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THE SCHUBERT CALCULUS, BRAID RELATIONS, AND
GENERALIZED COHOMOLOGY

PAUL BRESSLER AND SAM EVENS

Abstract. Let X be the flag variety of a compact Lie group and let h* be
a complex-oriented generalized cohomology theory. We introduce operators
on h*(X) which generalize operators introduced by Bernstein, Gel fand, and
Gel fand for rational cohomology and by Demazure for if-theory. Using the
Becker-Gottlieb transfer, we give a formula for these operators, which enables
us to prove that they satisfy braid relations only for the two classical cases,
thereby giving a topological interpretation of a theorem proved by the authors
and extended by Gutkin.

One of the central issues in Lie theory is the geometry of the flag variety
associated to a compact Lie group G. An important problem concerning the
flag variety is the Schubert calculus, which studies the ring structure of the
cohomology of the flag variety. Work initiated by Borel, Bott and Kostant,
which culminated in a paper by Bernstein, Gel'fand and Gel'fand [BGG], gave
a complete solution to the problem. Demazure studied the same problem for
./sT-theory. Moreover, these techniques have been generalized to the Kac-Moody
situation by Kac-Peterson, Kostant-Kumar, and others. This work has focussed
on algebro-geometric properties of the flag variety.

Here, on the other hand we study the flag variety from the point of view of al-
gebraic topology. As a consequence, not only do we recover the classical results
described above, but we extend these results to a certain class of cohomology
theories—those which are complex-oriented. Examples of complex-oriented
theories include ordinary cohomology, A^-theory, complex cobordism, and el-
liptic cohomology. Since the context we have chosen in very general, the proofs
are universal and are often simpler than the classical arguments.

In the work of BGG, a crucial role is played by operators Ai associated
to each simple reflection s¡ of the Weyl group of G (defined by Demazure
in if-theory). These operators Ai satisfy the braid relations, which are the
relations between pairs of simple reflections. In this paper, we generalize the
Ai to give operators Di acting on h*(G/T) for any complex-oriented theory
h*. We prove that braid relations are satisfied only for cohomology theories
with the formal group law of rational cohomology or of AMheory (Theorem
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800 PAUL BRESSLER AND SAM EVENS

3.7). In particular, the braid relations are not satisfied in the cases of complex
cobordism and elliptic cohomology. This result relies on a previous result of
ours, and its generalization by Gutkin, and answers a question posed by Kostant.

The main point of the argument is that one can give a formula for the op-
erators by using a formula of Brumfiel and Madsen for the Becker-Gottlieb
transfer. This computation is explained in §1. In §2, this formula is applied to
ordinary cohomology and to A^-theory. In A"-theory, it gives an easy derivation
of the Weyl character formula. In ordinary cohomology, we obtain a new proof
of some results of Akyildiz and Carrell [2]. §3 is concerned with braid rela-
tions. In a later paper we will give a geometric interpretation of Theorem 3.7
and use this interpretation to give a complete description of the ring structure
of h*(G/T) for complex-oriented theories h*, generalizing the work of BGG
and Demazure.

The authors would like to thank Haynes Miller for continuous help and en-
couragement. We would also like to thank Bert Kostant for suggesting the
problem, and David Blanc and Hal Sadofsky for some helpful conversations.
In addition, we would like to thank Peter Landweber for some suggestions.

1. TOPOLOGICAL PRELIMINARIES

In this section we discuss the Becker-Gottlieb transfer and the Gysin map for
complex-oriented cohomology theories. Let A* be a generalized cohomology
theory, so h* is a functor from topological spaces to graded abelian groups
satisfying all of the Eilenberg-Steenrod axioms except the dimension axiom.
Suppose in addition that h* is multiplicative, so that h*(X) has a ring structure.

Let n : E —► B be a fiber bundle associated to a principal bundle, and assume
the fiber F is a compact manifold. The Becker-Gottlieb transfer is a stable map
from B to E. It induces the transfer homomorphism

x(n)*:ti(E)-+ti(B)

This is not a ring homomorphism, but is an h* (B)-modnle homomorphism, so

x(n)*(x-7i'(y)) = x(n)*(x)-y.

The Becker-Gottlieb transfer generalizes the notion of transfer for a finite cov-
ering.

A cohomology theory h* is said to be complex-oriented if it satisfies the
following property. Let h* denote reduced cohomology and let i: CP(1) «-►
CP(oo) be the canonical inclusion of CP(1) = S2 into infinite complex protec-
tive space.

Definition 1.1. h* is a complex-orientable cohomology theory if there exists an
element x € À*(CP(oo)) such that i*(x) is a generator of h*(CP(l)) = h*(S2).
This element x is then called the Euler class /(L) of the canonical line bundle
L over CP(oo) in the theory h* [1, p. 37]. With this element x fixed, h* is
said to be complex-oriented.
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SCHUBERT CALCULUS 801

Some examples of complex-oriented theories are ordinary cohomology, K-
theory, elliptic cohomology, and complex cobordism. The above definition im-
plies the following properties.

(A) A* fn(CP(oo))J S A>í)[[íi. ••-,'/]]
(R[[tx, ... ,t¡]] denotes the graded ring of power series in / variables over a
graded ring R) [1, p. 39].

(B) h* has a formal group law F. That is, if L and M are line bundles
then

X(L®M) = F(x(L),x(M)),
where

F(X,Y) = X+Y+ Y, auxÍY'

F satisfies the obvious commutativity and associativity properties [1, p. 32].
Two examples are the additive and multiplicative group laws Fa and Fm

FfX,Y) = X+Y,    Fm(X,Y) = X+Y-uXY
where « is a unit. Fa is the group law for ordinary cohomology and Fm is
the group law for ÄMheory. If we drop the assumption that « is a unit, these
are the only two polynomial group laws over an integral domain [25]. Later, we
will give a Lie theoretic criterion for them.

(C) Let K-tl be a rank n complex vector bundle. Then there is an Euler
class x(V)Çl h2n(X). Moreover,

X(V®W) = x(V)UX(W).

(D) Thorn isomorphism. Let Xv be the Thorn space of V. Since h* is
multiplicative, h*(X ) is an h*(X) module. Then there is a Thorn class U e
h "(X ) such that the map

h'(X) - hi+2"(Xv)

is an isomorphism.

(E) Gysin homomorphism. As before, let n : E —» B be a fiber bundle, but
require that the fiber F is smooth and almost complex. Then there is a Gysin
homomorphism

nt:h'(E)^h'~2f(B)
where 2/ is the real dimension of F (more generally, the Gysin map is defined
for any proper complex-oriented map [23]). nt depends on the choice of an
orientation and with appropriate choices satisfies the following properties.

(i) nt is an h*(B) module map.
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802 PAUL BRESSLER AND SAM EVENS

(ii)   {it o ô). = *. o 0, .
(iii) fiase change. Consider the following Cartesian square.

XxzY —^-^ Y

•{        A
x     —L-+ z

Then f* o r, = 0t o g*.
The Gysin map and the Becker-Gottlieb transfer are related as follows. Let

Tn —► E be the tangent bundle to the fibers of n. Assume that the structure
group on F preserves the almost complex structure so that Tn has a complex
structure. Then

(1.2) x(nf(x) = nfX{Tn)-x)
[6, Theorem 4.3]. Therefore, to obtain a formula for n* ont it would be helpful
to compute n* o x(n)*. Brumfiel and Madsen give such a formula for the case
of a bundle associated to a principal bundle of a compact connected Lie group
G with fiber (7/77 where 77 is a closed subgroup of maximal rank. More
precisely, let G D H D T, where 7* is a maximal torus of H and therefore
of G. We have WG = NG(T)/T and WH = NH(T)/T and an inclusion
WH c WG. Let P-+B be a principal G-bundle and let Ex = PxG(G/T) ,E2 =
P xG (G/H), be the associated bundles with fibers G/T and C7/77. Then we
have a commutative diagram

Ex ►        E2
m\ / v

B
WG and WH act on Ex and E2 by bundle maps. Therefore a coset o e

rVG/WH determines a map

ood*: h*(Ex)<-h*(E2).
Theorem 1.3 (Brumfiel-Madsen) [11].

n*ox(\p)*=     V^    o o 8*
o€WcIWH

The proof follows easily from a Mayer-Vietoris property of the transfer [22].
If we let 77 = 7*, then n = \p, Ex= E2, 6 = id, and WH = 1 . Therefore, as
a special case of the theorem we obtain the formula

Corollary 1.14.
n  ox(nf = Jf o

aewG

Combining 1.2 and 1.4 we have

(1.5) nont(X{Tn)-x)=Y,°x
aewG
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SCHUBERT CALCULUS 803

We now specialize to the case where P = EG, the universal space for C7,
so B = BG and E = BT. For simplicity, we also assume that the coefficients
h*(pt) are torsion-free. This assumption is satisfied for the examples discussed
in the introduction. See Remark 1.10 for less restrictive assumptions.

The next step is to formally invert x{Tn) to derive a formula for n* o 711.
For this procedure to be of any use, we need to prove that x(TM) is not a
zero-divisor in h*(BT). To establish this fact, we recall some facts from Lie
theory.

The fiber of n, G/T, has a complex structure given as follows. G embeds
inside its "complexification" Gc, a complex reductive Lie group with maximal
compact subgroup G. If B is a Borel subgroup of Gc containing T, then
Gc/B = G/T. Let g and b be the Lie algebras of Gc and B. Then with the
induced complex structure

t(g/t) = g xTg/b

is a complex vector bundle. Hence,

7; = 7iC7xrg/b

is a complex vector bundle. Let R+ be a system of positive roots corresponding
to b. Then it follows that

T* = 0 L(-<*)
c€R+

where L(-a) is the line bundle over BT induced by the character e~a . By
the Whitney sum formula,

(1.6) X{Tn) = Y[x{L(-a)).
Let A,, ... ,A¡ be a system of weights which exponentiate to a generating set

for R(T). Then the L( = L(kf (i = I, ... ,1) generate the line bundles over
BT. Complex orientability implies that x(E¡) are not zero-divisors. We have

L(-a) = 0 Lf , m. e Z, not all m¡,= 0.
By our discussion of formal group laws,

X(L(-a)) = ^2 «,#(/,) + higher order terms.

Hence we have

Proposition 1.7. If h* is torsion-free, x(L - (a)) is not a zero-divisor.
Proof. This is an easy argument using the graded structure of h*(BT).

Theorem 1.8. If h* is complex-oriented, then for x e h*(BT),

*'°*Ax)=£fmw)ix)-
Proof. By construction

n  ont: h*(BT) ^ h*(BT)
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804 PAUL BRESSLER AND SAM EVENS

is an h*(BG)-module homomorphism, as is n °x(tc)* . Since rationally h*(BG)
= h*(BT) , and there is no torsion in h*(BT), these are also h*(BT) -
module homomorphisms. Let

S= Y[°x{Tn)eh*(BT)

and let Q = h*(BT)[S~ ]. By standard results from commutative algebra,
there is a unique extension <f> which makes the following diagram commute.

h*(BT) -^+ h*(BT)

4 I-
Similarly, we have an extension tp and a commutative diagram

h*(BT) JLA^L h*(BT)

4 i<
Q      -^~      Q

and ip(x) = (¡>(x(Tf) • x). By 1.6 and 1.7, xiTfi is not a zero-divisor. Also,
aX{Tn) is not a zero-divisor for o e W, so S is not a zero-divisor. Hence, the
vertical arrows in the above diagrams are inclusions. Moreover, in Q, multipli-
cation by x{Tf) is an isomorphism, so we can invert it to give y/(l/x(Tn)-x) =
(f>(x). From 1.5 it follows that for y e Q,

v(y)= J2 °y-
Hence, for xeh*(BT),

n* o n t(x) = Y] a x = J2 °tí   it i—\\x ■-^—'    x(T )        z—'      lx(L(-a))

Corollary-Definition 1.9. Let G = 7/., a rank one compact Lie group and let
% = nr Let a¡ and s( be the positive root and nontrivial element of the Weyl
group of Hj. Then if h* is torsion-free

D-=<°^^l+^m^)-
Remark 1.10. We assumed that our coefficients h*(pt) are torsion-free. In fact,
it suffices to assume that they are free of two-torsion. To extend the result to this
case, one needs to prove that x{E(-af) is not a zero-divisor. This fact follows
from the fact that at least one of the integers mj relating roots to weights has
absolute value less than or equal to two. More generally, if G is of adjoint type
we need no assumptions on torsion. For more details see [14].
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SCHUBERT CALCULUS 805

Remark 1.11. It is easy to see that these operators 77 are related to correspond-
ing operators defined on h*(G/T). Indeed, G -► G/T is a principal 7*-bundle
so it is induced by a classifying map 6: G/T -> BT. Therefore, we have the
"characteristic homomorphism"

Q*:h*(BT)^h*(G/T).
Similarly, for rank one subgroups 77( of G corresponding to simple roots we
have maps 0( : G/77( —> BHi. Moreover,

G/T —e-^ BT

-\       [-
6777,. —^-» 577,

is a pull-back diagram. Base change implies that p*°pit°Q* = d*oD¡. Hence, 6*
intertwines the actions of 7>; and P*°P^ , which we denote Ct. Moreover, after
tensoring with the rationals, the map 6* : h*(BT) —► h*(G/T) is surjective, as
is easily seen by using the naturality of the Atiyah-Hirzebruch spectral sequence
and the fact that 6* is surjective for the case of rational cohomology. Therefore,
to compute the operators C¡ it suffices to compute the operators Z)(.

2. APPLICATIONS TO ORDINARY COHOMOLOGY AND  AT-THEORY

In this section we interpret Theorem 1.8 in two familiar settings to obtain
some classical results. First, let h* be H*, ordinary cohomology with complex
coefficients. Then

//*(fir)scp1(...,A;]]
under the identification x(L(X)) = X. Given this identification,

(2.1) n on^(x)=yfjo=-— (x).
aew   iíaeR+   a

When G = Hi is rank one, this composition is just the classical BGG operator

(2.2) At = -(s ,-!)•a-

These formulas have previously been obtained in [2] using zero sets of holo-
morphic vector fields.

Applying Theorem 1.8 to Tf-theory gives somewhat more interesting results.
We map the representation ring R(T) to K(BT) by mapping e to [L(X)],
the class of the line bundle defined by X. In AT-theory we take x(L) = [1]-[L],
where [ 1 ] is the class of the trivial line bundle. With these conventions, when
we apply 1.8 to ex, we obtain

(2.3) n  o 7iA[L(X)]) = Y o-l---ek.
¿~'    TT     A\ -e    )
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Let p = \ Yla€K> öl . Then this formula easily reduces to

(2.4) nont([L(X)]) = --    * T(-l)"I_y^ /_n/(ir)„<T(A+/)
fW2 _ e~al2\ *-'

which is the classical form of the Weyl character formula.

Theorem 2.5 (Weyl). The character of the irreducible representation of highest
weight X is given in (2.4).

Proof. We need to show that n* ont([L(X)]) is the vector bundle corresponding
to the character of the irreducible representation of highest weight X. By the
Grothendieck version of the Riemann-Roch theorem [24] extended to classify-
ing spaces the Gysin map K(BT) —► K(BG) is the same as

7t,: K(BT) -> K(BG)

where n,(L(X)) is the virtual vector bundle corresponding to

(2.6) Jf(-l)iH'(Gc/B,L(X))

H'(X ,L) refers to the z'th anti-holomorphic Cech cohomology group. The
Borel-Weil-Bott theorem asserts that H\GC/B,L(X)) = 0 for / > 0, and
77 (Gc/B, L(X)) is the irreducible representation of highest weight X.

Remark 2.7. This argument is a mild variation on the proof of the Weyl char-
acter formula obtained by Atiyah and Bott [4]. This variation replaces their
generalized Lefschetz fixed-point formula with the Riemann-Roch theorem and
some formal calculations in homotopy theory.

In the case where G = Hi is rank one, the operator ti* o njt is the Demazure
operator Bt. It has the form

Thus, we can recover the standard formulas for the Demazure operators as well
as for the BGG operators.

It is well known that the expression

M =--ek e K(BT)
rw(i-e-Q)

i
X{Tf)

which appeared in (2.3) is important in representation theory. It is the formal
character of the Verma module of highest weight X associated to the Lie algebra
g of G [16, p. 130]. A construction related to the transfer gives a topological
interpretation of this expression. The bundle Tn —► BT has a complementary
bundle ß such that Tn®ß = [N], the rank N trivial bundle. Let o and <P be
the Thorn isomorphisms to the Thom spaces of [N] and ß respectively. Then
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we have the following commutative diagram,

K(BT)       -^U  K(BT)

°[ ^ 1*
K(J2N(BT+)) —£-» K(BTß)

Then taking M in K(BT)[-À^], the composition

M ^ M ■ x(Tn) ^ ®(eX)

maps Af to an element of K(BT^). On the other hand, i* o o is equivariant
with respect to the Weyl group action on BT because o is the suspension iso-
morphism. Moreover, all these maps are inclusions. Hence we can regard M
as an element of K(BT^). Thus, this procedure gives a topological construc-
tion of a well-known object in representation theory. It is easy to check that
Weyl group orbits of M correspond to Verma modules with a given central
character. Moreover, one can use a modification of the transfer used in 1.6 to
give a topological construction of the irreducible quotients of Verma modules
associated to Weyl group elements with smooth Schubert varieties. It would be
interesting to try to develop these constructions further. A full account of this
description of Verma modules appears in [14].

3. Braid relations

In this section, we will be concerned with the relations which the operators
Di satisfy.

Proposition 3.1.
.2

Proof. This follows from the projection formula

nifn-(y)-\)=ynifl).

7>,

2Remark 3.2. In ordinary cohomology x(L(-af) = -x(L(a¡)) so Di = 0. In
AMheory the formal group law is

F(X,Y) = X + Y-XY,

which implies D2 = 7).. We have

Proposition 3.3.   W acts faithfully on h*(BT).
Proof. It is a consequence of definitions that the Atiyah-Hirzebruch spectral
sequence degenerates for h*(BT). Hence, h*(BT) = H*(BT,Z)®h*(pt) as
graded h*(pt) modules. This isomorphism is IT-equivariant on the associ-
ated graded level. The result follows from the fact that W acts faithfully on
77* (BT, Z).
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Corollary 3.4. If h* is torsion-free, the elements w e W are linearly independent
over h*(BT) as operators on h*(BT).
Proof. Suppose first that h* is a domain. It is a well-known result of Artin that
if a finite group acts faithfully on a field, then the group elements are linearly
independent over the field [3, p. 35]. We may apply Artin's result to the fraction
field of the domain h*(BT). The general case follows from a refinement of
Artin's result (see Remark 3.13 or [14, 13.7]).

We are interested in determining when these operators D¡ satisfy braid rela-
tions, which are defined as follows. The Weyl group is a free group on / gener-
ators s,, ... , s¡ modulo certain relations. These relations fall into two classes.
First, one requires that s, = 1 , and we will largely ignore these relations. Sec-
ond, one requires that there exist integers m¡¡ such that sisJsi ■ ■■ = s s.s. • • •
(where there are m¡¡ terms on each side). These relations are called braid rela-
tions since the special case when W is the symmetric group on n letters they
are the defining relations for Artin's braid group. Since the Weyl group is a
finite group, w.. is always finite and in fact equal to 2, 3, 4, or 6. We can
now give

Definition 3.5. The operators Z)( satisfy braid relations if DjD.Di■■• =
DjDjD. ■ ■ ■ , where there are m. terms on each side.
Remark 3.6. If the operators Di satisfy braid relations, we can define an op-
erator Dw for w e W as follows. We take a minimal decomposition of
w = s, ■■■ s¡   and then we set D„ = D, ■■ D. .   A theorem of Matsumoto

'l '* w 'l 'k
[9, p. 16] implies that Dw does not depend on the choice of a minimal decom-
position.

We can now state and prove our main theorem.
Theorem 3.7. Let G be a compact connected Lie group with at least two non-
orthogonal roots and let h* be a complex-oriented cohomology theory with h*
torsion-free. Let Di (i = 1,...,/) be the operators defined above. Then the
operators 7)( satisfy braid relations if and only if the formal group law is poly-
nomial.
Remark 3.8. Of course, there are no braid relations to check unless there are
at least two nonorthogonal roots. This condition only implies that there is a
simple factor of rank at least 2 .

Proof of'3.7. There are three cases to consider. These cases are when the two
nonorthogonal simple roots a¡ and a    have m.   = 3,  4, or 6  ( m(   = 2
implies the roots are orthogonal). We do the case m(j = 3 explicitly and refer
the reader to Gutkin's extension of our result for the remaining two cases.

We need to evaluate the identity

(3.9) DXD2DX=D2DXD2.
Here D¡ = (l+sf {L} a)) . By (3.4), the operators w e W are linearly indepen-
dent over Q. Hence we can check (3.9) by expanding each side and equating
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coefficients.   We will write g(a)  for x(L(-a))  for convenience.   When we
examine terms with coefficient sx we get

/_1_1 1 _1_1_    _1_\
U(-Qi) S(ax +ot2) g(ax)     g(af g(af) g(-ax)J

I 1 1
g(af) g(-af) g(ax + af  '

since sfaf) = ax+a2 and sx(ax) = -ax . After clearing denominators, we get

(3.11) g(ax)g(af) + g(-afg(ax + a2) = g(ax)g(-af.

It is easy to see that
8(-ax) = J2bkg(ax)k

k>\

with bx = -1 [1, p. 45]. Replace g(ax) by X and g(af) by Y. Then by
using the formal group law, we get

*r = -[EMn [Y+EakiXkYl
\k>l J   \ k,l>\

Since the left-hand side has no expressions with powers of Y greater than 1,
neither does the right-hand side. The expression

k>\

is not a zero-divisor so akl = 0 for / > 1 . But ak¡ = alk , so the formal group
law has the form

F(X,Y) = X + Y + axxXY.
Thus, F is polynomial and if an = 0 or is a unit, then F is the formal group
law of cohomology or of A"-theory.

For the cases mtj = 4 and 6 a similar argument works. However, the
calculations are burdensome and we will not present them here. Instead, we
explain how our earlier paper combined with Gutkin's work solves the problem.
Since h* is torsion-free, we can replace ^(L(q()) by a formal power series
exp(a() in L(a¡) called the exponential, exp has the property that exp(L ®
M) = F(exp(L), exp(M)). Now Gutkin [15] has established necessary and
sufficient conditions that an operator of the form

Dl = (l/f(a¡)+sil/g(a,))

satisfy braid relations for the cases m( = 4 or 6 (the authors [10] proved the
result for mtj = 3). In particular, taking f = g, braid relations imply that
g(a¡) = cai or c(eaa' - 1), from which one sees easily that the cohomology
theory in question satisfies the formal group law of either cohomology or K-
theory.
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810 PAUL BRESSLER AND SAM EVENS

Remark 3.12. One sees trivially that Theorem 3.7 extends to affine Kac-Moody
groups. In the Kac-Moody case, the groups corresponding to T and 77. are
still finite dimensional compact Lie groups so we can use the transfer to define
the operators in the same way.

Remark 3.13. We assumed that our coefficients h*(pt) are torsion-free. In
fact, it suffices that they are free of 2-torsion. To extend the result to this
case, one needs to prove that the Weyl group elements are linearly independent
over h*(BT). The linear independence of Weyl group elements follows from
two facts. First, the Weyl group acts faithfully on H*(BT,Z/p) for p ^ 2.
Second, the argument Artin gives for linear independence [3, p. 35] implies
that if for all pairs wx and w2 e W, there exists x e h*(BT) such that
wx (x) - w2(x) is not a zero-divisor, then Weyl group elements are independent
over h*(BT). At least in the rank two situation (the only situation we need to
consider), there exist line bundles whose Euler classes satisfy this property.
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