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SUMMARY

A direct proof is given showing that a stellar system is stable whenever the
corresponding barotropic gaseous system is secularly stable. The condition
is formulated in terms of a Schrddinger equation.

It is shown that a large class of spherical steady-state stellar systems is
stable to all non-spherical modes of vibration. For spherical modes the
Schrédinger operator method is necessary and sufficient for the stability of
barotropic spheres but for stellar systems, though correct, it is only sufficient
and is not a very powerful method of proving stability. Antonov’s method is
harder to apply but more powerful.

The Schrédinger method is applied to some model clusters. More general
and more powerful methods are needed in this field.

I. INTRODUCTION

Most spherical and elliptical galaxies show a regularity of form which leads the
observer to believe that they are in steady states with the stars circulating steadily
under the influence of the gravitational attraction of the whole assembly of them.
There have been many discussions of such equilibria and theoretically there is
such a great family of possible steady states that even the bounteous variety in
the heavens is made to look as a single species.

One way in which theoreticians can be led to find too great a variety of possible
steady-states is well illustrated by the pencil standing on its point. Pencils are
not found like that although theory tells us such equilibria are possible. It is just
conceivable that many of the theoretical models of stellar systems are likewise
unstable—certainly interest should be concentrated only on the stable models
(and probably only on a small subset of them). It is therefore important to discover
criteria for the stability of model galaxies.

Following the pioneering work of Antonov (1), (2) one of us (D. L-B.) deduced
a theorem relating the stability of stellar systems to that of corresponding gaseous
systems (3). That paper and a later review (4) pay too little attention to boundary
conditions which has led to misunderstandings but its results may be so interpreted
as to be correct. The present paper aims firstly to show how the theorem may
be proved directly* and secondly to use the resulting criterion to prove the stability
of certain systems.

To allow the reader a less complicated introduction to this intricate subject
only non-rotating spherical systems whose distribution functions depend on
energy only are considered in the main body of the paper. Further we shall assume
that the distribution function monotonically decreases with energy.

* M. Milder was the first to give a different but beautifully physical direct proof.
See his thesis (5).
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Generalizations to other systems are considered in appendices.

It is well known that for a general class of stellar systems there exist correspond-
ing barotropic gaseous systems with the same equilibrium density distributions.
Systems whose distribution functions depend on energy only clearly belong to

such a class because if v is the velocity coordinate and e the energy per unit mass,
(v%/2)—Y, then

= % f F(e) v2d3v = p(¥)

while

p= [F(9d% = o¥)
and hence
p = p(p)-
In the above p is pressure, p is density, ¥ is gravitational potential and F(e¢)

is the distribution function of the steady state stellar system considered. By this
we mean that

F (%2 —‘P‘(r))d37)d3r

is the total mass in a phase space box of volume d3vd3r about the point r, v in
the phase space of positions r and velocities v. Jeans’s equations of stellar hydro-
dynamics (6) reduce in these cases of spherical systems with isotropic pressure
to the equation of hydrostatics for a barotropic gas

Vp = pV¥ (1)
ie.

d

= 2)

It is these barotropic gaseous systems that we use for comparison with our stellar
systems.

2. ENERGY AND ENERGY PRINCIPLES
2.1 The total energy of a stellar system is given by

W = f fr —dGT—G f f lpr R

where fr is the total distribution function and p’r= pp(r’, t), d87=d3vd3 and

pT = fde%.

We may rewrite ¥ in the form

W = ffT—dGT—-”IfoT dbrdés’

where f'p = fp(r', v/, £) and dbr" = d3'd30’.

The difference in energy AW between the system with distribution function
fr and that with the steady-state distribution

F("—’; —‘I’)
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1s

_ v? G [[(fr=F)f'r—F) :
AW = f(fT—F) S St~ ” 3 Ir—r’ilp dbrdSz
—f(fT_F)Gf——lrf;,l d6+'dér.
Now

Gf lr—, dor' = Gf e = ¥

the gravitational potential of the steady state. Thus writing f = fr—F for the
perturbation in the distribution function we have

AW = f f(b__\zf)dsf__ f f ff dﬁnzsf (3)

|r—

We shall write ffd&v = 8p and we shall deal with perturbations which do not

change the mass so
ffdsr = fSpd3r = o.

We now use a trick due originally to Newcombe to express the term in AW which
is apparently linear in f as a quadratic.

The Boltzmann-Liouville equation that governs the evolution of the distribu-
tion function may be written

Drfr
Where
Dy 0 __é _Q 3‘1"173
De-atP=atVat ar oy

equation (4) tells us that fr is convected about in phase space but its value is
not changed. Consider any function J(fr) then DpJ/Dt = o so J is merely

convected around and thus fJ (fr)dér is constant. Now
fJ(f:r)d67 = f( J(E)+fT'(F)+3 12T "(F))dé+O(f?).
Hence since fJ (F)dbr is also constant in time

f (F7'(F)+1 f2J"(F))d®r = 4 a constant (s)

1 must be small since f is small. Since an unstable system is still unstable when
it is started arbitrarily close to equilibrium we could choose 7 = o without spoiling
our results but we shall retain it for the sake of those who (falsely) doubt that
argument. We now choose J'(F) =

1.e.
J = fedF= fsed—l?de
de
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then
. de 1
J'(F) = iF~ I
de

then provided that dF/de is non-zero within the cluster

f FedSr = 1 f I5 41+ 0(f) (6)

which is the required relationship giving a quadratic form in f. The energy change
AW is now, correct to second order in f

=3[ oo [ ey

f f 67— G ” ISPSP d3rd3r + . (7)

We now derive the corresponding expression for the change of energy of a baro-
tropic gas.

2.2 Energy of a gaseous configuration

The internal energy of a barotropic gas is the work done in compressing it
from infinite dilution. This work is

f p(p )d( ) fp( dp’ per gram.

The internal energy of the configuration is therefore

Wint = f f P(P ) dp'd®r.

The self-gravitational energy is

Weray = —2 f f P(r)p(r ) J3rdiy”

[r—r’]

The total energy Wy, = Wint+ Werav-

To test the stability of a configuration we work out the difference in energy
between neighbouring configurations to second order in the density difference
8p(r).

AWy = MW+ AW,

MW, = f(gp (J"’P(P)d +P(P) Gf |r(1') a3 )d3r (8)
AWy = f(a”)z (; j’;) 3r—gff§%f,(lr')d3rd3r'.
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In the above p is the density of the unperturbed configuration dp is slightly
restricted since |8p d3r = o. This restriction is automatically implied if we

write 8p = —div (pE) where § is the small displacement vector. AI¥; may then
be rewritten -

A, = f JE. (@—V?) d%r
p

where we have used the fact that p vanishes at the boundary of the fluid. Evidently
A1Wy = o by reason of the equilibrium of the unperturbed fluid (equation (1)).
Hence

AW, = AWy
But by reason of equation (2)
rdp_d¥
pdp dp
so we may write AsWy in the form
AW, = (SP)Z 23y G fJ‘ |8p8p Dord3r )

2.3 Comparison of expressions for the energy

The second term in AW, occurs in AW for the stellar system. The first term
differs primarily in that §p appears instead of f. We now work on AW to make it
look more like AW,. By Schwartz’s inequality

" de
The equality only holds when foc —dF/de.
Since we are taking dF/de <o within the cluster

ff d6>f (SP)2 237,
J-&

Now
7)2

fF(e) d% = p and € = Z—‘F.

S0
AP g dp
de av

So finally

2

AW> (%p)® P) _G ff |8’08p d3rddr'+m = AW+, (10)

Let us now suppose that we know that the gaseous body is secularly stable so
that AW, is positive for all acceptable 8p that do not correspond to mere dis-
placements.

Then from equation (10)
AW -— 7 = AWg = 0.
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For both equalities to hold both f must be proportional to — dF/de in velocity
space and the 6p must be that of a uniform displacement. These lead to a unique
f = —i dF|de where i is the perturbation potential corresponding to the uniform
displacement. This f is the f of the mere displacement so we can deduce that at
least one inequality holds except for uniform displacements of the stellar system.
Had we taken 5 = o we would now have proved that AW > o for all non-trivial
perturbations so we could deduce that the system was stable. Since those who
retain n will be of a more pedantic frame of mind we will spell out the argument
for them in greater detail.

By the above inequality AW —x is positive definite for all perturbations that
are not mere uniform displacements. However AW and 7 are both small initially
(if f is) and are both constant.

If f ceases to be small it must do so in such a manner that AW — 1 still remains
small. This can only be done if f is of the form corresponding to a uniform dis-
placement of the stellar system; or rather it can only differ from such a displace-
ment by a quantity that remains small.

Mere uniform displacements can be reduced to zero in suitable axes so f can
be taken to remain small always.

Hence the system is stable.

The stellar system is therefore stable if the corresponding barotropic gaseous
sphere is stable.

This theorem allows us to use our considerable knowledge of the stability of
gaseous bodies to acquire a knowledge of some stable stellar-dynamical systems.
However the barotropic law p(p) is defined by the density distribution of the
stellar system and not by its compressibility properties. We can never show that
a stellar system is unstable by these methods because our condition is sufficient
but not necessary for the stability of a stellar dynamical system.

3. THE SCHRODINGER OPERATOR CRITERION

AW, may be re-expressed in terms of the perturbation in the potential

op’ ,
¢=Gf o P
V2 = —4nGop
Then
_ (8o (Y% _dp N\,
av

We now define the Schrédinger operator .S by
V2
= (oY)

where the analogy to the quantum mechanical Hamiltonian H is obvious where
U is the negative of the potential

H¢=( h*

2m

VZ—U) .
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In the Schrédinger operator we put
U = Z—fi} o.

We may now write AW, in the following ways.
I _ [ =V _If(Stﬁ ) 3
AW, = fz‘ﬁ Syddr = fSWGUS¢d% = L[ (S +9) Suas

-1 f (Ql"})f+¢s¢) &, (x1)

Now ¢ is subject to the boundary conditions for a perturbation potential. That
is V2 = o outside the cluster and # is O(1/r2) at oo since perturbations do not
involve change of mass. Also

S Spdp

T

must be finite where U vanishes on the edge of the cluster and ¢ and V¢ must
be continuous over that surface. If AW,>o for all such non-zero { which are
not merely uniform displacements then the system is stable. Mere uniform dis-
placement will give AW, = o but this will not affect the stability.

We see from expression (11) that if f $Spd3r > o for all  that satisfy the

boundary conditions and that do not correspond to mere displacements, then
AWy> o0 and the system is stable. This leads us to consider the minimizing of

f bSydsr
f¢U¢d3r

subject to the boundary conditions that ¢ = O(1/r2) at oo etc. Stationary values
of this ratio occur when

S = A Uy (12)

which reduces to V2 = o outside the body and ensures Sis/ U finite so the boundary
conditions are fulfilled if  is O(1/r2).
For eigenfunctions

AWg -

AMA+1) f ST

2

which is positive for A>o0 and negative for A<o.*

Now .S is a Hermitian operator over all space for functions that die like 1/r
or more at o0 and U is positive definite over all ¢ satisfying our boundary condi-
tions. We therefore deduce that the eigenfunctions 4, of equation (12) form a
complete set.

‘It therefore would seem as if the condition AW,;>o were equivalent to the

Ve L. .. .
* S+ U = TG which is positive definite over all space. Hence A+ 1>o0 even when

A<o.
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statement that .S must be positive definite, i.e. that every eigenvalue must be
positive. (We must of course allow A = o but only for uniform displacements.)
However difficulties with this chain of argument occur as soon as we pay careful
attention to the boundary conditions. Equation (12) gives a complete set of eigen-
functions for our problem under the boundary condition that i is O(1/r) at oo,
not O(1/r2). Thus not all the eigenfunctions are acceptable as possible ¢ because
some of them correspond to a change in the mass of the system. For spherically
symmetrical modes our O(1/r?) boundary condition leads to ¢y=o outside the
cluster. Solving equation (12) under the boundary condition that ¢ = o and
d/dr = o at the edge gives the unique solution y=o. Thus no spherical eigen-
function can obey our boundary conditions. However there is no difficulty in
finding linear combinations of pairs of spherical eigenfunctions with different
eigenvalues that do satisfy them. We would be utterly wrong to delete all spherical
modes as possible causes of instability. We note that this difficulty is occurring
only with the spherical modes because the solutions outside the body behave
like Afr+ B both of which terms are forbidden by the boundary condition. The
dying solutions of all non-spherical modes are at least O(1/r2) so non-spherical
modes cause us no difficulty.

Let us first prove that any disturbance of a spherical star cluster can be split
as usual into its spherical and non-spherical parts, each of which are possible
disturbances.

If f(r, v, ) is a solution to our problem so is the rotated solution f(Z(r), %(v), t)
when Z is any rotation operator. Further as the equations are linear any linear
combination of solutions is a solution. Now define

f(x, v, 1) = Average over all rotations % of f(%(tx), %(v), ?).

Clearly f is spherically symmetrical and f—f describes a possible disturbance of
the star cluster which has no spherically symmetrical part. In particular the
potential corresponding to f—f will be expressible as a combination of the spherical
harmonics Y;™(0, ¢) starting not with / = o but with / = 1. The only modes
left out in such an analysis are those for which f = f, ¢ = i, i.e. those which are
spherically symmetrical. These we shall consider presently. Now we shall prove
our theorem on the aspherical modes by which phrase we shall mean those with
no spherically symmetric part.

4. ASPHERICAL MODES
Theorem

Any spherical star cluster whose distribution function is a decreasing function
of energy alone is stable to all aspherical perturbations.
All the aspherical eigenfunctions of the equation

S = AU

satisfy the required boundary condition ¢ = O(1/r2). Furthermore S is Hermitian
and U is positive definite. Thus the aspherical eigenfunctions will form a complete
set and each individual eigenfunction is an acceptable perturbation potential.
We now show that all aspherical eigenfunctions that do not correspond to mere
displacements have positive eigenvalues.
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Consider the mere displacement caused by an infinitesimal uniform displace-
ment p. The perturbation potential is then s = p.V¥. Taking S of this ¢

V2 0 d 0
Sh= -2 (p-2¥)-Tp i

4nG \"or ) d¥ T
ie.
0 dp Ogr _

since p is a function of ¥ alone.

Thus the uniform displacements give eigenvalues of zero as we should expect.
Since ¥ decreases monotonically these eigenfunctions have no spherical node.
Furthermore the three independent infinitesimal uniform displacements together
make up the complete set of 2/+ 1 eigenfunctions that have / = 1 in their spherical
harmonic representations and give the same radial dependence (with no spherical
node). Thus all other independent eigenfunctions either have /> 1 or at least one
spherical node.

But by a well known theorem (Morse & Feshbach, p. 719) the eigenvalues for
given / increase as the number of spherical nodes increases. Therefore all [ = 1
eigenvalues that do not correspond to mere uniform displacements are positive.

Now by another similar general theorem on eigenvalues (Morse & Feshbach,
p. 754) the I = 2 eigenfunctions with a given number of spherical nodes lie above
the / = 1 eigenfunctions with the same number of spherical nodes. Thus all
! = 2 eigenvalues are positive. Similarly using the general theorem that the
I = L+ 1 eigenvalues lie above the corresponding / = L eigenvalues we may now
apply mathematical induction to prove that all aspherical eigenvalues are positive
unless they are zero and correspond to mere uniform displacements. Any aspherical
function ¢ satisfying our boundary conditions may be expanded in the form

= g aibi

where the y; are a complete set of eigenfunctions orthogonalized and normalized
by the condition

f iUy dor = 84

AW,y = f {Mﬁﬂ zaj¢jUzai¢i} d3r

Then

= 22 /\i(/\j-l- I) aiajfxﬁi U&/rjd?’r

= 23 )\7;(/\]'-}- I)aiajéi,- = E)\i()\i-l- I)aiz.

Since A(A;+1)>0 for all 4, AW,;>o0. Equality only occurs if every non-zero g;
has A; = o in which case as we have seen the ¢ is that corresponding to a linear
combination of uniform displacements; i.e. it corresponds to a uniform displace-
ment. This completes the proof of the theorem that all aspherical modes are
stable.

We remark that the same theorem that proves that all other aspherical eigen-
functions have eigenvalues greater than the / = 1 displacement eigenvalue of
zero, shows us that the unacceptable / = o, no spherical node eigenvalue must
always be negative.
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5. SPHERICAL MODES

The boundary conditions on the edge of the stellar system now reduce to
J = o and di/dr = o and Sy/U must not be infinite. We now minimize not

f $:Sid3r but rather the full energy AW,. Since we are interested in its passage

through zero we may normalize by any positive definite quadratic integral and it

proves convenient to choose
(V)?
3, — | L/ 43
‘/’d f 4mG &

G
which is positive definite under these boundary conditions.
Note
—-Va
S+U = G

Our problem is therefore to minimize the ratio R

f [(S#—l— ¢S¢] d3r AW,

R= _ :
f WS+ U) yaddr f % a3

If Rmin> o for all spherical perturbations the system is stable. The corresponding
eigenvalue equation is

S%‘+S¢A—A(S+ Uy = o. (13)
that is
(S+ U)[ll] (S— D) 1/1,1] = o,
Since in spherical symmetry
(S+U)Q =

we may solve this equation to obtain

—11 d2
4WG;B}—2rQ

Dy

L(S=2U) = ¢+ (14)

But S, /U and Ay, must be finite at # = oso D, = o. Hence (S— AU)¢, = ¢’ U.
By a normalization of ¢, we may take ¢’, = (A+1)c,. To know that this can be
done we must know that none of the A+1’s are equal to zero. To prove that
A+ 1 #0 we merely rewrite equation (13) in the form

(S+U)| 5 (S+ U] = Ot 1)(S+ Ui

and notice that the operator on each side is positive definite. Multiplying by i,
and integrating with the use of the boundary conditions:

fKS+U)%Pd%
U

> 0.

A1 =
f A(S+ U )hd®r
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Hence equation (14) has been reduced to

(G~ O+ 00 = 1)

That is
\Y
(4—775— U—- AU)(I/’A-{—C,\) = o,
i.e.
Sxa = Axa (15)
where
Xa = Pt

We have again reduced our problem to the properties of the Schrédinger
operator but now for the spherical modes the boundary conditions are y, = ¢,
dx,/dr = o on the edge of the system.

We now show that the necessary and sufficient condition that Roc AW, is
positive definite is that no spherical eigenfunction have a negative or zero eigen-
value A. Since S+ U is positive definite under our boundary conditions and
(S+U)U-1S is Hermitian, the solutions of equation (13) for ¢, will form a
complete set. The i, corresponding to different A are S+ U—orthogonal for
multiply equation (13) by ;" and integrate over the volume of the cluster. After
subtraction from the same equation with A" and A exchanged one obtains

~ f b (S+TU)d?r = X f b(S+TU)y'd?r = o.

But S+ U is Hermitian over the volume of the cluster for i, obeying our boundary
conditions so

(A=) f S (S+U)d?r = o.

Hence if A# X', ¢,” and ¢, are orthogonal. Actually as it will appear in the next
section there is no degeneracy so we have a complete set of spherical S+ U ortho-
gonal functions ;.

Any ¢ satisfying the boundary conditions may be expanded in the form

b = Zayh,.
So

Z waya f (S+ U d%
A

>
R—TE
YT J¢A(S+ U %

Y Aay2 f JA(S+ U Yadsr
_ =

%002 [(S+ D) '
A

Notice that since S+ U is positive definite R is always positive if all the eigen-
values A are positive. Further if one or more eigenvalue is negative (or zero) then
the corresponding eigenfunction yields

R = X<o (or zero).

12

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny Lz uo1senb Aq 6151092/291/Z/SL/eIo1e/SeIUW/WOoD dno"dlwepeoe//:sdiy wolj peapeojumod


http://adsabs.harvard.edu/abs/1969MNRAS.143..167L

FTOBIVNRAS, 1437 “167L !

178 D. Lynden-Bell and N. Sanitt Vol. 143

Thus the necessary and sufficient condition for AW, to be positive definite is
that the eigenvalues A should be positive. Using our spherical symmetry the
eigenvalue equation (15) takes the form

dz
—4—;5;1 p (rx)—(A+1)Uxp = o
ie.
2
%;’S—z"+(/\+1)4wGU¢,\ — o, (16)

where ¢, = ry, is subject to the conditions ¢,(0) = o and d¢,/dr = ¢, at r = rp
the boundary of the system and 1/r ¢, = ¢, at r = 7.

Note that our potential perturbation s, = (¢,/r)—c,. We shall compare the
solutions of equation (16) for ¢, with ¢ the solution of the equation obtained by
putting A = o

2
%+4WGU¢ = o. (17)
This follows Jacobi’sstandard discussion of the variational problem. We imagine
ourselves as integrating these equations inwards from 73 and we apply the boundary
conditions d¢/dr = 1, ¢/r = 1 at r = rp (taking ¢, = 1 normalization).

We shall show that the necessary and sufficient condition for the existence of
negative or zero eigenvalues A in our problem is that ¢ should have at least two
zeros in the range o<7<7p. We postpone the formal proof to get the idea first.
Suppose A<o. At 7y, ¢, and ¢ are tangent to the line through the origin that
passes through 1 at 7. Equations (16) and (17) show us that near 7, both ¢, and ¢
have negative acceleration, (d2¢/dr2), with the acceleration of ¢ having the larger
magnitude (as A<o). Thus just inside 7p,¢, will be greater than ¢. Both accelera-
tions remain negative until their respective ¢’s become negative. Thus as r de-
creases both ¢ graphs curve downwards away from the straight line (Fig. 1).
We show presently that ¢ becomes negative first. If ¢ has only one zero then it
remains negative down to and including r = o. Under these circumstances we
shall show that ¢, also has just one zero down to and including r = o (always
assuming A<o). However since ¢, has a negative acceleration down to its first
zero that zero is not at 7 = o. We have therefore a contradiction with the condition
that ¢, = (¥, + 1) must be zero at » = o. Hence our supposition that A<o can
not hold when ¢ has only one zero in the interval [o, 75]. We now show that when
¢ has two or more zeros in the range [o, 7p] then there is a negative or zero eigen-
value A. (Of course if there is an eigenvalue with A = o then ¢(o) = o and ¢ is
the eigenfunction itself.) Integrate equation (16) with A put equal to —1+ 6 and
8 assumed small. We obtain using our boundary conditions at 7 = 7y,

borey = r—8 f "’ f ? 4w GUr dr +0(52).

This has only one zero for § sufficiently small. Now ¢ has at least two zeros,
so if we integrate the ¢, equation with A = — 1+ 6 there is one and if we integrate
it with A = o there are at least two. Hence there is a least A, A; which has two
zeros and — 1 < Ay <o. If the zero of ¢,, closest tor = ois not at r = o it is simple
to show that ¢,,, would have two zeros which is impossible since A; is the least
value of A with two zeros. Hence ¢,,(0) = o. Thus A; is a negative (or zero)
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eigenvalue of our problem and ,, = (¢,,—7)/r is the spherical eigenfunction
of equation (13). T'wo zeros of ¢ are thus sufficient to show that there is a negative
(or zero) eigenvalue A.

Note that zero eigenvalues only occur when ¢ itself actually passes through the
origin.

We still need a formal proof of the necessity.

5.1 Proof

Suppose A<o. Multiply equation (16) by ¢ and equation (17) by ¢;,, subtract
and integrate from 7 to 7’.

[¢, By, Z_Z?] =y " $4nGUS, dr. (18)

Let 7 be the first zero of ¢, —¢ and r’ = rp the boundary. Equation (18) reduces
to

_4 di; (h=9)| = = fj¢4rrGU¢>A dr.

Since ¢, —¢ is positive near rp hence d/dr ($,—¢) must be positive at its first
zero as we proceed inwards from 7. If ¢ had not already achieved its first zero
it would be negative in which case the l.h.s. of equation (18) would be negative
and the r.h.s. positive, which is impossible. Thus ¢ achieves its first zero before
ér—o, 1.e. ¢ achieves its first zero before ¢,. ¢ is negative in the range from the
first zero of ¢, down to and including r = o because ¢ does not have a second
zero by hypothesis. If ¢, is to be an eigenfunction it must have at least a second
zero because it must be zero at 7 = o. Now apply equation (18) with 7 the second
zero of ¢, and 7’ the first zero. d¢,/dr > o at the first zero ' and <o at the second
zero 7. ¢ <o at both. Equation (17) reduces to

4

and the Lh.s. is negative.

But with A assumed <o the r.h.s. is positive for ¢, and ¢ are also negative in
the range between ¢,’s first and second zeros. Hence contradictions.

Thus if ¢ has only one zero there is no negative eigenvalue. If ¢ has only one
zero there is no zero eigenvalue either since ¢ is the solution of the equation with

= o0 and it can not pass through the origin.

This completes the proof that the necessary and sufficient condition for AW,
to be positive definite is that ¢ should not have more than one zero in the range
oL r<ryp.

The proofs of the general theorems on the increase of eigenvalues with /
and with a number of radial nodes quoted earlier are very similar to the above
argument.

6. APPLICATIONS OF THE METHOD

Since we proved a stellar system to be stable if the corresponding gaseous system
was secularly stable we can already deduce that certain stellar systems are stable
from our knowledge of the secular stability of polytropes. It is known that for
non-rotating barotropes secular and ordinary stability are the same (%) and that
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when y = 1+(1/n) the polytropes are stable for z< 3. The corresponding stellar
systems (8) have distribution functions of the form

Foc(eg— €)n3/2 €< <0
(0] €> €

which decrease with energy for n> 3/2. Thus for 3>n> 3/2 the polytropic stellar
systems are stable. Antonov was the first to derive this result, but his second
more powerful method enabled him to prove stability for the range n> 3 also (2).
This is some measure of the crudity of the Schrédinger operator criterion. We
note however that for barotropic gaseous spheres our method is necessary and
sufficient for stability (%7) and the restriction of decreasing distribution function
does not arise. To show how the method is applied in practice we begin with the
illustrative example of Plummer’s model.

(2) Plummer’s model

. GM
Potential ¥ = m
. 3a2M (¥
Density P=" ( GM)

.t . 48 a® M 22
Distribution function f= - oz 75 GM)5( €)?/2,

This is the polytropic model with # = 5, we should not therefore expect stability.
Our method tells us to form

dp 3a2 (¥ )4

i¥ = 4G (@Tf

and then to integrate the equation

d2$ ) d2¢ 3a2
3 +471G qS =0 1e. drz+(r2+a2)2 ¢ =o0

starting with ¢ = 7, ¢’ = 1 at large r and integrating inwards. The result of such
an integration is shown in Fig. 1 curve (5). Evidently ¢ has two zeros so the gaseous
system is secularly (and ordinarily) unstable. We can therefore prove nothing
about the stability of the stellar system from our criterion.

(b) The n = 3 polytrope. We need not perform the integration in this case for
it is simple to show that the system is neutrally stable to a uniform contraction.
We can use this fact to determine the form that the function ¢ would take had
we performed the integration. In a uniform contraction p,((1 —8)r) = p(r)(1 —6)~3
and ¥, ((1—8)r) = ¥(r)(1—98)"1 so dpoc3p+r(dp/dr) and oc¥ +r(d¥/dr). We
now demonstrate that this ¢ does satisfy the eigenvalue equation (14).

_ _ dp dp dp d¥ _ dp
59 = op —‘b T A T % T P Ty
But for z = 3 polytropes poc(¥' —¥'9)3 and therefore

dp

dp
Yo
v - 3rt

¥ oy
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where Wy is constant. Hence

Sy = —, jT’ff _ U

So i satisfies equation (14). Since ¥ is O(1/r) at coyp = dfdr (r'¥) is O(1/r?) and
satisfies our boundary condition. Since d2/dr2 (r'¥) is —4nGpr which is negative
within and zero outside the boby, we deduce that d/dr (r¥") is positive within
(since it is zero outside). Thus i has no zeros and is the fundamental mode. ¢
may be calculated from the » = 3 Emden solution given by Eddington (9). The
¢ corresponding to this i suitable normalized is plotted as curve (3) of Fig. 1.
Notice that it just has two zeros one of which is at the origin.

(c) Asour example of a system whose stability may be shown by the Schrédinger
operator method we take the n = 1 polytrope. The equations for ¢ integrates to
give simply a sinusoidal curve. This has but one zero in the range so the system

0-75[ /

0-5f~ /

0:25

¢
0 o5
,
-0-25
(0) ——m n=0X:0
(1) n=1X=0
(1) n=1 \<0
(3) ~emm—- n=3X=0
(5) —=—= n=5X=0
-0-5

Fic. 1
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is stable. The ¢ graph for the stable n = o liquid sphere has been added to Fig. 1
for greater completeness.

(d) We could have deduced the results (a), (b), (c) from our knowledge of
gaseous polytropes; however in dealing with general stellar systems the integration
for ¢ is necessary. As our last example we take the isochrone model cluster dis-
cussed by Henon and used by Eggen, Lynden-Bell & Sandage (x2). This example
is important for in performing the integration we found most confusing results
which only made sense when we realized that for systems whose densities fall
like 74 or less rapidly it is incorrect to apply the limit of our boundary conditions
as the boundary is let tend to infinity. Rather the correct operation is to find the
asymptotic form of the solutions apply the boundary conditions to these as some
large finite value of r, and only then let 75 tend to infinity. It is a curious and
interesting mathematical quirk that these procedures are inequivalent, the first
one giving no solutions at all to our problem. We shall not enlarge on this example
of the non-reversibility of limit processes but will simply apply the correct pro-
cedure.

The isochrone model has the potential

¢ GM
b+4/(r2+b2)
and density
M 2u-—1
p= 47b3 u?(u—1)3
where
A2 L2
“= ”{(z) “}
Thus
dp _ 8r2+9(r2+1)12+ 11
2% 470 = e prr )~ 4OV

say where we have taken units so that b = 1.
We have to solve

dZ

Now for large 7,

8
¢"”+8r=3¢ = o has asymptotic solutions
_ 4 I 24/2, (logr
¢ = A(I ——;+O(r—2)) +B(r— 16 log Wz—-}—o(m)).
Taking the boundary conditions ¢ = ¢crpatr = rp

o
or

=catr=rp

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny Lz uo1senb Aq 6151092/291/Z/SL/eIo1e/SeIUW/WOoD dno"dlwepeoe//:sdiy wolj peapeojumod


http://adsabs.harvard.edu/abs/1969MNRAS.143..167L

FTOBIVNRAS, 1437 “167L !

No. 2, 1969 The Schrodinger operator criterion 183

we find

4 s\ log rp
A(I r—b)+B(rb+810g §) =crp+ O(rbl/z)

A4[ry2+B(1+8[ry) = ¢

8 log 7y
A(I—;l—)) + 8B(log 7p/8—1) = O(rbl/z)'

Hence for large 7y

—% = 8 log 7.

Hence it is the A4 solution that satisfies the boundary conditions for large 7s.
To get on this solution at some finite 7 at which we wish to start integrating r = 100
say we put ¢ = —4/100 and do/dr = + 4/10% and integrate inwards.

The result is given in Fig. 2 which shows that ¢ has two zeros so we have not
been able to prove that the isochrone model is stable (or unstable).

Asymptote

O-6

0-2+

Fic. 2

It was our original aim to find out whether the truncated isothermal sequences
of Woolley (x3) and of Michie (14) and King (15) were stable. However it appears
that the Schrédinger equation method is so feeble for spherical modes that it
would only be capable of proving the very heavily truncated members of these
sequences to be stable. This is of little interest so we have postponed that attempt
until we have finished developing more powerful necessary and sufficient criteria
for stability.

However the method outlined here is probably the best for determining the
stability of Barotropic spheres. In particular the differential equation to be solved
only has one functional coefficient U defining the system whereas most other
methods require two coefficients.
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APPENDIX I
Generalizations of the method

There are three ways in which the methods given here can be extended to a

wider range of problems:

(1) Extension to uniformly rotating stellar systems with F' = F(e).

(2) Extension to cover the spherically symmetrical modes only of spherical
systems whose distribution functions are of the form F(e, A2) where
h=rxv.

(3) Extension to cover the axially symmetrical modes only of axially sym-
metrical systems whose distribution functions are of the form F(e, 4;).

These extensions were discussed in an earlier paper (3) and a review (4) and

Milder gave a direct proof of the first extension (5). However there is some ad-
vantage in seeing how the Schrédinger criterion extends when we take care with
our boundary conditions. By contrast to the earlier development we use at each
time axes rotating with the angular velocity H/Ip where H is the total angular
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momentum which we assume fixed and equal to that of the equilibrium and
I7 is the moment of inertia of the system about the axis of H. The total energy
of the system is then

Wr = ffT [(‘vcﬁ‘f R) +oRr%4 7, ]dG’T—gf frf'r détdb+'

Ir=dl
where

Ip = ffTdeﬁr
and

H = ffTR (7)¢+§—{— R)dﬁr, ie. ffTRwdﬁr = o. (A.1)
T

We subtract from Wiy the energy of the unperturbed system and for its expression
we use coordinates rotating with angular velocity Q = H/I where I is the un-
perturbed moment of inertia.

W = f { [(v¢+QR)2+vRZ+vZ2];dGT__ ffIFF’ d67db7

H = fFR(7)¢+QR)d6‘r = fFRv¢d67+IQ,
thus

J-FR‘Z)¢d6T = o. (A.2)

Note that in the above vg, v4, v, are with respect to different axes than those
used for Wyp. Nevertheless vg, vg, v, etc. are dummy variables integrated over
in both expressions. Hence we may subtract the two expressions and obtain a
correct expression for AW incorporating the integrands under one integral.

AW = Wo—W = ff{i [(v¢+QR)2+vRZ+vzz]—‘I’}d5~r

_G 6746 f ( H H? )6
flf dbrdSt’ + fTRA7)¢I+—I?R dér

where the first two terms are obtained analogously to equation (3) and f = fp—
Now f frRA(vgH[I1)dbr = f fRosd8+A(H[IT) = o by equations (A.1) and
(A..2). Further

H?2 ITH
6
f s TRA(zITZ R)d 2 A(IT )

_ (I—i—AzIT)HZ [ z?IT 3(AIIT) ]+ O(AIz)®
= —Q2 f fR2d%7 + o (MT) +0(f3)
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incorporating these results to simplify AW and noting from (A.1) and (A.2) that

fRovgdbt = o we have

AW = ff[ (vg2+vR2+0,2)— (‘F+ Qsz)] fo = rIdGTdGT

2 2
LAl
2 I

This appears to be in contradiction to the result derived in references (3) and (4).
However such an idea is illusory because f has a different meaning. Referring
our distribution functions to absolute space rather than rotating axes then f in
this section is given by

f(r, v+ xr, 1) =fT(r, v+§ixr, t)—F(r, v+ xr, 1)
T
whereas the f of Refs (3) and (4) is
f(, v+ xr, 1) = fp(r, v+ x v, t)—-F(r, v+ Q x v, ).

We now use the dodge of equations (4)—(6) to re-express the first term in AW and
obtain

_1(_r 6rdSe’ + Qz(AIT)Z
AW_z dFdT ff]r = i I
e

where
€ = Hvg2+vr2+0,2)— (¥ +1Q2R2).

Proceeding as before

2 2 2

do

where @ = ¥+ 1Q2R2,

However expression (A.3) less the constant 7 is precisely the configuration
energy of the uniformly rotating gaseous system as we now show. Define Wi,
as the total pressure plus gravitational energy.

H?2
WgT = WintT‘["Z—IT.
Then
H? H?2
AWy = MWinet 8eWine— 5 Alp+— 75 (AIn)>

Now Ay(Wintp—4€Q2I7) = o because the unperturbed state is an equilibrium.
Hence

02
AW, = AgWinﬁé 7 (AL, (A.4)

It is clear from our earlier expressions (8) and (9) for AaWiy that in the present
case it gives the first two terms of expression (A.3). Hence from (A.3) and (A.4)

AW AW+ 1.
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Following our argument of Section 2.3 we deduce that the stellar system is
secularly stable if the gaseous system is. We can of course again formulate the
first two terms of expression (A. 3) using the Schrodinger operator. This is equiva-
lent to secular stability of a gaseous system forced to rotate with angular velocity
Q for then the relevant energy to be minimized for the gaseous configuration
is Wy, = Wintp—3Q2I7p where the last term is the centrifugal potential energy.
On variation we then get
AWy = AoWint.

It is just the AgWint that can be written in terms of the Schrodinger operator.
Thus the criterion given by the Schrédinger operator is the same as secular stability
of the gas when the elements of it are forced to rotate with their equilibrium
angular velocities. Many stable systems such as the Earth in its orbit do not satisfy
such a stability criterion. However the Maclaunin spheroids* satisfy this criterion
up to the point of bifurication with the Jacobi ellipsoids and only up to there.
The Jacobi ellipsoids do not satisfy it.

Spherical systems whose distribution functions are not functions of energy
only can not be treated generally by the Schrédinger operator method. However
as shown previously (3), (4) their spherical modes are stable if AW, is positive
definite where the dF/de of equation (77) is replaced by 0F/de with angular momenta

held fixed. This destroys the relationship of U = f—(@F |0€)d3v with dp|dY¥Y.

Otherwise application of the criterion is exactly the same as that described in
Sections 5 and 6.

Only axially symmetrical modes of axially symmetrical (non-spherical) stellar
systems with distribution functions F' = F(e, k;) can be treated by the Schrodinger
operator method. The method given in Refs (3) and (4) can be shown to be again
equivalent to the stability of the gaseous system when every ring is forced to
rotate with its equilibrium angular velocity. Again care must be taken to use trial
functions in the energy

M%—zfvwéﬂ)ﬁw.wwﬁf

J-=

which gives ¢y = O(1/r2) at infinity, V%) = o outside the equilibrium body and
S¢/U finite within and on the edge of that equilibrium figure. Again

U= fm—ﬂ

It is worth remarking that the uniform displacement along the axis of rotation
is a neutral mode which gives Sy = o and is antisymmetric with respect to the
galactic plane. An application of the method of Section 4 then proves that all
antisymmetric modes are stable.

Note added in proof

We remark that it is still true that the cluster is stable if S is positive definite
in the following sense. We demand as boundary condition that Vi is O(1/r3) at
infinity, but from any trial function ¢ we subtract )(o0) before forming the integral
of 4Si.

* There are no stellar systems rigorously corresponding to these liquid configurations.
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