAGNOSABILITY OF kkk-ARY nnn-CUBES UNDER THE PMC MODEL AND MM� MODEL 1169



connected subgraph of Qk
n and A � Qk

n½
Tn

i¼1ððV ðQi½0�Þ [
V ðQi½1�Þ [ V ðQi½2�ÞÞ�: If 0 � g � dðAÞ � n; then
jNQk

n
ðAÞj � 2gð2n� gÞ:

Proof. The proof proceeds by induction on g: Since
jNQk

n
ðAÞj � kðQk

nÞ ¼ 2n; the statement is true for the
base case g ¼ 0: Consider the case g � 1: Let R ¼
Qk

n½
Tn

i¼1ððV ðQi½0�Þ [ V ðQi½1�Þ [ V ðQi½2�ÞÞ�: Since A � R
and dðAÞ � g � 1; there exists a dimension i 2 f1;
2; . . . ; ng such that at least two of A \Qi½0�; A\ Qi½1�; A \
Qi½2� are not empty.

Case 1. Exactly two of A \Qi½0�; A \Qi½1�; A \Qi½2� are
not empty.

Without loss of generality, say A0 ¼ A \Qi½0� 6¼ ;;
A1 ¼ A \Qi½1� 6¼ ;: By the construction of Qk

n and
dðAÞ � g; we can deduce that dðA0Þ � g� 1 and
dðA1Þ � g� 1: Furthermore, by induction, we have
jNQi ½0�ðA0Þj � 2g�1ð2n� g� 1Þ and jNQi ½1�ðA1Þj � 2g�1

ð2n� g� 1Þ: Since dðA0Þ � g� 1 and dðA1Þ � g� 1; by
Lemma 3.3, we can deduce that jV ðA0Þj � 2g�1;
jV ðA1Þj � 2g�1: Combining this with the construction
of Qk

n; we can deduce jNQi½k�1�ðV ðA0ÞÞj¼jV ðA0Þj � 2g�1;
jNQi ½2�ðV ðA1ÞÞj ¼ jV ðA1Þj � 2g�1: Therefore,

��NQk
n
ðAÞ�� � jNQi½k�1�ðV ðA0ÞÞj þ jNQi ½0�ðA0Þj

þ jNQi ½1�ðA1Þj þ jNQi½2�ðV ðA1ÞÞj
� 2gð2n� gÞ:

Case 2. All of A \Qi½0�; A \Qi½1�; A \Qi½2� are not
empty.Denote A0 ¼ A \Qi½0�; A1 ¼ A \Qi½1�; A2 ¼ A\
Qi½2�: By the construction of Qk

n and dðAÞ � g; we can
deduce that dðA0Þ � g� 1; dðA1Þ � g� 2 and dðA2Þ �
g� 1: By induction, we have jNQi½0�ðA0Þj � 2g�1 ð2n� g�
1Þ; jNQi½1�ðA1Þj � 2g�2ð2n� gÞ and jNQi½2�ðA2Þj � 2g�1

ð2n� g� 1Þ: Since dðA0Þ � g� 1 and dðA2Þ � g� 1; by
Lemma 3.3, we can deduce that jV ðA0Þj � 2g�1; jV ðA2Þj �
2g�1: Clearly, jNQi½k�1�ðV ðA0ÞÞj ¼ jV ðA0Þj � 2g�1; jNQi½3�
ðV ðA2ÞÞj ¼ jV ðA2Þj � 2g�1: Therefore,

��NQ3
n
ðAÞ�� � jNQi½k�1�ðV ðA0ÞÞj þ jNQi ½0�ðA0Þj

þ jNQi ½1�ðA1Þj þ jNQi½2�ðA2Þj
þ jNQi ½3�ðV ðA2ÞÞj
> 2gð2n� gÞ:

The proof is complete. tu
The g-restricted connectivity of G is closed related to the

kg-connectivity. A vertex cut of G is called a g-restricted cut
if G� S is disconnected and every component of G� S has
more than g vertices. The g-restricted connectivity of G;
denoted by ekgðGÞ; is defined as the cardinality of a mini-
mum g-restricted cut. Clearly, k0ðGÞ ¼ ek0ðGÞ ¼ kðGÞ and
k1ðGÞ ¼ ek1ðGÞ: In 2004, Day determined the 1-restricted con-
nectivity of Qk

nðk � 4Þ [10].
Lemma 3.5 [3], [10]. The g-restricted connectivity of Qk

nðk � 4Þ,ekgðQk
nÞ ¼ 2ðgþ 1Þn� 2g for n � 2 and g ¼ 0; 1:

The following Lemma shows ð2n� gÞ2g is the lower
boundary of kgðQk

nÞ for 0 � g � n; k � 5 and n � 3:

Lemma 3.6. The Rg-connectivity kgðQk
nÞ � ð2n� gÞ2g for

0 � g � n; k � 5 and n � 3:

Proof. Let F be an arbitrary Rg-cut of k-ary n-cube Qk
n,

where 0 � g � n; k � 5 and n � 3: It is sufficient to show
that jF j � 2gð2n� gÞ: We shall prove jF j � 2gð2n� gÞ by
induction on g: By Lemma 3.5, the statement is true for
the base cases g ¼ 0; 1: We now consider g � 2: Let
Q½0�; Q½1�; . . . ; Q½k� 1� be a decomposition of Qk

n along
dimension lð1 � l � nÞ and let Fi ¼ F \ V ðQ½i�Þ for any
i ¼ 0; 1; . . . ; k� 1 (Fi is allowed to be empty.). We discuss
the following two cases.

Case 1. Q½i� � Fi is disconnected for any i ¼ 0;
1; . . . ; k� 1:

Since F is an Rg-cut of Qk
n; we have dðQk

n � F Þ � g:
Note that the l-dimensional edge set between Q½i� and
Q½iþ 1� is a perfect matching of V ðQ½i�Þ and V ðQ½iþ 1�Þ.
Thus, for any i ¼ 0; 1; . . . ; k� 1; dðQ½i� � FiÞ � g� 2: It
follows that Fi is an Rg�2-cut of Q½i�: By induction,
jFij � 2g�2ð2n� gÞ for i ¼ 0; 1; . . . ; k� 1: Therefore, jF j ¼
jF0j þ jF1j þ 
 
 
 þ jFk�1j � k� 2g�2ð2n� gÞ 
 
 
 2gð2n� gÞ:

Case 2. There exists a Q½i� such that Q½i� � Fi is
connected.

Assume that Gi0 ¼ Q½i0� � Fi0 is connected and G is
the component of Qk

n � F such that Gi0 � G: Without
loss of generality, assume that V ðGÞ \ V ðQ½j�Þ 6¼ ; for
j ¼ 0; 1; . . . ; p� 1ð2 � p � kÞ: Clearly, 0 � i0 � p� 1:

Case 2.1. p � k� 1:
Let x be an arbitrary vertex in Gi0 and let

xi 2 V ðQ½i�Þði 6¼ i0Þ be the vertex such that just the ith
coordinate of xi is different from that of x: Since
p � k� 1; it follows that there exists an integer i
such that xi 2 F � Fi0 : Thus jF j ¼ jF � Fi0 j þ jFi0 j �
jV ðGi0Þj þ jFi0 j ¼ jV ðQ½i0�Þj ¼ kn�1 � 2gð2n� gÞ:

Case 2.2. p ¼ k:
For i ¼ 0; 1; . . . ; k� 1; denote G \Q½i� by Gi:
Case 2.2.1. There are at least four of Q½i� � Fi for

i ¼ 0; 1; . . . ; k� 1; such that each of them is disconnected.

Say Q½i1� � Fi1 ; Q½i2� � Fi2 ; Q½i3� � Fi3 ; Q½i4� � Fi4 are

disconnected. Clearly, dðQk
n � F Þ � g: Note that the

l-dimensional edge set between Q½i� and Q½iþ 1� is a per-

fect matching of V ðQ½i�Þ and V ðQ½iþ 1�Þ. We can deduce

Fi1 ¼ F \Q½i1�; Fi2 ¼ F \Q½i2�; Fi3 ¼ F \Q½i3�; Fi4 ¼ F \
Q½i4� are Rg�2�cuts of Q½i1�; Q½i2�; Q½i3�; Q½i4�; respec-

tively. By induction, jFi1 j � 2g�2ð2n� gÞ; jFi2 j � 2g�2

ð2n� gÞ; jFi3 j � 2g�2ð2n� gÞ; jFi4 j � 2g�2ð2n� gÞ: Thus

jF j � jFi1 j þ jFi2 j þ jFi3 j þ jFi4 j � 2gð2n� gÞ:
Case 2.2.2. There are at most three of Q½i� � Fi; i ¼

0; 1; . . . ; k� 1 such that each of them is disconnected.
By contradiction, suppose jF j < 2gð2n� gÞ: We now

shall show two important claims.
Claim 1. jV ðGÞj > kn � 13

2 � 2g�2ð2n� gÞ:
Suppose there are exactly three of Q½i� � Fi; i ¼ 0;

1; . . . ; k� 1 such that each of them is disconnected. Say
Q½i1� � Fi1 ; Q½i2� � Fi2 ; Q½i3� � Fi3 are disconnected.

If i1; i2; i3 are three continuous integers(mod k), then
without loss of generality, assume i1 ¼ 0; i2 ¼ 1; i3 ¼ 2:
Clearly, F0; F1; F2 are Rg�2-cuts of Q½0�; Q½1� and Q½2�;
respectively. By induction, jFij � 2g�2ð2n� gÞ for
i ¼ 0; 1; 2: Let Hi ¼ Q½i� � Fi �Gi for i ¼ 0; 1; 2: Then, by
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the construction of Qk
n; we have jV ðH0Þj � jFk�1j;

jV ðH2Þj � jF3j and

jV ðH1Þj � minfjV ðH0Þj þ jF0j; jV ðH2Þj þ jF2jg

� jV ðH0Þj þ jF0j þ jV ðH2Þj þ jF2j
2

� jFk�1j þ jF0j þ jF3j þ jF2j
2

� jF j � jF1j
2

:

Since jF j < 2gð2n� gÞ; jFij � 2g�2ð2n� gÞ for i ¼ 0; 1; 2;
and jF j � jF0j þ jF1j þ jF2j þ jF3j þ jFk�1j; we have that
jF3j þ jFk�1j < 2g�2ð2n� gÞ: Therefore,

jV ðGÞj ¼ jV ðQk
nÞj � jV ðH0Þj � jV ðH1Þj � jV ðH2Þj � jF j

� kn � jFk�1j � jF j � jF1j
2

� jF3j � jF j

> kn � 2g�2ð2n� gÞ � 2gð2n� gÞ � 2g�2ð2n� gÞ
2

� 2gð2n� gÞ
¼ kn � 13

2
� 2g�2ð2n� gÞ:

If i1; i2 are continuous integers(mod k), but i1; i2; i3 are

not continuous, then without loss of generality, assume

i1 ¼ 0; i2 ¼ 1: Clearly, we can show that F0; F1; Fi3 are

Rg�2-cuts of Q½0�; Q½1� and Q½i3�; respectively. By induc-

tion, jFij � 2g�2ð2n� gÞ for i ¼ 0; 1; i3: Let Hi ¼ Q½i��
Fi �Gi for i ¼ 0; 1; i3: Then jV ðH0Þj � jFk�1j; jV ðH1Þj �
jF2j; jV ðHi3Þj � minfjFi3�1j; jFi3þ1jg � jFi3�1jþjFi3þ1j

2 �
jF j�jF0j�jF1j�jFi3 j

2 : Therefore,

jV ðGÞj
¼ ��V ðQk

nÞ
��� jV ðH0Þj � jV ðH1Þj � jV ðHi3Þj � jF j

� kn � jFk�1j � jF2j � jF j � jF0j � jF1j � jFi3 j
2

� jF j
> kn � 2� 2g�2ð2n� gÞ

� 2gð2n� gÞ � 3� 2g�2ð2n� gÞ
2

� 2gð2n� gÞ

¼ kn � 13

2
� 2g�2ð2n� gÞ:

Suppose that i1; i2 and i3 are not continuous integers
pairwise. Clearly, we can show that Fi1 ; Fi2 ; Fi3 are
Rg�2-cuts of Q½i1�; Q½i2� and Q½i3�; respectively. By induc-
tion, jFij j � 2g�2ð2n� gÞ for j ¼ 1; 2; 3: Let Hij ¼ Q½ij��
Fij �Gij for j ¼ 1; 2; 3: Then

jV ðHi1Þj � minfjFi1�1j; jFi1�1jg � jFi1�1j þ jFi1�1j
2

;

jV ðHi2Þj � minfjFi2�1j; jFi2�1jg � jFi2�1j þ jFi2�1j
2

and

jV ðHi3Þj � minfjFi3�1j; jFi3þ1jg � jFi3�1j þ jFi3þ1j
2

:

Since jF j < 2gð2n� gÞ and jFij j � 2g�2ð2n� gÞ for
j ¼ 1; 2; 3;we have that

X3
j¼1

��V ðHijÞ
�� � 1

2

X3
j¼1

���Fij�1

��þ ��Fijþ1

��Þ
� 1

2

�
jF j �

X3
j¼1

jFij j
�

< 72g�3ð2n� gÞ:
Therefore,

jV ðGÞj ¼ ��V ðQk
nÞ
���X3

j¼1

jV ðHijÞj � jF j

> kn � 2g�3ð2n� gÞ � 2gð2n� gÞ
> kn � 13

2
� 2g�2ð2n� gÞ:

Using a similar discussion, we can deduce that the
Claim is true when there are at most two of
Q½i� � Fi; i ¼ 0; 1; . . . ; k� 1 such that each of them is dis-
connected. The proof of Claim 1 is complete.

Claim 2. For any decomposition Qj½0�; Qj½1�; . . . ;
Qj½k� 1� of Qk

n along some dimension 1 � j � n; G inter-
sects with every one of Qj½0�; Qj½1�; . . . ; Qj½k� 1�:

Suppose on the contrary that there exists a decomposi-
tion Qj½0�; Qj½1�; . . . ; Qj½k� 1� of Qk

n along some dimen-
sion 1 � j � n such that G does not intersect with every
one of Qj½0�; Qj½1�; . . . ; Qj½k� 1�: Without loss of general-
ity, assume that G \Qj½0�; G \Qj½1�; . . . ; G \Qj½l� 1� are
not empty. Clearly, l � k� 1: Denote G \Qj½i� by Gi for
0 � i � l� 1: Let Fj½i� ¼ F \ V ðQj½i�Þ for i ¼ 0; 1; . . . ;
k� 1:

If Qj½i� � Fj½i� is disconnected for any i ¼ 0; 1; . . . ; k�
1; then by Case 1, we have jF j � 2gð2n� gÞ; a contradic-
tion. So suppose that there exists a Qj½i� such that
Qj½i� � Fj½i� is connected. Let Qj½i0� � Fj½i0� be connected,
and H be the component of Qk

n � F such that
Qj½i0� � Fj½i0� is a subgraph of H: If H does not intersect
with every one of Qj½0�; Qj½1�; . . . ; Qj½k� 1�; then similar
to Case 2.1, we can conclude jF j � 2gð2n� gÞ; a contra-
diction. So suppose H intersects with every one of
Qj½0�; Qj½1�; . . . ; Qj½k� 1�: By the assumption that G does
not intersect with every one of Qj½0�; Qj½1�; . . . ; Qj½k� 1�;
we can conclude H 6¼ G: If there are at least four of
Qj½i� � Fj½i�; i ¼ 0; 1; . . . ; k� 1; such that each of them is
disconnected, then similar to Case 2.2.1, we have
jF j � 2gð2n� gÞ; a contradiction. Therefore, there are at
most three of Qj½i� � Fj½i�; i ¼ 0; 1; . . . ; k� 1; such that
each of them is disconnected. Similar to the Claim 1 of
Case 2.2.2, we have jV ðHÞj � kn � 13

2 � 2g�2ð2n� gÞ: Since
F is an Rg�1-cut of Qk

n; by induction, we have
jF j � 2g�1½2n� gþ 1�: So

kn ¼ jV ðQk
nÞj � jV ðGÞj þ jV ðHÞj þ jF j

> 2 kn � 13

2
� 2g�2ð2n� gÞ

� �
þ 2g�1½2n� gþ 1�:

It is easy to show

kn < 2 kn � 13

2
� 2g�2ð2n� gÞ

� �
þ 2g�1½2n� gþ 1�;
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a contradiction. The proof of Claim 2 is complete.

Let A be an another component of Qk
n � F except G:

Then by Claim 2 and the above discussion, we can

deduce that for any decomposition Qj½0�; Qj½1�; . . . ; Qj

½k� 1� of Qk
n along some dimension 1 � j � n; A inter-

sects at most three of Qj½0�; Qj½1�; . . . ; Qj½k� 1�: Without

loss of generality, let A � Qk
n½
Tn

j¼1ðV ðQj½0�Þ [ V ðQj½1�Þ
ðQj½2�ÞÞ�: Since F is an Rg-cut of Q

k
n; it follows that dðAÞ �

g: Then by Lemma 3.4, jF j � jNQ3
n
ðAÞj � 2gð2n� gÞ; a

contradiction. tu
Latifi et al. [25], and Wu and Guo [42] have studied the

Rg-connectivity of the hypercube and got the following result.

Theorem 3.7 [25], [42]. Assume that n � 3 and 0 � g � n� 2:
Then the Rg-connectivity of n-dimensional hypercube Qn;
kgðQnÞ ¼ ðn� gÞ2g:
By the definition of k-ary n-cube, we have Q4

n ¼ Q2n: So,
by Theorem 3.7, we can deduce the following corollary.

Corollary 3.8. Assume that n � 2 and 0 � g � 2n� 2: Then the
Rg-connectivity of four-ary n-cube Q4

n; kgðQ4
nÞ ¼ ð2n� gÞ2g:

Combining Corollaries 3.2 and 3.8, and Lemma 3.6, we
can obtain the Rg-connectivity of Qk

n for 0 � g � n; n � 3
and k � 4:

Theorem 3.9. Assume that k � 4; n � 3 and 0 � g � n: Then
the Rg-connectivity of k-ary n-cube Q

k
n; kgðQk

nÞ ¼ ð2n� gÞ2g:

4 THE ggg-GOOD-NEIGHBOR CONDITIONAL

DIAGNOSABILITY OF kkk-ARY nnn-CUBE QQQk
n UNDER

THE PMC MODEL

In this section, we shall show the g-good-neighbor condi-
tional diagnosability of k-ary n-cube Qk

n under the PMC
model.

Let G ¼ ðV;EÞ be an undirected graph of a system G. Let
F1 and F2 be two distinct subsets of V; and let the symmetric
difference F1~F2 ¼ ðF1 [ F2Þ � ðF1 � F2Þ: In 1984, Dahbura
and Masson [11] proposed a sufficient and necessary condi-
tion for two distinct subsets F1 and F2 to be a distinguish-
able-pair under the PMCmodel.

Theorem 4.1 [11]. For any two distinct subsets F1 and F2 of V;
ðF1; F2Þ is a distinguishable pair under the PMC model if and
only if there is a vertex u 2 V � ðF1 [ F2Þ and there is another
vertex v 2 ðF1~F2Þ such that ðu; vÞ 2 E (see Fig. 3).

The following lemma follows from Definition 2.4.5 and
Theorem 4.1.

Lemma 4.2. A system G is g-good-neighbor conditional t-diag-
nosable under the PMC model if and only if there is an edge
ðu; vÞ 2 EðGÞ with u 2 V � ðF1 [ F2Þ and v 2 ðF1~F2Þ for
each distinct pair of g-good-neighbor conditional faulty subsets
F1 and F2 of V with jF1j � t and jF2j � t:

Let g be a positive integer with 0 � g � n: To find the
g-good-neighbor conditional diagnosability tgðQk

nÞ under
the PMC model, we first show that tgðQk

nÞ is no more than
ð2n� gþ 1Þ2g � 1 for k � 5; n � 3 and 0 � g � n:

Theorem 4.3. Assume that k � 5; n � 3 and 0 � g � n: Then
the g-good-neighbor conditional diagnosability of k-ary n-cube
Qk

n under the PMC model, tgðQk
nÞ � ð2n� gþ 1Þ2g � 1:

Proof. Let A ffi Qg be a subgraph of Qk
n and let F1 ¼

NQk
n
ðAÞ; F2 ¼ CQk

n
ðAÞ (See Fig. 4). Then by Lemma 3.1,

jF1j ¼ ð2n� gÞ2g; jF2j ¼ ð2n� gþ 1Þ2g; and the minimum
degree of Qk

n � F2 is not less than 2n� 2; i.e., F1 and F2

are two g-good-neighbor conditional faulty sets of V ðQk
nÞ

with F1 � ð2n� gþ 1Þ2g and F2 � ð2n� gþ 1Þ2g: On the
other hand, since V ðAÞ ¼ F1DF2 and NQk

n
ðAÞ ¼ F1 	 F2;

there is no edge ðu; vÞ 2 EðQk
nÞwith u 2 V� ðF1 [ F2Þ and

v 2 ðF1~F2Þ: By Lemma 4.2 and Definition 2.4.5, the
g-good-neighbor conditional diagnosability tgðQk

nÞ �
ð2n� gþ 1Þ2g � 1 under the PMC model. The proof is
complete. tu
Next, we show that tgðQk

nÞ is no less than ð2n� gþ 1Þ2g�
1 for k � 5; n � 3 and 0 � g � n:

Theorem 4.4. Assume that k � 5; n � 3 and 0 � g � n: Then
the g-good-neighbor conditional diagnosability of k-ary n-cube
Qk

n under the PMC model, tgðQk
nÞ � ð2n� gþ 1Þ2g � 1:

Proof. By Definition 2.4.6, it is sufficient to show Qk
n is

g-good-neighbor conditional ð2n� gþ 1Þ2g � 1-diagnos-
able. By Definition 2.4.5, to prove Qk

n is g-good-neighbor
conditional ð2n� gþ 1Þ2g � 1-diagnosable, it is equiva-
lent to prove that F1 and F2 must be distinguishable for
every two distinct g-good-neighbor conditional faulty
sets F1 and F2 of Qk

n with jF1j � ð2n� gþ 1Þ2g � 1 and
jF2j � ð2n� gþ 1Þ2g � 1:

We prove this statement by contradiction. Suppose
that there are two distinct g-good-neighbor conditional
faulty sets F1 and F2 with jF1j � ð2n� gþ 1Þ2g � 1 and
jF2j � ð2n� gþ 1Þ2g � 1; but ðF1; F2Þ is indistinguish-
able. Now we consider all the possible cases such that F1

and F2 are indistinguishable. By Theorem 4.1, there are
two cases such that F1 and F2 are indistinguishable:
V ðQk

nÞ ¼ F1 [ F2 or V ðQk
nÞ 6¼ F1 [ F2 but there is no edge

from V ðQk
nÞ � ðF1 [ F2Þ to F1DF2: Without loss of gener-

ality, assume that F2 � F1 6¼ ;: We shall show that each
of the above cases has a contradiction with our
assumption.

Case 1. V
�
Qk

n

	 ¼ F1 [ F2:

Fig. 3. Illustration of a distinguishable pair ðF1; F2Þ under the PMCmodel.

Fig. 4. An illustration about the proofs of Theorem 4.3 and Lemma 5.5.
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Since k � 5; n � 3; g � n and V ðQk
nÞ ¼ F1 [ F2; we

deduce that

5n � kn ¼ ��V �
Qk

n

	�� ¼ jF1 [ F2j � jF1j þ jF2j
� 2� ½ð2n� gþ 1Þ2g � 1� < ðnþ 1Þ2nþ1;

which is a contradiction.
Case 2. V ðQk

nÞ 6¼ F1 [ F2:
Since F1 and F2 are indistinguishable, by Theorem 4.1

(See Fig. 3), there are no edges between V ðQk
nÞ� ðF1 [ F2Þ

to F1DF2: By the assumption that F2 � F1 6¼ ; and F1 is a
g-good-neighbor conditional faulty set, any vertex in
F2 � F1 has at least g good neighbors in the subgraph
induced by F2 � F1: By Lemma 3.3, we have
jF2 � F1j � 2g: Since F1 and F2 are both g-good-neighbor
conditional faulty sets, F1 \ F2 is also a g-good-neighbor
conditional faulty set. In addition, since there are no
edges between V ðQk

nÞ � ðF1 [ F2Þ to F1DF2; Q
k
n � F1 \ F2

is disconnected, that is F1 \ F2 is a Rg-cut of Qk
n: By

Theorem 3.9, the cardinality of the minimum Rg-cut of
Qk

n is ð2n� gÞ2g: Thus, we obtain that jF1 \ F2j �
ð2n� gÞ2g: As a result, jF2j ¼ jF2 � F1j þ jF1 \ F2j � 2g

þð2n� gÞ2g; which contradicts with jF2j � 2g þ ð2n� gÞ
2g � 1:

Based on these discussions above, we conclude that
tgðQk

nÞ � ð2n� gþ 1Þ2g � 1: The proof of this theorem is
complete. tu
Recently, the g-good-neighbor conditional diagnosability

of hypercube tgðQnÞ under the PMC model is shown by
Peng et al. [36].

Theorem 4.5 [36]. The g-good-neighbor conditional diagnosabil-
ity of Qn under the PMC model is

tgðQnÞ ¼
2gðn� gþ 1Þ � 1; if g � n� 3;

2n�1 � 1; if n� 2 � g � n� 1:




Note that Q4
n ¼ Q2n: So, by Theorem 4.5, we can deduce

the following result.

Corollary 4.6. The g-good-neighbor conditional diagnosability of
Q4

n under the PMC model is

tgðQ4
nÞ ¼

2gð2n� gþ 1Þ � 1; if g � 2n� 3;

22n�1 � 1; if 2n� 2 � g � 2n� 1:

(

Combining Theorems 4.3, 4.4 and Corollary 4.6, we can
obtain the g-good-neighbor conditional diagnosability of Qk

n

for 0 � g � n; n � 3 and k � 4:

Theorem 4.7. Assume that k � 4; n � 3 and 0 � g � n:
Then the g-good-neighbor conditional diagnosability of
k-ary n-cube Qk

n; under the PMC model, tgðQk
nÞ ¼

ð2n� gþ 1Þ2g � 1:

5 THE ggg-GOOD-NEIGHBOR CONDITIONAL

DIAGNOSABILITY OF kkk-ARY nnn-CUBE QQQk
n UNDER

THE MM� MODEL

In this section, we shall show the g-good-neighbor conditional
diagnosability of k-aryn-cubeQk

n under theMM�model.

Let G ¼ ðV;EÞ be an undirected graph of a system G. In
1992, Dahbura and Masson [39] proposed a sufficient and
necessary condition for two distinct subsets F1 and F2 to be
a distinguishable pair under the MM� model.

Theorem 5.1 [39]. For any two distinct subsets F1 and F2 of
V ðGÞ; ðF1; F2Þ is a distinguishable pair under the MM� model
if and only if one of the following conditions is satisfied (see
Fig. 5):

(1) There are two vertices u;w 2 V ðGÞ � F1 � F2 and
there is a vertex v 2 F1DF2 such that ðu;wÞ and ðv; wÞ 2 E:

(2) There are two vertices u; v 2 F1 � F2 and there is a ver-
tex w 2 V ðGÞ � F1 � F2 such that ðu;wÞ and ðv; wÞ 2 E:

(3) There are two vertices u; v 2 F2 � F1 and there is a ver-
tex w 2 V ðGÞ � F1 � F2 such that ðu;wÞ and ðv; wÞ 2 E:

The following lemma follows from Definiton 2.4.5 and
Theorem 5.1.

Lemma 5.2. A system G is g-good-neighbor conditional t-diag-
nosable under the MM� model if and only if for each distinct
pair of g-good-neighbor conditional faulty subsets F1 and F2 of
V with jF1j � t and jF2j � t satisfies one of the following
conditions:

(1) There are two vertices u;w 2 V ðGÞ � F1 � F2 and
there is a vertex v 2 F1DF2 such that ðu;wÞ and ðv; wÞ 2 E:

(2) There are two vertices u; v 2 F1 � F2 and there is a ver-
tex w 2 V ðGÞ � F1 � F2 such that ðu;wÞ and ðv; wÞ 2 E:

(3) There are two vertices u; v 2 F2 � F1 and there is a ver-
tex w 2 V ðGÞ � F1 � F2 such that ðu;wÞ and ðv; wÞ 2 E:

Let g be a positive integer with 0 � g � n: To find the
g-good-neighbor conditional diagnosability tgðQk

nÞ under
the MM� model, we first show that tgðQk

nÞ is no more than
ð2n� gþ 1Þ2g � 1 for k � 5; n � 3 and 0 � g � n:

Theorem 5.3 [45]. Let g � n; n � 3; Qg be a g-dimensional sub-
cube of Qn; CQnðQgÞ ¼ NQnðQgÞ [ V ðQgÞ: Then Qn½NQn

ðQgÞ� is the union of n� g disjoint g-dimensional subcubes of
Qn and Qn � CQnðQgÞ is connected and the minimum degree
of Qn � CQnðQgÞ is not less than n� 2:

Corollary 5.4. Let the g-dimensional hypercube Qg be a sub-

graph of Qk
n; and CQk

n
ðQgÞ ¼ NQk

n
ðQgÞ [ V ðQgÞ; where

0 � g � n; k � 4 and n � 3: Then jNQk
n
ðQgÞj ¼ ð2n� gÞ2g

and the minimum degree of Qk
n � CQk

n
ðQgÞ is not less than

2n� 2:

Proof. When k ¼ 4; then by Theorem 5.3, we have

jNQ4
n
ðQgÞj ¼ jNQ2n

ðQgÞj ¼ ð2n� gÞ2g and the minimum

degree of Q4
n � CQ4

n
ðQgÞ ¼ Q2n � CQ2n

ðQgÞ is not less

than 2n� 2: When k � 5; by Lemma 3.1, the result is

also true. tu

Fig. 5. Illustration of a distinguishable pair ðF1; F2Þ under the MM� model.
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Lemma 5.5. Assume that k � 4; n � 3 and 0 � g � n: Then the
g-good-neighbor conditional diagnosability of k-ary n-cube Qk

n

under the MM� model, tgðQk
nÞ � ð2n� gþ 1Þ2g � 1:

Proof. Let A ffi Qg be a subgraph of Qk
n and let

F1 ¼ NQk
n
ðAÞ; F2 ¼ CQk

n
ðAÞ (see Fig. 4). Then by Corollary

5.4, jF1j ¼ ð2n� gÞ2g; jF2j ¼ ð2n� gþ 1Þ2g; and the mini-
mum degree of Qk

n � F2 is not less than 2n� 2: That is F1

and F2 are two g-good-neighbor conditional faulty sets of
V ðQk

nÞ with jF1j � ð2n� gþ 1Þ2g and jF2j � ð2n� g þ 1Þ
2g: On the other hand, by the definitions of F1 and F2;
neither one of the three conditions of Lemma 5.2 is satis-
fied. By Lemma 5,2, k-ary n-cube Qk

n is not g-good-neigh-
bor conditional ð2n� gþ 1Þ2g-diagnosable. The proof is
complete. tu
Next, we show that under the MM� model, tgðQk

nÞ is no
less than ð2n� gþ 1Þ2g � 1 for k � 4; n � 3 and 0 � g � n:

Lemma 5.6. Assume that k � 4; n � 3 and 0 � g � n: Then the
g-good-neighbor conditional diagnosability of k-ary n-cube Qk

n

under the MM� model, tgðQk
nÞ � ð2n� gþ 1Þ2g � 1:

Proof. Suppose, by contradiction, that tgðQk
nÞ is less than

ð2n� gþ 1Þ2g � 1 under the MM� model. By Lemma 5.2,
there are two distinct g-good-neighbor conditional faulty
sets F1 and F2 with jF1j � ð2n� gþ 1Þ2g � 1 and jF2j �
ð2n� gþ 1Þ2g � 1; but the vertex set pair ðF1; F2Þ is not
satisfied with any one condition in Lemma 5.2. Without
loss of generality, assume that F2 � F1 6¼ ;: We shall dis-
cuss the following two cases.

Case 1. V ðQk
nÞ ¼ F1 [ F2:

Since k � 4; n � 3; g � n and V ðQk
nÞ ¼ F1 [ F2; we

obtain the following inequality:

4n � kn ¼ ��V �
Qk

n

	�� ¼ jF1 [ F2j � jF1j þ jF2j
� 2� ½ð2n� gþ 1Þ2g � 1� � ðnþ 1Þ2nþ1 � 2

� 4n � 2;

which is a contradiction.
Case 2. V ðQk

nÞ 6¼ F1 [ F2:
In this case, we first prove a useful claim.
Claim 3. Qk

n � F1 � F2 has no isolated vertex.
We show the claim by considering the following two

subcases.
Subcase A. g ¼ 1:
Suppose, by contradiction, that Qk

n � F1 � F2 has at
least one isolated vertex. Let w be an isolated vertex in
Qk

n � F1 � F2: Since F1 is an 1-good neighbor condition
faulty set, there is a vertex u 2 F2 � F1 such that u is adja-
cent to w: On the other hand, since the vertex set pair
ðF1; F2Þ is not satisfied with any one condition in Lemma
5.2, by Lemma 5.2(3) (see Fig. 5), there is at most one ver-
tex u 2 F2 � F1 such that u is adjacent to w: Thus, there is
just a vertex u 2 F2 � F1 such that u is adjacent to w: Sim-
ilarly, we can deduce there is just a vertex v 2 F1 � F2

such that v is adjacent to w: Let W � V ðQk
nÞ � F1 � F2 be

the set of isolated vertices, and let H be the induced sub-
graph by the vertex set V ðQk

nÞ � F1 � F2 �W: Then for
any vertex w 2 W; there are 2n� 2 neighbors in F1 \ F2:
By jF2j � ð2n� gþ 1Þ2g � 1 and g ¼ 1; we have
jF2j � 4n� 1: Therefore,

X
w2W

jNF1\F2ðwÞj ¼ jW jð2n� 2Þ �
X

v2F1\F2
dQk

n
ðvÞ

� jF1 \ F2j2n � ðjF2j � 1Þ2n
� ð4n� 2Þ2n:

It follows that jW j � 4nþ 3: AssumeH ¼ ;: Then

4n � kn ¼ ��V ðQk
nÞ
�� ¼ jF1 [ F2j þ jW j

� jF1j þ jF2j � jF1 \ F2j þ jW j
� 2½ð4n� 1Þ � 1� þ 4nþ 3 ¼ 12n� 1:

It follows that n < 3; contradicts n � 3: So H 6¼ ;: Since
the vertex set pair ðF1; F2Þ is not satisfied with the condi-
tion (1) of Lemma 5.2 (see Fig. 5), and any vertex of V ðHÞ
is not isolated, we have there is no edge between H and
F1DF2: Thus, F1 \ F2 is a cut of Qk

n and dðQk
n� ðF1 \

F2ÞÞ � 1; i.e., F1 \ F2 is an 1-good-neighbor conditional
cut of Qk

n: By Theorem 3.9, jF1 \ F2j � 4n� 2: Note that
jF1j � ð2n� gþ 1Þ2g � 1 ¼ 4n� 1; jF2j � ð2n� gþ 1Þ2g�
1 ¼ 4n� 1 and neither F1 � F2 nor F2 � F1 is empty.
Thus, jF1 � F2j ¼ jF2 � F1j ¼ 1: Say F1 � F2 ¼ fv1g; F2 �
F1 ¼ fv2g: Then for any vertex w 2 W; w are adjacent to
v1 and v2: Since there are at most two common neighbors
for any pair of vertices in Qk

n; it follows that there are at
most two isolated vertices in V � F1 � F2:

Assume there is exactly one isolated vertex v: Then

v1; v2 are adjacent to v in V � F1 � F2: Clearly,

NQk
n
ðvÞ � fv1; v2g � F1 \ F2: Since Qk

n contains no trian-

gle, it follows that NQk
n
ðv1Þ � fvg � F1 \ F2; NQk

n
ðv2Þ �

fvg � F1 \ F2; ½NQk
n
ðvÞ � fv1; v2g� \ ½NQk

n
ðv1Þ � fvg� ¼ ;;

and ½NQk
n
ðvÞ � fv1; v2g� \ ½NQk

n
ðv2Þ � fvg� ¼ ;: Since there

are at most two common neighbors for any pair of verti-

ces in Qk
n; it follows that j½NQk

n
ðv1Þ � fvg�\ ½NQk

n
ðv2Þ �

fvg�j � 1: Therefore,

jF1 \ F2j �
��NQk

n
ðvÞ � fv1; v2g

��þ ��NQk
n
ðv1Þ � fvg��

þ ��NQk
n
ðv2Þ � fvg���� 1

¼ 2n� 2þ 2n� 1þ 2n� 1� 1

¼ 6n� 5:

It follows that

jF2j ¼ jF2 � F1j þ jF1 \ F2j � 1þ 6n� 5 ¼ 6n� 4

> 4n� 1;

contradicting jF2j � ð2n� gþ 1Þ2g � 1 ¼ 4n� 1:

Assume there is another isolated vertex v0 6¼ v in
V � F1 � F2: Then v1; v2 are adjacent to v0: Similarly, since
Qk

n contains no triangle and there are at most two com-
mon neighbors for any pair of vertices in Qk

n; it follows
that the four vertex sets NQk

n
ðvÞ � fv1; v2g; NQk

n
ðv0Þ �

fv1; v2g; NQk
n
ðv1Þ � fv; v0g and NQk

n
ðv2Þ � fv; v0g do not

intersect pairwise. Therefore,

jF1 \ F2j �
��NQk

n
ðvÞ � fv1; v2g

��þ ��NQk
n
ðv0Þ � fv1; v2g

��
þ ��NQk

n
ðv1Þ � fv; v0g��þ ��NQk

n
ðv2Þ � fv; v0g��

¼ 2n� 2þ 2n� 2þ 2n� 2þ 2n� 2

¼ 8n� 8:
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It follows that

jF2j ¼ jF2 � F1j þ jF1 \ F2j � 1þ 8n� 8

¼ 8n� 7 > 4n� 1;

a contradiction.
Subcase B. g � 2:
Since F1 is a g-good-neighbor condition faulty set,

jNQk
n�F1

ðxÞj � g for any x 2 V � F1: Note the vertex set
pair ðF1; F2Þ is not satisfied with any one condition in
Lemma 5.2. By Lemma 5.2(3) (see Fig. 5), for any pair of
vertices u; v 2 F2 � F1; there is no vertex w 2 V � F1 � F2

such that ðu;wÞ; ðv; wÞ 2 EðQk
nÞ: Thus, any vertex w in

V � F1 � F2 has at most one neighbor in F2 � F1: There-
fore, for any vertex w 2 V � F1 � F2; jNQk

n�F1�F2
ðwÞj �

g� 1 � 1; i.e., every vertex of Qk
n � F1 � F2 is not an iso-

lated vertex. The proof of Claim 3 is complete.
Let u be a vertex in Qk

n � F1 � F2: By Claim 3, u has at
least one neighbor in Qk

n � F1 � F2: Since the vertex set
pair ðF1; F2Þ is not satisfied with any one condition in
Lemma 5.2, by Lemma 5.2(1) (see Fig. 5), for any pair of
adjacent vertices u;w 2 V � F1 � F2; there is no vertex
v 2 F1DF2 such that ðu; vÞ or ðv; wÞ 2 EðQk

nÞ: It follows
that u has no neighbor in F1DF2: By the arbitrariness of u;
there is no edge between V � F1 � F2 and F1DF2:

Since F2 � F1 6¼ ; and F1 is a g-good-neighbor condi-
tional faulty set, dðQk

n½F2 � F1�Þ � g: By Lemma 3.3,
jF2 � F1j � 2g: Since both F1 and F2 are g-good-neighbor
conditional faulty sets and there is no edge between
V � F1 � F2 and F1DF2; F1 \ F2 is a g-good-neighbor con-
ditional cut of Qk

n: By Theorem 3.9, we have
jF1 \ F2j � ð2n� gÞ2g:

Therefore,

jF2j ¼ jF2 � F1j þ jF1 \ F2j � 2g þ ð2n� gÞ2g
¼ ð2n� gþ 1Þ2g;

contradicting jF2j � ð2n� gþ 1Þ2g � 1 The proof is
complete. tu
Combining Lemmas 5.5 and 5.6, the g-good-neighbor

conditional diagnosability of k-ary n-cube Qk
n shows

below.

Theorem 5.7. Assume that k � 4; n � 3 and 0 � g � n: Then
the g-good-neighbor conditional diagnosability of k-ary n-cube
Qk

n under the MM� model, tgðQk
nÞ ¼ ð2n� gþ 1Þ2g � 1:

Proof. On the one hand, by Lemma 5.5, the g-good-neighbor
conditional diagnosability of k-ary n-cube Qk

n under the
MM� model, tgðQk

nÞ � ð2n� gþ 1Þ2g � 1: On the other
hand, by Lemma 5.6, the g-good-neighbor conditional
diagnosability of k-ary n-cube Qk

n under the MM� model,
tgðQk

nÞ � ð2n� gþ 1Þ2g � 1: Therefore, the g-good-neigh-
bor conditional diagnosability of k-ary n-cube Qk

n under
the MM� model, tgðQk

nÞ ¼ ð2n� gþ 1Þ2g � 1: The proof is
complete. tu
Table 1 shows the g-good-neighbor conditional diagnos-

ability of five-ary n-cube tgðQ5
nÞ of small nð� 3Þ where

0 � g � n:

6 CONCLUSIONS

The g-good-neighbor conditional diagnosability can mea-
sure diagnosability for a large-scale processing system more
accurately than classical diagnosability because the classical
diagnosability always assumes that all neighbors of each
processor in a system can potentially fail at the same time
regardless of the probability. In fact, if there are exactly n
faulty processors in a system of minimum degree n; how-
ever, the probability of the faulty set containing all the
neighbors of any vertex is statistically low for large multi-
processor systems. Therefore, it is worthy to the determin-
ing the g-good-neighbor conditional diagnosability of
interconnection network for multiprocessor systems.

In the area of diagnosability, the PMC model and the
MM� model are two well-known and widely chosen fault
diagnosis models. In this paper, we study the g-good-neigh-
bor conditional diagnosability of k-ary n-cube under the
these models, and demonstrate the g-good-neighbor condi-
tional diagnosabilitis of k-ary n-cube Qk

n under the PMC
model and MM� model are both ð2n� gþ 1Þ2g � 1 for
k � 4; n � 3 and 0 � g � n: Observing that when g ¼ 0;
there is no restriction on the faulty sets and we have the
traditional diagnosability on the hypercube as n: In

TABLE 1
The tgðQ5

nÞ of Small n
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addition, in the special case of g ¼ 1; our result is slightly
different from the measure of conditional diagnosability
given by Lai et al. [28]. The difference between these two
measures is that we only consider the condition of the fault-
free vertices in the network. The generalization of condi-
tional diagnosability by requiring every vertex to have at
least g good neighbors is also an interesting problem to
investigate in the future. For further discussion, it is an
attractive work to develop different measures of these con-
ditional diagnosabilities based on application environment,
network topology, network reliability, and statistics related
to fault patterns.
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