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THE SCHULER PRINCIPLE 

The well-known Schuler principle for inertial navigation has been treated 

in many books and articles. However, certain misconceptions centering 

around the so-called Schuler period and the role gravity plays in Schuler­

tuned systems can be found over and again in many texts. 

This report uses relatively simple explanations of the geometrical and 

physical situations involved, and by comparing them with the various pre­

sentations in the pertinent literature sorts out the correct and incorrect 

statements. 

In addition, it describes a simple as well as a more sophisticated de­

monstration model of a Schuler-tuned system, and touches on some mechanic­

al topics related to the Schuler principle and d'Alembert's double pendulum. 

Huber, C. and W.J. Bogers 
THE SCHULER PRINCIPLE: A discussion of some facts and misconceptions. 
Department of Electrical Engineering, Eindhoven University of 
Technology, 1983. 
EUT Report 83-E-136 

Address of the authors: 

Group Measurement and Control, 
Department of Electrical Engineering, 
Eindhoven University of Technology, 
P.O. Box 513, 
5600 MB EINDHOVEN, 
The Netherlands 
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PREFACE 

As members of the Measurement and Control Group of the Department of 

Electrical Engineering at our University we have been studying inert-

ial techniques. The material contained in this report had accumulated 

over the years, mainly as a product of our teaching activities, and we 

thought it right to publish it in some form. Since it is too volum­

inous for presentation in a periodical, but on the other hand has a 

different scope than textbook matter, we chose offering it in the present 

form, i.e. as an EUT-report. 

The chapters one, two, three, five, and six were written by C .. Huber, 

chapter four by H.J.Bogers. 

Acknowledgement is due to Professor dr. C.E. Mulders for stimulating the 

work, for discussing with us numerous facets of the subject, for helping 

us to simplify and correct some mathematical presentations, and for crit­

ically reading the text. 

He are grateful for the work done by various typists, and to Mr. J.A. van 

Dinther for the fine job done preparing all the figures. 

C. Huber 
H.J. Bogers 
January 1983 
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THE SCHULER PRINCIPLE 

A discussion of some facts and misconceptions 

O. THE HISTORY OF THIS PAPER 

When preparing a course on inertial techniques for measurement and 

control at our University Department of Electrical Engineering about 

as far back as 1970, we naturally wished to incorporate a chapter on 

inertial navigation. Studying the pertinent literature, we came across 

what we suspected to be inaccuracies in the various presentations of 

the well-known Schuler principle, inaccuracies of the kind that arise 

from misconceptions which are generated when authors make partial state­

ments of a truth, which by themselves may be correct, but which other 

authors then use without reference to their limited applicability. 

He started searching for evidence from other authors that would confirm 

our suppositions, but the results of our search at first remained rather 

meagre. So, by wise of a low priority side line of our work, we began 

on our own to sort things out. Gradually, however, we were finding more 

direct evidence of the kind we were seeking for in the literature, and 

the book that finally convinced us that we were right is MAGNUS, 1971. 

The misconceptions we intend to point out here centre around the so-called 

Schuler period and the role gravity plays in Schuler-tuned systems. We 

should like to set before you three statements, and then elaborate on them 

and compare them with some quotations, hoping thereby to clarify the facts 

and rectify the inaccuracies. These statements are: 

1. "Schuler tuning" does not necessarily imply the so-called Schuler 

oscillation period of 84,4 min (at the earth's surface). 

2. Not all devices exhibiting the Schuler oscillation period of 84,4 min 

can be used as a vertical reference on a moving base. 

3. The existence of a gravity field is essential for the existence of an 

oscillation period, but it 1S not an absolute requirement for the basic 

function of a "Schuler-tuned" vertical reference, with very few except­

ions like Schuler's gyro pendulum. 
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The above statements were written by us a couple of years before March, 

1981, when a certain chapter written by MAGNUS in 1973, in a Russian 

book came to our eyes. A computer search had yielded this particular 

reference, and we are very grateful to the author, whom we contacted, 

for sending us a copy of his text as the book was difficult for us to 

come by. He not only sent us said copy, but also copies of other perti­

nent articles written by him (MAGNUS, 1965 and 1966), the existence of 

which we had not been aware of. 

These articles finally and conclusively show that our first two state­

ments are essentially true, for on page 295 of MAGNUS, 1973 we read: 

" ••. it has been possible to show that the fixed relation, suspected by 

Schuler, between the 84-minute period and insensitivity to accelerations 

does not exist". And in the other two articles (MAGNUS, 1965 and 1966) 

the mathematical proof of this fact is given thoroughly and concisely. 

Confronted with this circumstance we naturally questioned the relevance 

of finishing our treatise on the subject. However, we find in our approach 

a property that might appeal to a reader not so thoroughly conversant with 

the in-depth mathematical aspects of inertial navigation, but interested 

enough to be desirous of letting go oversimplified and misleading notions. 

We hope we have succeeded in reducing the complex theoretical discussions 

to a level of plausibility by analyzing a few simple situations. We shall 

also describe some simple class-room demonstration set-ups which give the 

viewer some insight into the matter without requiring the abstraction 

necessary when trying to understand the principle from a full scale system 

demonstration. 

We hope the present treatise will help to banish from the textbooks some of 

the often-encountered misconceptions about the scope and limits of the prin­

ciple, rightly named after SCHULER, because he was the first to apply it, 

thereby launching the inertial type of navigation instruments into their 

range of usefulness. 



-7-

I. BASIC ASSUMPTIONS AND DEFINITIONS 

I. I Simplified model of the earth 

The Schuler principle, introduced by M. SCHULER between 1908 and 1923, is 

well known today. It is invariably applied in those navigational instru­

ments which are designed to take account of the curvature of the earth's 

surface. In this paper we do not intend to deal with the diverse and some­

times complex details of the application of this principle, but merely 

with the most basic facts. To this end we shall adhere to a number of 

simplifications: 

I. The earth shall be considered a perfect sphere with a radius of 6372 km. 

2. The earth is assumed to be of homogeneous density. 

3. Gravity acceleration at the earth's surface be uniform, with a value of 

9,81 m/s2. 

4. The above results in a well-defined radially symmetric gravity field 

where g = f(R) according to fig. 1.1 - I. 

5. Vehicle movements shall generally be confined to great circle trajectories. 

~ ~'earth surface 

Fig. 1.1 - I. Earth gravity g as function of distance R from centre. 

g = 9,81 m/s2; R = 6372 km 
0 0 

for R<R we have g= g (R/R ) 1.1 - ( I ) 
0 o 0 

for R>R we have g= g (R /R) 2 (2) 
0 o 0 
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1.2 Definition of Schuler tuning 

Although we expect the reader to be familiar with the principle of the 

acceleration-intensitive pendulum discovered by M. SCHULER at the beginning 

of the twentieth century (see SCHULER, 1962, p.471), we wish to state our 

own definition of Schuler tuning here for clarity's sake: 

An instrument member (e.g. a pendulum, or a platform), a known body axis of 

which points to a centre in space around which the instrument is carried by 

a vehicle and which keeps its said body axis pointing to said centre regard­

less of vehicle accelerations, is to be called Schuler-tuned. 

To our taste, it should rather have been called Schuler calibrated, or 

Schuler adjusted, because the expression "tuned" automatically suggests the 

involvement of a frequency. While this expression, appearantly introduced 

by WRIGLEY in 1950 (compare WRIGLEY, 1977, p. 63, line 10), represents the 

usual practical approach to the adjustment problem, it is misleading with 

respect to the theoretical principle involved. To show this is one of the 

aims of the present paper. However, since the term "Schuler tuned" has 

become generally accepted we shall adhere to this custom. 

1.3 Definition of the Schuler period 

In many books and articles on inertial navigation the Schuler period is 

defined as 

T = 2 n r;:;;:, 
o V ..... O'50l 

1.3 - (I) 

where R is the curvature radius of the earth's surface, and g the 
o 0 

acceleration due to gravity at the surface of the earth. If we insert 

R = 6372 km and go = 9,81 
0 

m/s2 into I. 3 - ( I ) we find 

T " 5064 s 
0 " 84,4 min, (2) 

this being the approximate value of the Schuler period related to the 

surface of the earth. 

One should be, however, more careful in stating the definition of the 

Schuler period. 

There are two possible obvious definitions: 

first, Ts 2n JRo/go, 

second, Ts = 2n ~ , 

as well as a less obvious one which we will touch upon further on. 

(3) 

(4) 
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The first definition would be a logical choice in so far as Schuler him­

self, when developing his ideas, was concerned with earth pendulums in 

ships. On such vehicles -- assuming the idealized earth as mentioned in 

our chapter 1.1 -- Ro and go can be regarded as constants. So the Schuler 

period To, based on Ro and go, also would be a constant, one pertaining to 

the earth, an earth constant thus. 

A platform used in an aeroplane cannot strictly be kept tuned to To after 

take-off, since Rand g change with altitude. But it is customary to speak 

of Schuler-tuning also with regard to airborne systems. So we propose to 

use the second definition for the Schuler period, and to call the first 

definition the Schuler constant (for the earth). 

Incidentally, this constant is the same as the smallest possible circula­

tion time for an earth satellite. As such it had already been identified by 

earlier scientists (such as NEWTON and HUYGENS). 

But in connection with the tuning of navigation instruments, the use of the 

name of Schuler is not misplaced. 

The third possible definition is less obvious. It relates to the actual 

period of oscillation a specific Schuler-adjusted system will have when 

one also takes into account the gravity gradient and the mass distribution 

in the system, and the centrifugal forces due to the velocity of the carry­

ing vehicle. We should like to call this the actual oscillation period. 

Thus, to sum up: 

(1) The Schuler constant 

(2) The Schuler period 

To = 21T JRo/go 

Ts = 21T~ 

1.3 - (5) 

(6) 

(3) The actual oscillation period: The oscillation period of a specific 

Schuler-adjusted system (acceleration insensitive system) under specific 

circumstances: 

T = k· 21T;-;;;' , (7) 

where k will always have a value between 0,5 and co according to MAGNUS 1971, 

p.395 (see also our p.33, quotation 12). 
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2. INERTIAL NAVIGATION, SCHULER's PRINCIPLE, AND A SIMPLE DEMONSTRATION 

MODEL 

In including this following chapter our intention is tostate the Schuler 

principle in a more or less absolute form. We believe that many erroneous 

statements can be attributed to the inclination of authors to explain the 

principle along more or less historic lines of reasoning. They tend to be 

somewhat circuitous because they follow Schuler in always including gravity 

in their reasoning (compare his original article SCHULER, 1923), although 

gravity's role is not obligatory in all systems. Schuler, however, is 

justified in having done so, or can be excused for it, in that his concern 

was primarily with gyrocompasses which are inherently pendulous; besides 

that he suspected that a general law existed connecting Schuler adjustment 

with the Schuler period. The very title of his article carries reference 

to pendulums. 

But we must go beyond the scope of pendulums if we want to understand the 

Schuler principle in a broader sense. Our intention, thus, is to explain 

the physical facts as clearly as we can in a matter-of-fact mode without 

looking back to Schuler, before we consider one of the main topics of this 

paper, namely the correction of some popular misstatements. 

2.1 What is inertial navigation? 

Navigation may be called the art of finding one's bearings. This art makes 

use of divers techniques, and one of those is the employment of inertial -

type instruments. 

To be able to navigate, you need a refe~ence system of coordinates. 

To determine your position you need to know the distance to a given point 

of reference (a landmark or a beacon or any other fixed point, which may 

be arbitrarily chosen), and directional information with respect to a given 

directional reference, which also may be arbitrarily chosen. 

Land-based vehicles travel on a comparatively rigid medium. Distance travelled 

from a known starting point basically can be measured by counting the revo­

lutions of a wheel in contact with the medium. This is demonstrated in our 

well-known mileage counters in automobiles. Directional reference is a problem 

not so easily solved, requiring a compass and/or a map and landmarks. 

Sea-going vehicles travel on a fluid medium. Distance travelled is often deter­

mined by measuring the speed with respect to the medium and then computing its 

time integral. Airborne vehicles can approach the distance measuring problem 

in the same way. 
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Direction can be found in ways similar to those mentioned with the land­

based vehicles. 

Why this seemingly trivial discussion? It is to show an analogy with a 

third kind of vehicle, the "space vehicle". Its "medium" is inertial space. 

Distance in this medium is determined by measuring acceleration and then 

computing its double time-integral. 

Directional references can be artificially created and carried on-board 

by way of spinning rotor gyros, laser gyros or any other'form of inertial 

space goniostat or gonimeter. 

Basically, any of the other vehicles mentioned is also a"space vehicle", 

since they all move iil the "medium" inertial space. They can all be fitted 

with an inertial measurement unit to solva their navigation problem, 

but it is the aeroplanes that we mostly think of as using inertial naviga­

tion techiques, including the Schuler principle. Their operational modes 

and requirements make for the most profitable use, technically and econo­

mically, of the expensive inertial navigation instruments. But it was 

problems with marine instruments that initiated the discovery by M.Schuler, 

in 1923, of the principle carrying his name. 

2.2 Determinating position by measuring acceleration 

Consider a vehicle travelling parallel to the surface of a sphere on a 

great circle. In the vehicle there is a gimballed platform carrying an 

accelerometer which has its sensitive axis oriented tangentially to the 

great circle, i.e. parallel to the vehicle trajectory (fig. 2.2 - I). 

/ 

I 

I 

\ 

, 
, ..--

Fig. 2.2 - I.Vehicle circling the earth along a trajectory with radius R. 

This also means that the accelerometer's sensitive axis is at right angles 

to the local vertical. Consequently it will sense no component of the 

sphere's gravity field, which is supposed to have its origin in the centre 

of the sphere, but only vehicle accelerations along the trajectory. 
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The distance s travelled by the vehi~le along the trajectory can be computed 

from the double. time-integral of the acceleration s: 

l 

S(t) ,. fIs cU:dt . 2.2 - (I) 

o 

2.3 Maintaining a vertical reference 

Condition for the idea set forth in 2.2 to function properly is that the 

accelerometer input axis must remain horizontal all the time. A small angular 

deviation 6 from the horizontal has two effects, (I) a relatively small 

loss of measuring accuracy: the measured s will be cos 6 times the true s, 
and (2), in the presence of gravity, the accelerometer will sense an erro­

neous acceleration a equal to minus sin 0 times the gravitation accelera­

tion g (see fig. 2;3 - I). 

/ 

I 

I 

accelerometer 

g'sin8=-a 

I-I---g 

Fig. 2.3 - I. Error in sensed acceleration due to gravity. 

2.3 -(I) 

Keeping the platform with the accelerometer horizontal means causing its 

alignment to follow the contour of the sphere by rotating it with respect to 

inertial space. The rate of rotation a then must equal the rate of change 

of the angle e in fig. 2.2 - I: 

• 
• 

0( 

• s 
'R 

• - e -

As long as 2.3 - (2) applies it is also true that 

.. .. 
s 
'R 

• 

(2) 

(3) 

We can call 2.3 - (3) the Schuler condition, and any system assuring the 

constant fulfillment of this condition can be called Schuler calibrated, 

or as remarked in par. 1.2, in commonly used terms, Schuler-tuned. 
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2.4 Methods for obtaining Schuler tuning 

There are a number of methods to get a physical system to behave according 

to the Schuler condition eq. 2.3 - (3). The one we are going to explain 

here we chose because of its simplicity and because'it leads directly to 

a very simple and effective demonstration model. It cannot, however, be 

applied when designing a "real" Schuler-tuned system for use in a terres­

trial aeroplane, because its realization would require impractically large 

structures (e.g. SCHULER, 1923, p. 346) or impossible manufacturing accu­

racies (e.g. HECTOR, 1968, p. 72). 

Schuler used a similar structure in discussing his discovery (SCHULER, 1923, 

fig. I), but for reasons we shall state later his explanation suffers from 

a lack of clarity. 

Let us imagine an idealized physical body resembling a pair of dumb-bells, 

consisting of two equal point-masses ml, m2, connected together by a rigid 

but mass-less rod (fig. 2.4 - I), the length of which is 2r. 

m, 

• r r m2 

• CI 

Fig. 2.4 - I. Two point-masses connected by a mass-less rod, and floating 

in gravity-free space. 

We know its centre of inertia CI to be half-way between the points of 

mass. Let this configuration be at rest in a gravity-free zone of inertial 

space. 

If a force Fcris applied to its centre of inertia, the body will be accele­

rated and move about without rotating. If the force is made to act on some 

other point of the rod, there will ensue a rotary as well as a translatory 

movement. Both types of movement combine to give the body a displacement of 

rotation around a momentary centre M, which in fig. 2.4 -2 is drawn for the 

M . --- . --­n.._='. ~. __ 

m, 

.- .• 
'fde . 

RCI 

---~ 
" I 

~ ,SCII 

CI' I Sp 

FClt a 

·1-

~sp 

Fig. 2.4 - 2. Infinitesimal rotation de of the dumb-bell model around M. 
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case that Fsp is orthogonal to the connection rod. 

The reason for choosing the letters SP to designate the point of attack 

of the force is that we want to make this point a ~uspension Roint. 

An imaginary vehicle is to carry the twin mass body, the latter being 

pivoted to the former so that it can freely rotate around SP. 

The vehicle is then able to exert forces on the body, the point of 

attack always being SP. But no torques can be transmitted to the body 

by rotation of the pivot. 

If we now imagine the vehicle constrained to a circular trajectory 

around the initial M, then the suspension point SP cannot but travel 

a path that always has M as its momentary centre of rotation. Thus M 

becomes a fixed point in space, t~e extended connecting line between 

masses ml and m2 will always pass through this fixed M, and we have 

created a system that obeys eq. 2.3 - (3), the Schuler condition. 

along 

the 

Circulation around M gives rise to centrifugal forces. The vehicle, being 

confined to its trajectory, will counteract these forces, and for the 

present discussion we do not need to consider them. 

2.5 The Schuler-tuned twin mass body 

The twin mass body has a total mass m = fit + m2 and a moment of inertia 

around its CI which amounts to J
CI 

= mr2. 

The force Fsp· exerted by the vehicle gives rise to reactionary inertial 

forces from the body. These result in a translatory acceleration of the 

centre of inertia: 

.. Fsp Fe I 

Sct '" - - -
\'Y\. m. 

2.5 - (I) 

and a rotary acceleration around the centre of inertia: 

CC - T 
Jet 

(2) 

where SCI = distance travelled by CI along traj ectory 

Fsp = force exerted by vehicle at SP 

FCI reaction force generated by sat CI 
compare 

m = total mass of dumb-bell body 
fig.2.4 - 2 

a = rotary acceleration of dumb-bell body 

T = torque produced by Fsp and Fct 

J cr moment of inertia of dumb-bells around CI 
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Now we know that 

2.5 - (3) 

a being the distance between centre of inertia CI and suspension point 

SP (see fig. 2.4. - 2), and 

(4) 

with r being half the distance between ml and m2' The Schuler condition 

given by eq. 2.3 - (3) is 
.. 

0<:-
s •• 

• 
where RCI 1S the distance from centre M to CI (fig. 2.4 - 2). 

Using this condition and eqs. 2.5 - ( 1 ) through (4 ) we can put down 

" Fsp .. 
-L lX - -
'Rcf M· 'Ref 

and 

•• T Fsp·Q 
ex.. - = 

M·r2 • :Jer 

Equating these we finally get 

or .J:!.. a = 
"Rcf 

(5) 

'(" - ja. . 'ReI 

We see that, for a given trajectory radius and a given length 2r of 

the twin mass body, we need only to suspend the body at a distance a 

from its centre of inertia to get a Schuler-tuned system. 

It is worthwhile mentioning here that this result is independant of the 

actual magnitude of m (as long as m· is not zero), and that no gravity 

field was needed to dertermine the design parameters. 

From the second form in which eq. 2.5 - (5) is given we understand 

that the radius of gyration of the twin mass body has to be the 

geometrical mean between the suspension point excentricity a and the 

radius of the trajectory RCI ' Also the following form shows this: 

a -'(' 

r (6) = "Rei • 
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What does this amount to in terms of earth radius? Take Rcr= 6372 km 

(see par. I. I ) and r = 1m. Then 

a= O,io;vn . 2.5 - (7) 

A prohibitive requirement indeed to have to place a pivot axis within 

such close distance to the centre of inertia, for it would mean that the 

position of the centre of inertia itself would have to be known with an 

accuracy of a fraction of this value, say 0,01 or 0,001 ~m. 

Bringing the masses closer together only aggravates the difficulty since 

a is proportional to the square of r. 

2.6 A simple table-top demonstration model 

If one can do with a smaller trajectory radius R the problem gets easier. 

We have made a demonstration model according to fig. 2.6 - I, the para­

meters of which are 

Trajectory radius 

Radius of gyration 

Suspension point excentricity a 

M 

30 cm 

= 5 cm 

=8,3unn. 

r 

1 ReI 
11_ ... __ -------------=~--------------_.~ 
1 

Fig. 2.6 - I. Demonstration model of a Schuler-tuned dumb-bells body 

A photograph shows the actual model which can easily be placed on top 

of a tahel. Demonstration proves very effective if the ball-bearings 

used are of a high quality instrument type and the base-plate is adjusted 

to be sufficiently horizontal to avoid drifting due to gravity. 

Moving the carriage to and fro softly, swiftly, or abruptly, or even 

bumping it against the spring-loaded stops does not make the connecting 

rod deviate from the radial direction. 
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In order to show that a wrongly chosen suspension point decidedly 

degrades performance the connecting rod can be slid to any position 

between a = 8,3 mm (the Schuler tuning requirement) and a = 0 (sus­

pension at the centre of inertia). 

Fig. 2.6 - 2. Photograph of a demonstration model 

Legend to fig. 2.6 - 2 

BC 

CA 

CP 

CR 

bearing column (aluminium) 

carriage (aluminium) 

centre pole (steel rod) 

connecting rod (steel) 

E5 = excentricity stops (brass) 

FL fixation lever 

GP = ground plate (black perspex) 

G5 gravity imitation spring 

L5 = levelling screws 

ml, m2 dumb-bells (brass) 

PA 

5L 

55 

WE 

pivot axis 

spirit levels 

spring-loaded stops 

wheel boxes 
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The mass of the "dumb-bells" is not critical. We used brass cylinders 

of approx. SO grammes each which proves sufficient to render bearing 

friction effects negligible. Their dimensions are 38 rom dia. and IS rom 

height. Any difference between ml and m2 will affect the position of 

the centre of inertia and the suspension point, but, after adjustement 

of stops ES, will not impair the proper functioning of the model . 

. A spring loaded gravity imitation string GS can be attached to ml to 

demonstrate gravity effects. It will be described later on. 

2.7 The effects of gravity 

In ch. 2.4 we assumed the twin mass system to be in a gravity-free zone 

of inertial space (cp. fig. 2.4 - I). We now allow a radial gravity field 

to exist, the origin of which shall coincide with the centre of the tra­

jectory (fig. 2.4 - 2). It is easy to understand why this gravity field 

will not enter into the Schuler-condition. 

The twin mass-point body has become a pendulum in its equilibrium posi­

tion, since its centre of gravity hangs beneath the suspension point. 

In this position gravity can exert no torque and consequently not move 

the pendulum. The pendulum, designed to the Schuler condition, remains in 

that position whatever the movements of the suspension point may be along 

the circular trajectory. 

If the pendulum is displaced from its equilibrium position, clearly it 

will exhibit an oscillatory movement around the equilibrium position. 

Although, as we have seen, the Schuler condition is not touched by the 

presence or absence (or, more generally speaking, not touched by the 

magnitude) of the gravity field, the oscillation period is. 

As long as the oscillation amplitude is so small that the projection of 

the length of the pendulum onto the local vertical can be regarded as 

equal to the length of the pendulum itself (cos 6 ~ I, see fig. 2.3 - I), 

the Schuler condition will not be touched by the pendulum excursions. 

Conversely, trajectorial vehicle accelerations will not make the pendulum 

oscillate nor cause it to change its oscillation mode. Both phenomena, 

i.e. Schuler behaviour and pendulum behaviour, are not coupled. 

In a absence of a gravity field a small disturbing rotary impulse applied 

to the twin point mass body by a torque other than the "Schuler torque" 

could make the body rotate beyond limits. A gravity field keeps the excur­

sions limited in amplitude, though it cannot prevent the oscillations from 

persisting over a lengthy period of time. 
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2.8 Including gravity effects in the demonstration model 

As mentioned at the end of par. 2.6 a spring-loaded string can be 

attached to mass ml (item GS in fig. 2.6 - 2). It lends a restoring 

torque to the twin mass body and thus imitates the effect of a gravity 

field. 

More properly, the point of attack of a simulated gravity force ought 

to be the centre of inertia, i.e. the middle of the connecting rod CR. 

More properly still, perhaps, a "gravity" force should have been applied 

to each "point mass" separately, thus enabling us to show the effects 

of an inhomogeneous gravity field in more detail. We would then have had 

to give the springs a nonlinear compliance so as to imitate the inverse 

square law of gravity. But we wished to keep our model as simple as possi­

ble and chose to apply a restoring force to ml only. In this respect the 

model is phenomenologic, and not quantitative. 

We also devised an alternative method of introducing a restoring torque. 

It consists of slightly tilting the pivot axis (see fig. 2.6 - 2) towards 

the centre pole. In this way a predetermined component of earth gravity 

acts to torque the twin mass body towards its equilibrium position. 

That is the direction of the local radius of the trajectory, providing 

the ground plate is properly levelled. We have never built a model accor­

ding to this idea yet, but we include a design description for the benefit 

of the readers (paragraph 6.4.1). 

Now with the model depicted in fig. 2.6 - 2 a number of different settings 

of the connecting rod can be chosen. We shall list a series of them in 

the sequence we usually follow when giving demonstrations. 

2.9 Demonstrating the Schuler principle with the model 

The settings of the connecting rod CR (cp. fig. 2.6 - 2) will be indicated 

by prescribing the required amount of excentricity as 

a = 0 i.e. suspension point in centre of inertia 

o < a < 8,3 i.e. arbitrary in-between values 

a = 8,3 i.e. excentricity 8,3 rom which constitutes the Schuler 

tuning condition. 
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After a certain setting has been made, the demonstration consists of 

moving the carriage CA to and fro softly, swiftly, or abruptly, even 

letting it bounce back from the spring-loaded stops. This phase of the 

demonstration is indicated by "move". 

The aim of each demonstration is to let the spectators observe the 

angular movements of the twin-rnass body ml mz, either with respect to 

inertial space or relative to the carriage. Fig. Z.9 - 1 is given to 

facilitate identification of these angles. 

I 

.~ 

/ 
Fig. Z.9 - 1. Angles used to describe the movements of the carriage CA 

and the Schuler pendulum ml mz. 

I - I = inertial directional reference 

ct = angle of mlmZ with respect to I - I 

e = angle of CA with respect to I - I 

Ii = angle of ml mz with respect to CA 

I. Gravitation simulator disconnected 

A. Setting a = 0 

Move. 

Observe ct = 0 <I e 

B. Setting a = 8,3 

Move. 

Observe ct = e <I ~ 0 
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c. Setting 0 < a < 8,3 

Move. 

Observe a, a and 8, ;, arbitrary 

Stop. 

Observe a, 8 can persist 

Gravitation simulator engaged 

A. Setting a = 8,3 

Move. 

Observe a=6;o=O 

B. Setting O~a<8,3 

Move. 

Observe a, 8 in oscillate with arbitrary phase and amplitude 

Stop. 

Observe 8-oscillation persists and induces a-oscillations 

c. Setting : a ~ 8,3 

Hold carriage tight, initiate 8-oscillations by hand 

Release carriage 

Observe 

Then move. 

8-oscillations persist but do not induce a-oscil­

lations 

.. 
Observe: o-oscillations persist undisturbed by a. 
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2.10 Conclusions 

A simple way to understand the basic nature of a Schuler-tuned system 

is to consider the movement of a twin-mass body that floats freely in 

space and is acted upon by a force, the workline of which does not pass 

through its centre of inertia. 

Following this approach it is very easy to demonstrate the basic phenom­

ena connected with the Schuler principle by means of a dumb-bells shaped 

body with a horizontal main body axis and vertical axes of rotation. 

The effects of tuning and detuning can be shown. Moreover, while in an 

actual full-scale system for earth navigation the Schulerian behavious 

and the Schuler oscillation period are inseparable, the demonstration 

model makes it clear that those are two independant phenomena only loose­

ly coupled because a gravity field concentric with the trajectory happens 

to exist. 
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3. REMARKS ON THE PUBLICATIONS DEALING WITH SCHULER's PRINCIPLE 

In this chapter we will :Urst examine the texts of Schuler's 1923-article, 

discuss their meanings and implications, and try to find out his inten­

tions in presenting the matter as he did. Then, in the second half of this 

chapter, texts of a number of other authors will be given to show how 

their thinking has or has not been biased by Schuler's original state-

ments. 

SCHULER, in his 1923 paper, uses three different kinds of apparatuses 

to direct the reader to a curious phenomenon, namely the Qccurence of 

the 84 min. period in all the devices he discusses. 

We shall briefly sketch their design and function before turning to 

Schuler's texts: -

a. The gyrocompass 

Iva 

Fig. 3. - I. Basic design of a gyrocompass 

A platform P, free to rotate around the local vertical (vertical axis va) 

carries a gimbal G which can rotate around the platfor~fixed·horizon­

tal axis ha. The pendulum bob B, attached to the gimbal G, tries to 

keep the spin axis sa of the gyro rotor R (which is suspended in G) at 

right angles to va, that is. horizontal. 

Earth rotation we in general will make the spin vector b change its 

orientation respective to va and the meridianmd. 

But there is an equilibrium orientation, characterized by the elevation 

angle ea in the plane of the local meridian md, in which the torque 

produced by the bob B is exactly equal to the precession torque the gyro 

rotor R needs to follow the inertial rotation rate of the local meridian • 

. .... ,.... . .. ~' 
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If the spin axis sa is not in that equilibrium orientation, it will swing 

towards it in a fashion indicated by the elliptic spiral es, which spiral 

is the curve traced by the projection of the spin axis sa onto a plane 

perpendicular to the local tangent of the meridian rna. The time required 

for the completion of one full round swing of sa is the period Schuler 

claims ought to be made 84 minutes. 

b. The gyro pendulum 

v 

oM 

fig. 3. - 2. Gyroscopic pendulum 

A gyro G, with an angular momentum vector b, is suspended freely in a 

vehicle, its suspension point denoted by sp. The vehicle travels along 

a trajectory tr at a speed denoted by the vector v. e is another vector 

in the horizontal plane, but at right angles to v. The earth can be re­

garded as non-rotating or else as contributing to the vehicle speed 

resulting in the total surface speed vector v with respect to an inertial 

reference system. In order to maintain b in its direction to the centre M 

of the earth while following the curvature of the earth, the pendulum has 

to receive a torque T opposite to ~. This can be achieved, at the expense 

of perfect verticality, by a sideway excursion of the gyro (= "pendulum 

bob") G in a vertical plane in the direction of the vector e. This side­

way excursion can be generated by a torque parallel to e, a torque that . 
would arise during accelerations ~ in the direction of v. Proper tuining 

of the pendulum assures that ~ creates just the right amount of torque 

parallel to e that is required to make the gyro deflect sideways by the 

exact amount necessary to create the precession torque T, belonging to the 

forward velocity ~ resulting from v, to keep the pendulum in the vertical 

plane perpendicular to ~. 
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If by any cause the pendulum is displaced out of its intended direction, 

a conical precession movement around the intended direction will ensue. 

A properly designed gyroscopic pendulum will, according to Schuler, ex­

hibit a precession rate so as to make it describe a complete cone in 84 

minutes. 

c. The physical pendulum 

This is simply a body of arbitrary shape, freely suspended at a point 

above its centre of inertia. Upon horizontal acceleration of the sus­

pension point the centre of inertia will lag behind. If the suspension 

point is placed at the proper distance from the centre of inertia, the 

body will keep its initial orientation with respect to the momentary 

local vertical, regardless of the suspension point acceleration (see 

text around our fig. 2.4 - 2). Again, according to Schuler, such a de­

vice, if disturbed, would oscillate with a period of 84 minutes. 

3.1 The gyrocompass 

In a review article written in 1962 by SCHULER himself we read that 

MARTIENSSEN had prepared a theoretical study of the behaviour of the 

pendulous north-seeking gyroscope when placed on a ship. (In the first 

footnote of SCHULER, 1923 this study can be identified as MARTIENSSEN, 

1906 of our list of references). The principle of this kind of instru­

ment had been indicated by L. Foucault a few decennia before. It consists 

of constraining the spin axis of a gyroscope so as to make it remain near 

the local horizontal plane, whereupon it will turn its spin axis into the 

plane of the local meridian. 

Constraining the gyro as mentioned above can be comfortably done by making 

it pendulous. This solves the problem for a stationary north indicator, but 

tends to introduce disturbances when the gyro is carried on a moving base 

subjected to horizontal accelerations. MARTIENSSEN in his study came to the 

conclusion that a gyrocompass would be useless on board a ship, where it 

would give misreadings of dozens of degrees. 

Schuler examined MARTIENSSEN's calculations and discovered that a condition 

could be found where the pendulosity would not make the gyro north-seeking, 

but would even help to keep the instrument aligned to the changing direction 

of the local vertical as the vehicel travelled along the surface of the earth, 

subjected to arbitrary accelerations. 
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A north-seeking gyro, when disturbed, will oscillate around the plane 

of the meridian. Schuler found that immunIty to horizontal accelerations 

was concurrent with a period of this oscillation of 84,3 min. 

With this type of instrument, gravity is all~important in the sense, that 

it is not the magnitude of gravity, but its direction, which matters. 

It becomes north pointing only in the presence of some sort of vertical­

derived restoring torque. But its north pointing property itself essenti­

ally depends neither on the actual value of g nor on the "amount of pendu­

losity", i.e. the distance between suspension point and centre of gravity, 

and weight. The gyro will always swing into an elevated position of its spin 

axis by the exact amount necessary to slew the gyro to the earth rotation. 

(Of course we assume the gyrocompass to be sensibly dimensioned so as to 

keep the elevation angle within reasonably small limits). 

Schuler recognized this in 1908. Although he does not state so in his 

famous 1923 paper, he mentions it in his article of 1962, p. 471, under 

"Das 84-Minuten-Prinzip ••. ". His reasoning (see SCHULER, 1962, p. 471) 

may be retold in the following way: -

Stationary on earth, the equilibrium direction of the gyro spin axis 

will be due north, and on a vehicle moving at constant speed it will 

have a known northerly steaming error independant of the amount of pendu­

losity. However, the amount of pendulosity will affect the period of oscil­

lation around equilibrium direction, and it will also affect the compass' 

sensitivity to vehicle accelerations. Without changing its essential 

direction finding ability one is almost entirely free to choose the amount 

of pendulosity. So why not use this liberty to minimize the acceleration 

errors ! To his astonishment he found that not only does such a minimum 

exist, but that at this minimum all acceleration-iriduced errors become zero. 

The requirement for this condition seemed very. 'Siniple: tune .. the Period of 

swing around the equilibrium position to 84,3 minutes. 

And the formula he gives (SCHULER, 1923) is 

b R 

m g a n cos II g 

3.1 -(1)*) 

The right-hand side of this formula consists of the earth parameters: 

R = radius of the earth 

g gravity' acceleration at the earth's surface, 

*) symbols n and A taken from PITMAN, 1962, p. 454, instead of SCHULER's 

u and 'fl. 
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whereas the left side also comprises instrument parameters: 

b = gyro angular momentum (SCHULER uses J ) 

m = equivalent point mass of unbalance 

g = earth gravity acceleration 

a = distance between m and suspension point 

n = earth rotation rate (SCHULER uses u) 

A = geographic latitude (SCHULER uses <p) 

The constant Rig is a constituent of the well-known expression for the 

oscillation period of an "earth pendulum" (cp. 1.3 ..,(4)): 

T = 2 1T J ! = 84,4 min 
- g 

3.1 - (2) 

However, as BELL (1968, p. 507) rightly notes, both sides of eq. 3. -(I) 

can be multiplied by g, and that shows that the instrument parameters are 

linked with earth parameters of geometry only, i.e. n, A, and R. 

Whatever the value of g, within limits indicated further on, the adjus­

ments once made on the instrument remain valid. That means, that it will 

not deviate from pointing in the right direction due to vehicle accele­

rations once it has settled, whatever the value the value of g. Only the 

period of oscillation following a disturbance will vary with g. 

(Of course, even academically speaking, g cannot be allowed to assume 

just any value. The upper limit would be a technical limit, dictated by 

what the instrument suspension could bear. But there is a lower limit 

of a practical nature, beyond which settling time would be intolerably 

long; and of a theoretical nature, beyond which the angular excursions 

required for the north-keeping torque no longer permit subsituting the 

angles for the. sine or cosine functions of the angles). 

Although Schuler recognized that the north-seeking mechanism doesn't 

require a specific gravity torque value, he did work with the idea of a 

specific gravity torque value to eliminate the disturbances caused by 

horizontal accelerations. This, we think, is not quite the right way to 

state the principle, although it does not really matter for practical 

purpo'ses when you deal with a fixed g-value. 

It is not the gravity torque, that eliminates the acceleration sensiti­

vity, but a specific instrument that is designed properly to be acceleration 

insensitive cannot but have a specific gravity torque.when.the g-value is 

given. 
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If the g-value changed, the gravity torque would change, but not the 

acceleration insentivity. 

3.2'The gyro pendulum 

The gyroscopic pendulum which SCHULER describes in his 1923 paper, is a 

different kind of instrument as far as gravity dependance is concerned. 

Whereas the compass utilizes only the direction of the gravity torque, 

but not its absolute value, to gain its north-seeking quality per se, 

the gyroscopic pendulum would not be insensitive to horizontal vehicle 

accelerations at all if there were no gravity. This pendulum needs a 

specific gravity torque to make it precess properly when following the 

earth curvature. Gravity is the "servo mctar tt
, slewing the pendulum's 

gyro exactly to the inertial rate of change of the local vertical. 

It is not surprising, therefore, that in SCHULER's formula 

= 
R 

g 

3.2 - (I) 

g no longer can be eliminated by mUltiplying both sides therewith. 

g can be regarded as an instrument parameter. 

If the gravity value were to change, one would either have to add an 

artificial torque computed from the horizontal velocity, or else to 

change one or more of the other instrument parameters. (Their meaning 

is the same as. sub eq. 3. I - (I).) 

3.3 The physical pendulum 

The third type of "instrument" Schuler treats in his paper of 1923 is 

the physical pendulum. The equation governing the relation between the 

pendulum's dimensions and the earth geometry were given by us in eq. 

2.5.-(5) as 

a = 

R = 

and with eq. 2.5. - (4) 

J 

ma 

r2 

R 
3.3 - ( I ) 

or 
r2 

(2 ) 
a 

R. (3 ) 
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here J = the body's moment of inertia (SCHULER uses 8) 

m = the body's mass 

a .the distance between the body's centre of inertia 

and its suspension point 

If we divide both sides of 3.3 - (3) by g we get SCHULER's formula 

J R 
= 

m gag 
3.3 - (4) 

Just like with the gyro compass, so here g has nothing to do with the 

proper adjustment of the "instrument", but, with an instrument properly 

dimensioned and ~sed in earth's gravity field, we get a specific natural 

frequency of the pendulum, which, if we disregard the inhomogeneity of 

that field, amounts to the Schuler period of 84,4 min. 

3.4 Comparison of the three Schulerian instruments 

The fact that the physical pendulum and the gyro pendulum act so different­

ly with regard to gravity may seem curious at first glance. 

But it can easily be explained by considering that, with the physical 

pendulum, the vehicle acceleration results in a pendulum excursion in the 

vertical plane in the same direction as the velocity vector, whereas with 

the gyro pendulum the excursion takes place in a vertical plane at right 

angles to the velocity vector. Gravity pull to restore the pendulum only 

then results in t.he pendulum's complying with the demand to follow the 

earth's curvature. If gravity were absent, only the lateral excursion of 

the gyro pendulum would build up. 

For the sake of completeness, let us just briefly say, that to have at 

one's permanent disposal the true local vertical, of course one needs two 

pendulums with counterrotating rotors. (see e.g. SCHULER, 1923). 

But this is a practical matter outside the scope of our present consider­

ations. 

3.5 Why Schuler did not eliminate gravity 

At the end of his article of 1923, SCHULER gives a summary which shows why 

he introduced the 84 min. period into all the formulas describing the 

behaviour of the three different types of apparatus, whether the 84 min. 

period was relevant to the functioning of the device or not. 
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He thought he had found a few special cases corresponding to a general 

law which he tentatively formulated as follows (taken from SLATER's 

translation in Appendix A of PITMAN, 1962, page 453): 

"An oscillatory mechanical system on whose center of gravity a central 

force acts will not be forced into oscillation by any arbitrary movement 

over a spherical surface about the center of force if its period of 

oscillation is equal to that of a pendulum of the length of the sphere's 

radius in the applied force field". 

He did not say he had found the law, but said that obviously some general 

law lies behind it all. And he adds: "I still have to owe you, however, 

the general proof of the law". As we have stated in our Introduction, it 

is now known that there is no such law. In MAGNUS, 1973, page 295, we read: 

"Since then it has been possible to show that the fixed relation, suspected 

by Schuler, between the 84 min. period and insensivity to acceleration does 

not exist. There are systems with an oscillation period of 84 minutes which 

are not insensitive to acceleration, as well as acceleration-insensitive 

instruments that have other oscillation periods". 

Whereas, of course, Schuler himself was aware that the fixed relationship 

between the 84 min. period and acceleration-insensitivity was only a 

supposition, other authors, endeavouring to explain the principle in a 

simple manner, took it for granted, or at least gave the reader the impres­

sion that it was granted. Presumably authors copied from authors, especially 

in the Anglo-Saxon literature area, without consulting Schuler's original 

work which was written in the German language. Perhaps, also, nobody really 

bothered to check it out for himself, since the original explanation has the 

beauty of simplicity, almost automatically precluding even questioning its 

validity. 

3.6 Literature excerpts 

Let us, in the light of the above-mentioned, present a few typical texts 

without any further comment. The reader by now will probably recognize the 

correct, the dubious, and the incorrect statements which we regard as typi­

cal for most handbooks and articles on the subject. 

(1) "In practice,the inertial system is made to behave as if it were an 

84-minute pendulum". -- KLASS, 1956, p. 7. 
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(2) [The condition for acceleration insensitivity, using our symbol J 

for the moment of inertia instead of Schuler's e, is found to be, 

and we quote:] 

"J = maR or f = -:!..... = R 
rna 

(31 ) 

i.e. the mathematical length of the acceleration insensitive pendulum 

must be equal to the earth radius. 

In a constant, parallel gravitation field the oscillation period of 

such a pendulum 1S 

TE = 2rrfg = 84 minutes. (32) 

To begin with, we find that the tuning condition (31) indeed is indepen­

dant of the earth gravitation g •••. Neither is it of consequence to 

the tuning condition (31) that the gravity field ••• is a central 

field with g decreasing with the square of the distance from earth 

centre. But (32) is only valid for a constant parallel gravity field. 

For a mathematical pendulum (31) is self-evident. 

If it were possible to make such a pendulum its centre of inertia 

would always be at earth's centre, and one could make the suspension 

point travel to and fro over the earth without disturbing the pendulum's 

indication [of the vertical]. Also one immediately sees that formula 

(32) is no more valid, for earth gravity is zero at earth centre, and the 

oscillation period becomes infinitely large. The astonishing fact with 

eq. (31) however is, that the actual execution is of no importance, but 

only the correct tuning ratio". -- SCHULER, 1958, p. 46. 

(3) "The pendulum must have an effective length equal to the earth's radius. 

This is Schuler tuning. The period of such a pendulum ..•• is 84,4 min. 

If by some means another device is made which oscillates with the same 

period, it is also Schuler-tuned". -- SAVANT, 1961, p. 19. 

(4) "In Figure 1.5 [in which a spheroid physical pendulum is shown], if the 

angular acceleration of the pendulum about its pivot is just equal to 

the angular acceleration of the pivot about the earth's center due to 

horizontal motion, the pendulum will always remain vertical. 

This condition exists if 

e x 
R 

The condition expressed by [this] equation for the pendulum is called 

Schuler tuning and is the same as that for the inertial navigation system. 
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Furthermore, the inertial systems acts in the same way as the physical 

pendulum. This is true, irrespective of mechanization. 

For example, if the pendulum is displaced from the ·vertical or the 

accelerometer displaced from the horizontal, both will detect a compo­

nent of the vertical thrust acceleration. This effect will cause oscil-

lations with a period of 1/2rr JR/ AR• If the horizontal velocity is low, 

AR RJ g and the period will be around 84 min for positions near the sur-

face of the earth". 

-- PITMAN, 1962, pp. 36, 37. 

(5) " However, any device, which for a small perturbation angle o¢ from the 

vertical undergoes a restoring acceleration go¢, and posseses a natural 

period equal to 2rrja/go ' where a is the earth's radius and go is the 

magnitude of acceleration due to gravity at the earth's surface, will 

serve as a mechanisation of Schuler's earth-radius pendulum". 

-- O'DONNELL, 1964, p. 43. 

(6) "One of the essential problems 1n the field of vertical indication is to 

obtain a pendulous system with a period of 84 minutes. As was pointed out 

by Schuler (1923), this cannot be accomplished with a physical pendulum 

of reasonable size". -- XSTR1:)M, 1965, p. 54. 

(7) "With Schuler tuning, any displacement of the pendulum out of the verti­

cal will result in an oscillation with a period of 84 min". 

-- SANDRETTO,1967, p. 6. 

(8) "In inertial navigation, it is Earth that is in tune, and there is no 

possibility of altering the period by tinkering with the device. 

I do not think that anyone can produce an inertial navigator with any 

other period, as e.g. the period of 'about thirty minutes' reported by 

Schuler in his 1923 paper, par. 31, as his best approach to an apparatus 

'with full 84-minute period' ". BELL, 1968, p. 507. 

(9) "When the pivot [of a pendulum] 1S part of a vehicle performing an accel­

erated horizontal motion the direction will deviate from the vertical. 

Ho~ever, as we have already noted, a 'Schuler pendulum', with an oscill­

ation time of 84.4 minutes, maintains a vertical indication, independent 

of the motion of the point of suspension." -- HECTOR, 1968, p. 7 \. 
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(10) "If there is a gravitational field g parallel to the radius of the sphere 

then, if disturbed, the platform will oscillate with a period T=2'lT fRTi: ... " 
-- STRATTON, 1968, p. 509. 

(11) "The· particular virtue of Schuler, or 84-minute, tuning is simply that it 

eliminates transient or oscilJatory errors which otherwise arise from 

vehicle acceleration". -- LEE, 1969, p. 268. 

(J 2) "The practical execution of [a simple physical pendulum as an] indicator· 

of the vertical founders when one tries to comply with the tuning condition 

A 
s = iiiR *). (12.59) 

It implies that the reduced pendulum length of the physical pendulum be 

equal to the·earth radius R. The period of a physical pendulum thus tuned 

becomes 

3C • (12.60) 

A rod-shaped pendulum with c=o yields the value T = 42,2 minutes; for 

a pendulum with a spherical ellipsoid of inertia [A=C] we find T=84,4 min; 

and for 4A=3C we get T+ co. For a flattened out pendulum with 3C. > 4A the 

equilibrium position z = 0 becomes instable. If one neglects in [an equa­

tion given earlier] the term that contains the gravity gradient one gets 

wrong resultsiquantitatively, because then any form of the pendulum yields 

a period of 84,4 minutes". -- MAGNUS, 1971, p. 395. 

*)see our formula 2.5- (5): - 2... (=s) - mR 
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4. PENDULUMS AND PERIODS 

The following chapter has more detailed sub-divisions than contained 1n 

the general index in front of this paper. These sub-divisions are:-

4.1 Starting points 35 

4.1.1 Conditions for acceleration-insensitive pendulums 

4.1.2 Pendulum periods in an inhomogeneous gravity field 

4.2 Moment of inertia and radius of trajectory of various pendulums 37 

4.2.1 General physical pendulum 

4.2.2 Six point mass physical pendulum 

4.2.3 Four point mass physical pendulum 

4.2.4 Two point mass physical pendulum 

4.2.5 Rigid shaft mathematical pendulum 

4.2.6 Mathematical string pendulum 

4.2.7 Summary of the properties of the pendulums treated 

4.2.8 Conclusions 

4.2.9 Modifying trajectory radius by external torque 

4.3 Oscillation periods of various mathematical pendulums 

4.3.1 Pendulums in a homegeneous gravity field 

50 

4.4 

4.3.2 Internal and external earth gravity field 

4.3.3 Mathematical pendulum with bob at earth surface 

4.3.4 Mathematical pendulum with bob in the internal field of the earth 

4.3.5 Mathematical pendulum with bob at earth's centre 

4.3.6 Mathematical pendulum with infinite length and bob in the internal 

field 
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4. PENDULUMS AND PERIODS 

This chapter is intended to exhibit a number of different forms of pen­

dulums in connection with the Schuler principle, or d'Alembert's double 

pendulum. In it we shall show what it means in terms of suspension point 

position, moment of inertia and radius of trajectory to make a pendulum 

insensitive to vehicle accelerations. Also the oscillation periods resulting 

will be shown, and the reader will see that there are pendulums with the 

84 min. period which are not acceleration insensitive, as well as pendul­

ums which are acceleration-insensitive but have a period different from 

84 min. The idea is to give a survey rather than a profound discussion 

since the examples offered speak for themselves so to say. At any rate we 

would like to let the reader see for himself that the sweeping generali­

zations found in the textbooks and as quoted in our previous chapter can't 

be made to hold. There is much more to "gravity oscillators" than one 

would at first sight suspect. The books SCHULER, 1958, and MAGNUS, 1960 

give interesting treatments. Of the many possible forms we will show only 

those that have some relation to the Schuler principle and the misconcep­

tions often found in the textbooks. 

4.1 Starting points 

4.1.1 Conditions for acceleration-insensitive pendulums 

Some two centuries ago d'AlEMBERT (1717 .... 1783) determined the conditions 

under which a physical pendulum will keep pointing towards a predetermined 

fixed centre point independant of accelerations of its suspension point. 

In 1923, SCHULER described the principle anew and showed how a physical 

pendulum -- suspended in a vehicle -- can be made to keep vertical to the 

earth's surface in spite of accelerations of the vehicle (see fig. 4.1.1 - 1). 

If we impose the requirement a = 8 and a = 8 we arrive at the condition 

given by SCHULER (1923) in his eq. (5) as 

= .L 4.1.1 - (1) 
Ma. 

where R = radius of trajectory 

J = moment of inertia of the pendulous body 

m = mass of the pendulous body 

a = distance between the suspension point and the 

centre of inertia of the body. 
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M = centre of earth 

CI = centre of inertia of mass m - SP = suspension point of mass m 
/' .....- R radius of trajectory 
/' ",,-"- 8 travel angle of SP , 

" '\ 
a inertial rotation angle of m 

Ssp travel distance of SP 
R 

SCl: travel distance of CI 

a = distance between CI and SP 

Fig. 4. 1 • 1 - I. Physical pendulum 

(arbitrarily shaped mass m) on cir-

I / 
cular trajectory around the earth. 

He left it unmentioned whether J is the moment of inertia around SP 

(J sp = fr 2dm + rna) or around CI (JCI = fr 2dm), and also whether R is to be 

taken as the trajectory Rsp of the suspension point or as RCI of the centre 

of inertia. 

For a pendulum with dimensions as given in SCHULER's theoretical example 

(1923, p. 346, top left), namely with a radius of gyration r = 2m and a 

trajectory radius R ~ 6400 km, the value for the distance between SP and 

CI becomes a ~ 0,6.~m, a value so small that virtually J sp = J ct = J and 

Rsp = RCT = R. 

This approximation, however, will no longer do for demonstration models 

with a relatively small trajectory radius R. 

Because SCHULER, and later also other authors, use the rigid shaft pendulum, 

or even the string pendulum, to explain the functioning of acceleration 

insensitive pendulums, it appears to make sense to examine the significance 

of J sp ' Je'I' Rsp ' ReI' and the possible relationship between them. 

The following types represent the range of pendulums to be considered for 

this purpose in eh. 4.2: 

- the physical pendulum with 6 point masses 

" " " 

" " " 

" 

" 

4 

2 

" 

" 

- the rigid shaft mathematical pendulum 

- the mathematical string pendulum. 

" 

" 
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4.1.2 Pendulum periods in an inhomogeneous gravity field 

Although oscillation period plays bo role whatever on the conditions 

making a pendulum acceleration insensitive, but is merely the consequence 

of placing the device in a gravity field, many authors identify correct 

trimming of the pendulum to make it acceleration insensitive with the 

Schuler-period, as is evidenced by frequent statements like "Every device 

with an 84-minute pendulum period is a Schuler vertical reference". 

The simple, string or rigid, mathematical pendulum is usually said to have 

an oscillation period which is described by the formula 

T = 2frj~ . 4.1.2 - (I) 

It is often overlooked, that this formula cannot be applied to just any 

mathematical pendulum at any location in the intra- or extraterrestrial 

gravity field. There are many situations, in which the pendulum will show 

a period of 84,4 min., but only one of these can be regarded as an accele­

ration insensitive vertical reference. So in ch. 4.3 we will give a survey 

of all the situations and the corresponding periods. 

After that, in order to examine the relation between acceleration insensi-

tivity and pendulum period we shall study the behaviour of the acceleration 

insensitive physical pendulum in the inhomogeneous gravity field. (ch.4.4). 

4.2 Moment of inertia and radius of trajectory of a number of pendulums 

4.2.1 General physical pendulum 

~~!!!.!:ll~E~!.!:~!! 

This type is represented as rigid body of arbitrary shape that is carried 

by a friction free universal joint at a point SP which is situated at a 

distance "a" from the centre of inertia CI of the body. 

Fig. 4.2.1 - 1 

Physical pendulum of arbitrary shape 
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~~~~g!§_~!_ig~!!!~ 

With respect to CI and SP these are respectively 

JCI = Ir'l.d.m 4.2.1 - (1) 

and 
JsP = leI + Ma

2 = fr2d,m. .... mo...
2

, 
(2) 

where r = radius of gyration and m = total mass of the body. 

4.2.2 Six point mass physical pendulum 

~~~gl!~E!!£i:~~ 

As far as inertial properties are concerned the arbitrarily shaped body of 

ch. 4.2.1 can always be substituted for by another body of arbitrary shape 

as long as the ellipsoids of inertia of both bodies are identical. 

A system of six rigidly interconnected point masses is a very handy substitute. 

Fig. 4.2.2 - 1 

Six point mass model body 

The six point masses, each 1/6th of the total mass m, are positioned at the 

distances c, d, and e from the common centre of inertia on a system of three 

axes orthogonal to each other. These are then the three principal body axes. 

The whole system is suspended in SP at a distance "a" from CI. 

Moments of inertia 

The masses on the z-axis do not contribute to the moment of inertia when the 

body rotates around the z-axis. Thus 

T M j2 2 WI 2 1 (colt 2) 
.... CJ = 2. '6 (4. + '6 e = 3m +e. 4.2.2 - (1) 

When the rotation axis passes through SP while being parallel to the z-axis, 

the moment of inertia will be 

(2) 
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g~~~~_~~_~E~i~~~~EY 

According to th condition for Schuler tuning given in eq. 4.1.1 - (I) 

we try 

'ReI -
Jet 
ma. 

, 
so that, with 4.2.2 - (2), we get 

(o..~+ e.~) 

= ~ a. 
Now, from the geometry in fig. 4.1.1 - I, we may write 

'RsP = 'Rcz +a 

4.2.2 - (3) 

(4 ) 

(5) 

Rearranging and multiplying this last expression by m/m, we see that 

'RsP = 

which, when compared with 

l?sp = 

m [t (c:l~te.l) t 0.
1
] 

ma. 
4.2.2 - (2), shows 

JsP 
rna. • 

(6) 

(7) 

This means that using the moment of inertia around the suspension point 

results in the radius of trajectory of the suspension point, and conver­

sely, using J CI results in RCI ' in the formerly ambiguous expression of 

eq. 4. I. I - (I). 

4.2.3 Four point mass physical pendulum 

f~~!~g!;!E~~i:~~ 

As long as we are only interested in rotations around the z-axis we can 

leave out the two masses lying on that axis. But to get the moment J sp 

around the axis parallel to z right we will have to add the left-out 

masses to the rest. We thus arrive at a simple model with four point 

masses m/4 each and new, slightly reduced values of d and e. 

z 

y 

SP e 

"'"­
d 

Fig. 4.2.3 - I 

Four point mass model pendulum 

x 
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Again, like in fig. 4.2.2 - 1, there is a suspension point SP and the 

centre of inertia CI. The formulae corresponding to this model are as 

follows. 

Ju = 2 ';; d. 2 
+ 2 ~ e,.2 =- ~ (eLI. + e Z

) 

Jsp = Jet +rna.2. = mg (d.2.+e~) +0.1.] 

4.2.3 - (1) 

(2) 

'ReI 
Jo f (d.~ + e:) 

- - = 2' rna. Cl 

(3) 

Rsp 
JC.I i (ell + e 2

) 
+ a.. - - l' MCl. a. 

( 4) 

4.2.4 Two point mass physical pendulum 

~~!!gg!!!~!i~!! 

A third kind of model for a physical pendulum is that with two point 

masses. Many interesting situations can be studied with this simple model 

and it has been used in our chapter 2. Having its mass concentrated in 

one axis it is a substitute for a thin rod. 

y 

Fig. 4.2.4- - 1 
sp ....... e 

Twin mass pendulum model 

;; 
Z 

e 
X 

m 
2" 

Just as with the previous models its SP is at a distance "a" from the CI, 

but its point masses now have half the total mass each. 

The rotation axes to be considered ly in the xz-plane or run parallel to it. 

Moments of inertia 
------------------

4.2.4 - (1) 
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JsP = Jet + ma. 
z. 

= m (e2. + 0.'2.) 4.2.4 - (2) 

ge~ii_~!_!!ei~S!~!Y 

k?eI = 
Jet -

e2. 
mao a 

(3) 

l<sp - J.P = 
e2 

+a 
Ma. a 

(4 ) 

!L~E~sieLSe~~ 

If we choose to make a = e, i.e. to place SP at one of the point masses, 

we get 

Jv = 2m.a2. = 2me.2. 

1<a = a. = e 

1<sp = 2a. - 2e 
I 

/ 

/ 

/ 

-/ 
/' SP 

,/ 

Fig. 4.2.4 - 2. "a" made equal to radius of gyration e 

\ 

\ 
e 

That means that the radius of the trajectory of the suspension point is 

equal to the total length of the pendulum. Thus the point mass not 

"captured in the vehicle" is at the centre of the trajectory and remains 

at rest. This situation resembles that of the rigid shaft mathematical 

pendulum which is to be treated in the next paragraph. 

This special case also corresponds with an arbitrary physical pendulum 

suspended at its radius of gyration, a situation with interesting impli­

cations treated in SCHULER 1958, § 3.4. 

4.2.5 Rigid shaft mathematical pendulum 

~~!!gg!!E~.!i~!! 

\ 

The rigid shaft mathematical pendulum is imagined to consist of a point 

mass (with zero radius of gyration) at the lower end of a mass-less rigid 

shaft, the upper end of which is hinged to the suspension SP. With this 

pendulum the distance "a" from its centre of inertia CI to its suspension 

point SP is equal to its length: a = f. 
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Fig. 4.2.5 - 1 

Rigid shaft pendulum 

CI m 

Moments of inertia 
------------------
Because the radius of gyration of a point mass is zero: 

Ja - m.r2 = 0 4.2.5 - (1) 

Jsp 2. mel -ma. = (2) 

~~~!!_~~_EE~i~EE~E~ 

Because the condition 4.1.1 - (1) and the eqs. 4.2.2 - (3) and (7) we 

find 

'RC:I = = o (3) 

1?sp = a. = i. ( 4) 

The radius of trajectory of the SP of such a pendulum thus is equal to its 

length, and the pendulum bob remains stationary at the centre of the tra­

j ectory. 

4.2.6 Mathematical string pendulum 

~~!!gEi!!E~E!~!! 

This type of pendulum consists of a point mass with negligible radius of 

gyration (r ~ 0) hanging from a mass-less, nonrigid string that is fixed 

to the suspension point SP. 

Fig. 4.2.6 - 1. 

String pendulum 
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~£~~~~~_£~_!~~E~!~ 

Again, as in 4.2.5, this pendulum has no moment of inertia with respect 

to cr. But, contrary to the rigid shaft type, this string pendulum 

neither has a useful moment of inertia around its suspension point SP. 

For one way of defining this moment would be as 

Jsp = Tsp/« 4.2.6 - (1) 

where Tsp is the torque applied to the pendulum around its suspension 

point, and ~ the resulting angular acceleration of the pendulum. 

However, the string being flexible, no torque can be exerted via SP, and 

Tsp and a have no connection with eachother. So, in the light of what we 

shall be saying in par. 4.2.9 J sp becomes meaningless. For the string 

pendulum we get 

I. 
= my ; Sc.na r .. 0 =} Ja = 0 

= meAnll'l.9 fU( . 

'RCJ - ... 0 

1<sp = 

(2) 

(3) 

(4) 

(5) 



4.2.7. Summary of the properties of the pendulums treated 

6 pOlYl~ YM~ 2. P"u,J moss 
! 

TYPE OF "Ph.~~~~L 4 'Potnr mll.t;S ~i id. sha(i- Se:rinq ~pe 
'PENDULUM ~ p~n d.u.lu. m model V'Ilotk.L t'ltodd ~.~ m oJh')?&1d.u!.wrl 

l 

\I Y IJ SF! SP 

:~ 
e SP . e SP ~ ~ CONFIGURATION .. a. a,-e. ~ 

:z~ ~ z>: ~ z--: B 
\.. 'J x 

mk, '"/4 ""Y2- , cr~ cr. 
~ .m .rn 
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MDMfNTS {Jet: Sr1d.m % WI (d. 2+~) 'I:HYl (cF +-i) me.
2 

'Z.ZY'O :tero 
OF 

rn. r !(012 ... e.~+o.~ mH@1+e~+a!] m(e? ... ci) I NE'Rfi A SSP = fr'o.l\II ... M",2 tn0.-
1 = me.z. 11l.eOIllnq less 

'RADII fRa= 1cdrna. .!. dt +e'2. J.. dl+e t Q.'2. 

zero :3 a. 2- 0- 0- '1.do 
Of' 

.1- dt. .. e"t. I clt+e'l. e.1-
TRAJE(.TIlRV 'Rsp' JSP/ mo.. 0.. +0. -- +0.. +-0.- Q=t Yfleanln9k1~t 3 2 a. Cl 
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4.2.8 Conclusions 

~ Distinguishing between usable and unusable pendulums 

The following types can be made to comply with the condition R = J/ma 

(see eq. 4.1.1 -(1)): 

a). the rigid shaft mathematical pendulum 

b) all forms of physical pendulum. 

The string type pendulum does not physically exhibit a moment of inertia 

when a torque is applied through the suspension point. 

As we shall see in par. 4.2.9 this renders it unusable even for model 

purposes. 

2 Moment of inertia and radius of trajectory 

As to the ambiguity mentioned just below eq. 4.1.1 -(1) the following 

can be said: -

a) The rigid shaft pendulum has but a moment of inertia with respect to 

SP. The moment of inertia around its centre of inertia is zero. 

It follows that the condition R = J/ma can only mean Rsp = Jsp/ma. 

b) With each of the other types of physical pendulum there are two 

possible interpretations 

on Jcr 
"-Cl - Mel 

of the condition R = J/ma: 

'RsP = 
J~ rna: . 

Usually one would work with Rsp ' the radius of the suspension point's 

trajectory, since that point is given by the actual physical design. 

But working with Rci can be handy at times, such as is done e.g. in 

ch. 6.3. 

l The relationship of Rcr ancl Rsp with "a" and r in a physical pendulum 

Since with all physical bodies we can write J = mr2 (where r is the 

radius of gyration), the Schuler condition R = J/ma can be written as 

either 

or 

"ReI = 

"Rsp = a. 

r 

+ct ..Fa. 
r 

i 
- CiR"" 4.2.8 -(1) 

= --.L.+~ air '('. ( 2) 
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R a 
When we draw a graph of r = f (r) for both these cases (fig. 4.2.8 - I) 

we see that for every desired centre of inertia trajectory radius there 

is only one value of air, whereas every suspension point trajectory 

radius Rsp > 2r can be achieved by two different values of air. 

4 

3 

t 
2 

1 

Fig. 4.2.8 - I. 

1 

~ rigid shaft per1dulum 

(Rsp = a) 

ReI/r 

2 _ aIr 3 

Trajectory radius R/r as a function of pendulosity air. 
(r is the radius of gyration of the pendulum body) 

We can consider two extreme ranges 

(iS~) a.«r =} l?sp= ~'2. + a. ~ 

of air: 

'('2. 

a = l<c.x· 4.2.8 - (3) 

This means that the suspension point SP almost coincides with the centre 

of inertia CI. SCHULER (1923) shows an example of this situation, and this 

example is mentioned right at the beginning of our ch. 5. (p.-71-). 

(4) 

In this range the physical pendulum begins to approach the properties 

of the rigid shaft mathematical pendulum as can be seen from the asymp­

totic line (dashed) in fig. 4.2.8 - I. 

In the graph we also see that the smallest possible suspension point 

trajectory is Rsp = 2a. The corresponding configuration was shown in 

fig. 4.2.4 - 2. It coincides with the mode of suspension that yields the 

shortest possible period of oscillation of a given body in a given gravi­

ty field (see SCHULER 1958, §3.4.). 
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i Relationship between the moments of inertia and the trajectory radii. 

Combining the eqs. 4.2.2 - (3) and (7) we find that 

• 4.2.8 - (5) 

4.2.9 Modifying trajectory radius by external torque 

The situation described by eq. 4.2.5 - (4) for the rigid shaft pendulum, 

namely, 
'Rsp -

means that this pendulum (provided that there are no gravitational forces 

acting on it) will always rotate around its centre of inertia CI (i.e. the 

centre of the bob) when its suspension point is sUbjected to an acceleration 

s at right angles to the shaft. Thus the length of the pendulum is at once 

also the radius of trajectory of its suspension point. 

If we wished to keep the pendulum parallel to its initial direction under 

said acceleration a torque would have to be applied according to 

T.,=mfs, 4.2.9 - (1) 

where m is the mass of the bob and s the acceleration. This torque would 

change the radius of trajectory from Rsp = ~ to Rsp + 00. By applying a 

smaller total torque 

(2) 

we can adjust the radius of traj ectory to any desired value (see fig. 

4.2.9 - 1 ) • 
SP 

S 
~c Fig. 4.2.9 - I. 

An external torque renders 

Rsp adjustable. 

Tc = ext. torque (see eq.4.2.9 - (2)) 

s = suspension point acceleration 

M am 8m = mechanically produced angles 

Cl.c 8c = angles produced with Ttot 

Oc/ M, M' centres of trajectory 

/ I 

M' 
I 

I 
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According to eq. 4.2.9 - (2) Tc must be proportional to s if Ttot is 

to be so too. The product m~s can be called a mechanically produced 

torque, so Tc is an artificial externally applied counter torque. 

To make it proportional to s we could use the signal of an accelero­

meter to feed an electromechanical torquer-circuit: 

S 
ml 

To 

pendulum 

• K. 
Us 

KT 

accelerometer torque motor 

+ 
-

Tc 

Ttot 
Jsp 

Fig. 4.2.9 - 2. 

Bloc k diagram of the artifi-

cial 
.. 

ly "lengthened" pendulum with 

s-deduced countertorque. 

It is also possible to use an angular accelerometer for generating Tc ' 

In the inertial navigation system described by HECTOR and XSTRtiM (see 

our fig. 5.1.2 - 1) this is done by differentiating the output signal of 

a rate gyro. The basic block diagram is as follows: 

F 

A 

S 

ig. 4.2.9 

s previous 

rr.l 
To 

- 3. 

figure, but with 

a-deduced countertorque. 

Ttot .. 

.. 
Q:'c 

-"' JsP 

+ 
-

Tc 

'-- KT 
Uii 

K, 

The abovementioned examples show the electronic solution to generating 

the desired countertorque. But it can also, in principle, be generated 

by purely mechanical means, namely e.g. by fixing a reversed pendulum 

to the top of the original one. The counter torque will then be automa­

tically produced by the properly dimensioned added pendulum: 



SP 

m, 

counter· 

torque 

pendulum 

original 

pendulum 
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Fig. 4.2.9 - 4. 

The mechanically generated 

counter torque 

The block diagram thereof is similar to fig. 4.2.9 - 2: 

5 
m,l, 

ae 

X J sp 
+ 

- Jsp=mit,'+ m.e: Fig. 4.2.9 
Tc 

Block diag 

- 5. 

ram of 

previous f igure 

'-- m.t. 

Of course this is identical with the dual point mass pendulum described in 

par. 4.2.4. In this context we would call it the torque reduction model, 

whereas fig. 4.2.9 - 3 represents a moment of inertia enhancement model. 

Purely mechanically it can be conceived of as a rigid shaft pendulum 

with added moment of inertia: 

SP 

Fig. 4.2.9 - 6. 

The mechanically installed additional 

inertia 

Its equivalent would be the four point mass body in par. 4.2.3. 
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4.3 Oscillation periods of various mathematical pendulums 

Having discussed the conditions that lead to physical bodies being 

"Schuler tuned" we shall now examine the oscillation periods of such 

bodies in a gravity field. 

4.3.1 Pendulums in a homogeneous gravity field 

If we interpret the restoring torque or force as a sort of spring 

reaction we can calculate the oscillation periods of bodies like 

those compiled in 4.2 by means of the well-known formulae of inertia­

spring systems: 

T - 2.1T IT 
/~ 

0'(' 

Here J = mr2 = moment of inertia of the body 

S' = Torque/a = angular spring rate 

m mass of the oscillating body 

S = linear spring rate involved 

T = oscillation period. 

4.3.1 - (1) 

For the rigid shaft mathematical pendulum with small excursion angles 

in a homogeneous gravity field we get 

SP 

i T = 2.1tj~ = 2tr/::g~2 - 2rr/f . (2) 

m 

As long as a given pendulum is short compared with its distance to 

the centre of the gravity field it will comply reasonably with this 

formula. But with lengths comparable to the distance of its bob from 

said centre not only the magnitude but also the directional divergence 

of the field near the bob begins to play a significant role even when 

the amplitudes of oscillation are very small (see next two chapters). 

4.3.2 Internal and external earth gravity field 

The form of the gravity field of the idealized earth, which is given in 

our par. 1.1, shall be used in our following discussion of the periods 

of pendulums with which the inhomogeneity cannot be neglected. 
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The main characteristics of this field are repeated here: 

Inside the earth g = 

9 = 

- ~·R 4.3.2 - (I) 

K'o 

Outside the earth: = 9.1?0 .1(-2. 

Herein go = gravity acceleration at earth surface = 9,81 m/s2 

Ro = earth radius = 6372 km 

R distance from the pendulum's centre of inertia 

to the centre of the earth. 

4.3.3 Mathematical pendulum with bob at earth surface 

Situation: 

• 

Fig. 4.3.3 - I. Pendulum with bob at earth surface. 

(2) 

The pendulum has the length ~ and is hung from its suspension point SP 

such that its bob grazes the earth suface. This means, that according 

to any of the formulas 4.3.2 -(I) or -(2) its bob experiences a gravi­

ty pull of the order go. 

Ouside its equilibrium position the restoring force acts on the bob: 

F ... m. S·sin.o.:: . 4.3.3 - (I) 
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If we limit our considerations to very small excursions B we may write 

F = mgooc . 4.3.3 - (2) 

-Now 
()( = (l + i , 

(3) 

and, with x as the horizontal excursion of the bob, 

~= 
X . 

~ =- L 
T , 

1<0 
(4) 

o that 

0('= 
X +~ X· 

.e + 120 
T = £·1<:'0 1('0 

(5) 

.and 
(6) 

The restoring force being proportional to the excursion, the ratio Fix 

can be regarded as a spring constant 

(7) 

.The well-known expression for the oscillation period of a mechanical 

mass-spring ~ystem can now be applied, and we get 

(8) 

The first part of this equation is equal to the Schuler constant To 

(cf. eq. 1.3 - (1) and (5~, and the period becomes 

T = To) t!'Ro . 4.3.3 - (9) 

For very short pendulums (~ « Ro) we get the familiar formula 

(10) 
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When the length equals the earth radius (2 = Ro) the period is 

T./fi o 2 -
84,4",.i\ = 59,7 min . 
[2 

4-.3.3. - (II) 

When the pendulum's length finally becomes much larger than earth radius 

(2 » Ro) the period no longer depends on the actual length 2 but is 

the Schuler constant: 

T = To = 84,4 m.U1... ( 12) 

Graphically we can summarize these circumstances as follows: 

1 

,To 
----~------------/1 

10~'+-----------~-----------+-----------i------------t-----------~-- ~, 
1 .• la' 10' 10' 10' -.'Ro 

Fig. 4.3.3 - 2. Periods of earth surface pendulum 

(Also valid for eq. 4.3.4 - (2) if R is substituted for Ro)' 
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4.3.4 Mathematical pendulum with bob in the internal field of the earth 

Situation: 

Fig. 4.3.4 - I. Pendulum bob in the internal field 

Except for the role of Ro ' the geometry here is idential with that of 

the previous paragraph. We can copy eq. 4.3.3 - (8) substituting R, 

g for Ro ' go' and the oscillation period. becomes: 

4.3.4 - (I) 

According to eq. 4.3.2 - (I) the ratio Rig is a constant inside the 

earth, so using the Schuler constant (cf. e.g. 4.3.3 - (12», we have 

4.3.4 - (2) 

for the oscillation period of a mathematical pendulum with its bob at 

an arbitrary place in the internal gravity field of the earth. (Note 
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that it is the asymptotic value for small angular excursions ~). 

The discussion of this formula is the same as in the previous paragraph, 

and fig. 4.3.3 - 2 also is valid. It also holds for R = 0, where g = ° 
and a ~ y ~ 900 • This is shown in the next paragraph by using dg/dR. 

4.3.5 Mathematical pendulum with bob at earth's centre. 

Situation: 

I 

·MA---
x

-

Fig. 4.3.5 - 1. Pendulum bob at earth centre 

At very small excursion angles a the gravity force F trying to move the 

bob back to its equilibrium position following a disturbance will always 

act at right angles to the shaft. Its magnitude is 

F=mg:=.ml;x, 4.3.5 - (I) 

where x is the linear excursion of the bob. 

According to eq. 4.3.2 - (I) the field strength is proportional to the 

distance from the centre, so we have 

*=1t= (2) 

and 

F = m ~X. (3) 
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Compare eq. 4.3.3 - (7) for the idea of the spring constant, for which 

we now get 

s= £-
X 

4.3.5 - (4) 

From this the period follows as 

T = 2.'/f' /rg- = 21'(/ ~: :0 To:O SIf,4-:.... (5) 

Note that T has become independant of the pendulum length l 

Here the fallacy of comparing a Schuler-tuned system with a mathematical 

pendulum with bob at the centre of the earth, by equating their oscilla­

tion periods, becomes very evident. For, a Schuler-tuned system flown 

at a very greathight will have a period much longer than To, whereas the 

comparable pendulum will always keep its 84,4 min period. 

4.3.6 Mathematical pendulum with infinite length and bob in the internal 

field 

From the formula (2) found in par. 4.3.4 it follows that for l ~ ~ depen­

dance on l vanishes: 

T= To!£~R -- To. 4.3.6 - (1) 

An infinitely long pendulum with its bob at an arbitrary distance from 

the earth's centre, but within the internal field appears always to have 

an oscillation period of 84,4 min. 

4.3.7 Point mass on a straight trajectory in the internal field 

point mass 

oM 

Fig. 4.3.7 - 1 

Point mass in a straight 

"tunnel" through the earth 
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This situation is equivalent to having a pendulum of infinite length. 

The point mass thus must always oscillate with To' This fact, as derived 

from eq. 4.3.6 - (1), can also be shown by the following derivation. 

We assume a point mass following a straight line through the internal 

field at an arbitrary distance Rmin from the earth's centre (fig. 

4.3.7 - 2). There shall be no friction. 

I 
X=O ........ ' 

m 

Rmin 

a 

M 

Fig. 4.3.7 - 2. Point mass on a straight trajectory 

Its equilibrium position will be at the point of greatest proximity to M, 

the centre of the earth. We designate that point x = O. The restoring 

force governing the movement of m is the x-component Fx of the gravity 

force Fg : 

-FJ( = FS sinO<. - 4.3.7 - (1) 

With eq. 4.3.2 - (1) we have 

<J~ = ..!d!..1< 1<'0 ) 
(2) 

and since sin ~ = x/R it follows that 

m...2!... X lli?o • (3) 

Using, as in 4.3.3 - (7), the idea of the apparent spring constant 

s = :.fr. _ 
X 

(4) 

we arrive at the predicted 

= 2 '/t'/~ = T ~o o. (5) 
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Note that, apart from assuming frictionless movement of the mass, no 

mathematical assumptions as to small excursions or the like had to be 

made to find this result. 

4.3.8 Orbital period of a point mass in an arbitrary plane in the 

internal field 

The movements of the bob of a mathematical pendulum with infinite length 

were not restricted to a particular direction of the oscillatory movement. 

In general, the movement would be a Lissajons figure in a plane, and since 

the"stiffness" of 'the bob is equal in all directions, these figures will 

be circles or ellipses. 

Because of the equivalence of a point mass on a straight line and an infi­

nite pendulum, we can also envisage a point mass moving freely in a plane, 

describing circles or ellipses. 

The orbital period must be equal to the oscillation period determined in 

the previous paragraph, namely To. Of course this follows directly from 

the linear superposition of two orthogonal oscillations, but it can also 

be shown using the equilibrium between the centripetal gravity force Fx 

and the centrifugal force Fc on a circle. 

or bital Plane 

orbit 

earth 

Again, like in eq. 4.3.7 - (3), 

g. \I" 

-;;;::;- Ie , 
"0 

where now rc is the orbital radius. 

Fig. 4.3.8 - I. 

Point mass in an orbital plane 

4.3.8 - (I) 
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The centrifugal force is 

4.3.8 - (2) 

with w the arbital angular velocity. Equating Fc and Fx yields 

(3) 

and thus 

T = '2. 'if" / ~: = To = Blf., 4 ~ . (4) 

In this equation the orbital radius no longer appears, and neither does 

it contain the distance between the orbital plane and the earth centre M. 

Any infinite pendulum grazing the earth as in fig. 4.3.8 - 2 would also 

always have a circulation period of 84,4 min. 

I 
~M 

[ 

I 
SP 

!~=oo 

m 

Fig. 4.3.8 - 2. Infinite pendulums grazing the earth: circulation period 

84,4 min. 
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4.3.9 Mathematical pendulum in the external gravity field 

The pendulums treated up to here moved with their bob in a gravity field 

in which the pull g was proportional to the distance R from the field 

centre M. Quite different situations arise in the external field where 

• 4.3.9 - (I) 

The general formula for the oscillation period at small excursion angles 

can be derived as follows (see fig. 4.3.9 - 1). 

"- , 

-. ,- , , 

" 
Siha , -, - 9 

a \ 

\ 

R )l \ 

earth 

The restoring force is 

F= 

which for small excursions becomes 

F = /1M.. ~ oc.. 

Fig. 4.3.9 - 1. 

A pendulum in earth's 

external field 

With eq. 4.3.9 - (1) and the following geometrical relationships (fig. 

4.3.9 - 1): 

()C = ~+g 

~::: -t j ~ = ~ 

ex = X ( 1~R ) 

(2) 

(3) 

(4) 



-61-

we get 

t+l?·x 
tR ' 

4.3.9 - (5) 

• (6) 

The oscillation period then becomes 

(7) 

If we have a very short pendulum, i.e. ~ « R: 

(8) 

which is the same formula as found for the short earth surface pendulum, 

eq. 4.3.3 - (10)," multiplied by the distance ratio R/Ro. 

If we have a relatively long pendulum (~ » R) there remains 

T-b--. 'Rff: 
1<0 90 

(9) 

Here the period is still a function of the distance R, but its depen­

dance on the pendulum length ~ has vanished. 

Of course, inserting R = Ro in all the above formulas yields the fami­

liar expressions for the earth surface pendulum (ch. 4.3.3). 

If we take a very long pendulum, the only possibility to tune it to 

To = 84,4 min. in the external field is to choose R = Ro , that is to 

make it an earth surface pendulum. For any R of larger value the period 

only becomes longer. But a short pendulum (eq. 4.3.9 - (8)) can be tuned 

to 84,4 min. at any place in the outer field by making 

=jf. 
.i= • 

(10) 

To give a numerical example let us take R = 10 Ro' 

Then 
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This means, that a pendulum of approx. 64 km length will swing with the 

84,4 min. period if its bob is at a distance of some 64 000 km from the 

earth centre. But by no means this one can be regarded as an acceleration 

insensitive vertical reference with respect to the earth. 

4.4 Oscillation periods of Schuler-tuned physical pendulums 

Whereas a mathematical pendulum by itself can only be made acceleration 

insensitive by placing its bob at the trajectory centre, it can be tuned 

to 84,4 min. under a variety of conditions. Contrariwise, a physical 

pendulum can, at least in principle, always be made acceleration insensi­

tive; however, the ensuing oscillation period will only be equal to the 

Schuler period under exceptional conditions. 

MAGNUS, 1971, 

this property 

gives the comprehensive formula (eq. 12.60 on p. 395) for 

*' of the physical pendulum ). In our treatise we will give a 

simple derivation for the twin mass body only. 

4.4.1 Twin point mass body in a homogeneous gravity field 

The configuration is the same as in our ch. 2, namely two point masses 

connected to each other by means of a rigid mass-free rod, pivoted at its 

suspension point SP at a distance "a" above its centre of inertia CI. 

The total torque acting on this body is (cf. fig. 4.4.1 - 1): 

With 

we get 

~ =Fa = 

Y1 = Y-a. 

'Xo « 1 
'(2, - 'r +0. } 

*) See translation of this passage at the end of our ch. 3.6 

under number (12). 

4.4.1 - (1) 

(2) 
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r is the distance between 

cr and the masses m,. m. 

Fig. 4.4.1 - I. Twin mass body in homogeneous gravity field 

The well-known formula(see 4.3.1 - (I» for the oscillation period of a 

spring-mass-system is 

T= 

and for the given pendulum 

so that 

I = l,sp 
'§' = 11 

0(0 

T ... 2'11" 

, 4.4.1 - (4) 

(5) 

.i (!.'1. +a) 
90 Q. • 

(6) 

The pendulum was assumed to be acceleration insensitive, thus from eq. 

4.2.4 - (4) 

I<lOP - +0. (7) 

and 

T = 2Tr j ~: . (8) 
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If we choose for the trajectory radius Rsp the earth radius Ro we get 

the Schuler constant 

T = 21t j ~: = To =- S4,4 
. 

m.t.n. • 4.4.1 - (9) 

Note that there is incongruity in the fact that we assumed a homogeneous 

gravity field while introducing a finite trajectory radius with eq. 

4.4.1 - (7). But exactly this is the effect of the common practice of 

neglecting the gravity gradient when explaining the Schuler principle by 

means of a physical pendulum. MAGNUS, 1971, mentions this fact explicitly 

(see under number (12) at the end of our ch. 3.6). 

4.4.2 Twin point mass body near earth surface 

Inthe homogeneous gravity field absolute dimensions of the pendulum do 

not matter. But in the inhomogeneous field certain terms can or cannot 

be neglected according as the pendulum dimensions compare with the tra­

jactory radius. In order to be able to give a simple calculation of the 

oscillation period we shall assume the trajectory radius to be earth 

radius, and the radius of gyration of the pendulum (which is half the 

distance between the two point masses) to be one meter. From this there 

follows a theoretical value of the suspension point distance "a" that 's 

impractically small (see introduction to our ch. 5), but for the sake of 

Qur calculation example we must just accept it. To summarize 

1< =1<., = 6?>12km } 
Y' - im 

a. = f'/'Ro = 0,16 ·10 -bm 

4.4.2 - (1) 

The calculation then proceeds as follows. 
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r as in fig. 4.4.1-1 

1<~ :::: 

1<: = 

r' 
~ ~ 

Fig. 4. 4. 2 - 1. 

The pendulum in the inhomo_ 

geneous gravity field 

1<.' - r:) 
2 a 
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q 
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With the dimensional details 4.4.2 - (I) and with ao « 1 the neglec­

tions now can be introduced: 

12' -1- 1<0 CDS ( ~o 0(0 ) 

if Y'1fr<O 
~ 1<0 

1?~= T<. (Ya ~o) t:::: '1<0 o CQs 'T?o"\ - "tlf?o 
4.4.2 - (3) 

r'= Y"1 C6S 
0(0 

1 iT r:./eo 
t:::: f1 

) 0(0 
1"2. = r1 Ws 

1-V'a/Ro 
~ 1"2 

As in par. 4.4.1 we determine the restoring spring constant S by first 

deriving the total torque M acting on the body: 

(4) 

where p and q are to be taken from 4.4.2 - (2) and the forces are 

(5) 

Making use of 4.4.2 - (2) and (3) we finally find the torque acting on 

the body as composed of a number of separately indentifiable contribu­

tions, namely 

M - (M "'Ro". i 
- T go Vi ('I<IoHJl " .. "tiRo - m y; '1<0" 

"290 2 "(1<0-l"a)2 " ,,- ~Z/RJO(O 
... . -..........,.- , .. . . 

• • • 

A B C A 'B C 

A: torque in a homogeneous field; these terms also give the dimension 

of torque to the equation 

B: dimensionless corrective terms introducing the difference in the 

value of g at ml and m2 

c: dimensionless corrective terms dealing with the difference in the 

in the direction of g at ml and m2' 

(6) 
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Due to the torsional stiffness being 

.... 5 = M 4.4.2 - (7) 
0(0 

the bracketed part of 4.4.2 - (6) 1S the expression we are seeking. 

Rearranging and simplifying it we find: 

(8) 

Because of 4.4.2 - (I) the denominator of this expression becomes 

practically unity: 

and we are left with 

-i3 
1-3·W ) (9) 

(IO) 

Rewriting this by converting to the appropiate series and neglecting 

higher order terms (which may be done due to 4.4.2 - (I))we arrive at 

Using rl = r-a and r2 = r+a this becomes 

£; = ~ go (r-o. -(V'+G\) - b ('I"-o.[t-~)) 1 
= TC60 (-2a - 6.:!3 + 6 0...2.) 

1<0 1<0· 

} "" 

(12) 
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To make the pendulum acceleration-insensitive we must demand that 

(see e.g. 4.2.4 - (3)) 

This yields 

4.4.2 - (13) 

In our example 4.4.2 - (1) 

so that effectively 

~ ~ 2,5. W- f4 

1<0 

Again, according to eq. 4.3.1 - (1), the oscillation period is 

T= 2ftj~P =!'ft 
i ('(~ ) 

- -+Q 
~o Q. • 

Since according to 4.2.4 - (4) we have 

and Rsp was assumed by us to be Ro, we finally arrive at 

(14) 

(15) 

(16) 

T = 'if' j~,,e 1=11$: = ~ To = 42.,2 min.. (I 7) 

This result was predicted from the formula given by MAGNUS, 1971, p. 395, 

where he states that a thin rod (the equivalent of which is our twin point 

mass body) will oscillate with said period 1/2 To. 

4.4.3 Twin mass body at a more general distance 

Trying to derive the ge~eral expression for the oscillation period along 

the line we used in the previous paragraph leads to very complicated equa­

tions. If we lift the restriction of small pendulum dimensions but keep it 

as to small excursion angles, we can rewrite eq. 4.4.2 - (6) in a more 

general fashion: 

• at. 
M ~ .. - Y"l/Qo 

-Tfl.\l rca(l\ 0<. ) '1'. c.os( 0<. \1'-
r ~ 1- 'I',If? - .... i- .. IRo}J 

4.4.3 - (1) 
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If we introduce the approximations 4.4.2 - (3) we arrive at the same 

result as in par. 4.4.2. But if we retain some higher order terms in 

working out 4.4.2 - (8) we finally arrive at 

lsi = 4ma.ll [1- +~ + .!(~)1 _ .!.(.!!.)~l 
aO Of ~o 4- ~ 4- 'l?o J ' (2) 

an expression that compares with 4.4.2 - (13). 

With the same pendulum and trajectory dimensions as in the preceding 

paragraph the factor between the straight brackets appears to become 

slightly smaller than I, namely approximately 1_10- 13 • The resulting 

oscillation period thus again turns out to be 1/2 To' 
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5. ACTIVE SYSTEM SCHULER REFERENCES 

This chapter has the following additional sub-divisions: 

5.1 The electronically assisted physical pendulum 73 

5.1.1 The geometry of the vertical indicating system 

5.1.2 The design of the pendulum 

5.1.3 Discussion of the pendulum design 

5.1.4 Interaction between torque feedback and gravity 

5. 1 .5 The block diagram 

5.2 A classroom demonstration model of a Schuler-tuned pendulum 85 

5.3 The electronically controlled horizontal platform 91 

5.3.1 The geometrical situation 

5.3.2 The error input to the accelerometer 

5.3.3 The block diagram 

5.3.4 The transfer function 

5.3.5 Elimination of the error term 

5.3.6 The system realization 

5.3.7 The diff. eq. of the feedback loop 

5.4 Conclusions 99 
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5. ACTIVE SYSTEM SCHULER REFERENCES 

Mechanizations like those shown in chapter 4 are impractical when one 

wants to design an acceleration-insensitive vertical reference for use 

on earth-bound vehicles. This is due to the large radius of curvature 

of the earth's surface which, in consequence of equation 2.5 - (5), 

either requires very large instrument dimensions (represented by the 

radius of gyration r in said equation) or very small displacements of 

the suspension point relative to the centre of inertia of the pendulum 

("a" in eq. 2.5. - (5». In his article of 1923 SCHULER of course men­

tions this fact, writing on page 346: "Such a physical pendulum, how­

ever, is completely impractical; for even with 20,000 kilograms and 4-

meter radius of gyration for the mass, the separation of point of sup­

port and center of gravity is only 0.6 micron".*) 

Incidentally, it is interesting to note that SCHULER mentions a mass of 

20,000 kg. It is difficult for us to believe that he didn't realize 

that the actual value of the mass involved doesn't really matter (see 

our chapter 2.5, second paragraph following eq. 2.5 - (5». It may be 

due to the fact that he was thinking in terms of gravity torques (see 

our chapter 3.1, last paragraph), inter alia for reasons like those we 

give in our ch. 3.5. 

Also the same reasoning error we find in HECTOR, 1968, p. 72. Here the 

author uses the formula 

J = ma.r 

to determine the distance "a" between the suspension point and the 

centre of inertia. He then assumes values for both J and m, which is 

not necessary if we rewrite the formula: 

Q= • 

For use in vehicles one has to resort to systems incorporating active 

measuring and controlling components like accelerometers, integrators, 

torques, gyros. The reasons for discussing the simple physical pendulum 

in SCHULER's original article, and in most textbooks since, are purely 

didactical or academic. 

*) Taken from SLATER's translation in PITMAN, 1962. The value of r = 4m 

is due to a translation inaccuracy. It ought to read r = 2m (cp. 

STRATTON, 1968, p. 508, lines 30 ... 32). 
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Schuler didn't have at his disposal the sensors, electronic circuits, 

and actuators we know now. In his gyroscopic pendulum he uses the 

torque produced when accelerating the system horizontally as a sensor 

to measure the acceleration and at the same time as an actuator to 

swing the pendulum sideways in a controlled manner. Together with gra­

vity this sideway swing represents another actuator to precess the 

gyro according to the inertial angular velocity of the local vertical 

travelling along with the carrying vehicle. 

This instrument, showing a cross relation between acceleration induced 

torque and gravity torque, cannot be designed so as to keep absolutely 

to the local vertical even in theory, as MAGNUS (1971) explains on page 

397. Also, because of this cross relation, it does not lend itself to 

an explanation by means of a simple block diagram as the two kinds of 

instruments to be treated below. We should just like to add, quoting 

MAGNUS, 1971, that provided the angular momentum of the gyro employed 

is sUfficiently large to allow neglection of the relevant moments of 

inertia of the entire instrument, the period of precession due to dis­

turbances will practically amount to the Schuler period, i.e. 84,4 min 

at the surface of the earth, regardless of the gravity gradient. 

The same holds with regard to the oscillation period of all electroni­

cally assisted gyroscopic Schuler references, as MAGNUS, 1971, shows in 

chapter 16.4. 

The reasons for our including these instruments in our treatise 18, (1) 

to complete the treatment of pendulums in ch. 4 with the electronically 

assisted kind, (2) to give block diagrams of these instruments in a 

manner we have not yet encountered elsewhere, (3) to show with these 

block diagrams the decoupling, or rather the absence of coupling, between 

the gravity-generated pendulosity and the condition of Schuler tuning, 

and (4) to give a ba~kground to the description of our classroom demon~ 

stration model. 
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5.1 The electronically assisted physical pendulum 

In chapter 4, one of the pendulums discussed is the rigid shaft mathe­

matical pendulum. For it to be an acceleration insensitive vertical 

indicator it would either have to have its bob resting at the centre of 

,the trajectory, which of course is impractical for terrestrial applica­

tions, or it will have to be provided with compensating torques acting 

around its suspension point. 

Inertial navigation systems using this latter kind of implementation of 

the Schuler principle have been built and tested (XSTR5M, 1965, HECTOR, 

1968). For use in our lecture series we set up a simple block diagram 

distinctly showing the independant natures of (1) the parameter adjust­

ment to achieve acceleration insensitivity and (2) the resulting oscil­

lation period. 

5.1.1 The geometry of the vertical indicating system 

Fig. 5.1.1 - 1 shows a rigid shaft mathematical pendulum suspended 1n 

a carriage above the surface of the earth (SP = suspension point). 

It is to be moved from position CD (8 ~ 0) to positioneD (local vertical 

advanced by the angle 8). The earth is to be considerd non rotating for 

simplicity's sake, since earth rotation and movement of a vehicle can 

be combined to a resultant total inertial movement. So 8 is at the same 

time an earthbound angle and an angle in inertial space. 

II 
I I-~ 

, 17 
t;1 I 

\ 
earth contour 

1// / 
/M 

Fig. 5.1.1 - 1. Pendulum in carriage. 

(Movements to the right and CCW angles and torques counted positive). 
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The objective is to make the pendulum follow the directional changes 

of the local vertical when the carriage moves. In terms of the angles 

shown in fig. 5.1.1 - this means that at all times 

oc = e. 5.1.1 - (I) 

The torque that has to be applied to the pendulum around its suspension 

point to archieve this is proportional to e, and because of the geometric 

relationship 

s = - 1<9 (2) 

it is also proportional to S. From this it follows that, by integration, 

the distance s travelled by the carriage can be computed from the time 

function of the torque. 

5.1.2 The design of the pendulum 

If no torque at all is applied to the pendulum the bob will start lag­

ging behind upon horizontal acceleration of the suspension point. In 

terms of the angles of fig. 5.1.1 - I this means that at the start of 

the carriage (initial values e = a = e = a = 0 = 0) we get 

.. 
> 9 . 5.1.2-(1) oc 

This leads to undesirable transient oscillations rendering the pendulum 

useless as a vertical reference. 

If, on the other hand, we apply a torque so as to keep the pendulum shaft more 

parallel to itself (a = a = a ~O), the pendulum mass would no longer lag 

behind, but advance in front of the movement of the carriage. In terms of 

the angles involved this means 
.. .. 
S ex 

The torque necessary to achieve a = 0 would have to be 

where 

m = pendulum bob mass 

~ = pendulum length 

s = suspension point acceleration. 

(2) 

(3) 

This arrangement corresponds with a symmetric dumb-bell body, like in 

chs. 2.4 and 4.2.6, suspended in its centre of inertia, except that the 
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counter-torque produced by the "upper half" of the dumb-bell now has 

been replaced by the artificial torque produced by some feedback 

arrangement. 

In order to achieve the desired relation 

•• 
8 5.1.2-(4) 

which is equivalent to 5.1.1 - (I), the torque given by 5.1.2 - (3) 

will have to be reduced by a specific amount. We can write 

(5) 

where Te is the artificial countertorque. The angular acceleration 

of the pendulum with its moment of inertia mr2 1S 

-0( = = (6) 

According to 5. I . I - (I ) and (2) this becomes 

To-t-Te 
.. .. ...§... 

-CX= = 
Wlf 2. 1< 

(7) 

By means of 5.1.2 - (3) we substitute for s: 

- WI€ R 
(8) 

or To(1- #). (9) 

For a rigid mathematical or point-mass pendulum, where r = £, we 

finally get 

(10) 

This means that the counter-torque to be added to make such a pendulum 

obey the prescription a = 8 must be less than the mechanical accelera­

tion torque To = m£s by an amount dictated by the ratio of the pendulum 

length and.the earth. radius. 

One way to achieve this is given by XSTROM (1965) and HECTOR (1968). It 

consists of measuring a by means of a rate gyro fixed to the pendulum 

and feeding the differenciated gyro output to ~.torquer affecting the 

pendulum swing (fig. 5.1.2 - I). 
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r----~- --, 
J 
Ifeedback 

_-.-1 

bob 

Fig. 5.1.2 - 1. The pendulum fitted with rate gyro and torquer. 

We can derive the required instrument data in the following way: -

We insert 5.1.2 - (3) into 5.1.2 - (9) and get 

.. D ( '('2. ) Tc.:: - S YY\ t.. 1 - 'R e. 5.1.2 - (11) 

which, with 5.1.1 - (1) and (2), gives 

(12) 

Now the feedback loop of fig. 5.1.2 - 1 has the following character: 

( 13) 

The torquer 1S to deliver the counter-torque, so we equate 5.1.2 - (12) 

and (13): 

(14 ) 

Here the left side of the equation has the electromechanical conversion 

factors KG of the rate gyro and KT of the torquer, and the time constant 

T of an electronic integrator, whereas the right hand side contains the 

purely mechanical magnitudes bob mass m, pendulum length £, and pendulum 

radius of gyration r, and the earth radius R. (Compare also fig. 5.1.5 - I). 
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5.1.3 Discussion of the pendulum design 

There are two ways of looking at the nature of the torque feedback 

of the pendulum. 

The first way has been shown in 5.1.2 and regards the torque produced 

by horizontally accelerating the pendulum mass (To = sm~) as being 

partially counteracted by the artificially created torque. This leaves 

a net torque Ttot which is much more feeble than To, and thus the moment 

of inertia of the pendulum Jmech = mr2 cannot be accelerated by more 

than the required a. In formula: 

.. 
DC=-

To + T ... 
= 

Jmuh 
5.1.3 - (I) 

This can be called the torque reduction model. 

The other way of viewing the effect of the torque feedback loop is 

to regard it as introducing an extra moment of inertia. In this view 

only the acceleration torque To acts on the pendulum, but it has to 

accelerate its greatly enlarged moment of inertia. In formula: 

.. 
oc = 

To 
Jtot 

In this expression the total moment of inertia turns out to be as 

follows: from eq. 5.1.3 - (I) we get 

= 

so that 

J=t: = 
1 + T"/r" 

Using 5. I .2 - (IO) we can write 

~ -i + e. 
To - If 

Inserting this into 5.1.3 - (4) finally yields 

Jkt = Jmoch Rfe 

(2) 

(3 ) 

(4 ) 

(5) 

(6) 
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If the pendulum is of the rigid shaft point mass type; where r ~, 

then 

5.1.3 - (7) 

We can call this the inertia enhancement model. 

5.1.4 Interaction between torque feedback and gravity 

Let the rigid mathematical pendulum have an angular displacement 8 with 

respect· to the vertical: 

1 

m 9 sinfl 

Fig. 5.1.4 - I. The pendulum in the (inhomogeneous) gravity field 

According to eq. 4.3.3 - (6) the gravity torque trying to restore the 

pendulum to its equilibrium position is 

5.1.4-{l) 

in which the expression for Tg/8 or 

(2) 

can be recognized as having the properties of a torsional spring stiff-

ness. 
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Together with the apparent moment of inertia given in 5.1.3 - (7) 

this will form an undamped oscillator. For its period of oscillation 

we find 

T = 21t' • 5.1.4-(3) 

If the inhomogeneity of the gravitation field may be neglected, i.e. 

if ~/R« I, there remains the Schuler period: 

T _ 2Trj ~ i • (4 ) 

With a pendulum in which e.g. ~ = 6 cm (that is the order of magnitude 

indicated in XSTROM, 1965, p. 58), intended for earth surface use, 

= 
6cm. -8 

= {O (5) 

'so that we can safely neglect the inhomogeneity effect. 

If we use, not a single point mass pendulum but a pendulum with mecha­

nically enlarged moment of inertia as depicted in fig. 5.1.4 - 2, the 

following will result. 
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. Fig. 5.1.4 - 2. Pendulum with enlarged moment of inertia 

In a homogeneous gravitation field the masses mi do not contribute 

any gravity torque. So the restoring "spring" constant, taken from 

5.1.4 - (2) with R = 00, will be 

5.1.4 - (6) 

To obtain the expression for the total moment of inertia we have to 

go back to 5.1.2 - (8), which we rewrite: 

To +- Tc 
= (2m, +mp)r2 

(7) 

The left side represents the ratio of the total (reduced) torque 

and the mechanical moment of inertia, whereas the right side shows 

that of the "mechanical" torque and the total apparent moment of 

inertia. This latter we need for calculating the period of oscillation: 

(8) 
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This means that in the homogeneous gravity field it makes no difference 

to the period to what extent the necessary moment of inertia is produced 

mechanically or artificially (cp. 5.1.4 - (4). 

In the inhomogeneous field we do find a difference between the single 

point mass pendulum and the pendulum with the additional masses mi. 

Besides the extra term ~/R in 5.1.4 - (3), which represents a slightly 

enlarged "stiffness", there will be a reduction of "stiffness" due to 

the fact that the masses mi in fig. 5.1.4 - 2 deliver a negative torque 

because of their swinging around a position of unstable equilibrium. But, 

since the ratio of the total to the mechanical moments of inertia is very 

large for terrestrial applications (cp. 5.1.3 - (5», the influence of 

this negative "spring" torque will not be noticeable in practical systems. 

So, for practical considerations, a physical pendulum will be as good as 

the theoretical rigid point mass pendulum. 

5.1.5 The block diagram 

Following the foregoing discussions it is now not difficult to draw a 

general block diagram of an electronically assisted vertical reference 

pendulum (fig. 5.1. 5 - I). 

The transfer function is to be derived as follows (~ representing the 

Laplace operator): 

1 •• 
0<.=-0<.­

/:} (To + Tc) 

( .. e .. e " K"KT"t' ) sm +Gm - S"R . 5.1.5-(1) 
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KT 
u. 
~ TS 

torquer differentiator 

Tc U, 

S 
- . 

/O,a'n t ~ 1 Ii 1 ~ ... .... 1 U. 
m --- -- KG --

+"'0(,>' +'01 mr S 'T.~ • 
+ (j pendulosity moment integration rate integrator 

of Inertia gyro 

9 gravity 

[, 

. 
a a OJ( 1 S 1 '" 1 '-+ 

~2 
~ -

"':'01+ 
-

R ~ 

geometric relation integration 

Fig. 5.1.5 - I. Block diagram of an electronically assisted rigid 

mathematical pendulum. 

a. 
1n 

T 
o 

vehicle acceleration 

= input to acceleration 

sensitive system 

= mechanical torque 

T = total torque 
tot 

u 
v 

U 
s 

s 

U 
a 

T 
c 

angular accel. of pendulum 

= angular velocity of pendul. 

angular excursion of pendul. 

voltage proportional to s 
= voltage proportional to s 

vehicle velocity 

vehicle travel 

= voltage proportional to s 

= compensation torque 

e direction of local vertical 

o = deviation of pendulum 
from local vertical 

~ error acceleration 

m = mass of pendulum bob 

length of pendulum (= R) 

r = radius of gyration of pendul. 

s = Laplace operator 

K = gyro scale factor 
G 

T = integrator time constant 
s 

T = differentiator time constant 

~= torquer scale factor 

R = radius of vehicle trajectory 
(or earth radius) 

g = gravity acceleration 
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What we want to achieve is 0 = 0 (see fig. 5.1.1 - I). That means that 

g - fIb = o. 5.1.5 - (2) 

In that case we can equate the angular excursion of the pendulum and 

the change e of the local vertical: 

Relation 5.1.1 - (2) tells us that 

e = 
s 
"R' 

so that we can use 5.1.5 - (I) to get 

s 
R = 

and 

= me -

so that 

(3) 

( 4) 

(5) 

which is the same formula as 5.1.2 - (14), derived there using the 

geometric considerations and the required torques. 

From the block diagram we can also derive the pendulum properties 

with s = 0 and a + 0, and so check the correctness of the diagram. 

With s = s = s = 0 the pendulum excursion a becomes equal to 0, and 

the input acceleration ain = a. From the second line in 5.1.5 - (I) 

we get accordingly 

..:1.. (6) 

mr2 
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and, with go = a, and rearranged 

gme 

5.1.5-(7) 

With eq. 5.1.5 - (5) this becomes 

2-
-1 = -

g 
- -=R' 

(8) 

For a harmonic oscillation we thus find 

(9) 

just like in eq. 5.1.4 - (4). 
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5.2 A classroom demonstration model 

In order to study the electronically assisted pendulum system accor­

ding to the ideas of XSTR~M (1965) and HECTOR (1968) we designed and 

built a single axis model that can be wheeled along the floor and 

needs no more space than will be readily found in a lecture room. Its 

photograph ~s shown below, and side and top views in the next two 

drawings. 

Fig. 5.2. - 1. View of the demonstration set-up. 

Legend to figs. 5.2 - 1, - 2, and - 3. 

CA = carriage PA pivot axis 

CB = control box PC potentiometer cable 

CP centre pole PM ten-turn potentiometer 

EB electronics box SD = string drum 

FM = floor markings SL spirit level 

GS gravity imitation string TB triangular bogies 

IB indicator box TM torque motor 

m = pendulum bob mass WT = weight 
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Fig. S.2 - 2. Side view showing the way the carriage and the centre 

pole are connected up. 

ff 

ff 
U 
~M 

a 
0 

p 

n 
~ 

~ 

~ 
~~ 

~ 

~ 

Fig. 5.2 - 3. Top view of the set-up with the carriage CA, the centre 

pole CP, and the floor markings PM. 

(see legend page -85-) 
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It works similarily to the table-top passive model depicted in fig. 

2.6 - 2. Only the "point mass" ml is present (called m in fig. 5.2. 

- I), the torque exerted by mass m2 of fig. 2.6 - 2 now being gene­

rated by the torque motor TM. 

We see the carriage CA, which simulates the navigating vehicle. It 

is carried by a triple set of triangular bogies TB to ensure keeping 

the pivot axis PA sufficiently vertical despite minor floor irregu­

larities. 

The pendulum mass m is "attracted" towards the centre of the trajec­

tory by means of the gravity imitation string GS which is attached 

to a string drum SD on the centre pole CPo This string drum is torque 

loaded·by a weight WI which acts on SD by a reduction gear I : 4. 

Thus the string GS can be extended or released by an amount of + 

meter with respect to its nominal length of 7 meters, making the 

weight WI travel up and down the perspex tube of the centre pole CP 

over a range of ~ 25 em from its middle position. The centre pole is 

positioned so as to mark the origin of curvature of the two concentric 

floor markings FM which indicate the navigable area. 

The axle of the string drum SD carries an electric ten-turn potentio­

meter PM. Its position corresponds with the extension length of the 

gravity string GS and is sensed by the electronic circuitry in the 

electronics box EB, to which it is connected by the potentiometer 

cable PC. In this way information about the radius of trajectory R can 

be used to keep the scale factor Kc;KTT of eq. 5.1.5 - (5) "tuned" to 

the momentary R. 

The electronic box EB of course contains the circuitry required to 

operate the system. It is described in the (Dutch language) student 

thesis reports HAGENBERG 1969, VAN OORT 1971, JANSON 1973, KLEIKAMP 

1981. There is also an indicator box IB which can be connected either 

to the carriage CA (to simulate "on board navigation") or to the elec­

tronics box EB (to simulate a telemetry situation). The panel of the 

indicator box IB is copied in fig. 5.2 - 4. 
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IILDNGIT. DISPlAyll @ ~ 9 

~ 
I~ 

"- I ....... 
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~ 
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POSItion 

surface veloc surface acce I. ei dog. longitude 

Fig. 5.2 - 4. The indicator box panel 
(Switches and potentiometer serve for integrator adjustment) 

The torque motor TM is placed on top of a turret that can be rotated 

around the pivot axis PA (see cross-sectional drawing 5.2 5). 

A syncro-resolver between the axle of the pendulum and this turret 

feeds a signal to a servo-motor, thereby forming a servo-loop that 

causes the turret to keep rotationally aligned with the pendulum. 

This was arranged in order to give the carriage complete rotational 

freedom around PA in spite of the torque motor TM having only a limi­

ted working range of + 60 deg. There is a hook attached to the turret 

to allow the demonstrator to disengage the "gravity string" from the 

pendulum bob and fix it to the turret, thereby cancelling the gravity 

effect but retaining the trajectory radius information at the ten turn 

potentiometer PM. 

Inside the turret, but carried by the pendulum axle, one can see the rate 

gyro necessary to establish the torque feedback loop (compare figs. 

5.1.2 - 1 and 5.1.5 - 1). All the required electrical connections to 

rotating parts have been made by installing slip-rings. 

Working a demonstration with the system is easy and straightforward, 

provided the floor in the navigable area is level to within 2 milli­

radians, and flat to within a few millimeters. 

The standard setup is as shown in fig. 5.2 - 1. Arbitrary movements of 

the carriage within the navigationable area will not cause the pendulum 

to desert its orientation towards the centre pole. Acceleration s, 
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Fig. 5.2 - 5. Cross-sectional drawing of the turret assembly 
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momentary velocity s, and relative position e can be read from the 

pointer instruments on the panel (fig. 5.2 - 4). There is on it also a 

digital display to indicate e. (For the meaning of the symbols s, s, e 

and also a, see fig. 5.1.1 - 1). 

Actually these instruments respond to 0., a and a. But the "navigator", 

i.e. the demonstrator and his audience, will be more interested in the 

trajectory acceleration and velocity. Since, according to eqs. 5.1.1 -

and 5.1.1 - 2, the system is designed to make a = e, and the trajectory 

geometry links s to -Re, we have calibrated two scales to read s in 

m/sec2 , and s in m/sec equivalent "surface speed", that is speed projected 

unto the inner circle of floor marks FM, the third scale and the digital 

display unit to indicate "longitude travelled" in degrees. 

On a small control box CB, fixed to the carriage CA, three switches are 

mounted to enable the demonstrator to close down different parts of the 

electronic system (see fig. 5.2 - 6). 

~on ~on ~on 
Fig. 5.2 - 6. The three switches 

on the control box CB. 
gyro off 0,11 off 

rotor torque turret 
power motor servomotor 

When the feedback loop is interrupted, either by shutting down gyro running 

power or by disconnecting the torquer signal, it can be demonstrated that 

the pendulum's oscillation period sharply decreases from a previous 5s to 

perhaps 0,5s. Besides that, of course, without feedback the pendulum is 

very sensitive to vehicle accelerations. 

By unhooking the gravity string GS from the pendulum (and engaging it with 

the fixed hook on the turret) one can show that absence of the gravity pull 

does not affect the tuning, and that disturbances no longer result in oscil­

lations but in a permanent drift rate. By giving the gravity string an arbi­

trary length one will find that the pendulum fixes itself upon a new centre 

of traj ectory. 
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5.3 The electronically controlled horizontal platform 

In analogy to the electronically assisted physical pendulum we can draw 

a block diagram of a horizontal platform, in which the independant natures 

of the parameter adjustment and the oscillation period can also be clearly 

seen. 

5.3.1 The geometrical situation 

accelerometer........ S 

platform in a vehicle /' 

I 
R 

, / 

Ie; earth contour 

( earth at rest in space ) 

~'=earth centre and origin of gravity field 

Fig. 5.3.1 - I. A platform at the surface of the earth. 

A short explanation of the situation may be desired: The platform, ini­

tially horizontal and at rest, is accelerated horizontally (8). The tra­

jectory magnitudes, 8 and s, although schematically entered at different 

distances from the earth centre M, all refer to the same trajectory radius 

R, which is also by approxmation the earth radius. Thus it is, as in ch. 

5.1.1, that 

s = -'R8. 5.3.1 - (I) 

(We reckon translatory movement to the right and rotatory movement CCW 

as positive). 
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After having travelled a distance corresponding to the "longitude" 

angle e the platform is assumed to have, by whatever reason, turned by 

an angle a with respect to its initial alignment. It will be off the 

local horizontal in the new position by an angle o. Now 

e = 0<.-6. 5.3.1 - (2) 

The objective is to determine s by double integration of s. For this 

reason 0 must be kept zero, to avoid a component of gravity acceleration 

to enter the integration proces. It becomes the task of the platform align­

ment system to keep 

0( =- e (3) 

5.3.2 The error input to the accelerometer 

The occurrence of any error angle 

ex-a 5.3.2 - (1) 

(compare figs. 5.3.1 - 1 and 5.3.2 - 1) will give rise to an input 

into the accelerometer that we shall call the acceleration error 

( 2) 

a=g.Sin~ '" g~ accelerometer ____ 

_ . _~~p--==-----_8 i 
------ t 

\ , 

platform 

Fig. 5.3.2 - 1. Accelerometer on a platform in a gravity field. 
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-A positive angle 0 entailes a gravity component to the left, which 

the accelerometer interprets as an acceleration to the right (positive). 

The total input signal to the accelerometer now becomes 

<=lin = 
.. .. 
5+(5". 5.3.2 - (3) 

With the scale factor KA there appears an electrical signal, e.g. a 

voltage, at the output of the accelerometer: 

(4) 

The desired output, however, is only KAs, so; again, the inertial 

navigation system has to be designed to keep cr = 0, and thus to 

ensure 0 = O. 

5.3.3 The block diagram 

There are two ways to go about explaining the Schuler tuned platform: 

(1) describe the design principle an deduce from it the functional 

block diagram; (2) give first the block diagram, and then explain how 

it is realized. We choose for the latter, so here the next figure, 

5.3.3 - I, shows the block diagram. 
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Uv Us 

+~ 
a,n U. 1 1 

K. --
Til Ts~ 

iT accelerometer Integrator integrator 
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T 

'--
1 1 1 

KT ~ lj2 R _ "7 + Il b 

geometric relation 
inta ration g gy ro tor quer 

= 

= 

= 

= 

= 

= 

Fig. 5.3.3 - I. Block diagram of an electronically controlled 

horizontal platform. 

vehicle acceleration e vehicle angle of travel 

input accelerometer s = vehicle distance of travel 

voltage proportional to ain KA = accelerometer scale factor 

voltage indicating 5 = v t = integrator time constant 

voltage indicating s ~ Laplace operator 

torque applied to gyro KT torquer scale factor 

platform angular velocity b angular momentum of gyro 

error angle of platform g = gravity acceleration 

error acceleration R = earth radius 
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5.3.4 The transfer function 

The accelerometer produces an electrical signal, in our case a 

voltage 

5.3.4 - (1) 

Two integrators transform this signal into a voltage 

(2) 

If the error term a were zero, this voltage Us would be proportio­

nal to the travel s, and that is what is desired: 

-:=-K=A ... ·S 
1:" LS 

5.3.5 Elimination of the error term 

Making a zero means [cf. eq. 5.3.2 - (1) and (2)]: 

or 

From the block diagram we can read 

and 

(3) 

5.3.5 - (1) 

(2) 

(3) 

(4) 

Using the requirement a = 0 and equating eqs. 5.3.5 - (3) and (4), 

we get 

= - (5) 

as condition for tuning the system. For,left of the equation mark 

we find only instrument parameters, and right of it the only geo­

metric trajectory parameter there is, namely R. 

Neither the vehicle acceleration s not the gravity acceleration g 

appear in 5.3.5 - (5). So the tuning is valid for all., and inde~ 

pendant of g. 
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5.3.6 The system realisation 

The reader will probably be familiar with the fact, that in a gyro­

scopically controlled horizontal Schuler tuned platform system the 

platform can be governed by a servo-loop slaving it to the gyro. 

Schematically we can picture it as follows: 

T 

- gyro 

I : 

~ i-' 
Uplal form ~ I 

Servo- f===_====i> 
loop 

I I 
. I 
I, 

" 

Fig. 5.3.6 - 1. The platform slaved to the gyro 

As a consequence always 

and 
. 

platform 

The precession rate ~ of the gyro (and thus also of the platform) 

is governed by the torque TGthat is exerted on the gyro by the tor­

quer according to the block diagram, and this results in an angular 

rotation u. In formula: 

• 

ex = 
b 

b 
.:IS. - b 

5.3.6 - (1 ) 

Tc; = KT Uv (2) 

• KTUv 
0( 

ex. 
(3 ) = -= -,0 .6b 

This last formula explains the corresponding branch of the loop in 

the block diagram. This loop is a feed-forward loop as far as the 

generation of u is concerned, but a feed-back loop for 0: This feed­

back loop is undamped and enables the system to sustain oscillations 

once they have been excited by disturbances other than the vehicle 

accelerations s. 
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The whole feed-fo~ard loop goes according to 

0<= 5.3.6 - (4) 

which was already given in 5.3.5 - (3). 

The feed-back loop contains no damping because it is impossible 

instrumentally to distinguish between s and a unless one of them 

is known. Damping would introduce unwanted terms in the measure­

ment of s. In situations.where s is known to be zero anyoscilla­

tions the feed-back loop may have built up can be damped out by 

temporarily introducing the proper signals somewhere in the loop. 

5.3.7 The diffential equation of the feedback loop 

Take a situation where s = 5 = 0, and let us call that position 

of the vehicle e = O. In this situation eq. 5.3.1 - (2) yields 

6=0<. 5.3.7 - (1) 

and, because of 5.3.2 - (2) and (3) 

ai.n. = e = caOC. (2) 

Substituting this into the loop function 5.3.6 - (4) results in 

oc = (3) 

/.)2 = (4) 

We transform into the frequency domain and find 

(5) 

this being the frequency at which the loop would oscillate if dis­

turbed. 

In 5.3.5 - (5) we gave the instrument parameter condition for elimi­

nation of the acceleration sensitivity of the horizontal reference 

platform as 

• 
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Inserting this into 5.3.7 - (5) we finally find 

or 

~=j~' 
T= 2~j~' 

5.3.7 - (6) 

(7) 

as the oscillation period of the disturbed Schuler tuned platform. 

Since the accelerometer, unaffected by the inhomogeneity of the gravity 

field, only reacts to the local value of g, the system will indeed have 

a period of 84,4 min for a position near the surface of the earth, where 

R = Ro and g = go' 

This circumstance is discussed for various systems in MAGNUS 1971, in 

ch. 16.4. 
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5.4 Conclusions 

In this chapter the electronically tuned Schuler systems are treated as a 

logical extension of the purely mechanical models of par. 4.2.9. 

The block diagrams (figs. 5.1.5-1 and 5.3.3-1) give the impression of con­

trol systems with feed-back loops. But a closer inspection shows that 

there are two feed-forward loops one consisting of the geometrical re-

lationships and the other of the instrument parameters -- of which the 

outputs are compared by means of the influence of the radially symmetric 

gravity field. The comparison result is used as a kind of feedback which 

unavoidably leads to an undamped oscillatory system. The oscillation 

period thereof depends on the "tuning" of the instrument parameters and 

gravity, but the correct instrument parameters are not a function of 

gravity. 

With the first system described (i.e. the pendulum) the gravity gradient 

can be neglected in practical earth surface applications because of the 

low ratio of the mechanically real to the electronically simulated moments 

of inertia. 

With the second system (i.e. the platform) the gravity gradient is irrelev­

ant as long as the accelerometers are unaffected by the gradient. Thus all 

practical electronically tuned Schuler systems will exhibit the 84 mln. 

period. 

By understanding that gravity plays only a secondary role in Schuler tuned 

systems, it is easy to design and build class-room models not only of a 

purely mechanical system but also of electronically tuned systems. 

Whereas a purely mechanical system, as our twin mass demonstration model of 

par. 2.6, could theoretically be operated floating freely in space, all the 

electronic systems need a carrier vehicle that is able to exert the necessa­

ry reaction torques: with the pendulum to generate the reduction torque, 

and with the platform to apply the gyro control torque. 
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6. MISCELLANEOUS TOPICS 

The principle Schuler discovered when endeavouring to find a mode of using 

the gyrocompass on board of moving ships involves an array of aspects: geo­

metry, translational dynamics, rotational dynamics, pendulum theory, gyro 

theory, gravitation, measurement, and control. It is not surprising then 

that there are more situations than those created by navigation problems 

where derivatives of his principle can be discerned. It is not proper exclu­

sively to couple Schuler's name with those phenomena, since e.g. NEWTON, 

D'ALAMBERT and RITTER appear to have mused over certain situations, facts, 

and conditions that are related to Schuler's principle but have nothing 

or very little to do with navigation problems as such. 

Our purpose in presenting a choice of various related topics is not to 

introduce novel systems, bur merely to show perhaps unexpected relation­

ships, and to underline our statement no. 3 in our chapter 0, namely that 

"The existence of a gravity field •.. is not an absolute requirement for 

the basic function of a "Schuler-tuned vertical refererence •..• ". 

6. 1 Satellite orbital period 

In our chapter 4.3.8 we showed that a pendulum of infinite length, the bob 

of which is launched to perform circular or elliptical trajectories inside 

or at the surface of the earth, will complete a round in the Schuler period 

of 84, 4 min. A great circle trajectory along the surface of the earth be­

longs to this set of movements, and this is what a satellite ideally would 

do. But it is remarkable, that also "impossible" satellites, like those fo1" 

lowing a minor circle (e.g. at constant latitude other than 0 deg.), would 

have the same orbit period. (See fig. 4.3.8 - 2). 

6.2 Gravity trains 

The type of free movements the bob of an infinitely long pendulum can make 

include those that a mass would perform in a straight frictionless tunnel 
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through the earth. It follows, that the distance between any two places 

on (the idealized) earth could be covered in 42,2 min. by a train propel­

led by gravity only, through a straight tunnel between the two places 

(provided of course there were no frictional or other losses). It would 

start and arrive with zero velocity (see e.g. MISNER, 1971). 

Quicker "gravity trains" are possible with curved tunnels on short dis­

tances. They can be compared with the pendulums treated in ch. 4.3.4, 

although the restriction to small angles of excursion S would have to 

be abandoned. But to the antipodes the shortest time is 42,2 min. 

6.3 "Schuler-tuned" pounders and doors 

Problem: You are setting up a fence, and to do this you have to drive in 

the posts. Lacking a heavy hammer or axe you use a surplus pole as a 

pounder (fig. 6.3 - I). 

Fig. 6.3 - 1. 

Using a fence post for pounding 

You quickly notice that your hands get severe shocks if you choose the 

wrong place along the pounder-pole to strike the fence post. 

It appears that the right place with which to strike depends on the radius 

of curvature of the movement of the descending pole. If you let the pounder 

descend without imparting rotational energy to it, i.e. in a parallel move­

ment, you will have to let the centre of that pole touch the head of the 

fence post. The impact will not lead to the build-up of rotational energy, 

and the pole will come to rest immediately after impact (see fig. 6.3 - 2a). 
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Fig. 6.3 - 2. Two situations discussed in the text. 

This movement of the pole can be described in terms of a trajectory 

with an infinite radius of curvature. 

But if one holds the pole at one end and lets it strike the head of the 

other post by letting it fall in the fashion of fig. 6.3 - 2b, the centre 

of the trajectory lies at the end of the pole where the hand holds it. 

When we look at ch. 4.2.4, where the relationship between radius of tra­

jectory, radius of gyration, and position of suspension point is given, we 

understand that any acceleration we impart to the suspension point will 

never displace the centre of the trajectory. So if we select the point of 

impact along the pounder so as to make it coincide with the suspension 

point belonging to the end of the pole as centre of trajectory, the hand 

holding that end of the pole will feel no jerk upon hitting the fence post. 

The relationship given in 4.2.4 - (3) 

1') J~ 
I'\CI = rna. 

m r2 '('2-
=-=-

ma. a. 
6.3 - (I) 

must be translated to the circumstances of the pole. We introduce the para­

meters according to fig. 6.3 - 4. 
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Fig, 6.3 - 4. Parameters descriptive of the pole 

9- = effective length of pole 

r = radius of gyration of pole 

RCI = radius of trajectory of the centre of 

M = centre of trajectory 

CI = centre of inertia of pole 

PI = point of impact 

a distance between CI and PI 

The radius of gyration of a rod 1S known to be 

r =-

With this and 

the formula 6.3 - (I) becomes 

30. = 

a. = 

e 
2. 

1 
3a. 

J... 
6 

(~r 

inertia 

6.3 - (2) 

(3) 

(4) 
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Because the radius of traj ectory of the sus.pension point always must be 

"Rsp = Ra + a. 6.3 - (S) 

we find for the suspension point alias point of impact of the pounder 

pole held at one end 

Rsp =- (6) 

The recipe for avoiding painful reaction jerks to your hand when using a 

pole to pound with would run something like this: 

Take hold of one extreme end of the pole, lift it up high and let it des­

cend in a manner as shown in fig. 6.3 - I. Aim at hitting the object with 

one third of the pole extending beyond the object. See to it that the end 

your hand is holding comes level with the head of the object to be pounded 

before the pounder strikes that object. Then arrest the end you are hol­

ding at that level position and let the pole complete the travel by hinging 

around the position of your hand. In this wise your hand has become the 

centre of the last part of the total trajectory and will not experience 

reaction forces if the "Schuler-condition" is satisfied by the point of 

impact at the moment of impact. 

In fig. 6.3 - S such a movent 1S qualitatively depicted. 

' .. 

centre of trajectory 

V3t 

Fig. 6.3 - S. The last phase of the pounder trajectory 
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The same technique can be applied to doorbuffers to avoid damage to the 

hinges and their mounting base. 

IL 

I 

I 

~
iw ' 

, I , 

H 

%w. 
• t I 

[ 

1'8 

t 
buffer positions for 
minimum deformation 
of homogeneous doorblade 

Fig. 6.3 - 6. "Schuler-tuned" doorbuffers 

B = buffers 

H = hinges 

L = line of impact on door 

L' = line of impact on wall 

W = width of door 

If the stops are placed symmetrically along the line of impact at a dis­

tance of 2/3 the width of the door from the line of the hinges, even a 

heavy door violently flung open will not pullout or deform the hinges. 

6.4 Schuler tuning and small circle movements 

In his 1923 article, SCHULER says that a properly tuned pendulum will 

remain pointing towards the centre of the earth "no matter how the vehicle 

moves" (p. 346). This is affirmed in a paragraph on p. 395 of MAGNUS 71, 

where of a physical pendulum it is said that it would stay vertical 

"completely independant of the movements the suspension point may make 

along the surface of the earth". 

Most authors explain the Schuler principle by analyzing great circle move­

ments of the pendulum carrier, and then assume that arbitrary movements 
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can be regarded as a linear superposition of great circle components, 

not affecting the desired behaviour of the reference system adversely. 

This view, however, is challenged by Bell in his commentary called 

"The Schuler Pendulum's Fatal Flaw" (BELL, 1969). He contends that "clear­

ly there are many motions of [the suspension point] on a sphere of radius 

R for which a pendulum having [ length] L =: R does not point the 'vertical', 

amongst which motions in small circles " 

There is a simple analysis of a two point mass physical pendulum moving on 

a small circle that we will give here and which does not support BELL's 

contention. We do not assume that our treatment gives a conclusive proof of 

the matter, but we offer it for the benefit of readers that might like to 

study this problem more deeply. 

Imagine a vehicle travelling along a line of latitude A. A Schuler tuned 

twin mass pendulum carried by it will, if properly aligned, describe a 

conical ring in space (fig. 6.4 - 1). 

small c ircla 
.t latltudeA 

-",-' 

equator 

twin mass pendulum 

'sphere 

, 
Fig. 6.4 - 1. A twin mass pendulum on a small circle trajectory 

Its centre of inertia then follows a circle, the radius of which we shall 

call R'. Having understood that Schuler tuning has nothing to do with the 

presence or absence of a central gravity field, we can detach this circular 

suspension point trajectory from the sphere and study it separately in space. 
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By this we arrive at the next figure, showing the geometrical relation­

ships. 

I R' 

t;= 
1 m, 

SP I 
, • SIDE VIEW' 

I I 

--- 1 --- , I I 

I,. r' \,~ r' ~I 

I \ 'I I a' I ,. .. 

a.5.1,.....-1 
1 \ 1 I 

I' I 
I \ r \ I 
1 

\ " .+ I 
, 

SP • TOP VIEW' 
I J 

I I 
I I 

/1 
/ 

Fig. 6.4 - 2. Equivalent of a small circle trajectory 

CI = centre of inertia R' = radius of trajectory 

M = centre of the sphere a.s.t. axis of sphere and trajectory 

M' centre of trajectory ml,2 = mass points 

Sp = suspension point A = angle of latitude 

R = radius of sphere a' , r' projections of a, r 

The acceleration forces acting on the pendulum are those exerted on SP by 

the accelerations of the vehicle tangential to the trajectory, and by the 

centrifugal forces acting on the two mass points. 

With zero trajectory velocity we have only the tangential acceleration 

forces. Even though the vehicle travels around M', the momentary centre of 

the pendulum movement must be M, since no torques are transmitted by the 
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vehicle to the pendulum via SP. The momentary rotational acceleration w 

around this centre can be vectorially split into a component ~, at right 

angles to the trajectory plane, and another, ~", along the radius of the 

trajectory: 

p lane of tralectory 

Fig. 6.4 - 3. The components of the momentary angular acceleration 

of the twin mass pendulum 

Now it appears that the Schuler condition 

R= cf. eq. 2.5 - (5) 

is also valid for the separate rotation acceleration components. Thus . , 
for w we have to take the "TOP VIEW" projections: 

Y'2. - 6.4 - (I) 
a. 

and for the front view (not drawn in fig. 6.4 - 2, but easily deduced 

from it): 

(2) 

We conclude that, certainly as long as no centrifugal forces are to be 

taken into account, the Schuler tuned twin mass pendulum will also work 

on small circle trajectories. 

But what about the centrifugal forces? The vehicle following the trajec­

tory exerts an inward pull fv at the SP, whereas ml and m2 generate the 

outward forces fcl and f c2 (see fig. 6.4 - 4). 

Equilibrium would be established if 

(3) 
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Fig. 6.4 - 4. Centrifugal forces acting on the pendulum 

With w as rate of rotation- of the vehicle with respect to the centre M' 

of the trajectory: 

('R-f.f)(t-a) - (R-r)Qrt-a) = 0 

Rr + '(2-"Ra..-ra.-(Rr-Y'~+'"RCL-Y'a)= 0 

2 (r2 - 'Ra.) = 0 

1< - -.:C , 
a 

6.4 - (4) 

(5) 

which again is exactly the condition for Schuler-tuning (cf. eq. 2.5 -

(5». This means that if the twin mass pendulum is Schuler tuned it will 

be at the same time unaffected by the centrifugal forces, whether the 

trajectory is a great circle or a small circle. 

It must be added, however, that this immunity only exists when the pendu­

lum is in its nominal position, i.e. pointing towards the centre of the 

sphere. This is easily seen from eq. 6.4 - (5) in combination with fig. 

6.4 - 2; for, if the angle designated A in this figure changes, while R' 

and r remain the same, R would change and demand a new adjusment of "a". 

Whereas the existence of a central gravity field makes the nominal pendu­

lum position a stable equilibrium, the effect of the centrifugal forces 

tends to destabilize the pendulum. 
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6.4.1 A demonstration model 

Using the facts described above a modified version of the table-top 

model of fig. 2.6 - 2 can be designed. The idea is to replace the gravity 

imitation string GS of that model by a cOTIponent of earth gravity by til­

ting the pivot axis PA. In order to be able to show the behaviour of the 

pendulum with and without gravity restoring torque the pendulum must keep 

tuned in both situations. For this the hinge point and tilt angle cannot 

be chosen arbitrarily, but must satisfy the condition to be given here:-

r 

h 

: 
R' : 

\ 

f\ 
V 

r' 

Fig. 6.4.1 - 1. Tiltable pivot axis geometry. 

This schematic drawing represents a cross section through the model of 

fig. 2.6 - 2 in a plane passing through PA and CPo 

CP = centre pole axis (cf. fig. 2.6 - 2) 

R = traj ectory radius with vertical pivot axis 

R' = trajectory radius with tilted pivot axis 

V-V = PA in vertical position 

T-T = PA in tilted position 

a,r as in fig. 2.6 -

a', r' idem but with tilted pivot axis 

C! tilt angle 

h = height of suspension point above hinge point 

• = centre of inertia of the dumb-bells 

0 " . suspensl.on point" 

@ = hinge point 
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The Schuler condition for the vertical PA is: 

and for the tilted PA: 

= 'R·c..oSo<: . 6.4.1 - (1) 

We select a so as to achieve a desired restoring torque. Then h follows 

from 

= (2) 

As example let us choose a = 0,1 radian, thereby making the pendulum 

"feel" one tenth of gravity. Tan 0,05 is approx. 0,05, so that h=O,05R. 

In our model (see ch. 2.6) R was 30 cm. The hinge point thus would have 

to be 1,5 cm below the connection rod axis. Then, in both situations 

(a = 0 and a = 0,1 rad) the dumb-bells model would be Schuler tuned, 

simulating zero gravity in the first case, and a central gravity field 

in the second. 

As already stated in the third paragraph of ch. 2.8, we have not built 

such a model. We would be grateful to hear of the experience of any reader 

who has. 

6.5 A Schuler tuned liquid level 

A mathematical pendulum can be regarded as an acceleration ratio indicator. 

Hanging in its equilibrium position in indicates zero horizontal accele­

ration. When the suspension point is subjected to a steady state horizon­

tal acceleration s, after transients have subsided the pendulum shaft will 

be deflected from the vertical by an amount a as shown in the following 

figure: -
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sp g 

6.5 - (I) 

or, for small ratio's, 

g·s 
0(= 

J .. -t s . (2) 

Fig. 6.5 - I. The pendulum is an acceleration ratio indicator. 

Gravitational acceleration g can be regarded as a bias acceleration, or 

a reference acceleration determining the scale factor of the pendulum 

as an accelerometer. It replaces the spring constant of a spring res­

trained pendulous (seismic type) accelerometer. 

As long as this pendulum is considered to be in a homogeneous gravity 

field its scale factor does not depend on its length t. In a radial sym­

metric gravity field matters become more complicated. We shall not ana­

lyze the circumstances here but just state that the scale factor decreases 

with growing t until it disappears with t = R, R being the radius of the 

circular trajectory along~hich s is defined. This means, that Schuler 

tuning of such a pendulum, i.e. making a disappear for all and any s, 

cannot be achieved except for t = R. 

Now a liquid level also is a kind of gravity biased acceleration ratio 

meter. Are there conditions under which it can be made to indicate the 

local level irrespective of horizontal accelerations? 
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To examine this question we take not a conventional bubble type spirit 

level, but an open ended tube as in fig. 6.5 - 2, with constant cross 

sectional area A, filled up to height h with a liquid of density p. 

When subjected to horizontal acceleration s the level of the liquid in 

one vertical part will rise and in the other it will fall due to the 

force of inertia F acting on the horizontal part of the tube. Gravity 

exerts a restoring force G due to the level difference 2~h. The ratio 

of these is 

Equilibrium 

.t:. 

<! 

is 

F 
G 

reached when 

2An 

F 

= 

= 

G, so that 

Pr- •• - S. 
9 

Fig. 6.5 - 2. Open-ended water level 

s·b 
g·2th 

we get 

.t:. 

<! 

6.5 - (3) 

~t 
1-

.t:. 

(4 ) 

We can draw a connecting line between the two surfaces of the liquid 

columns. In the steady state this line will run at an angle a with res­

pect to the local level the size of which is given by 

tOytlX = ) 
(5) 
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just like in the case of the mathematical pendulum (cf. eq. 6.5 - (2)). 

In contrast, however, the liquid level can be Schuler tuned theoreti­

cally: -

In a gravity-free zone in space we imagine the system of fig. 6.5 - 2 

to be accelerated by s parallel to the "horizontal" section with length 

b. The liquid mass in that section would (disregarding friction) remain 

in its original place with regard to inertial space were it not that the 

two "vertical" columns resisted being accelerated vertically to give 

place. The pressure pv they generate on being accelerated is 

6.5 - (6) 

The pressure Ph of the horizontal mass is due to its acceleration x 

with respect to inertial space. This x is equal to the difference in 

system acceleration s and internal acceleration of the liquid with respect 

to the tube, which is ~h: 

x = S-Ah 
.. 

Thus 

The pressures Pv and Ph must be equated, so we get 

2h~h = ;, (5-&) = hs -.&ih 
(2h +h)~ = ,gs 

and, since 2h + b is the total length of the liquid column: 

.. 
s = T 

We defined the tilt angle ct in 6.5 - (5) , so 
.. 

•• 2Ah 25 ex == T = T 

(7) 

(8) 

(9) 

(10) 

(1 1 ) 
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Our object in making the system behave Schulerian is to move it along 

a trajectory with radius R and make it follow the local radius vector 

by making its tilt angle a equal to the trajectory travel angle B, or 

(see e.g. eq. 5.1.1 

relation results in 

•• 
0< 

(1) through 5.1.2 - (4».Using 6.5 - (11) in this 

.. 
2.2.. 

e 
e 

.. 
£... 
'R 

2R. 6.5 - (12) 

The recipe for making a Schuler tuned openended liquid level, i.e. a 

liquid level unaffected by horizontal accelerations thus must be: 

Take a length of tube equal to twice the radius of the trajectory, fill 

it with the liquid, and affix the ends of the tube vertically to the 

vehicle at an arbitrary distance b from each other. Do what you like with 

the rest of the length: coil it, fold it up, zigzag it or stow it away in 

any other manner, carry it within the vehicle or leave it partially at 

rest outside. Provided the two ends of the tube are not moved up or down 

independantly of each other, the liquid surfaces will then always remain 

in the same horizontal plane, irrespective of horizontal accelerations of 

the vehicle. 

Once Schuler-tuned, the system can be placed back in a central gravity 

field. Of course this field is necessary to keep the liquid in its place 

in a "real" experiment. A "real H experiment need not (and practically 

could not) be performed with an earth radius trajectory, but a demonstra­

tion model similar to the one described in ch. 2.6 could be executed by 

using a small horizontal trajectory but bending the utmost ends of the 

tube upward. 

Why is it, that the length 2R is required? A hint to this can be given 

by the fo1lowing configuration: 
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"earth"lurface 

Fig. 6.5 - 3. A configuration to explain the requirement ~ 2R. 

In it the system consists only of vertical columns which are insensi­

tive to horizontal accelerations. 

According to MAGNUS 61 (p. 29), a liquid column in a U-shaped tube has 

a resonance frequency of 

-~ 
- L 

Rewriting this expression to conformity with our rendering (e.g. in eq. 

1.3 - (6» and substituting L = 2R according to our eq. 6.5 - (12), we 

get 

w= 
2-rr _ j-E.[ , 
T - L 

2rrj~g' = 2rrj~~' T= 

which is the Schuler period 

1"; = 21ij1?/g', 

No wonder Schuler expected T s to refle.ct something like a universal law, 

and that many people have stated that any acceleration insensitive pen­

dulous device will exhibit the Schuler period, when this period turns up 

in the most unexpected ways! 
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7. LIST OF MAIN SYMBOLS 

The symbols used very specifically in certain figures only, as well 

as symbols occurring in quotations from other authors, are not in­

cluded in this list. The numbers at the right indicate the chapter 

in which the symbol is first mentioned. 

a distance between SP and CI 2.5 

b angular momentum (I) for the vector) 3. 

b base length of water level 6.5 

g gravity acceleration 1.1 

(=9,81 
2 

go g at earth surface mls ) 1.1 

h height of liquid column 6.5 

t length of a (mathematical) pendulum 4. I. 2 

~ length of liquid column 6.5 

m mass 2.4 

p pressure 6.5 

r radius of gyration 2.4 

s distance of travel along trajectory 2.2 

s Laplace operator (also 4 is used) 5. I. 5 
• 
t time coordinate 2.2 

x horizontal displacement 4.3.3 

A cross-sectional area of water column 6.5 

CI centre of inertia 2.4 

F force 2.4 

G 'weight 6.5 

J moment of inertia 2.5 

KA accelerometer scale factor 4.2.9 

KG rate gyro scale factor 5. I. 2 

~ torque motor scale factor 4.2.9 

M centre of trajectory 2.4 

M torque 4.4. 1 

R radius of trajectory 1.1 

R earth surface (trajectory) radius 6372 km 1.1 

" angular spring constant 4.3. 1 S 

SP suspension point 2.4 



-118-

T oscillation period 

T torque 

T "Schuler constant" 21rfRlic = 84,4 min 
0 o 0 

TS Schuler period 

U voltage 

a pendulum or platform inertial rotation angle (except in 
par. 4.3.3/4.3.4/4.3.9/6.4.1) 

6 pendulum (or platform) deviation from local vertical (or 
horizontal) 

A geographic latitude 

p density of liquid 

a gravity component sensed by accelerometer 

T time constant 

w angular frequency of oscillation 

w angular velocity 

w earth rotation rate = 73 ~rad/s 
e 

e angle of travel along circular trajectory 

(l same as w 
e 

1.2 

2.5 

1.2 

1.2 

5.3.2 

2.2 

2.3 

3. 1 

6.5 

2.3 

5. I. 2 

5. I. 5 

6.4 

3. 

2.2 

3. 1 
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