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To allow selection of embryos for transfer after in vitro fer-
tilization, ovarian stimulation is usually carried out with ex-
ogenous gonadotropins. To compensate for changes induced
by stimulation, GnRH analog cotreatment, oral contraceptive
pretreatment, late follicular phase human chorionic gonado-
tropin, and luteal phase progesterone supplementation are
usually added. These approaches render ovarian stimulation
complex and costly. The stimulation of multiple follicular de-
velopment disrupts the physiology of follicular development,
with consequences for the oocyte, embryo, and endometrium.

In recent years, recombinant gonadotropin preparations
have become available, and novel stimulation protocols with
less detrimental effects have been developed. In this article,
the scientific background to current approaches to ovarian
stimulation for in vitro fertilization is reviewed. After a brief
discussion of the relevant aspect of ovarian physiology, the
development, application, and consequences of ovarian stim-
ulation strategies are reviewed in detail. (Endocrine Reviews
27: 170–207, 2006)
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I. Introduction

SINCE THE PIONEERING days of in vitro fertilization
(IVF), ovarian stimulation has been an integral part of

assisted reproductive techniques (ARTs). The goal of ovarian
stimulation is to induce ongoing development of multiple
dominant follicles and to mature many oocytes to improve
chances for conception either in vivo (empirical ovarian stim-
ulation with or without intrauterine insemination) or in vitro
(with IVF) (1, 2). This approach of interfering with physio-
logical mechanisms underlying single dominant follicle se-
lection is usually applied in normo-ovulatory women (3).
This should be clearly differentiated from ovulation induc-
tion, which aims to induce monofollicular development and
ovulation in anovulatory women (4). Ovarian stimulation
enables the retrieval of many cumulus-oocyte complexes
(Fig. 1). This allows for inefficiencies in subsequent oocyte
maturation, fertilization in vitro, embryo culture, embryo
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selection for transfer, and implantation (5). Multiple embryos
can be transferred in the great majority of patients, and spare
embryos may be cryopreserved to allow for subsequent
chances of pregnancy without the need for repeated ovarian
stimulation and oocyte retrieval (6, 7).

This paradigm for ovarian stimulation has formed the
basis of clinical practice since the early days of IVF. In this
article the scientific basis, clinical application, effects, and
outcomes of current approaches to ovarian stimulation for
ART will be addressed.

II. Physiology of Ovarian Function Relevant to
Ovarian Stimulation

A. Endocrine control of follicular development

Initiation of growth of primordial follicles, also referred to
as primary recruitment, occurs continuously and in a ran-
dom fashion. Follicle development from the primordial to the
preovulatory stage takes several months (8, 9). The great
majority of primordial follicles that enter this development
phase undergo atresia before reaching the antral follicle
stage, principally through a process of apoptosis. The degree
to which early stages of follicle development are influenced
by FSH remains unclear. Studies in hypophysectomized and
transgenic mice suggest that gonadotropins may be involved
in the activation of resting follicles (10, 11). However, human
FSH receptor mRNA is only expressed from the primary
follicle onward. Studies in women with a mutated FSH
�-subunit have shown follicular growth to occur up to the
stage of secondary recruitment (12). In addition, exogenous
FSH can stimulate follicle growth up to the preovulatory
stage in hypophysectomized women (13). Factors such as
TGF-� from theca cells, growth differentiation factor 9, and

bone morphogenetic protein 15 produced by the oocyte may
limit the effects of FSH on granulosa cell differentiation and
follicle development at this early stage (14). Only at more
advanced stages of development do follicles become respon-
sive to FSH and obtain the capacity to convert the theca-cell
derived substrate androstenedione to estradiol (E2) by the
induction of the aromatase enzyme activity (4, 15).

Due to the demise of the corpus luteum during the late
luteal phase of the menstrual cycle, E2, inhibin A, and pro-
gesterone (P) levels fall. This results in an increased fre-
quency of pulsatile GnRH secretion, inducing rising FSH
levels at the end of the luteal phase (16, 17). Although each
growing follicle may initially have an equal potential to reach
full maturation, only those antral follicles that happen to be
at a more advanced stage of maturation during this intercycle
rise in FSH (levels surpassing the so-called threshold for
ovarian stimulation) gain gonadotropin dependence and
continue to grow (4) (Fig. 1). This process is referred to as
cyclic, gonadotropin-dependent or “secondary” recruitment,
as opposed to the initial gonadotropin-independent “pri-
mary” recruitment of primordial follicles (9). Based on in-
direct observations, it is believed that the cohort size of
healthy early antral follicles recruited during the luteo-fol-
licular transition is around 10 per ovary (8, 18, 19)

In the subsequent follicular phase, FSH levels plateau dur-
ing the initial days (20, 21) and are gradually suppressed
thereafter by ovarian inhibin B (22) and E2 (23) negative
feedback. Gonadotropin withdrawal studies have demon-
strated the association between FSH, LH, and inhibin pro-
duction (16, 24, 25). Administration of recombinant inhibin
A during the early follicular phase to nonhuman primates
results in a gradual decrease in FSH (26). On the contrary,
administration of recombinant inhibin A during the luteal
phase prevents the subsequent rise of FSH during the luteo-

FIG. 1. The FSH threshold and window
concept for monofollicular selection (left
panel), as conventionally applied to
achieve multifollicular development
(middle panel). Each arrow represents
a developing follicle. The right panel
represents the concept of extending the
FSH window by administering exoge-
nous FSH in the midfollicular phase to
maintain FSH levels above the thresh-
old allowing multifollicular develop-
ment to occur.
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follicular transition (26). These experiments suggest a direct
endocrine role for inhibin A in the negative feedback on
pituitary FSH production, whereas inhibin B does not con-
tribute to the dynamic changes within a menstrual cycle
(26–29).

Decremental follicular phase FSH levels (effectively re-
stricting the time where FSH levels remain above the thresh-
old, referred to as the FSH window) (Fig. 1) appear to be
crucial for selection of a single dominant follicle from the
recruited cohort (20). As FSH levels fall, all but the dominant
follicle (with its increased sensitivity to FSH) lose the stim-
ulus to further development and become atretic (4, 30). The
important concept of increased sensitivity of the dominant
follicle for FSH has been confirmed by human studies show-
ing developing follicles to exhibit variable tolerance to GnRH
antagonist-induced gonadotropin withdrawal (31, 32). Re-
cent evidence also points to a central role for LH in mono-
follicular selection and dominance in the normal ovulatory
cycle (33, 34). Although granulosa cells from early antral
follicles respond only to FSH, those from mature follicles
(exhibiting receptors to both gonadotropins) are responsive
to both FSH and LH. The maturing dominant follicle may
become less dependent on FSH because of the ability to
respond to LH (33–35).

Cyclic variation in the expressed isoforms of FSH (differ-
ing in oligosaccharide structure, the degree of terminal sia-
lylation and sulfation) has been described (36). A greater
proportion of less acidic circulating FSH isoforms are ob-
served during the late follicular phase and midcycle (37–39).
The half-life of human FSH secreted 2–3 d before ovulation
is considerably shorter than during the early follicular phase
(40). It has been suggested that the preferential secretion of
short-lived isoforms during the periovulatory period indi-
cates the existence of regulatory mechanisms that control the
intensity and duration of the FSH signal delivered to the
ovary (36).

B. Intraovarian modulators of steroidogenesis

Gonadotropins are the primary regulators of follicular de-
velopment, cytodifferentation, and sex-steroid production in
the ovary. However, a large number of intraovarian regu-
lators modulate the response to gonadotropin stimulation.
The principal regulatory systems in the human involve the
IGF system (41), the epidermal growth factor (EGF) system
(42), and the TGF-� and -� systems (43). In addition to their
primary endocrine and paracrine functions of suppressing
FSH secretion by the pituitary (44), inhibins and activins also
exhibit local actions in the ovary (45).

Although IGFs and their receptors are known to be present
in developing human follicles, uncertainty remains regard-
ing the individual role of the different IGFs, their receptors,
and binding proteins in vivo. In vitro studies have identified
the effects of IGFs on granulosa and theca cell function. IGF-I
has been shown to stimulate proliferation and aromatase
activity of granulosa cells both alone or synergistically with
FSH (46–49). At the theca cell, IGF-I stimulates production
of 17 �-hydroxyprogesterone (50), whereas both IGF-I and -II
can alone or together with LH stimulate androgen synthesis
(51, 52). For review, see Poretsky et al. (41).

The activity of the IGFs is modulated by their degree of
binding to IGF binding proteins. GH is the primary regulator
of serum IGF-levels (41, 53). However, GH does not affect
IGF-I and IGF-II expression in granulosa cells in vitro. It has
therefore been proposed that GH may indirectly modulate
the follicle by stimulating hepatic production of IGF-I.

EGF and TGF-� are structurally similar polypeptides that
bind to a common receptor, and both have been detected in
human follicles (54). They would appear to stimulate gran-
ulosa cell proliferation (42) but inhibit FSH-induced aro-
matase expression and E2 synthesis (55). TGF-� differs in
structure and function from EGF and TGF-�, being a ho-
modimeric polypeptide with no clear direct inhibitory func-
tion on granulosa cell aromatase activity. Both EGF and
TGF-� synergize with FSH to stimulate granulosa cell pro-
liferation in hamster preantral follicles (56).

In addition to regulating pituitary FSH, inhibin and activin
also act as paracrine and autocrine modulators of ovarian
follicle growth and maturation (57).

Activin acts on small follicles to stimulate proliferation of
granulosa cells (58, 59), up-regulates FSH receptor expres-
sion in granulosa cells, and increases aromatase expression,
resulting in increased E2 production (60). Inhibin augments
LH-stimulated androgen production by thecal cell cultures
(61).

C. Control of corpus luteum function

As reviewed recently (62, 63), it is generally believed that
the predominant hormonal regulators of the corpus luteum
in women and many nonhuman primates are LH-like go-
nadotropins. Unlike in some species, notably rodents (64),
the luteotropic process in humans does not include a prin-
cipal role for prolactin-like hormones, and luteal regression
does not involve a uterine signal (prostaglandin F2�) (63).
Instead, it is: 1) the midcycle surge of gonadotropins (nota-
bly, LH) secreted by the anterior pituitary that stimulates
resumption of meiosis and oocyte maturation in the preovu-
latory follicle, rupture of the ovulatory follicle and release of
the expanded cumulus-oocyte complex, and conversion of
the follicle wall into the corpus luteum (i.e. luteinization); 2)
the pulsatile secretion of pituitary LH during the luteal phase
of the menstrual cycle that promotes the continued devel-
opment and normal functional lifespan of the corpus luteum;
3) the exponential rise in circulating levels of the LH-like
hormone, chorionic gonadotropin (CG), secreted by the im-
planting blastocyst and syncytiotrophoblast of the develop-
ing placenta, that extends the functional lifespan of the cor-
pus luteum in early pregnancy until luteal activities are
assumed by the placenta, i.e., at the luteal-placental shift.

Elegant studies during the 1970s and 1980s (for reviews,
see Refs. 65 and 66) using techniques such as gonadotropin
ablation and GnRH infusion to control LH secretion estab-
lished the critical role of LH/CG in regulating primate luteal
structure-function. More recent experiments using GnRH
antagonists and pure recombinant human LH or human CG
(hCG) have strengthened this concept (67–70) and clarified
a number of issues.

First, although the maturing dominant follicle may be less
sensitive to acute LH withdrawal at midcycle, a GnRH-in-
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duced LH surge of substantial length is required for ovula-
tion and development of normal luteal function. Of consid-
erable interest is how the duration and/or amplitude of the
midcycle LH surge influences periovulatory events. Al-
though more research is needed, initial monkey and human
studies on GnRH-induced LH surges or administering ex-
ogenous LH/CG suggest that surges of lesser duration (�24
h) and amplitude are sufficient to reinitiate oocyte meiosis
and granulosa cell luteinization, but surges of greater dura-
tion (�24 h) and amplitude improve oocyte recovery, fertil-
ization, and corpus luteum development (71, 72). Although
the LH surge is believed to be the physiological signal for
periovulatory events, studies in rodents (73) showed that a
midcycle bolus of FSH can replace LH and elicit oocyte
maturation, ovulation, and successful pregnancy. Likewise,
an FSH bolus will induce certain periovulatory events in
macaque follicles (74) after ovarian stimulation, including
oocyte meiotic maturation, fertilization, and early luteiniza-
tion of granulosa cells.

Secondly, although luteinizing tissue or cells appear less
responsive to exogenous gonadotropin around the time of
ovulation (presumably due to LH/CG receptor desensitiza-
tion, down-regulation, or occupancy by gonadotropins from
the surge interval), the developing corpus luteum in the early
luteal phase (70) is comparable to the developed corpus
luteum by midluteal phase (32) in its critical dependence on
circulating LH for continued function. Several reports con-
firm that suppression of LH support for 72 h results in ir-
reversible loss of luteal structure-function (69, 70), but LH or
CG (not FSH) replacement sustains luteal structure-function
(75, 76). Attempts to titrate the amount of LH required to
maintain the normal functional lifespan of the corpus luteum
in GnRH antagonist-treated monkeys showed that increas-
ing the dose from mid-to-late luteal phase was critical (77,
78). Such results support the concept that the primate corpus
luteum becomes less sensitive to LH as the luteal lifespan
progresses. Although the frequency of LH pulses declines
during the luteal phase (79), prevention of this phenomenon
(via pulsatile GnRH infusion or LH injections (80) does not
prevent timely luteal regression. Rather, decreasing luteal
sensitivity to gonadotropin could be a critical factor in timely
luteolysis near the end of the menstrual cycle (66).

Collectively, the data suggest that rescue of the corpus
luteum from impending regression and continuation of its
functional lifespan in early pregnancy are not likely due to
inherent differences in LH vs. CG bioactivity or to a change
from pulsatile (LH) to continuous (CG) gonadotropin expo-
sure in the fertile cycle. Rather, it appears that a more robust
luteotropic stimulus, in the form of rising levels of LH/CG,
is required to extend the functional lifespan of the primate
corpus luteum.

Local modulating factors may include the steroid hor-
mones produced by the corpus luteum. There is considerable
evidence that another action of the midcycle LH surge, which
complements the promotion of P production, is the induction
of P receptors (PRs) in luteinizing granulosa cells of the
follicle (for review, see Ref. 62). The hypothesis that estrogen
acts locally as a luteolytic signal (81) has renewed credence
with the discovery of estrogen receptor (ER)-� in the primate
corpus luteum (82). Although there are reports of androgen

receptors in primate luteal tissue (83, 84), there has been little
consideration of local androgen action in the corpus luteum.

LH/CG also regulates the expression of angiogenic and
angiolytic factors that likely control the expanding vascula-
ture in the ovulatory follicle and developing corpus luteum.
The LH-stimulated luteinization of granulosa cells around
ovulation includes enhanced vascular endothelial growth
factor (VEGF) production (85), which is likely essential for
the angiogenic process within the primate corpus luteum (86,
87). With respect to hCG, a midcycle bolus in ovarian stim-
ulation cycles increased expression of the endogenous an-
giopoietin agonist, Ang-1, without altering that of the en-
dogenous antagonist, Ang-2 (88), in macaque granulosa cells.
It is important to recognize that these factors control not only
the development or maintenance of the vasculature in de-
veloping tissue beds, but also vascular integrity, maturity,
and permeability. It has been proposed (89, 90) that overex-
pression, increased bioavailability, or a change in the ratio of
angiogenic factors, notably VEGF-A, is a cause of ovarian
hyperstimulation syndrome (OHSS) (91), a serious side effect
of ovarian stimulation characterized by intravascular vol-
ume loss and extravascular fluid accumulation. The early or
late occurrence of OHSS in ovarian stimulation cycles has
been linked to the ovulatory hCG bolus and endogenous CG
production at pregnancy recognition, respectively.

D. Control of endometrial function

1. Steroid hormone receptors and actions in endometrium. Ovar-
ian-derived steroid hormones have profound effects on the
endometrium that result in proliferation and differentiation
of the tissue, receptivity to embryonic implantation, and
shedding in the absence of a pregnancy. During the follicular
phase, E2 secreted by growing follicles stimulates ER expres-
sion, with highest levels observed in glandular epithelium
during the late follicular phase (92–97). Two forms of ER are
now appreciated: ER-� and ER-�, which are two distinct gene
products (98). They are expressed in both glands and stroma
(with ER-� predominating), whereas ER-� is only expressed
in endothelium (99). ER(�)is significantly down-regulated in
epithelium in the luteal phase, a universal response in all
mammalian species (100).

With regard to PR, peak expression in human endome-
trium induced by E2 is observed at the time of ovulation (92,
97, 101, 102). PR is most prominent in glandular epithelium
in the proliferative phase and is undetectable in the midluteal
phase in this cell type (92). In contrast, stromal cells have high
levels of PR in the follicular phase and throughout the luteal
phase. Similar observations have been made in nonhuman
primate endometrium (93, 95, 96, 103). The human PR has
two functionally distinct isoforms, PR-A and PR-B, encoded
by a single gene (104). In endometrial glands, PR-A and PR-B
are expressed in the follicular phase, but only PR-B persists
during the mid- and late luteal phase in this cell type (102,
105, 106). In endometrial stroma, PR-A predominates
throughout the cycle, suggesting that it is important in P
action in the luteal phase (102, 105, 106). Overall, these results
support the view that PR-A and PR-B mediate distinct path-
ways of P action in the glandular epithelium and stroma
throughout the menstrual cycle. It should be noted that the
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timely down-regulation of epithelial PR coincides with the
opening of the window of implantation and uterine receptivity
for embryonic implantation (see Section II.D.3), and histological
delay of the endometrium (a clinically abnormal state) is asso-
ciated with a failure of such PR down-regulation (107).

The major roles of E2 are for endometrial growth and for
enabling P to act on the tissue. To accomplish these goals, E2
induces PR expression and promotes cellular proliferation in
the tissue—directly through its cognate receptors, and in-
directly by induction of growth factors that act as autocrine
and/or paracrine modulators (108–110).

2. Endometrial morphological changes in response to ovarian-
derived steroid hormones. The endometrium demonstrates day-
by-day morphological changes, extensively described by
Noyes et al. (111) who analyzed several thousand endome-
trial biopsies to develop the criteria for assessment that are
still considered the gold standard. The initial Noyes’ criteria
correlated the results of the biopsy with the basal body tem-
perature and with the subsequent menstrual period. Exten-
sive ultrastructural changes also occur during the cycle that
underscore the magnitude of effects of ovarian-derived ste-
roid hormones on this tissue (112).

Morphological features correlating with endometrial ma-
turity have been identified by scanning electron microscopy.
Pedunculated extrusions of the luminal epithelial cell mem-
brane, termed pinopodes, can be identified near the lateral
cell border, rising above the plane of the normal microvilli,
but not occupying the entire cell surface (113). They are
P-dependent and inhibited by E2 (114–116). These structures
last for 1–2 d, and their numbers positively correlate with
implantation sites (117). Although they likely play a role in
the early stages of implantation, their precise functions re-
main to be clarified.

3. The window of implantation and the effects of ovarian-derived
steroid hormones. Ovarian steroid hormone actions during
normal ovulatory and hyperstimulation cycles result in a
temporally and spatially restricted period (“window of im-
plantation”) in which the tissue is receptive to embryonic
implantation (118). Available evidence supports the discrete
time in the cycle between 6 and 10 d after the LH surge that
defines the window of implantation. The window is ad-
vanced in clomiphene citrate (CC) or gonadotropin-stimu-
lated cycles (114, 119) and is delayed in steroid hormone
replacement cycles for donor recipients (120), underscoring
its plasticity and the significant effects that steroid hormones
have on this tissue. When embryo transfers were performed
in IVF cycles between cycle d 17 and 19, 40.5% conceptions
occurred, compared with no conceptions in cycles where
embryo transfers occurred after cycle d 20 (121). These ob-
servations collectively support a distinct and narrow period
of endometrial specialization that coincides with the window
of implantation.

A major challenge is to define the molecular events oc-
curring during the window of implantation that render the
endometrium receptive to implantation and the interactions
that occur between the maternal endometrium during preg-
nancy (i.e., the decidua) and the implanting conceptus. Im-
munohistochemical techniques have characterized the ex-

pression of receptors, adhesion molecules, and other markers
of receptivity. The presence of ER and PR is most pronounced
during ovulation (122). These nuclear receptors are espe-
cially induced by ovarian estrogens and are present in the
glandular and stromal compartment (92).

The expression of cell adhesion molecules such as inte-
grins is also under endocrine and paracrine control (92). Flow
cytometry studies have shown E2 and P to decrease �V�3
integrin expression. Down-regulation of this integrin by E2
and P indicates that implantation and receptivity may arise
as a result of a down-regulation of E2 and PRs during the
midluteal phase (92, 123). E2 and P may therefore have a
suppressive role on integrins and other critical endometrial
proteins such as cytokines, which may only be expressed
when this inhibitory signal is removed.

Leukemia inhibitory factor (LIF) is the first cytokine that
appeared to be critically involved in embryonic development
and implantation in mice. LIF is a secreted pleiotropic cy-
tokine with a glycoprotein structure of 180 amino acids (33).
High serum P levels coincide with the presence of LIF, and
glandular LIF expression can be blocked by antiprogestins
(124). The biological action of LIF in human endometrium is
still unclear, but it probably has a function in human im-
plantation at the stage of embryonic invasion. Coexpression
of LIF and pinopodes has been found in fertile women (125).

Functional genomic approaches have been used to defined
the molecular events occurring during the implantation win-
dow that contribute to the interactions between the endo-
metrium and an implanting conceptus (126–129). Moreover,
new light has been shed on the impact of ovarian hyper-
stimulation on endometrial gene expression. Putative mo-
lecular players in the endometrium for uterine receptivity
and their roles in the early stages of implantation have been
reviewed in the mouse (130), the nonhuman primate (131),
and the human (118, 131–133).

E. Ovarian aging

By a process of mitosis, the pool of germ cells undergoes
rapid expansion, reaching a maximum of approximately 7 �
106 oogonia by the fifth month of intrauterine life (134). The
oogonia then enter meiotic prophase, marking the comple-
tion of germ cell production. From here on, attrition in germ
cell numbers occurs such that at birth each ovary contains
between 25 � 104 and 50 � 104 resting follicles (135, 136).
Depletion of these primordial follicles, already begun before
birth, continues throughout childhood so that by the men-
arche a total of approximately 3 � 104 remain (137). During
reproductive life, follicle depletion occurs at a rate of ap-
proximately 1000 per month by either atresia or entry into the
growth phase, and this rate increases after the age of 35 yr
(138) until the menopause when the stock of resting follicles
falls to less than 1000 per ovary (135, 138).

The vast majority of follicles are removed from this stock
by apoptosis (139). During fetal life and childhood, follicle
development occurs up to the early antral stage (140). From
puberty until the menopause, full maturation and ovulation
occur, but only approximately 400 follicles are destined to
achieve full maturation. As reproductive age advances to the
menopause, the menstrual cycle decreases in length predom-
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inantly due to a shortening of the follicular phase (141). The
shortened follicular phase in older ovulatory women is due
to advanced follicle growth and earlier dominant follicle
selection (142). Depletion of the ovarian follicular pool (138)
leads to a diminished production of E2 and inhibin-B (143)
and a gradual rise in FSH concentrations (144). Major indi-
vidual variability exists in the rate of follicle pool depletion
within the normal range of menopausal age of 40 to 60 yr
(145) (Fig. 2). Hence, chronological age is only loosely asso-
ciated with the extent of follicle depletion (ovarian age).

The long-held paradigm of continued depletion of the
fixed number of oocytes laid down during fetal life has
recently been questioned. Female mice appear to contain a
population of germline stem cells that may maintain follicle
numbers during adult life (146). Recently, expression of
germline markers in bone marrow has been demonstrated in
mice, implicating bone marrow as a potential source of germ
cells (147). If confirmed by other investigators, these findings
are likely to have an impact on concepts of ovarian aging and
the development of therapeutic interventions designed to
maintain ovarian reserve in the human.

The identification of sensitive and specific markers of
ovarian aging may enable prediction of individual response
to ovarian stimulation and outcome of IVF. The most widely
used endocrine marker for ovarian reserve is the early fol-
licular phase FSH level (144). Although baseline FSH levels
predict poor response to ovarian stimulation (148, 149), age
appears to be more closely related to the chance of implan-
tation and ongoing pregnancy (150, 151). Young women with
high FSH levels demonstrate lower numbers of growing
follicles but can achieve good ongoing pregnancy rates if
oocytes and embryos are obtained (152, 153). Inconsistencies
may arise from the wide interindividual variation that exists

in follicular phase FSH concentrations in the normo-ovula-
tory cycle (21, 154) and from discrepancies between quantity
(follicle number) and quality (competence) of oocytes.

Elevated E2 levels on cycle d 3 may also predict poor
response to ovarian stimulation for ART, even when baseline
FSH levels are normal (155). Because FSH levels are not
always correlated with E2 concentrations, the rising FSH
levels are partly attributed to lower inhibin levels produced
by the aging ovary (143). A decrease in serum inhibin B
precedes both the fall in inhibin A levels (156) and the peri-
menopausal rise in basal FSH (157). Falling inhibin B con-
centrations may also provide a more direct assessment of
ovarian reserve, because it is directly produced by develop-
ing early antral follicles (22, 158). Studies concerning the
value of assessing inhibin B have shown discordant results
(22, 157, 159–162). Recently, it was demonstrated in a mul-
tivariate analysis that addition of basal FSH and inhibin B
levels to a logistic model including ultrasound characteristics
can improve the performance of the prediction model for
ovarian response to stimulation (163).

The age-related decrease in number of antral follicles
present in the ovary at the start of the cycle is considered to
correlate with the number of primordial follicles remaining
in the ovary (164). It should be emphasized, however, that
direct evidence to support this contention is lacking. The
antral follicle number assessed by ultrasound during the
early follicular phase has been shown to correlate with ovar-
ian response to stimulation (163, 165), and to predict the
number of immature oocytes retrieved from unstimulated
ovaries before in vitro maturation (IVM) (166). Ovarian vol-
ume, which partly reflects the number of ovarian follicles,
has also been shown to decrease with age (167), and a number
of studies have suggested a role for this parameter as a
marker of ovarian reserve (168–170).

Recently, anti-Mullerian hormone (AMH), also referred to
as Mullerian-inhibiting substance, has also been studied as a
marker of ovarian aging. A member of the TGF-� superfam-
ily, AMH is produced by ovarian granulosa cells from about
36 wk gestation to the menopause (171). Expression of AMH
is highest in granulosa cells of growing preantral and small
antral follicles. The role of AMH in follicle development and
function has been elucidated in studies of AMH-deficient
mice. In the absence of AMH, ovaries are more quickly de-
pleted of primordial follicles due to increased recruitment
(172). Additional studies have suggested that AMH may also
influence the sensitivity of growing follicles to FSH (173). In
vitro studies have shown AMH to reduce expression of aro-
matase mRNA, and decrease the number of LH receptors in
granulosa cells (174). In vivo studies in AMH null mice have
supported an inhibitory role for AMH in the cyclic recruit-
ment of follicles by lowering sensitivity to FSH (175). Because
AMH is produced by growing follicles, it has been proposed
as a marker of ovarian reserve. Indeed, serum concentrations
of AMH decrease over time in young normo-ovulatory
women (176). AMH concentrations correlate well with the
number of antral follicles and age, and less strongly with
inhibin B and FSH levels (176, 177). In contrast to inhibin B
and FSH, serum AMH levels are relatively constant through-
out the menstrual cycle. Taken together with recent clinical
studies showing high correlations between low AMH levels

FIG. 2. The age variations of the various stages of reproductive aging
given by four curves representing 1) age at the beginning of subfer-
tility, 2) age at beginning of sterility, 3) age at transition from cycle
regularity to irregularity, and 4) age at menopause. The dotted lines
indicate the age at which 50% of the female population has reached
each given stage of reproductive aging. [Reproduced with permission
from E. R. te Velde and P. L. Pearson: Hum Reprod Update 8:141–154,
2002 (145). © The European Society of Human Reproduction and
Embryology. Reproduced by permission of Oxford University Press/
Human Reproduction.]
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and ovarian response to stimulation (178, 179), AMH may
represent an important marker of ovarian reserve.

III. The Development of Ovarian Stimulation Agents

A. Background

Evidence of the endocrine pituitary-gonadal axis arose
early in the 20th century when it was observed that lesions
of the anterior pituitary resulted in atrophy of the genitals.
The first convincing evidence supporting the existence of two
separate gonadotropins (initially referred to as Prolan A and
Prolan B) was provided by Fevold et al. in 1931 (180), and
both LH and FSH were subsequently isolated and purified.
In 1928, Ascheim and Zondek (181) described the capacity of
urine from pregnant women to stimulate gonadal function.
The concept of stimulating ovarian function by the exoge-
nous administration of gonadotropin preparations has in-
trigued investigators for many decades. In 1940, Hamblen
(182) reported the ability of purified pregnant mare serum to
induce ovulation in humans by iv administration. However,
these early attempts had to be stopped due to species dif-
ferences and resulting antibody formation impacting on ef-
ficacy and safety. Clinical experiments in the late 1950s dem-
onstrated that extracts derived from the human pituitary
could be used to stimulate gonadal function (183). Subse-
quently, experiments involving the extraction of both the
gonadotropic hormones LH and FSH from urine of post-
menopausal women led to the development of human meno-
pausal gonadotropin (hMG) preparations. From the early
1960s, these were used for the stimulation of gonadal func-
tion in the human (for historic overview, see Ref. 184). A
second important development allowing for ovarian stimu-
lation on a large scale arose when the first estrogen antag-
onist tested in cancer patients was found to induce ovulation.

B. The discovery of clomiphene citrate

In the late 1950s, the first nonsteroidal estrogen antagonist
(MER-25) was tested for the treatment of breast cancer and
endometrial hyperplasia. The administration of CC in
women with endometrial hyperplasia suffering from sec-
ondary amenorrhea was followed by the recommencement
of menstrual cycles (185). Shortly thereafter, the ovulation-
inducing capacity of a closely related antiestrogen (MRL/41)
was recognized (186). CC was originally developed for clin-
ical use by the Merrel company in 1956. Nearly 50 yr later,
it is still considered to represent the first line treatment strat-
egy in most anovulatory infertility and is still the most ap-
plied drug for infertility therapies worldwide.

CC is an oral antiestrogen consisting of a racemic mixture
of two stereoisomeres. The enclomiphene isomere has a rel-
atively short half-life, whereas the zuclomiphene isomere has
an extended clearance and may accumulate over consecutive
cycles. The two isomers demonstrate different patterns of
agonistic and antagonistic activity in vitro (187, 188). Stim-
ulation of ovarian function is elicited by raised pituitary FSH
secretion due to blockage of E2 steroid feedback by CC.
Overall, a 50–60% increase of serum FSH levels above base-
line has been described (189–191). The exact nature of the

mechanism of action of CC is still uncertain (189, 192), but
induced changes in the IGF system may also be important
(191). CC for ovulation induction in anovulatory women is
considered to be relatively safe because steroid negative
feedback remains intact. The oral route of administration and
low costs represent additional advantages of this preparation.

In addition to its desirable central action of stimulating a
transient increase in gonadotropin secretion, CC may have
other potentially detrimental effects on peripheral reproduc-
tive functions. In vitro studies have revealed inhibition of
human granulosa or luteal cell steroidogenesis (188). How-
ever, in the context of higher E2 levels as a result of dominant
follicle growth, this is probably not of clinical importance.
Antiestrogenic effects at the uterine level (cervical mucus
production and endometrial receptivity) are believed to un-
derlie the observed discrepancy between achieved ovulation
and pregnancy rates (193, 194). CC does not appear to be
associated with preterm birth and congenital abnormalities
(195, 196). However, data from well-designed prospective
studies are lacking. In vitro animal studies only reveal effects
on oocytes or embryos when exposed to levels far higher than
those attained in vivo. The putative increased risk of ovarian
cancer reported to be associated with the use of CC for more
than 12 months (197) has led CC to be licensed for just 6
months of use in some countries.

After the first IVF baby born in a natural cycle (198), four
normal IVF pregnancies were subsequently reported after
ovarian stimulation with CC (199). In the following years,
many groups reported IVF results after CC, with or without
gonadotropin cotreatment (200, 201).

C. Gonadotropins

Human menopausal gonadotropins first became widely
used for IVF in the United States (202, 203). For over two
decades, gonadotropin preparations have also been exten-
sively applied for ovarian stimulation in ovulatory women
for empirical treatment of unexplained subfertility. The aim
is to increase the number of oocytes available for fertilization
in vivo (for review, see Ref. 204).

The FSH to LH bioactivity ratio of registered hMG prep-
arations is 1:1. As purity improved, it was necessary to add
hCG to maintain this ratio of bioactivity (205). The initial
preparations were very impure with many contaminating
proteins; less than 5% of the proteins present were bioactive.
Bioactivity of gonadotropin preparations continues to be as-
sessed by the crude in vivo rat ovarian weight gain Steehlman
and Pohley assay (206). This rather anachronistic technique
has the disadvantage of allowing considerable batch to batch
inconsistency in bioactivity. However, improved protein pu-
rification technology allowed for the production of hMG
with reduced amounts of contaminating nonactive proteins
and eventually the development of purified urinary FSH
(uFSH) preparations by using monoclonal antibodies since
the early 1980s (Fig. 3) (for review, see Ref. 184). The currently
available pure products allow for less hypersensitive reac-
tions and less painful sc administration. Due to the world-
wide increased need for gonadotropin preparations, de-
mands for postmenopausal urine increased tremendously,
and adequate supplies could no longer be guaranteed. In
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addition, concern regarding the limited batch-to-batch con-
sistency along with possibilities of urine contaminants
emerged (207).

Through recombinant DNA technology and the transfec-
tion of human genes encoding for the common �- and hor-
mone-specific �-subunit of the glycoprotein hormone into
Chinese hamster ovary cell lines (208), the large scale in vitro
production of human recombinant FSH (recFSH) has been
realized (209, 210). The first pregnancies using this novel
preparation in ovulation induction (211) and in IVF (212, 213)
were reported in 1992. Since then, numerous, large-scale,
multicenter studies have been undertaken (214) demonstrat-
ing their efficacy and safety. The recombinant products offer
improved purity, consistency, and large-scale availability.
Because of its purity, recFSH can now be administered by
protein weight rather than bioactivity, and so-called “filled-
by-mass” preparations (215) are now available for clinical
use. During recent years, recombinant LH (recLH) (216, 217)
and hCG (rechCG) (218, 219) have also been introduced for
clinical application.

The first report on the design of a long-acting FSH agonist
was by Boime and co-workers (220), who used site-directed
mutagenesis and gene transfer techniques to manufacture
FSH-carboxy-terminal peptide (CTP). This molecule is also
produced by a Chinese hamster ovary cell line and contains
four N-linked carbohydrate chains (�52, �78, �7, and �24)
and four O-linked carbohydrate chains at the CTP (�115,
�121, �126, and �32). The latter group causes a 3- to 4-fold
increase in half-life in vivo compared with wild-type recFSH
(221). FSH-CTP has recently been subject to clinical studies
as discussed in Section IV.B.

D. GnRH agonists

In 1971, the small decapeptide GnRH was isolated, and its
structure was elucidated (222, 223). Amino acid substitutions
have revealed the significance of specific regions for its sta-
bility, receptor binding, and activation of the pituitary go-

nadotroph cells (224). This decapeptide is secreted by the
hypothalamus into the portal circulation in an intermittent
fashion stimulating the pituitary gonadotropes to synthesize
and secrete LH and FSH (for review, see Ref. 225). In addition
to this long-established central role, recent studies suggested
that GnRH also acts as a local autocrine and/or paracrine
factor in the human ovary by regulating steroidogenesis
(226), cell proliferation (227), and apoptosis (228). However,
the current therapeutic applications of GnRH analogs are
derived from their proven role in regulating gonadotropin
secretion.

Clinically safe GnRH agonists were developed by replac-
ing one or two amino acids. An increased potency could be
achieved by replacing glycine for d-amino acids at position
6 and by replacing Gly-NH2 at position 10 by ethylamide
(229). Such simple structural changes render these com-
pounds more hydrophobic and more resistant to enzymatic
degradation. In 1978, it was discovered that repeated ad-
ministration of GnRH agonists produced a transient increase
in gonadal function followed by a decrease in gonadal func-
tion and a significant fall in sex steroids (230, 231). Although
initial binding to GnRH receptors results in activation, con-
tinuous occupation leads to desensitization due to the clus-
tering and internalization of pituitary GnRH receptors, re-
sulting in falling LH and FSH levels (232). If the agonists are
administered for a period of several months, LH levels re-
main suppressed, but FSH levels return to normal and even-
tually rise to supraphysiological levels (233).

Pulsatile administration of GnRH was established as an
effective and safe means of treating hypogonadotropic hy-
pogonadal anovulation (231, 234). The first reports concern-
ing its use for the prevention of a premature LH rise during
ovarian stimulation appeared in the early 1980s (235, 236).
During initial studies with hMG stimulation of multiple fol-
licle development for IVF, it became apparent that a prema-
ture LH peak occurred in 20–25% of cycles due to positive
feedback activity by high serum E2 levels during the mid-
follicular phase of the stimulation cycle (237). This advanced
exposure to high LH was associated with premature lutein-
ization of follicles and either cycle cancellation due to follicle
maturation arrest or severely compromised IVF outcomes.
The clinical development of GnRH agonists (for reviews, see
Refs. 225 and 229) allowed for the complete suppression of
pituitary gonadotropin release during ovarian stimulation
protocols for IVF (235, 238–240). Induced pituitary down-
regulation indeed resulted in significantly reduced cancel-
lation rates and improved overall IVF outcome (241). More-
over, the approach of GnRH agonist cotreatment facilitated
scheduling of IVF and timing of oocyte retrieval.

Recently, a second form of GnRH agonist (GnRH-II) has
been identified. This differs from the mammalian GnRH-I by
three amino acid residues. In addition to expression in the
brain, GnRH-I and GnRH-II transcripts are expressed in var-
ious cells within the ovary (242). The physiological signifi-
cance of GnRH-II in the human remains unclear.

E. GnRH antagonists

Immediate suppression and recovery of pituitary function
rendered GnRH antagonists particularly appropriate for

FIG. 3. Graphic overview of the main milestones in the development
of gonadotropins for clinical use. [Adapted from B. Lunenfeld: Hum
Reprod Update 10:453–467, 2004 (184). © The European Society of
Human Reproduction and Embryology. Reproduced by permission of
Oxford University Press/Human Reproduction.] CJD, Creutzfeldt
Jakob disease.
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short-term use in IVF. However, it has taken almost three
decades to develop such compounds with acceptable safety
and pharmacokinetic characteristics. The first generation an-
tagonists were developed by replacing “his” at position 2 and
“trp” at position 3, but these compounds suffered from low
potency. In second-generation compounds, the activity was
increased by incorporating a d-amino acid at position 6.
However, the widespread clinical application of these com-
pounds was hampered by frequent anaphylactic responses
due to histamine release. By introducing further replace-
ments at position 10, third generation compounds were de-
veloped (225). Subsequently, both the compounds ganirelix
(developed by Syntex Research, Palo Alto, CA) and Cetrotide
(developed by Asta Medica, Frankfurt, Germany) were
shown to be safe and efficacious in IVF. These third-gener-
ation GnRH antagonists were registered in 2001 for use in
IVF (243).

The expression of GnRH and GnRH receptors in devel-
oping mouse embryos at the mRNA and protein levels raises
issues of safety for the embryo. In one study, the incubation
of mouse embryos with a GnRH agonist enhanced the pre-
implantation embryonic development in a dose-dependent
way, whereas GnRH antagonist blocked this development
(244). Moreover, GnRH mRNA and GnRH proteins are pro-
duced in the human fallopian tube during the luteal phase
of the menstrual cycle (245). Studies are still required to
demonstrate convincingly clinically relevant direct effects of
GnRH analogs on fertilization, early embryonic develop-
ment, and implantation in humans. Follow-up data on preg-
nancy, birth, and neonatal outcome of 227 children born after
IVF or intracytoplasmic sperm injection cycles in which ce-
trorelix was used showed no abnormal results in comparison
to outcome after commonly used long GnRH agonist pro-
tocols (246).

IV. Ovarian Stimulation Regimens

A. Clomiphene citrate

Before the introduction of GnRH agonists to induce pitu-
itary down-regulation, combined CC/hMG regimens were
considered the standard of care. The advantages of these
combined regimens included reduced requirements for hMG
and higher luteal phase P levels, alleviating the need for
luteal phase supplementation (247). Randomized trials have
been published, comparing CC stimulation with either nat-
ural cycle IVF (248) or conventional gonadotropin/GnRH
agonist protocols (249). Recent studies also reported clinical
outcomes of combined regimens applying CC, gonadotro-
pins, and GnRH antagonist (250–252).

CC usually induces the development of at least two fol-
licles, which may sometimes elicit a premature LH rise. By
virtue of the fact that CC is therapeutically active through
interference with estrogen feedback (requiring an intact pi-
tuitary-ovarian axis), this compound cannot be combined
with GnRH agonist cotreatment for prevention of a prema-
ture LH surge. Moreover, undesired antiestrogenic effects of
CC at the level of the endometrium have been implicated by
some in the observed discrepancy between relatively low
embryo implantation rates coinciding with successful ovar-

ian stimulation (204). CC administration is usually initiated
on cycle d 2, 3, or 5, and given daily for 5 subsequent days,
with doses varying between 100 and 150 mg/d. In most
applied regimens, exogenous gonadotropin medication (150
IU/d) is initiated after cessation of CC. It seems that CC alone
induces a limited but dose-dependent increase in the number
of developing follicles. However, the addition of gonado-
tropins elicits increased ovarian response as manifest by
more follicles. Sufficiently powered randomized compara-
tive trials to support one approach over the other are lacking.

Reported outcomes with CC alone are variable, but in
general pregnancy rates appear higher compared with nat-
ural cycle IVF, but lower compared with conventional go-
nadotropin/GnRH agonist protocols. Again, most studies
are uncontrolled, but an extensive summary of almost 40,000
cycles reported in the literature suggests pregnancy rates of
6% per started cycle and up to 20% per embryo transfer (253).
Apart from hot flushes, which may occur in up to 10% of
women taking CC, side effects are rare. Nausea, vomiting,
mild skin reactions, breast tenderness, dizziness, and revers-
ible hair loss have been reported, but less than 2% of women
are affected. The mydriatic action of CC may cause reversible
blurred vision in a similar number of women. Overall side
effects are CC dose related and are completely reversible
once medication is stopped.

Tamoxifen, like CC, is a nonsteroidal selective ER modu-
lator. Primarily developed for and used in the treatment of
breast cancer, it has also been used in ovulation induction for
many years. In contrast to CC, tamoxifen only contains the
zu-isomer and appears to be less antiestrogenic at the uterine
level. The possible advantages of tamoxifen over CC include
beneficial effects on cervical mucus (254) and an agonistic
effect at the endometrium. However, although endometrial
thickness may increase on ultrasound monitoring, histolog-
ical studies indicate that this may be due to edema and
enlargement of stromal cells, rather than a purely estrogenic
proliferative effect (for review, see Ref. 255). In recent years,
tamoxifen has been proposed as an alternative means of
ovarian stimulation for ART in women who have had breast
cancer (256, 257), while protecting the breasts from concom-
itant high serum estrogen levels. Additional follow-up stud-
ies should be carried out before this drug is widely applied
in these patients.

B. Gonadotropins

Gonadotropin preparations still constitute the principal
agents for ovarian stimulation in IVF. The daily administra-
tion of these preparations is usually efficacious in the main-
tenance of growth of multiple antral follicles, allowing for the
retrieval of many oocytes for IVF. Preparations initially used
were hMG (containing both LH and FSH bioactivity), fol-
lowed by purified uFSH and more recently recFSH and
recLH.

Starting doses vary between 100 and 300 IU/d and are
often adjusted depending on the observed individual ovar-
ian response. However, there is little evidence to support
dose adjustments midcycle (258). Several randomized clin-
ical trials employing GnRH agonist cotreatment have failed
to demonstrate improvements in outcome when higher
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doses of FSH are employed, even in older patients (259–263).
A single-center study comparing 150–225 IU recFSH with
GnRH antagonist comedication (264) showed similar results.
The widely applied practice of increasing gonadotropin to
ameliorate low response to stimulation is not supported by
published evidence (265). This is not surprising when the
pathophysiology of ovarian aging (i.e., follicle pool deple-
tion) is taken into consideration.

When excessive follicle development raises the concern of
imminent OHSS, gonadotropins are often reduced or tem-
porarily withheld, a practice known as “coasting” (266).
Studies of the efficacy of this approach have been inconclu-
sive (267). Major individual differences in body weight may
determine response (268), as may the cotreatment employed
to prevent premature luteinization. Because endogenous go-
nadotropins are suppressed by GnRH antagonists for a lim-
ited period of time, less exogenous FSH is required. The ideal
day of initiation of gonadotropin therapy is another variable
that has been poorly characterized so far (243). The approach
of starting exogenous FSH early during the luteal phase of
the preceding cycle recognizes the physiological principle of
early recruitment of a cohort of follicles for the next cycle (4).
However, this protocol did not result in improved ovarian
response in women with a low oocyte yield during previous
IVF attempts (269).

To allow for the clinical introduction of recFSH, large scale,
multicenter, comparative trials in IVF sponsored by phar-
maceutical companies were published from 1995 onward
(214). Several independent comparative trials have since
been published, but sample sizes of these single-center stud-
ies were usually insufficient to allow for the detection of
small differences. Meta-analyses (270) and health economics
studies (271, 272) indicated a slightly improved outcome for
recFSH compared with uFSH. A meta-analysis comparing
recFSH vs. hMG suggested comparable outcomes (273). Sub-
sequent multicenter trials also reported similar clinical out-
comes comparing uFSH vs. recFSH (274) or hMG vs. recFSH
(275). A meta-analysis comparing urinary-derived FSH with
recFSH showed no significant difference in pregnancy rates
(276). Finally, a meta-analysis comparing clinical pregnancy
rates per started cycle after recFSH, uFSH, and hMG con-
cluded that there is no evidence of clinical superiority for
recFSH over different urinary-derived FSH gonadotropins
(277). The data from the principle meta-analyses are sum-

marized in Fig. 4. The continuing debate relating to the rel-
ative efficacy and effectiveness of different gonadotropin
preparations in IVF is largely driven by commercial rather
than scientific imperatives. When selecting a gonadotropin
regimen, other factors should therefore be taken into account
when selecting a gonadotropin regimen. In terms of toler-
ance, recFSH preparations showed some improvement over
urinary-derived preparations, allowing for safe sc adminis-
tration (278). The use of recFSH also reduces the theoretical
risk of transmission of prion proteins, which have been iden-
tified in human urine (279). Although infections by urine
prions in humans and animals have not been reported, the
risk of prion disease such as new variant Creutzfeldt-Jakob
disease has been deemed by some to be sufficient to advise
against the use of uFSH, or urinary hCG (uhCG) (280). How-
ever, in a recent study of the 143 cases of Creutzfeld-Jakob
to date registered in the United Kingdom, 63 were females
and only one of these had undergone an infertility treatment
from 1998–1999 (281). Although this may suggest low risk in
association with infertility treatments, the long incubation
period of this condition may continue to mask the real risk.

More recently, a chimeric FSH agonist (so called recFSH-
CTP) (220), generated by the fusion of the CTP of hCG (re-
sponsible for the prolonged metabolic clearance compared
with LH) with the FSH-� chain has been studied in IVF
patients. Early studies of this compound showed repeated
injections to be safe, with no antibody formation (282). Sub-
sequently, it was demonstrated that a single injection of 120
�g FSH-CTP induced multiple follicle growth similar to that
induced by 150 IU recFSH given daily for 7 d (283). The
half-life was 60–75 h. When a single dose of long-acting
FSH-CTP is given at a dose above the threshold requirements
for developing follicles, multiple follicular development oc-
curs. When FSH-CTP levels decline below the threshold,
FSH-sensitive follicles cease development and become
atretic. This can be prevented by timely institution of daily
recFSH injections. The initial report of the birth of a healthy
baby, after the single injection of 180 �g in the early follicular
phase of the cycle followed by three injections of 150 IU rFSH,
demonstrated the feasibility of this approach (284). More-
over, a recent dose-finding study showed that a single dose
of FSH-CTP can indeed induce and maintain multifollicular
growth for an entire week (285). The total dose of FSH-CTP
required to meet criteria for hCG administration (at least

FIG. 4. Overview of results of pub-
lished meta-analyses comparing uFSH
with recFSH and hMG with recFSH for
ovarian stimulation in IVF. The bars
indicate the odds ratios and 95% confi-
dence intervals for the given endpoints.
Odds ratios greater than 1 indicate su-
periority of recFSH.
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three follicles with a diameter of at least 17 mm) was similar
for doses of 120, 180, and 240 �g, suggesting that the lowest
effective dose may be even less than those tested. Studies are
now directed at establishing the optimal FSH-CTP dose and
regimen for different subsets of IVF patients.

C. The role of LH

A number of recent studies indicated that excessively sup-
pressed LH concentrations in the late follicular phase may be
detrimental for clinical IVF outcome (286, 287). Under these
circumstances, the use of urinary preparations containing
both LH and FSH activity or the addition of recLH or rechCG
next to exogenous FSH may be useful. However, several
recent studies failed to confirm these findings and ques-
tioned the need for exogenous LH (288–295). It remains
unclear for which patients this approach may be beneficial.
Supplementation of LH activity may offer advantages in
some patients by hastening large follicle development and
therefore shortening the duration of treatment (296). More-
over, the work of Zeleznik and co-workers (33) referred to a
potential therapeutic role for LH in effecting monofollicular
stimulation as part of a sequential ovarian stimulation pro-
tocol after initiation with recFSH. This concept was sup-
ported in a recent study in which anovulatory women with
a hyperresponse to recFSH were randomized to continue
treatment with the addition of either placebo or recLH (297).
In those in whom LH was administered, a trend toward
fewer preovulatory follicles was observed. However, in a
parallel study, treatment with recLH alone in the late follic-
ular phase was found to be detrimental to preovulatory
follicle development (298, 299).

Recently, the concept that exogenous LH is capable of
selectively stimulating the development of the more mature
dominant follicles has been developed (300). A shift from
FSH to LH preparations during stimulation may therefore be
useful to stimulate a more homogeneous cohort of follicles
for IVF (33, 34). However, opposing views have also been
published suggesting no added value of LH supplementa-
tion (301). In accordance with the reported association be-
tween low LH levels (�0.5 IU/liter) and lower ongoing preg-
nancy rates in IVF cycles (286), LH levels were proposed to
have a role in the lower pregnancy rates in GnRH antagonist
cycles, because these cycles often lead to extensive suppres-
sion of endogenous LH activity during the late follicular
phase if combined with rFSH administration. However, sev-
eral recent studies reported conflicting results with regard to
a possible association between serum LH levels during ovar-
ian stimulation and IVF outcomes (302–305). Recently, it was
proposed that it might be more appropriate to look at a LH
“window” instead of a single LH cutoff level, because there
seems to be a “threshold” LH level, below which E2 pro-
duction is not adequate, and a “ceiling” level, above which
LH may be detrimental to follicular development (290).

The debate as to the optimal LH exposure for successful
IVF outcomes continues. A novel approach recently pro-
posed aims to improve outcomes by reducing the incidence
of premature LH rises, as has been observed to occur in a
small proportion of patients (306). It is suggested that earlier
administration of GnRH antagonist could eliminate this

problem. In a recent randomized study, neither follicular
development nor the number of mature oocytes obtained
was adversely affected by commencing GnRH antagonist on
d 1 vs. d 6 of stimulation. However, LH and E2 exposure in
the follicular phase was reduced in d 1 administration com-
pared with initiation on d 6 of stimulation (307). Previous
studies have suggested that prevention of high LH levels at
the commencement of stimulation may improve endometrial
receptivity (303, 307). Additional studies are required to as-
certain the effects of the different GnRH antagonist protocols
on endometrial maturation and implantation.

D. GnRH agonists

As outlined earlier, the introduction of GnRH agonists to
prevent a premature rise in LH, premature oocyte matura-
tion, and luteinization had a considerable impact on out-
comes in IVF. They have now been in use for some 20 yr, yet
surprisingly few dose finding studies have been performed
(308), and randomized studies comparing different GnRH
agonists are scarce. However, much attention has been given
to discerning the optimal protocol for their use.

In the long protocol, GnRH agonist treatment usually com-
mences in the luteal phase in the preceding cycle and is
continued until hCG administration. Due to the intrinsic
agonist activity of the compound, pituitary down-regulation
is preceded by an initial stimulatory phase (referred to as the
“flare” effect). This flare effect renders the approach of GnRH
agonist long protocol for ovarian stimulation time consum-
ing, because ovarian stimulation can only commence when
pituitary quiescence has occurred, usually around 2 wk after
commencing treatment (309). It is uncertain whether ovarian
response to exogenous stimulation is affected by GnRH ag-
onist cotreatment (310), and some women suffer from serious
hypoestrogenic side effects, such as mood changes, sweating,
and flushes. The “short” or “flare-up” protocol combines
GnRH agonist therapy, started at cycle d 2, with gonado-
tropins initiated 1 d later (311). The immediate stimulatory
action of the GnRH agonist serves as the initial stimulus for
follicular recruitment. Adequate follicular maturation is on
average reached in 12 d, which should allow enough time for
sufficient pituitary desensitization to prevent any premature
LH surges (312).

Several investigators have tried to shorten the duration of
GnRH agonist administration by early cessation, because
pituitary recovery after cessation takes around 14 d (313). The
GnRH agonist is started in the midluteal phase of the pre-
ceding cycle and discontinued during or even before the FSH
treatment is started. Several prospective randomized con-
trolled studies have been performed comparing this ap-
proach with the long protocol (314–317). Although prema-
ture rises in LH did not occur (confirming delayed pituitary
recovery from desensitization), no clear clinical benefit has
been demonstrated by this approach.

A meta-analysis comparing short and long IVF protocols
showed a higher number of oocytes retrieved and higher
pregnancy rates in the long protocol, although more units of
gonadotropin were needed (318). In terms of gonadotropin
suppression and number of retrieved oocytes, the midluteal
phase of the preceding cycle is the optimal moment for the
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initiation of the GnRH agonist, in comparison to the follic-
ular, early, or late luteal phase (319, 320). A major clinical
advantage of the long protocol of GnRH agonist adminis-
tration is the contribution to the planning of the oocyte re-
trieval because the initiation of exogenous gonadotropins
after pituitary desensitization can be delayed, without a det-
rimental effect on IVF outcome (321, 322). A potential dis-
advantage with the luteal phase initiation of GnRH agonist
is that spontaneous pregnancy present at the time of com-
mencing treatment cannot be excluded with certainty. The
extensive evidence supporting the long protocol has led to its
widespread adoption as the standard of care (318). However,
the recent clinical introduction of GnRH antagonists may
ultimately lead to a new standard of care in IVF practice.

E. GnRH antagonists

GnRH antagonists may be administered at any time dur-
ing the early or midfollicular phase of a treatment cycle to
prevent a premature LH rise. Several studies have been per-
formed to determine the minimal effective dose and treat-
ment schedule in IVF patients (323–325). Two general ap-
proaches have emerged. In the single-dose protocol, one
injection of 3 mg cetrorelix (ganirelix is not provided in this
depot formulation) is administered in the late follicular
phase on stimulation d 8 or 9. This is sufficient to prevent a
LH surge in 80% of women (324). In the multiple-dose GnRH
antagonist protocol, 0.25 mg cetrorelix or ganirelix is given
daily from the sixth day of gonadotropin stimulation onward
(323, 325). The rationale behind starting GnRH antagonist at
least 5 d after commencing stimulation with gonadotropins
is based on the reduced possibility of observing a premature
LH rise in the early follicular phase (326).

Four large, industry-sponsored, prospective multicenter
clinical trials comparing daily GnRH antagonist injections
with long GnRH agonist protocols in IVF patients undergo-
ing ovarian stimulation have been reported (327–330). With
a GnRH antagonist, the duration of gonadotropin treatment
is shortened by 1–2 d, and slightly fewer follicles are seen at
the time of hCG injection compared with a GnRH agonist.
Therefore, the number of recovered oocytes tends to be
lower. In these studies, no significant difference was found
with respect to percentages of metaphase II oocytes, fertili-
zation rates, and number of good quality embryos. Preg-
nancy rates were adequate in both groups in all four studies,
but in every one the absolute rate was lower in the GnRH
antagonist group. A meta-analysis of five large randomized
trials showed an overall decrement in pregnancy rate of 5%
(odds ratio, 0.75; 95% confidence interval, 0.62–0.97) (331)

(Table 1). It has been hypothesized that the lower observed
pregnancy rates may be a consequence of the currently ad-
vised treatment regimen. It has been suggested that the larger
numbers of oocytes and embryos with agonists allow better
selection, although the numbers of good quality embryos do
not seem to be different. The GnRH antagonist was started
on a fixed day of stimulation (d 6) in these studies, which may
be too early for some patients and may lead to a diminished
number (and quality) of oocytes.

Studies comparing the fixed antagonist protocol with a
flexible protocol, in which the daily antagonist administra-
tion is started when at least one follicle reached a size of 14
mm, showed no differences in IVF outcome, except that the
dose of GnRH antagonist was reduced in the flexible protocol
(332). When GnRH antagonist is commenced, there appears
to be no requirement to increase the dose of FSH (264, 333,
334) or supplement LH (335). Commencing GnRH antagonist
in the late follicular phase enables the endogenous FSH rise
to be harnessed to commence ovarian stimulation and then
supplemented by exogenous gonadotropin stimulation from
the midfollicular phase onward to achieve multifollicular
development (336). The concept of thus “extending the FSH
window” is illustrated in Fig. 1. This novel approach prom-
ises a cost-effective and patient-friendly alternative to stan-
dard stimulation regimens.

Based on the inverse association between implantation
rates and ganirelix dose in the higher dosage groups in the
large dose-finding study (337), direct effects of GnRH an-
tagonists on human embryos have been suggested. Adverse
effects were not observed on the freeze-thaw embryos of
these cycles (338). Moreover, retrospective comparison of
pregnancy rates after transfer of frozen-thawed two-pro-
nucleate oocytes obtained in either a long GnRH agonist
protocol (n � 286) or a GnRH antagonist protocol (n � 56)
showed no differences in implantation, pregnancy, or mis-
carriage rates (339).

V. Adjuvant Therapies

The aim of adjuvant therapies is to improve the efficacy of
ovarian stimulation by reducing the dose of gonadotropin
required to effect the same response or improve response to
gonadotropin stimulation, or by simplifying treatment
protocols.

A. Oral contraceptive pretreatment

The use of exogenous sex steroids to manipulate second-
ary follicle recruitment has been proposed since the early

TABLE 1. Principal results of meta-analysis of randomized studies comparing IVF outcomes after cotreatment with GnRH antagonist or
GnRH agonist during ovarian stimulation (331)

Outcome parameter Odds ratio 95% Confidence intervals

Duration of ovarian stimulation (d) �1.12a �1.45 to �0.80
Premature LH surge 1.76 0.75 to 4.16
No. of oocytes retrieved per cycle �1.86a �2.47 to �1.25
Clinical pregnancy rate per oocyte retrieval 0.79 0.63 to 0.99
Clinical pregnancy rate per embryo transfer 0.76 0.60 to 0.97
Miscarriage rate 1.03 0.52 to 2.04
Incidence of severe OHSS 0.47 0.18 to 1.25

a Weighted mean difference.
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days of IVF. Early studies had demonstrated that oral ad-
ministration of ethinyl E2 in the early follicular phase of the
menstrual cycle led to suppression in gonadotropins and a
lengthening of the follicular phase (340, 341). Subsequent
studies in rhesus monkeys confirmed this observation and
demonstrated the presence of a highly sensitive feedback
relationship between E2 and FSH during the follicular phase
of the menstrual cycle (342). This concept found ready ap-
plication in dealing with one of the principal problems as-
sociated with ovarian stimulation for IVF: the premature LH
surge and luteinization. The perceived need to allow pro-
gramming of oocyte retrieval led to a number of studies
addressing the role of oral contraceptives (OCs). Fixed sched-
ule protocols were developed by a number of groups in
which OCs were administered in advance of ovarian stim-
ulation and planned follicle aspiration. The preparations
studied varied from combined estrogen-P pills (343) to P-
only treatment (344). The optimal duration of treatment was
debated, with some studies suggesting that prolonged treat-
ment with OCs was associated with excessive suppression,
prolonged ovarian stimulation, and increased cancellation
rates (345, 346), whereas others could demonstrate no such
detrimental effects of prolonged pretreatment (343). These
and other studies of OCs as a tool for manipulating the length
of the follicular phase promised to turn oocyte retrieval from
an emergency to an elective operation (347). Despite their
apparent efficacy, ease of administration, and fewer side
effects, subsequent randomized studies comparing OCs to
GnRH agonists as a means of preventing premature lutein-
ization showed the superiority of the latter, and because of
this, OCs are no longer widely used for this indication.

To facilitate the planning of the initiation of exogenous
gonadotropins in a GnRH antagonist cycle, independent of
the menstrual period, OC pretreatment has been evaluated
in a number of small studies (348). Although there is evi-
dence that OC pretreatment may aid in the scheduling of IVF
cycles when GnRH antagonists are employed, more pro-
spective studies are required to evaluate the effect on IVF
outcome.

It has been proposed that antral follicles at a more ad-
vanced stage of development may be so responsive to FSH
that they may start their development during the late luteal
phase. This may lead to a number of follicles reaching ma-
turity and postmaturity ahead of the rest of the cohort. The
concept of synchronizing the cohort of antral follicles before
ovarian stimulation by administering exogenous steroids has
been put forward as a means of ensuring that the entire
cohort of follicles reaches maturity at the same moment, and
therefore improving IVF outcomes. Indeed, a number of
studies have demonstrated that induction of a hypogona-
dotropic state with synthetic steroids may synchronize fol-
licle development (344, 349). Recently, it was demonstrated
that luteal administration of E2 can also reduce size discrep-
ancies of antral follicles (350). The authors proposed that
synchronization of follicular growth allows ovulation to be
triggered when the majority of follicles have reached con-
comitant maturation. This concept remains untested in the
context of randomized clinical trials.

The potential role for OCs in improving outcomes in high
responders has also been addressed. Women with polycystic

ovary syndrome (PCOS) are at increased risk of developing
OHSS. The frequently observed excessive ovarian response
of these patients to ovarian stimulation presents a therapeu-
tic challenge. Predicated on the concept that women with
PCOS may take longer to achieve down-regulation with
GnRH agonist (351), combined down-regulation protocols of
GnRH agonist and OCs have been proposed (352). The ef-
ficacy of this approach awaits testing by randomized control
trials.

B. Insulin-sensitizing agents

The contention that insulin resistance may play a key role
in the pathogenesis of ovarian dysfunction in PCOS patients
led to the application of insulin-sensitizing agents to induce
ovulation and improve outcomes from ovarian stimulation
for IVF. The most extensively studied insulin-sensitizing
drug in the treatment of anovulation is metformin. Met-
formin (dimethylbiguanide) is an orally administered drug
used to lower blood glucose concentrations in patients with
noninsulin-dependent diabetes mellitus (353). It is antihy-
perglycemic in action, and increases sensitivity to insulin by
inhibiting hepatic glucose production and by increasing glu-
cose uptake and utilization in muscle. These actions result in
reduced insulin resistance, lower insulin secretion, and re-
duced serum insulin levels. Metformin has been used for
many years for the treatment of diabetic patients and appears
to be safe for long-term use. It has not been associated with
an increased risk of congenital abnormalities in diabetic
women who subsequently became pregnant (354). In vitro
studies have not demonstrated teratogenicity.

The main side effects of metformin are nausea and diar-
rhea, which may occur in 10–25% of patients and contribute
to the weight loss effects observed with metformin. If these
symptoms persist despite lowering the dose, alternative ther-
apy should be given. For this reason, metformin should be
given in a low-start rising-dose regimen. Rarely, lactic aci-
dosis may occur (0.3 episodes per 10,000 patient years) (355)
if hepatic or renal disease is present, and these should be
excluded before commencing therapy.

Troglitazone is a thiazolidinedione, one of a group of in-
sulin-lowering oral drugs that have also been studied in the
context of inducing ovulation in women with PCOS. A large
randomized study suggested that troglitazone may be an
effective ovulation induction agent (356). However, numer-
ous reports of fatal liver toxicity have led to its withdrawal
by the U.S. Food and Drug Administration. Its safety with
respect to potential teratogenicity and long-term effects on
children have not yet been demonstrated.

Three studies have evaluated the effect of metformin treat-
ment before IVF. In a retrospective study of 46 women with
PCOS undergoing 60 cycles of IVF treatment, metformin-
treated women had more mature oocytes, increased fertili-
zation rates, and higher clinical pregnancy rates than controls
(357). In a small, open-label, randomized crossover trial,
metformin increased the number of oocytes collected among
insulin-resistant, obese women with PCOS (358). However,
in a recent randomized double-blind study in which women
with polycystic ovaries were treated for at least 16 wk, no
differences were found in duration of FSH stimulation, num-
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ber of oocytes, fertilization rates, embryo quality, or preg-
nancy rates (359). Because benefits in subgroups of women
with PCOS have not yet been demonstrated, caution should
be applied before metformin is prescribed in the context of
adjuvant treatment for IVF.

C. Aromatase inhibitors

Aromatase inhibitors have been in clinical use for more
than 20 yr, primarily in the treatment of postmenopausal
patients with advanced breast cancer (360). The more re-
cently developed third generation of aromatase inhibitors are
characterized by their potency in inhibiting the aromatase
enzyme without significantly inhibiting other steroidogen-
esis enzymes. Moreover, they are active when taken orally
and show rapid clearance from the body, with a half-life of
around 45 h (361). One of the third-generation compounds,
letrozole, has been the focus of study as a potential thera-
peutic agent for induction of ovulation (362). Rather than
antagonizing estrogen feedback activity at the hypothalamic-
pituitary axis as with CC, this approach reduces the amount
of estrogens being synthesized. Aromatase inhibitors block
the conversion of androstenedione and testosterone to estriol
and E2, respectively (363), reducing estrogenic feedback at
the pituitary/hypothalamic axis, increasing gonadotropin
secretion, and thereby stimulating growth of ovarian follicles
(362).

Early follicular phase administration of letrozole was
shown in monkeys to stimulate follicle development (364).
Subsequent small clinical studies employing a dose of 2.5
mg/d from d 3 to d 7 of the menstrual cycle have suggested
that it may be an effective ovulatory agent in CC-resistant
women (362). A local effect at the ovary to increase sensitivity
to FSH by blocking the conversions of androgens to estrogens
has also been proposed, because accumulating intraovarian
androgens may increase FSH receptor gene expression (365).
On the other hand, significantly increased intraovarian an-
drogen/estrogen ratios may also induce follicle atresia.

Studies have shown that when given at doses of 5 mg/d,
letrozole causes a marked reduction in E2, estrone, and es-
trone sulfate, with minimal, primarily gastrointestinal, side
effects (366, 367). Although theoretically attractive as a means
of reducing the dose of exogenous gonadotropins required
for ovarian stimulation in IVF, no randomized studies have
been published as yet. A recent nonrandomized study in-
volving ovarian stimulation with intrauterine insemination
appeared to indicate that the dose of FSH required was less
when letrozole was given from d 3 to 7 of the cycle before
commencing FSH administration (368).

A further possible role for aromatase inhibitors that re-
mains under investigation is to reduce E2 levels during ovar-
ian hyperstimulation with gonadotropins. The hypothesis
being tested is that by preventing excessive E2 synthesis, less
disruption of endometrial receptivity is likely. As with the
other possible roles for aromatase inhibitors, future studies
must determine whether these approaches are of value and
are safe for ensuing pregnancy.

D. Growth Hormone

In addition to the earlier described rodent studies, there is
evidence that GH enhances ovarian steroidogenesis and fol-
licular development by increasing the sensitivity of the ova-
ries to gonadotropin stimulation (369, 370). GH has therefore
been proposed as an adjuvant therapy to ovarian stimulation
for IVF. Studies addressing this possibility remain scarce,
however. When GHRH was administered to women under-
going IVF, no improvement was observed in the ovarian
response to FSH, although a significant rise in GH and IGF-I
was observed (371). However, in a further study, the addition
of GH to gonadotropin therapy in hypogonadotropic pa-
tients reduced the gonadotropin dose required to achieve
ovulation (372). In a recent meta-analysis, a small but sig-
nificant improvement in pregnancy rates appeared to be
associated with GH supplementation (373). However, cau-
tion is required in interpretation due to the small number and
quality of studies available.

Studies of patients with GH deficiency have suggested that
the therapeutic value of GH may be limited. An example of
such an “experiment of nature” is the infertile patient suf-
fering from a GH deficiency (Oliver McFarlane syndrome).
In one reported case, adjuvant GH did not influence the
ovarian response to exogenous gonadotropins (374). In
Laron-type dwarfism (where low IGF-I and normal GH lev-
els are observed, due to deficiency of GH receptors), spon-
taneous and ART pregnancies have been reported (375, 376).
Recently, ovulation induction and successful pregnancy after
gonadotropin therapy were reported in two women with
combined pituitary hormone deficiency secondary to Prop 1
gene mutations (377). In these women, neither GH, IGF-I, or
prolactin appeared necessary for ovulation, embryonic de-
velopment, or normal pregnancy outcome. These data serve
to illustrate the redundancy evident in the endocrine and
paracrine control of follicular development and function.

E. Androgens

Androgens act as paracrine regulators of follicular matu-
ration and atresia modulating gonadotropin action on gran-
ulosa cells through amplification of cAMP-mediated postre-
ceptor signaling (378). Although their action in promoting
FSH-induced granulosa cell differentiation points to a po-
tential therapeutic role (378), few studies have addressed
androgens as adjuvants to ovarian stimulation for IVF.

It has long been believed that hyperandrogenic states such
as PCOS are associated with poorer outcomes from IVF. In
a recent meta-analysis, PCOS patients were found to produce
more oocytes in response to stimulation, but these showed
more reduced fertilization rates than oocytes derived from
non-PCOS patients. Pregnancy rates did not appear to be
affected (379). No randomized studies of androgen supple-
mentation have been carried out, but data from retrospective
studies suggest that low levels of testosterone (�20 ng/dl)
are predictive of poor cycle outcome (380). More data from
well-designed studies are required to determine the potential
role of androgen supplementation in IVF stimulation
protocols.
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VI. Sequelae of Ovarian Stimulation

A. Effects on corpus luteum function

From the first attempts at IVF in the early 1970s, it was clear
that ovarian stimulation with hMG disrupted the luteal
phase (198). Initial studies in the United States in 1983 con-
cerning hMG-stimulated IVF cycles also confirmed the oc-
currence of an abnormal luteal phase in IVF cycles with
characteristic features of elevated P levels during the early
luteal phase along with a significantly reduced luteal phase
length (381) (Fig. 5).

With the adoption of GnRH agonist cotreatment for the
prevention of a premature rise in LH, it became apparent that
recovery of the pituitary from down-regulation during the
luteal phase was slow (resulting in a lack of support of the
corpus luteum by endogenous LH (241, 313, 314). It was
observed shortly thereafter that the corpus luteum could be
rescued by the administration of hCG (382–384), and this
treatment modality became the standard of care for luteal
support during the late 1980s. A meta-analysis combining
results from 18 randomized trials showed increased IVF
pregnancy rates with hCG supplementation (385). However,
5% of hCG-supplemented patients developed OHSS. Be-
cause of this association between hCG and OHSS (386), luteal
phase hCG support has been largely replaced over the years
by luteal phase P supplementation (387).

Attempts to secure pituitary recovery during the luteal
phase by the early follicular phase cessation of GnRH agonist
cotreatment (314, 317, 388) failed, presumably due to the fact
that other mechanisms are also involved in suppression of
pituitary function during the luteal phase. Because of the
rapid recovery of pituitary gonadotropin release after dis-
continuation of GnRH antagonist (31, 389), it has been spec-
ulated that luteal phase supplementation may not be re-
quired after the late follicular phase administration of GnRH
antagonist (390). However, various studies in IVF applying
GnRH antagonist cotreatment have now clearly shown that
luteolysis is also initiated prematurely, resulting in a signif-

icant reduction in the length of the luteal phase along with
greatly compromised chances for pregnancy (391–394).
Other mechanisms may explain the nonphysiological endo-
crine milieu observed when this regimen is employed (Table
2). The hCG administered for inducing the final stages of
oocyte maturation has a much longer half-life than native LH
(395). Multiple corpora lutea resulting from multiple dom-
inant follicle development during ovarian stimulation are
supported by the profound luteotropic activity of the mid-
cycle hCG bolus. Supraphysiological serum P or E2 concen-
trations in the early luteal phase may elicit a more profound
suppression of pituitary LH and FSH secretion than occurs
in the natural cycle (2, 396, 397).

Recently, more detailed studies have confirmed that early-
and midluteal phase LH levels remained suppressed after
the follicular phase administration of GnRH antagonist (394,
398). Luteolysis has been found to be advanced in the non-
supplemented luteal phase, whether final oocyte maturation
is induced with recLH, rechCG, or LHRH agonist in GnRH
antagonist cycles (394). These findings are consistent with
studies of ovarian stimulation in monkeys and in humans
showing that P levels decline in the luteal phase in associ-
ation with the fall in circulating hCG (317, 399). There is
increasing evidence that the short luteal phase after ovarian
stimulation is therefore due to the decay in hCG levels ad-
ministered at midcycle and the continued potent feedback
suppression of pituitary LH secretion by the supraphysi-
ological serum levels of E2 and P. The clinical consequence
is that all cycles undergoing superovulation require luteal
supplementation (2, 400).

1. Luteal support. Luteal phase length can be restored by 1)
stimulating the corpora lutea with hCG (luteal phase sup-
port), or 2) supplementing the luteal phase with steroids,
such as estrogen and P (luteal phase supplementation). Re-
cent preliminary observations suggest that corpus luteum
function can also be maintained by small repeated doses of
GnRH agonist (401).

hCG can be administered during the luteal phase in doses
of 1,500/2,500 IU at d 3, 6, and 9 after inducing ovulation, or
1,500 U on alternate days (402). In the case of luteal phase
supplementation, P is administered at different dosages such
as 25 and 50 mg daily im. Micronized P can also be admin-
istered intravaginally at a dose ranging from 300 to 600 mg
daily or as a vaginal gel at a dose of 90 mg daily (403). Oral
estrogen can be added in case P is used (404).

Approximately 30 randomized controlled trials have been
published to compare the different drugs used for luteal

FIG. 5. Schematic representation of changes in luteal phase length
and endocrine profile induced by ovarian hyperstimulation for IVF.
[Published with permission from H. W. Jones: Hum Reprod 11(Suppl
1):7–24, 1996 (381). © The European Society of Human Reproduction
and Embryology. Reproduced by permission of Oxford University
Press/Human Reproduction.]

TABLE 2. Possible mechanisms underlying the abnormal luteal
phase after ovarian stimulation for IVF

Mechanisms

Slow recovery from pituitary down-regulation by GnRH agonists
Exaggerated ovarian feedback in response to stimulation on

hypothalamic-pituitary function
Direct effect at pituitary of hCG bolus given to trigger final oocyte

maturation
Removal of large quantities of granulosa cells during retrieval of

cumulus-oocyte complexes
Negative feedback by high early luteal phase sex steroid levels at

pituitary
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phase supplementation and support (404). Intramuscular P
appeared to be marginally superior to oral or vaginal use. A
decrease in pregnancy rates after the use of oral P compared
with hCG administration has been reported (405, 406). Sup-
port with hCG or supplementation with P did not reveal a
difference in pregnancy rates (407). The addition of E2 val-
erate to P supplementation has been analyzed, but studies so
far remain inconclusive as to the value of this (408). Insuf-
ficient data are currently available to analyze whether the
addition of hCG to P administration has any benefit (409).

Because of the potential risk of enhancing the occurrence
of OHSS, the administration of hCG is not advisable. In
summary, the available data in this field point to P supple-
mentation as the preferred means of providing luteal sup-
port. Although im P may be more effective than the intra-
vaginal route, the pain and inconvenience of daily deep
injections renders the vaginal approach preferable in prac-
tice. The optimal timing of initiation and duration of treat-
ment remains to be fully clarified. However, a randomized
controlled study comparing administration of vaginal P for
14 d after oocyte pickup, with extended administration for 3
wk after a positive pregnancy test, revealed no difference in
outcomes (410).

Studies of luteal function in early pregnancy have shown
that serum P levels are markedly raised for up to 9 wk
gestation compared with spontaneous pregnancy (411). 17-
Hydroxyprogesterone, the principal P produced by the cor-
pus luteum, remains the dominant P after IVF throughout the
first trimester. This is in contrast to spontaneous pregnancies,
where P of trophoblast origin is secreted in higher concen-
trations than 17-hydroxyprogesterone from 5 wk gestation
(411). It is clear that the multiple corpora lutea produced
during IVF produce high levels of P in early pregnancy, and
additional supplementation during this phase is probably
superfluous.

B. Effects on endometrial receptivity

The nonphysiological hormonal milieu associated with
ovarian stimulation is widely held to be detrimental to en-
dometrial receptivity (Table 3). The fine balance of endocrine
and paracrine factors involved in the preparation of the en-
dometrium to allow implantation is disrupted, primarily as
a result of excess estrogen levels. Early studies of the effect
of ovarian stimulation reported an association between de-
layed postovulatory endometrial maturation and defective
induction of PRs (412). Although E2 receptor expression ap-
peared unchanged, stimulation with CC and hMG was
shown to significantly reduce the number of cytosolic PRs
when compared with a control group (413). Moreover, a
premature reduction in PRs in the early luteal phase has been

found after ovarian stimulation (414). A further study, in
which endometrial biopsies were performed close to the
implantation period, revealed a significant reduction in the
nuclear receptor level in both the glands and the stroma for
P and E2 receptors (400, 415).

The principal mechanism by which ovarian stimulation is
considered to reduce endometrial receptivity is through ex-
posure of the endometrium to supraphysiological levels of E2

(416). Elevated estrogen concentrations may increase sensi-
tivity to P action and thus lead to secretory advancement
(417). Studies in humans (418) and rodents (419) have indi-
cated that the magnitude of the E2 dose to which the endo-
metrium is exposed in the late follicular and early luteal
phase affects the duration of the receptive phase.

Studies in which endometrial biopsies were taken during
GnRH agonist/gonadotropin stimulation in the preovula-
tory phase have shed further light on the impact of ovarian
stimulation on endometrial histology at the end of the fol-
licular phase. Histological findings before hCG injection
demonstrated accentuated proliferative aspects and early
secretory changes, which occurred before any P rise was
observed (420). When endometrial biopsies were taken on
the day of oocyte retrieval in IVF cycles, endometrial ad-
vancement was observed in more than 90% of patients (421).
If the advancement exceeded 3 d, no pregnancy was ob-
served (400). Biopsies taken 7 d after ovulation show endo-
metrial delay or glandular-stromal dissociation. Apparently,
stimulation with GnRH agonist and gonadotropins induces
early endometrial advancement with subsequent glandular
maturation arrest in the midluteal phase (422). Similar stud-
ies have been carried out in women stimulated with a com-
bination of GnRH antagonist and recFSH. Endometrial bi-
opsies performed at the day of oocyte pickup again showed
advancement on histological analysis, and no pregnancy was
established if histology on light microscopy was more than
3 d out of phase (418).

The endocrinology of the early follicular phase has also
been shown to affect the luteal phase. In one study, high
exposure of the genital tract to LH and E2 in the early fol-
licular phase was shown to be associated with a reduced
chance of pregnancy (423). These findings were consistent
with the concept that it is the duration of P exposure rather
than the actual concentrations of E2 and P that is crucial for
endometrial receptivity, provided that a threshold level of E2

is exceeded and PRs in endometrium are induced (424). If
increased E2 levels are present in the early follicular phase,
this threshold is reached earlier, extending the period of P
action before hCG administration (423).

Late follicular endocrine manipulation has also been
shown to impact on endometrial receptivity. In a study com-
paring outcomes when hCG was administered when follicle
size met standard criteria or was delayed by a further 2 d, a
higher incidence of endometrial advancement [defined by
Noyes’ criteria (111)] on the day of oocyte retrieval was
observed (425).

The administration of CC in normo-ovulatory women is
associated with reduced size and number of glands in the
endometria (194). To counteract the antiestrogenic effect of
CC, the use of ethinyl-E2 in this respect has been studied in

TABLE 3. Possible mechanisms underlying abnormal endometrial
receptivity after ovarian stimulation for IVF

Mechanisms

Disrupted early follicular phase endocrinology
Suboptimal timing of hCG bolus to trigger final oocyte maturation
Abnormal luteal phase steroid levels
Inadequate luteal support
Direct effect of GnRH analogs
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a randomized controlled trial, and significantly improved
pregnancy rates were reported (426).

Periimplantation events remain poorly understood. If ef-
fective interventions to aid implantation are to be designed,
a further search for unrecognized factors involved in im-
plantation in stimulated cycles is required. Global gene ex-
pression offers an additional novel and powerful means of
analyzing the impact of ovarian stimulation on the endome-
trium. Initial studies have shown multiple differential gene
expression when comparing the follicular to the secretory
phases (126–129) and when comparing the luteal phase of the
spontaneous cycle to that after ovarian stimulation (427, 428)
(Table 4).

C. Effects on embryo quality

The use of exogenous gonadotropins for ovarian stimu-
lation has been reported to affect embryo development at a
number of different stages. This is particularly well charac-
terized in the mouse, where ovarian stimulation is reported
to both a decrease (429) and delay (430) in development of
one or two-cell embryos to blastocysts in vitro. Ovarian stim-
ulation has also been reported to delay the in vivo develop-
ment of embryos (430, 431). It has also been reported that
ovarian stimulation reduces the number of cells and of mi-
crovilli on the blastocyst (432). Ovarian stimulation also re-
sults in a delay in implantation and a decrease in the ex-
pression of the angiogenic factor VEGF at implantation sites
(429, 430) and has been associated with increased postim-
plantation mortality in mice (429–431, 433). Furthermore,
ovarian stimulation was associated with a reduction in fetal

growth and a prolonged gestation period (434). Studies in
mice revealed no significant impact of ovarian stimulation on
blastocyst expression of the genes for IGF-II, IGF-II receptor,
or VEGF. However, a number of studies reported that ex-
ogenous gonadotropin treatment increases the frequency of
chromosomal abnormalities (435, 436), and this may underlie
the impaired in vitro embryo development after ovarian
stimulation.

Little data are available in the human embryos on the
direct effects of ovarian stimulation. A small in vitro study of
human embryo adhesion rates suggested that high E2 levels
were deleterious primarily due to a toxic effect on the cleav-
age stage embryo (437). However, no negative impact on
embryo quality was reported in a study of oocyte and em-
bryo quality in women with excessive response to ovarian
stimulation (438). In a recent retrospective study comparing
embryo quality in the natural vs. stimulated IVF cycle, no
differences in the cleavage capacity or quality assessment of
the embryos were observed (439). Exposure to high FSH
levels may also have direct consequences for embryo devel-
opment. In vitro studies in which oocytes from preantral
follicles were cultured in FSH-supplemented medium
showed no beneficial effect (440). In combination with in-
sulin, the presence of FSH appeared to be detrimental to
oocyte development and to promote inappropriate granu-
losa cell differentiation (441). These findings may have im-
plications for the current paradigm of maximal ovarian stim-
ulation for IVF to obtain large numbers of oocytes at pickup.
New developments in genomic and proteomic analyses, to-
gether with increasing knowledge derived from intervention

TABLE 4. Genes up- and down-regulated by more than a factor of 10 in the stimulated (day of hCG � 7) vs. nonstimulated (day of LH
peak � 7) cycle

Up-regulated genes Down-regulated genes

Name Fold-
change

Category Name Fold-
change

Category

Troponin C 30.89 Structural protein Dipeptidylpeptidase 4 (CD26,
adenosine deaminase complexing
protein 2)

54.37 Immune response

Matrix metalloproteinase 26 16.96 Enzyme Dipeptidylpeptidase 4 (CD26,
adenosine deaminase complexing
protein 2)

43.48 Immune response

Sorbitol dehydrogenase 15.79 Enzyme Thrombomodulin 24.38 Coagulation factor
Calpain 6 13.56 Glycoprotein Leukemia inhibitory factor (cholin-

ergic differentiation factor)
23.02 Cytokine

Major histocompatibility complex,
class II, DO �

12.23 Immune response Mucin 16 13.61 Membrane protein

Differentially expressed in hemato-
poietic lineages

11.89 Inhibitor Dipeptidylpeptidase 4 (CD26,
adenosine deaminase complexing
protein 2)

13.58 Immune response

Serine (or cysteine) proteinase in-
hibitor, clade A (�-1 antiprotein-
ase, antitrypsin), member 5

11.88 Inhibitor Cytochrome P450, family 3, sub-
family A, polypeptide 5

12.96 Energy transduction

Galanin 11.79 Neuropeptide Glutathione peroxidase 3 (plasma) 12.51 Enzyme
Branched chain keto acid dehydro-

genase E1, � polypeptide (maple
syrup urine disease)

10.32 Enzyme IGF binding protein 1 11.99 Regulatory protein

ATP-binding cassette, subfamily C
(CFTR/MRP), member 3

11.12 Transporter

Glutathione peroxidase 3 (plasma) 11.12 Enzyme
Solute carrier family 15 (oligopep-

tide transporter), member 1
10.62 Transporter

Data are from Ref. 428.

186 Endocrine Reviews, April 2006, 27(2):170–207 Macklon et al. • Ovarian Stimulation for IVF

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/27/2/170/2355253 by guest on 20 August 2022



studies such as those ongoing on the impact of various ovar-
ian stimulation regimens on aneuploidy rates in IVF embryos
(442), will lead to further clarification.

D. Side effects and complications

Complications related to invasive IVF procedures, such as
oocyte retrieval and embryo transfer, predominantly involve
infection and bleeding along with anesthesia problems (443).
The drawbacks associated with profound ovarian stimula-
tion for IVF include considerable patient discomfort such as
weight gain, headache, mood swings, breast tenderness, ab-
dominal pain, and sometimes diarrhea and nausea (444). In
this respect, it is important to appreciate that after a first
unsuccessful IVF attempt, around 25% of patients refrain
from a second cycle, even in countries where costs are cov-
ered by health insurance companies (445).

1. Ovarian hyperstimulation syndrome. OHSS is a potentially
life-threatening complication characterized by ovarian en-
largement, high serum sex steroids, and extravascular fluid
accumulation, primarily in the peritoneal cavity. In severe
cases, hypotension, increased coagulability, reduced renal
perfusion, and oliguria may occur. Deranged liver function
tests, venous and arterial thrombosis, renal failure, and adult
respiratory distress syndrome can ensue, and fatalities have
been reported (91, 446) (Table 5). The etiology of OHSS is
related to the increased LH, FSH, hCG, and E2 levels asso-
ciated with ovarian stimulation (447). These cause an in-

crease in expression of VEGF (448), which, being a potent
inducer of vascular permeability, can lead to the extravasa-
tion of excessive protein-rich fluid. Serum and follicular lev-
els of VEGF are higher in IVF patients who develop OHSS.
However, pretreatment serum VEGF levels are not predic-
tive of individual OHSS risk (449). Recent studies of patients
with activating mutations of the FSH receptor (450) or LH/
hCG receptors (451) that result in spontaneous OHSS have
highlighted the role of gonadotropins as initiators of this
condition.

Mild forms of OHSS constitute around 20–35% of IVF
cycles, moderate forms 3–6% of cycles, and severe forms
0.1–0.2% (91, 266). Moderate to critical OHSS is very rare
after CC treatment but constitutes an important complication
of gonadotropin use. The risk is further increased when
adjuvant GnRH agonist treatment is employed (452). To
some extent, patients at risk of developing OHSS may be
recognized by the following features: young age, PCOS, pro-
found hyperstimulation protocols with GnRH agonist long
protocol cotreatment, large numbers of preovulatory Graa-
fian follicles, high serum E2 levels, a high (�5,000 IU) bolus
dose of hCG needed to induce final oocyte maturation, the
use of hCG for luteal phase supplementation, and finally, the
occurrence of pregnancy. The incidence of OHSS is directly
related to hCG concentrations, with a 2- to 5-fold increased
incidence in case of multiple pregnancy. Preventive strate-
gies in case of imminent OHSS include cessation of exoge-
nous gonadotropins for several days (referred to as “coast-
ing”), cancellation of the IVF cycle, and withholding hCG (91,
266, 453, 454). Additional preventative measures include fol-
licular aspiration, alternative means of inducing oocyte mat-
uration (such as the induction of an endogenous LH surge by
the administration of a single bolus dose of GnRH agonist or
the administration of the short half-life preparation recLH
rather than hCG), prevention of pregnancy during the stim-
ulation cycle by cryopreserving all embryos, or the prophy-
lactic infusion of glucocorticoids or albumen (455).

With regard to GnRH antagonists and OHSS, the results
of comparative studies have been inconclusive. Although
three studies demonstrated decreased OHSS incidence when
a GnRH antagonist was used (327, 330, 456), one study
showed a higher incidence of OHSS (329). A meta-analysis
that compared the five large comparative studies showed
significantly lower OHSS after GnRH antagonists than after
GnRH agonists (Table 1).

2. Venous thromboembolism (VTE). The clinical association be-
tween VTE and IVF arises primarily within the context of
OHSS, in which thromboembolic complications may have
fatal consequences. Occasionally patients presenting for IVF
treatment may have a previous history of VTE or be con-
sidered to be at increased risk of developing thromboembolic
complications as a result of undergoing IVF treatment. VTE
is a rare complication of ovarian stimulation for IVF. Recent
data point to an incidence of 1.6 events per 100,000 cycles/
woman (457) and the majority of cases of VTE reported in the
literature are associated with the presence of risk factors for
thromboembolic disease (458). Ovarian stimulation results in
a hyperestrogenic state, which has been associated with hy-
percoagulability and increased risk of deep vein thrombosis

TABLE 5. Key features of OHSS

Key features

Etiology
Increased secretion or exudation of protein-rich fluid from

ovaries or peritoneal surfaces
Increased follicular fluid levels of prorenin and renin
Angiotensin-mediated changes in capillary permeability

Risk factors
Young age
Low body weight
PCOS
High doses of exogenous gonadotropins
High or rapidly rising serum E2
History of previous OHSS

Clinical signs
Abdominal discomfort
Abdominal distention
Nausea
Vomiting
Diarrhea

Prevention strategies
Mild stimulation regimens
Puncture of excess follicles
“Coasting”
Cryopreservation of available embryos and transfer in

subsequent nonstimulated cycle
Outpatient management

Monitor weight and abdominal circumference
At least 1 liter/d oral fluids
Light mobilization
Regular assessment

Hospital management
Intravenous fluid replacement
Careful fluid balance monitoring
Light mobilization
Thromboprophylaxis
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(DVT) after OC pill use and pregnancy. However, a number
of studies have shown changes in coagulation parameters
during IVF treatment to be modest (459). During IVF treat-
ment, the action of coagulation factors seems to be associated
less with the level of serum E2 concentrations (which may
reach levels 10 times higher than in physiological cycles) than
with the biochemical changes that occur after the triggering
of final oocyte maturation with hCG. Hyperestrogenism re-
lated to ovarian stimulation is not associated with the coag-
ulation abnormalities observed with high estrogen-content
OCs, and therefore does not significantly increase the po-
tential for thrombus formation. In contrast, the period after
hCG administration reveals clinically significant alterations
in the coagulation and fibrinolytic systems.

Clinical reports of DVT occurring after IVF treatment in-
dicate that it most frequently presents in association with
OHSS (459) or in early pregnancy between 5 and 10 wk after
hCG administration (458). This has implications for both the
duration for which prophylaxis should be administered in
high-risk patients and the duration for which clinical sur-
veillance should be maintained, to ensure early detection and
treatment.

Many reported cases of DVT after IVF are in sites other
than the lower limb, but this may simply reflect publication
bias. The jugular vein appears to be a relatively frequent site,
with the majority of thromboses occurring here being asso-
ciated with hormonal ovarian stimulation (460)

3. Multiple pregnancy. The frequency and consequences of
multiple pregnancies arising from IVF remain a major in-
dictment of the organization and practice of IVF worldwide.
Twin birth rates in the United States increased by 75% be-
tween 1980 and 2000 and currently represent around 3% of
total births (Fig. 6) (461, 462). Similar trends have been re-
ported in European countries (463). Although an association
between increased female age and multiple gestation is
clearly established, the delay in childbearing accounts for no
more than 30% of the observed overall increase in multiple
pregnancies (464). Although the available data indicate that
the majority of twin births are still unrelated to infertility
therapies (3, 465), up to 80% of higher-order multiple births
are considered to be due to ovarian stimulation and ART.
Births resulting from infertility therapies account for around
1–3% of all singleton live births, 30–50% of twin births, and
more than 75% of higher-order multiples (for review, see
Ref. 3).

Pregnancy complications include increased risk of mis-
carriage, preeclampsia, growth retardation, and preterm de-
livery. Perinatal mortality rates are at least 4-fold higher in
twin, and at least 6-fold higher in triplet births compared
with singleton births (466). Moreover, the risks of prematu-
rity in twin and higher-order multiple birth are increased 7-
to 40-fold, and for low birth weight 10- to 75-fold, respec-
tively. The incidence of child handicaps may be 50 and 100%
higher in twins and triplets, respectively (467). Recent data
generated from the national registry of Denmark suggest
similar risk of neurological sequelae of twins from ART com-
pared with both natural twins and ART singles (468). It has
also been demonstrated recently that educational disadvan-
tages related to low birth weight persist into early adulthood

(469). Higher-order multiple gestation is associated with sig-
nificantly higher cesarean section rates, reduced gestational
duration, lower birth weight, and increased perinatal mor-
tality compared with twins (470–473). The association be-
tween (very) low infant birth weight and IVF is also clearly
established (474), as is the impact of increasing numbers of
multiple births on overall perinatal health (475).

Adverse outcomes among children conceived through IVF
are largely associated with multiple gestation (475). How-
ever, a systemic review including 25 well-controlled studies
established that even singleton pregnancies after IVF have
worse outcomes (more preterm births, low birth weight, and
admission to neonatal intensive care unit) compared with
non-IVF singletons (476). A further, similar meta-analysis
came to similar conclusions (477). Despite the reassuring low
incidence of child abnormalities at birth, the monitoring of
the safety of IVF with regard to rare congenital disorders or
defective gene imprinting remains crucial (478).

4. Strategies for reducing the incidence of multiple birth after ART.
A simple strategy to reduce multiple births would be to
postpone ART in couples with a reasonable prognosis for
spontaneous conception without intervention (3). In women
with patent fallopian tubes, intrauterine insemination in
spontaneous cycles may represent a preferable first line treat-
ment because the risk of multiple pregnancy is not increased
(3).

The chance of multiple pregnancy after IVF is directly
related to the number of embryos transferred. A further
strategy would therefore be to optimize access to IVF treat-
ment to reduce the pressure to transfer multiple embryos. In

FIG. 6. Noted trends in multiple births in the United States for twin
(upper) and triplet or higher order (lower) multiple births. [Repro-
duced from B. C. Fauser et al.: Lancet 365:1807–1816, 2005 (3) with
permission from Elsevier].
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1998 in the United States, three or more embryos were trans-
ferred in 80% of IVF cycles, with four or more embryos in 47%
of cycles. In contrast, in Europe three or more embryos were
transferred in 51% of cycles and four or more in only 9%,
although large differences between countries do exist (479).
The policy of two-embryo transfer has been adopted by
many major European IVF centers. Recently, it was demon-
strated that in young women where two high-quality em-
bryos are transferred, the chances of a twin pregnancy are
actually higher than a singleton pregnancy (480) (Fig. 7). An
increasing number of leading centers in Europe are currently
moving toward a policy of single-embryo transfer in selected
women. The number of embryos transferred in the United
States is substantially higher, with current revised guidelines
still recommending the number for transfer to be between
two and five, depending on patients’ age and prognosis
(481). In general, overall IVF results in Europe are (slightly)
lower compared with the United States, but with an overall
reduced incidence of multiple birth.

A further strategy would be to refine and standardize the
reporting of treatment outcome, because patients tend to
select the center with the “best” results (482). Research on less
complex, more patient-friendly stimulation protocols (5)
along with the transfer of a reduced number (preferably one)
of embryos will only prosper in an environment where sin-
gleton healthy birth is considered the most appropriate end-
point of infertility treatment (483). This primary outcome
needs to be judged in the context of the risk of adverse effects,
complications, and costs per treatment (484–486) during a
given period of time (487). The development of improved
techniques to cryopreserve surplus embryos (with additional
pregnancy chances in subsequent spontaneous cycles) is also
crucial for the widespread acceptance of single-embryo
transfer, because more good-quality embryos will be avail-

able for cryostorage. It appears that the use of single-embryo
transfer in selected patients can significantly decrease overall
twin pregnancy rates without reducing total pregnancy rates
(3). If this phenomenon is confirmed, it will simplify coun-
seling for single-embryo transfer.

5. Long-term maternal risks associated with ovarian stimulation.
Little reliable data exist regarding long-term health risks
associated with the administration of gonadotropins, partic-
ularly in the context of IVF. Most published studies address-
ing this issue are flawed by low statistical power and lack of
control for important confounders, such as presence and
cause of infertility and type of fertility drug employed. In
addition, follow-up periods are frequently short. This has led
to inconsistent results and uncertainty regarding the safety
of ovarian stimulation for IVF (488).

Recent large cohort follow-up studies linked to National
Cancer Registries have, to date, shown no causative associ-
ation between ovarian stimulation with exogenous gonad-
otropins and increased risk of malignant (488) or benign
ovarian disease (489). However, microarray studies have
demonstrated that gonadotropin stimulation may up-regu-
late oncogenes and tumor markers such as pleomorphic ad-
enoma gene-like 1, tumor antigen L6, and claudin 3, while
down-regulating certain suppression of tumorigenicity
genes. At the same time, decreases in other specific tumor
markers such as CD-24 antigen and pim-1 oncogene suggest
that exogenous gonadotropins may also suppress specific
cancers (490).

Before clear advice can be given to women undertaking
IVF with ovarian stimulation, data from studies with longer
follow-up periods in well-defined and well-characterized
populations are required, with adequate controls for poten-
tial confounders.

VII. Contemporary Issues in Ovarian
Hyperstimulation

A. Poor response to ovarian stimulation

Poor ovarian response to ovarian hyperstimulation for IVF
is clearly associated with chronological aging. An age-related
decline in response to stimulation with gonadotropins and a
reduction in the number of oocytes retrieved (491), oocyte
quality (492), fertilization rates (493), and ultimately embryo
numbers (494) have been well documented. Many studies
point to 40 yr of age as a significant cutoff for effectiveness
of IVF (495–497). This age-related effect on pregnancy rates
is similar to that reported in donor sperm programs (498) and
chances for spontaneous pregnancy (145). A multiple regres-
sion analysis of factors influencing IVF outcomes revealed a
predicted live birth rate of 17% per cycle at age 30, falling to
just 7% at 40 yr and 2% at 45 yr of age (496). Although age
is an important predictor of IVF outcome (150), chronological
age is poorly correlated with ovarian aging (145). The con-
cept of poor response as a feature of chronological and ovar-
ian aging has been supported by recent studies linking poor
response to ovarian hyperstimulation to subsequent early
menopause (265, 499–502). In a study of normo-ovulatory
women who had demonstrated a poor response to ovarian

FIG. 7. Multivariate prediction (based on woman’s age, quality score
of embryos to be transferred, and number of oocytes obtained at
retrieval) of the chance for a singleton or twin pregnancy should one
or two embryos be transferred. In women older than 37 yr (right of
point X), the chance of conceiving a singleton pregnancy is higher
when two embryos are transferred rather than one. [Adapted from
C. C. Hunault et al.: Fertil Steril 77:725–732, 2002 (480) with per-
mission from the American Society for Reproductive Medicine.]
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stimulation for IVF, the number of antral follicles observed
with ultrasound in a subsequent natural cycle was signifi-
cantly lower than that in control subjects (503). Surprisingly,
elevated follicular P concentrations were also observed in
these women. Moreover, elevated baseline FSH levels were
observed in less than 50% of the study patients, and inhibin
B levels were normal in 80%. These findings support the
concept that poor response to ovarian stimulation may rep-
resent the first clinical sign of ovarian aging, preceding the
onset of endocrine changes or cycle abnormalities.

Poor response to ovarian stimulation is highly resistant to
therapeutic intervention (265). Strategies for stimulating
“low responders” include varying the dose or day of the
cycle for initiating stimulation with gonadotropins. Studies
undertaken so far have been unable to demonstrate a ben-
eficial effect of gonadotropin dose increase in patients who
exhibit a poor response to standard dose regimens (258, 265).
Alternative approaches include early cessation or microdose
GnRH agonist protocols. In one study in which GnRH ag-
onist administration that commenced in the luteal phase was
stopped at the onset of menses, one case of premature lu-
teinization was observed in 200 cycles, and a reduced repeat
cancellation rate was reported (504). Reducing the GnRH
agonist dose in a microdose flare protocol also reduced the
incidence of repeat cancellation for poor response without a
concomitant increase in premature rises in LH or P (505).
Although widely practiced, good evidence for the efficacy of
these strategies is scarce. The use of GnRH antagonists in
place of GnRH agonists has also been proposed on the
premise of reduced suppression of endogenous gonadotro-
pins. Large, well-designed studies to address this are still
required.

In summary, application of these strategies may improve
the chance of producing sufficient follicles to merit oocyte
pickup, but none has been shown to improve pregnancy
rates. In the absence of effective therapeutic strategies for
poor response to ovarian stimulation, efforts have been made
to develop means of predicting poor response to aid patient
counseling. Markers of ovarian reserve discussed in Section
II are employed to identify the patient for whom ovarian
stimulation is unlikely to result in success. Although the
number of antral follicles assessed by ultrasound may help
identify older women with a better chance of responding to
ovarian stimulation, it has recently been demonstrated that
women predicted to have a poor response to stimulation are
unlikely to benefit from a higher starting dose of gonado-
tropins in IVF (506–508). Hence, markers of ovarian ageing
may be applied along with chronological age to identify
patients with poor prognosis for successful IVF treatment.
Under those circumstances, expectant management or IVF
and oocyte donation may be advised.

B. Minimal vs. maximal ovarian stimulation

After the initial years of IVF, profound ovarian stimulation
has been the rule for almost two decades. Stimulation of the
growth of large numbers of follicles and the retrieval of many
oocytes has been viewed as an acceptable marker of suc-
cessful IVF treatment. Medication regimens to achieve pro-
found ovarian stimulation are extremely complex and ex-

pensive and take many weeks of frequent injections and
intense monitoring. Moreover, patient discomfort and
chances for serious side effects and complications are con-
siderable. In addition, this profound stimulation gives rise to
greatly abnormal luteal phase endocrinology, and its impact
on the chromosomal normality of embryos and endometrial
receptivity and therefore IVF success is mostly unknown.
Although current evidence suggests that the cotreatment
with GnRH antagonist compared with the agonist may
slightly reduce chances for success, from the perspective of
patient convenience, and allowing for further refinements in
its application, it seems justified to predict that the GnRH
antagonist will eventually replace the agonist (243).

Current attitudes to profound ovarian stimulation should
change (3), certainly with the growing tendency currently
toward the transfer of a reduced number of embryos. Em-
phasis may now be directed toward the development of mild
stimulation protocols (393, 509) or the improvement of nat-
ural cycle IVF outcomes (510). Improvements in the effi-
ciency of cryopreservation programs will be of paramount
importance, allowing women the additional chance of preg-
nancy without going through ovarian stimulation and fol-
licle puncture.

Previous studies in normo-ovulatory female volunteers
(511, 512) confirmed that the development of multiple dom-
inant follicles can be induced by interfering with decremental
FSH concentrations during the mid- to late-follicular phase.
These observations are in agreement with previous findings
in the monkey model (513, 514). In a randomized study,
almost all the pregnancies occurring after mild stimulation
were observed in patients with a low oocyte yield, whereas
no pregnancies were observed when a similar yield was
obtained after conventional IVF (336) (Fig. 8). These data
clearly suggest that the relationship between oocyte quality
and quantity of oocytes retrieved is dependent on the applied
stimulation regimen and that a low response to maximal
stimulation (suggestive of ovarian aging) is distinctly dif-
ferent from normal response to low stimulation.

C. hCG substitutes for inducing final oocyte maturation

In the natural normo-ovulatory cycle, rupture of the dom-
inant follicle and release of the oocyte are triggered by the
midcycle surge of LH. This sudden enhancement of pituitary
synthesis and release of LH (and FSH) is elicited by high
late-follicular phase E2 levels in combination with slightly
elevated P levels (515). In stimulated cycles for IVF, estrogen
levels are prematurely elevated, inducing unpredictable but
advanced LH rises. As mentioned before, GnRH analog co-
treatment is required to prevent this from happening. Con-
sequently, exogenous hCG is used during the late follicular
phase under these circumstances to replace the endogenous
LH surge. This approach has been considered the standard
of care for the induction of the final stages of oocyte matu-
ration before oocyte retrieval along with corpus luteum for-
mation in IVF (516). Exogenous hCG is also implicated in
sustained luteotropic activity (317) due to its prolonged cir-
culating half-life (517). Unfortunately, hCG is therefore also
believed to contribute to chances of developing the danger-
ous OHSS (386).
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Initial studies during ovarian stimulation for IVF (before
the widespread use of GnRH agonist cotreatment) showed
that an endogenous LH surge could be induced reliably at
midcycle by the administration of native GnRH or a bolus
injection of GnRH agonist (518, 519). The induction of an
endogenous LH (and FSH) surge is more physiological com-
pared with exogenous hCG due to the much shorter half-life
(72, 520). Moreover, luteal phase steroid concentrations seem
closer to the physiological range (71), which may improve
endometrial receptivity (521).

Because the follicular phase cotreatment with GnRH ag-
onist has been the standard of care for over a decade, alter-
native approaches for the induction of oocyte maturation
have received little attention in recent years. However, the
suppressive effect of follicular phase GnRH antagonist ad-
ministration can be reversed immediately by administering
native GnRH or GnRH agonist (31, 389). Indeed, a recent

randomized trial could confirm that the triggering of final
stages of oocyte maturation can be induced effectively by a
single bolus injection of GnRH agonist, even after the fol-
licular phase cotreatment with a GnRH antagonist. This was
demonstrated by the observed gonadotropin surge and qual-
ity and fertilization rate of recovered oocytes (71). Whereas
high rates of fertilization have been observed in oocytes
obtained after GnRH agonist triggering in this way, a recent
study has revealed low implantation rates after embryo
transfer. Although this finding may have reflected inade-
quate luteal support, further work is required before GnRH
agonists can be introduced into clinical practice for this in-
dication (522).

recLH and rechCG recently became available for clinical
use. It was demonstrated in a large randomized trial com-
paring 250 mg rechCG vs. 5,000 IU uhCG for the induction
of oocyte maturation in a total of 190 women undergoing IVF
that the number of mature oocytes retrieved, along with
luteal phase serum P and hCG concentrations were signifi-
cantly higher after administration of rechCG (218). However,
a recent meta-analysis revealed no differences in efficacy
between rechCG and uhCG when used to trigger final oocyte
maturation in IVF (219). rechCG compared with uhCG shows
equivalent efficacy in ovulation induction in World Health
Organization Group II anovulatory infertility (218). In a com-
parison of two dose regimens, 250 mg rechCG was found to
be as effective as a 500-mg dose (523). With regard to recLH,
a minimal effective dose of 15,000–30,000 IU compared with
5,000 IU uhCG in IVF patients showed a similar number of
oocytes, embryos, and clinical outcomes (217). Considering
the short half-life of recLH, two injections with a 1- to 3-d
interval may be considered.

D. Chromosomal competence of embryos

In the early 1990s, the development of fluorescent in situ
hybridization (FISH) technology enabled the chromosomal
constitution of a single cell from arrested human embryos to
be analyzed. Classic cytogenetic methods had previously
indicated that between 23 and 80% of embryos are aneuploid
(524). The use of FISH provided more information as to the
types of chromosomal abnormalities and how they arise.
Reported proportions of chromosomal abnormal preimplan-
tation embryos range between 30 and 70% in embryos at d
2/3 of development (525, 526). Aneuploidy rates appear to
increase with age (527). In women over 44 yr old, the aneu-
ploidy rate rises to more than 95% (528). The high rate of
aneuploidy encountered in embryos arising from IVF may
provide some explanation for the failure to significantly in-
crease implantation rates in IVF. Appreciation of this, and of
the observation that at least 50–60% of spontaneous miscar-
riages from clinically recognized pregnancies have abnormal
chromosomal compliment (529), has led to the institution of
preimplantation genetic screening (PGS) for aneuploidy in
an attempt to improve outcomes from IVF. As new technol-
ogy has been introduced, PGS has revealed higher rates of
aneuploidy in IVF embryos. PGS is now offered to couples
undergoing IVF to improve embryo selection and pregnancy
rates and reduce the risk of miscarriage due to aneuploidy.
However, data from the few randomized controlled studies

FIG. 8. Number of women undergoing IVF who did or did not achieve
a pregnancy in relation to the amount of oocytes retrieved, comparing
conventional hyperstimulation with a GnRH agonist long protocol (A)
with two mild stimulation protocols employing GnRH antagonist co-
treatment (B and C). [Adapted with permission from F. P. Hohmann
et al.: J Clin Endocrinol Metab 88:166–173, 2003 (336). © The En-
docrine Society.]
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available have failed to demonstrate any clinical impact of
PGS on IVF outcomes or in reducing miscarriage rates (528,
530). The limited number of chromosomes analyzed using
FISH techniques, possible damage to the embryo due to the
removal of one or two blastomeres for analysis, and errors in
hybridization and interpretation may partially account for
this. However, it is now clear that the phenomenon of chro-
mosomal mosaicism in preimplantation embryos compli-
cates interpretation of PGS (531) and thus the identification
of embryos that will develop normally. In human preim-
plantation embryos, especially those with abnormal mor-
phology, chromosomal mosaicism has been shown to be a
normal feature (525, 532–535). The data reported appear to
depend on the number of probes applied simultaneously, the
type of probes used, embryo morphology, embryo develop-
ment, and the presence of multinucleated blastomeres. In
total, at least 29% of morphologically normal embryos are
chromosomally abnormal (532) at the cleavage stages. In
human blastocysts chromosomal mosaicism was reported in
29% (536). Others (537, 538) reported that during preimplan-
tation development, the percentage of embryos showing
chromosomal mosaicism increases to almost 100% at the
blastocyst stage. The percentage of abnormal cells per em-
bryo was 16%. Studies applying the comparative genome
hybridization technique, in which all chromosomes are as-
sessed, reported a similar percentage of abnormal cells in the
embryo (539, 540). PGS has been shown to be an invaluable
research tool in increasing understanding of factors involved
in determining embryo quality. Recently, PGS has been em-
ployed to study the impact of conventional vs. mild stimu-
lation regimens on aneuploidy rates in the resultant embryos
(442). These were shown to be reduced after mild ovarian
stimulation. Beyond research applications, the role of PGS
and comparative genome hybridization as a clinical tool in
IVF remains to be defined in well-designed randomized con-
trolled studies.

VIII. Conclusions and Future Perspectives

Current IVF practice has its roots in the pioneering re-
search carried out in the 20th century into ovarian physiol-
ogy; the isolation, purification, and production of gonado-
tropins; as well as the ground-breaking work by Edwards
and others which led to the birth of Louise Brown. Much has
been learned in the past 25 yr regarding the mode of action
and effects of ovarian stimulation for IVF. At the beginning
of the second “IVF century” we are in a position to critically
evaluate the paradigms of ovarian stimulation developed in
the early days, which are still widely applied today. The field
has now matured to the extent in which the focus is not
purely on increasing surrogate outcomes such as conception
rates, although this remains a challenge. Increasingly, IVF is
being viewed in the context of long-term health outcomes for
women and their offspring and cost effectiveness and as a
tool for prevention of morbidity, as exemplified by preim-
plantation genetic screening and diagnosis.

Moreover, the development of new molecular tools in the
fields of genomics, proteomics, and pharmacogenomics are
providing new windows on ovarian and endometrial phys-

iology and the impact at the molecular level of stimulation
regimens. Although these novel techniques will have a major
impact on our knowledge of ovarian stimulation, it is clear
that much remains to be learned about the endocrinology of
follicle development, oocyte maturation, and ovulation. Re-
cent studies indicate that LH has an important role in pre-
ovulatory follicular development. Increasing understanding
of the role of individual gonadotropins, combined with the
availability of pure recombinant preparations of LH, FSH,
and hCG open the way to a more sophisticated and indi-
vidualized approach to ovarian stimulation.

Powerful molecular modeling techniques are now being
employed to develop chemical gonadotropin receptor ago-
nists that mimic the effect of the hormonal ligands. These
compounds may be active in oral form. These developments
promise to further reduce the physical burden that IVF treat-
ment presently constitutes for women faced with subfertility.

IVM of oocytes has been proposed as a means of obtaining
gametes for IVF without exposing the patients to the poten-
tial risks of ovarian stimulation with gonadotropins. The
ability of immature oocytes to resume meiosis spontaneously
when removed from the follicle was first demonstrated in
1935 (541), and this was later confirmed by Edwards (542),
who subsequently demonstrated the fertilization of IVM hu-
man oocytes (543). Initial reports of birth after IVM were in
from immature oocytes derived from stimulated cycles (544).
Ten years later, a live birth was reported after IVM using
immature oocytes recovered by puncture during nonstimu-
lated cycles in a woman with PCOS (545). Because ovarian
stimulation is associated with a high risk of complications
such as OHSS in PCOS, this group of patients might be
considered to particularly benefit from IVM in IVF.

Implantation rates of embryos derived from IVM in the
nonstimulated cycle are low (546). Priming with FSH for 2–3
d to stimulate the follicle to develop to 8- to 12-mm diameter
has been associated with improvements in implantation rates
(547). Additional treatment with 10,000 IU hCG 36 h before
oocytes retrieval was also shown to improve maturation rate
of immature oocytes (548) and accelerate the maturation
process (337). However, even with such intervention, preg-
nancy rates of 30% have only been obtained by transplanting
multiple embryos, because implantation rates remain 10–
15%. Insufficient data are currently available from follow-up
studies to assess the safety of this technique for offspring
(298).

Mild stimulation regimens in combination with single-
embryo transfer may offer the optimal combination of ef-
fective, cost-effective treatment that minimizes side effects
and the morbidity and mortality associated with multiple
pregnancy. There is an increasing consensus that multiple
pregnancy arising from IVF represents the major clinical
problem to be addressed. Strategies for prevention, outlined
in this article, are clear. However, implementing these in the
current commercially competitive context in which IVF is
practiced is more challenging.

Crucial to the success of implementing strategies such as
single-embryo transfer on wide scale will be getting agree-
ment as to how success in IVF should be defined. The current
focus on pregnancy rates per cycle encourages maximal stim-
ulation and transfer of multiple embryos. If live singleton
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birth per started treatment (rather than per cycle) became
adopted as the measure of care by the institutions that govern
IVF throughout the world, and if those who publish and
compare outcomes from different centers, then a major step
would be taken toward reducing the burden of IVF in the
couple, their offspring, and society.
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