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THE SCHWARZIAN DERIVATIVE AND
UNIVALENT FUNCTIONS

SHIGEO  OZAKI  AND  MAMORU NUNOKAWA

Abstract.   In this paper we prove under certain conditions the

function w=f(z) is univalent in |z|<l.

It is customary to formulate the inequalities of the "Verzerrungssatz"

type for analytic functions w=f(z), schlicht in the unit circle, with

reference to a specific normalization. The two normalizations mainly used

are: (a) f(z) is finite in |z|<l,/(0)=0,/'(0)==1; (b) f(z) has a pole at

z=0 with the residue 1. If we want to obtain inequalities which are inde-

pendent of any particular normalization, we have to use quantities which

are invariant with regard to an arbitrary linear transformation of the z-

plane. The simplest quantity of this type is the Schwarzian differential

parameter

{w, z} = (w"lw'Y - lOv'Vw')2,

also called the Schwarzian derivative of w with regard to z.

It is easy to obtain an upper bound for {w, z} by a simple transformation

of the classical inequality |a,|^l valid for functions w=f(z)=z~1+a0+

a,z+ • • • schlicht in the unit circle. Indeed, applying this inequality to the

coefficient of z in the expansion of the schlicht function

g(2) = _   nm - m2±_
f((z + x)l(\ + xz)) - f(x)

2/'W

-Jd-W2)2
o

•p)Y   lp)(]¿

\f'(x)J     2\/'(x)/JZ
+ • • •,   \x\< 1,

we obtain \{w, z}|<6/(l-|z|2)2 [3, p. 226].

It is known that by replacing the number 6 in this inequality by 2, this

necessary condition for the univalence off(z) in |z|<l becomes sufficient

([4], [2], [5], [1]).
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hetf(z)=z+^=2anzn be regular in |jr|<l and

gO) = T
/'(x)(l - ¡x|2)

= -+h(z,x),       |x|<l.
f((z + x)l(\+xz))-f(x)      z

Then/(z) is univalent in |z|<l if and only ifg(z) is univalent in |z|<l. In

this case, the above theorem can be stated as follows:

Theorem (Nehari [1]).   In order that the function w=f(z) be univalent

in |z|< 1, it is necessary that

|A'(0, x)| = 11(1 - \x\2)2{f, x}\ < 1   for \x\ < 1

and sufficient that

l*'(0,x)|<i   for\x\<l.

We can now prove the following similar theorem for a sufficient con-

dition that the function w=f(z) he univalent in |z|<l.

Theorem 1.   In order that the function w=f(z) be univalent in |z|<1, it

is sufficient that

\h'(z, x)\ < 1   for \z\ < 1

where x is in the unit disk.

Proof.    Evidently, g(z)—l¡z=h(z, x) is regular in |z|< 1 and

(g( z2) - !/z2) - (g(Zl) - l¡zi) = h(z,, x) - h(zi, x) = fV(z, x) dz
Jn

where the integral is taken on the line segment zxz%, z^z2, |zj|<1 and

|z.¡<1. Putting

z = zx + t(z2 - zff,       O^t^l,

and

dz = (z2 — zf) dt

the above integral can be written in the form

(z2 - Zx)h'(z, x) dt.
Jo

Multiplying \—zxz2\(z2 — zx)\ on both sides we have

Jo
-1

9. --1

< [\h'(z, x)\ dt < [dt =
Jo Jo
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This shows that g(z2)—g(z1)9i0 for z^z2 and therefore/(z) is univalent

in |z|<l.

Theorem 2.   Letf(z)=z+ £"_2 anzn be regular in \z\ < 1 and

Re(/2(z)/z2/'(z)) ^ i   in |z|< 1.

Thenf(z) is univalent in |z|<l.

Proof. Applying Theorem 1 to f(z), f(z) is univalent in |z|<l if

\h'(z, 0)|i% 1 in \z\< 1. By the maximum principle, \z2h'(z, 0)|z% 1, in \z\< 1,

implies |/»'(z> 0)|^1 in |z|<1.0n the other hand, it is easily confirmed that

| -z2h'(z, 0)| = |z2/'(z)//2(z) - 1|.

Therefore if we suppose that

\z2f'(z)lf2(z) - 1| a 1    in |z|< 1
or

Re(/2(z)/z2/'(z)) ^   in|z|<l,

then/(z) is univalent in |z|<l.
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