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The Science of Brute Force

Marijn J. H. Heule and Oliver Kullmann

ABSTRACT
Recent progress in automated reasoning and supercomput-
ing gives rise to a new era of brute force. The game changer
is “SAT”, a disruptive, brute-reasoning technology in indus-
try and science. We illustrate its strength and potential via
the proof of the Boolean Pythagorean Triples Problem, a
long-standing open problem in Ramsey Theory. This 200
terabytes proof has been constructed completely automati-
cally. We welcome these bold new proofs emerging on the
horizon, beyond human understanding — both mathematics
and industry need them.

Many relevant search problems, from artificial intelligence
to combinatorics, explore large search spaces to determine
the presence or absence of a certain object. These problems
are hard due to combinatorial explosion, and have tradition-
ally been called infeasible. The brute-force method, which
at least implicitly explores all possibilities, is a general ap-
proach to systematically search through such spaces.

Brute force has long been regarded as suitable only for
simple problems. This has changed in the last two decades,
due to the progress in satisfiability (SAT) solving, which by
adding brute reason renders brute force into a powerful ap-
proach to deal with many problems easily and automatically.
Search spaces with far more possibilities than the number of
particles in the universe may be completely explored, using
sophisticated algorithms, implementations guided by pow-
erful heuristics, and parallel computing.

SAT solving determines whether a formula in proposi-
tional logic has a solution, and its brute reasoning acts in
a blind and uninformed way — as a feature, not a bug. It
has emerged as a disruptive technology, facilitating efficient
methods for many industrial applications and as the core
search engine in tools such as theorem provers. We focus on
applying SAT to mathematics, as a systematic development
of the traditional method of proof by exhaustion.

Can we trust the result of running complicated algorithms
on many machines for a long time? The strongest solution is
to provide a proof — which is also needed to show correct-
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ness of highly complex systems, which are everywhere, from
finance to health care to aviation. The presence of the ob-
ject searched for, such as a vulnerability in a program, can
be directly verified, but its absence is far more complicated,
since here completeness of the search has to be shown.

Now many problems arising from areas such as Ramsey
Theory and formal methods appear to be intrinsically hard
and may be only solvable by SAT. Any proof for such prob-
lems may be huge, in which case mathematicians will not
be able to produce a paper proof. The enormous size of
such proofs hardly influences confidence in the correctness,
as highly trusted systems can validate them. However, ques-
tions have been raised regarding their meaning. We argue
that obtaining such results is meaningful regardless of our
ability to understand them.

1. THE RISE OF BRUTE REASON
We all know that brute force doesn’t work, or at least is

brutish, don’t we? In our case it is even “brute reasoning”:

I can stand brute force, but brute reason is quite
unbearable. There is something unfair about its
use. It is hitting below the intellect. O. Wilde

A mathematician using “brute force” is a kind of barbaric
monster, isn’t she? Case distinctions play an important role
for thinking, but if the number of cases gets too big, it seems
impossible to obtain an overview, and one has to slavishly
follow the details. But perhaps this is what our times de-
mand?

In the beginning of the 20th century there was a very op-
timistic outlook for mathematics. Gödel’s Incompleteness
Theorem seemed to destroy the positive spirit of the time,
famously expressed by Hilbert’s “We must know. We will
know.” That said, even Gödel anticipated the relevance of
SAT solving in his letter to von Neumann1, shifting the at-
tention to finitizing infinite problems. Today, SAT solving
on high-performance computing systems enables us to con-
quer problems of high complexity, driven by practice. This
combination of enormous computational power with “magi-
cal brute force” can now solve very hard combinatorial prob-
lems, as well as proving safety of systems such as railways.

Our guiding example is the Pythagorean Triples Problem
[15, 25], a typical problem from Ramsey Theory: we con-
sider all partitions of the set {1, 2, . . . } of natural numbers
into finitely many parts, and the question is whether always
at least one part contains a Pythagorean triple (a, b, c) with

1https://rjlipton.wordpress.com/the-gdel-letter/



a2 + b2 = c2. For example when splitting into odd and even
numbers, then the odd part does not contain a Pythagorean
triple (due to odd plus odd = even), but the even part con-
tains for example 62 +82 = 102. We show that the answer is
yes [15], when partitioning into two parts, and we conjecture
the answer to be yes for any finite size of the partition.

To solve the Boolean Pythagorean Triples Problem, it suf-
fices to show the existence of a subset of the natural num-
bers, such that any partition of that subset into two parts
has one part containing a Pythagorean triple. We focus
on subsets {1, . . . , n}, and determined by SAT solving that
the smallest n for which the property holds is 7825. Plain
brute force cannot help, since 27825, the number of pos-
sible partitions into two parts, is way too big. So really
“clever” algorithms are needed. An interesting aspect here
is that there is no known ordinary mathematical existence
proof for any form of the Pythagorean Triples Problem,
even when generalizing the problem from triples a2 + b2 =
c2 to tuples t21 + · · · + t2k−1 = t2k. Only computational
proofs are known and, so far at least, only SAT solving can
deal with the harder problems. We show that {1, . . . , 107}
can be partitioned into three parts, such that no part con-
tains a Pythagorean triple. Thus if there is an n such that
every 3-partitioning of {1, . . . , n} has a part containing a
Pythagorean triple, then n > 107. Due to this enormous
size, it is thus conceivable that the truth of the three-valued
Pythagorean Triples Problem might never be known.

Before considering the solution process, one may ask, why
should we care? Are there problems, for which such reason-
ing is really useful? Yes, the same techniques are used to
prove correctness of hardware and software systems. Find-
ing a bug in a large hardware system is essentially the same
as finding a counter-example, and thus is similar to finding
a partition avoiding all Pythagorean triples. Proving cor-
rectness of a system, i.e., there is no counter-example, is
similar to proving that each partition must contain some
Pythagorean triple. SAT solving has revolutionized hard-
ware verification [5], and now SAT can come to the res-
cue of mathematics, solving very hard combinatorial prob-
lems previously completely out of reach. This collaboration
works in both directions, as the applications in mathemat-
ics, especially Ramsey Theory, sharpen SAT algorithms: the
Cube-and-Conquer method [16] was developed for comput-
ing van der Waerden numbers [1], and recently the Cube-
and-Conquer solver Treengeling2 won the parallel track
of the 2016 SAT Competition3. Deeper mathematical inves-
tigations into the structure of the SAT instances could help
with understanding and improving SAT in general.

Well-known early mathematical proofs using Proof by Ex-
haustion are the Four-Color Theorem [37] and the proof that
no projective plane of order 10 exists [24]. The former is ac-
tually a rather small case-distinction by modern standards
(only hundreds of cases). The latter invokes a larger, but
also man-made case-split (billions of cases), for which it can
be determined in advance whether this will succeed. In con-
trast, we have currently no way of knowing whether the SAT
solver’s “magic” is sufficient to solve a given problem.

Throughout this article we use the Boolean Schur Triple
Problem as an example: does there exists a red/blue coloring
of the numbers 1 to n, such that there is no monochromatic

2http://fmv.jku.at/lingeling/
3http://www.satcompetition.org/

solution of a + b = c with a < b < c ≤ n. Compared to the
Boolean Pythagorean Triples Problem, all natural numbers
are involved, not just square numbers. As a result, there
are many more triples, and unsatisfiability is reached much
sooner. For n = 8 such a coloring exists: color the num-
bers 1, 2, 4, 8 red and 3, 5, 6, 7 blue. However such a coloring
is not possible for n = 9. A naive brute-force algorithm
would consider all 29 = 512 possible red/blue colorings. We
will show that with brute reasoning only six (or even four)
red/blue colorings need to be evaluated.

2. THE ART OF SAT SOLVING
A SAT problem uses Boolean variables v (they can be as-

signed to either true or false), which are constrained using
clauses, which are disjunctions of literals x. Literals are ei-
ther variables x = v or their negations x = v. A literal
x (or x) is true if the corresponding variable x is assigned
to true (or false, respectively). A clause is satisfied if at
least one of its literals is assigned to true. A SAT formula
is a conjunction of clauses. We refer to a solution of a SAT
formula as an assignment to its variables that satisfies all
its clauses. Formulas with a solution are called satisfiable,
while formulas without solutions are called unsatisfiable. Let
∨ and ∧ refer to the logical OR and AND operators, respec-
tively. For example, the formula (x ∨ y) ∧ (x ∨ y) with two
clauses is satisfiable. The solutions for this formula are the
two assignments that assign both x and y to the same value.

SAT solvers, programs that solve SAT formulas, have be-
come extremely powerful over the last two decades. Progress
has been steady, starting with the pioneering work by Davis
and Putnam until the early nineties when solvers could han-
dle formulas with thousands of clauses. Today’s solvers can
handle formulas with millions of clauses. This performance
boost resulted in the SAT revolution [3]: encode problems
arising from many interesting applications as SAT formulas,
solve these formulas, and decode the solutions to obtain an-
swers for the original problems. This is in a sense just using
the NP-completeness of SAT [6, 11, 19]: every problem with
a notion of “solution” —where these solutions are relatively
short and where an alleged solution can be verified (or re-
jected) relatively quickly— can be reduced to SAT relatively
efficiently. For many years NP-completeness was used only
as a sign of “you can’t solve it!”, but the SAT revolution has
put this back on its feet. For many applications, including
hardware and software verification [18, 7], SAT solving has
become a disruptive technology that allows problems to be
solved faster than by other known means.

The main paradigms of SAT solving are the incomplete
local search [20], which can only find satisfying assignments,
and the two complete paradigms (which can also determine
unsatisfiability), look-ahead [17] and conflict-driven clause
learning [28] (CDCL). Local search tries to find a solution
via local modifications to total assignments (using all vari-
ables). Look-ahead recursively splits the problem as clev-
erly as possible into subproblems, via looking-ahead. CDCL
tries to assign variables to find a satisfying assignment in
a straight-forward way, and if that fails (the normal case),
then the failure is transformed into a clause, which is added
to the formula. Below, we first explain CDCL, which is
mainly responsible for the SAT revolution. Afterwards we
describe how look-ahead can enhance CDCL on hard prob-
lems.

CDCL SAT solving algorithms cycle through three phases:



Figure 1: Encoding and case split of Boolean Schur Triples Problem.

Encoding

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧
(x1 ∨ x4 ∨ x5) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧
(x1 ∨ x5 ∨ x6) ∧ (x1 ∨ x5 ∨ x6) ∧ (x2 ∨ x4 ∨ x6) ∧ (x2 ∨ x4 ∨ x6) ∧
(x1 ∨ x6 ∨ x7) ∧ (x1 ∨ x6 ∨ x7) ∧ (x2 ∨ x5 ∨ x7) ∧ (x2 ∨ x5 ∨ x7) ∧
(x3 ∨ x4 ∨ x7) ∧ (x3 ∨ x4 ∨ x7) ∧ (x1 ∨ x7 ∨ x8) ∧ (x1 ∨ x7 ∨ x8) ∧
(x2 ∨ x6 ∨ x8) ∧ (x2 ∨ x6 ∨ x8) ∧ (x3 ∨ x5 ∨ x8) ∧ (x3 ∨ x5 ∨ x8) ∧
(x1 ∨ x8 ∨ x9) ∧ (x1 ∨ x8 ∨ x9) ∧ (x2 ∨ x7 ∨ x9) ∧ (x2 ∨ x7 ∨ x9) ∧
(x3 ∨ x6 ∨ x9) ∧ (x3 ∨ x6 ∨ x9) ∧ (x4 ∨ x5 ∨ x9) ∧ (x4 ∨ x5 ∨ x9)

Case split as binary tree
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simplify, decide, and learn. Solvers maintain an assignment
(initially empty) and each phase updates that assignment.
During simplify the assignment is extended by detecting new
inferences. Afterwards, decide heuristically picks an unas-
signed variable and assigns it to true or false. After iter-
ating these two phases, the current assignment either sat-
isfies the formula, which terminates the search, or falsifies
a clause. In the latter case, learn this conflict, as a clause,
and modify the assignment to resolve the conflict. If the
empty clause ⊥ is learned, the solver detects unsatisfiabil-
ity, otherwise simplify-decide is performed again, and so on.
Look-ahead differs from CDCL by using stronger means for
simplify and decide, but weaker means for learn.

The most basic inference mechanism in SAT solvers works
as follows: a clause is unit under an assignment that falsifies
all but one of its literals, while leaving the remaining lit-
eral unassigned. The only possibility to satisfy a unit clause
(under that assignment) is to assign the remaining literal
to true. A key SAT solving technique is unit clause prop-
agation (UCP): given an assignment and a formula, while
the formula has unit clauses, extend the assignment by sat-
isfying the remaining literals in the unit clauses. UCP has
two possible terminating states: either all unit clauses have
been satisfied, or there is a falsified clause — due to two
complementary unit clauses (x) and (x). In the latter case,
we say that UCP results in a conflict. Conflicts are analyzed
to obtain new clauses. These conflict clauses are added to
the formula to prevent the solver from visiting that assign-
ment in the future. Additionally, conflict analysis updates
the heuristics to guide the solver towards a short refutation.

There are two types of decision heuristics for SAT solvers:
focus and global heuristics. Focus heuristics, also known as
conflict-driven heuristics (for CDCL solvers), aim at finding
short refutations. These heuristics are cheap to compute and
have been highly successful in solving large problems aris-
ing from industrial applications. In short, focus heuristics
work as follows: whenever a solver encounters a conflicting
state, the importance of the variables that cause the conflict
is increased. Simply making these variables more impor-
tant than all the other variables results in state-of-the-art
performance on most industrial problems [2].

If no short refutation exists (or is too hard to find), it
is best to use global heuristics (for look-ahead solvers) to
split the search space into two parts that are both easier to
solve. Global heuristics are based on look-aheads [23]: for a
given formula F , a look-ahead on literal x assigns x to true,
applies UCP, and computes the set Sx of clauses in F that

are shortened, but not satisfied. The heuristic value of a
look-ahead on x is based on the weighted sum of the clauses
in Sx, where clause weights depend on the length of clauses.

Both focus and global heuristics can reduce the search
space exponentially. For really hard problems, such as the
Pythagorean Triples Problem, it is best to combine both
types of heuristics. Focus heuristics are effective when there
exists a short refutation of the formula. For hard problems,
initially there are no short refutations. One therefore needs
to partition such a problem using global heuristics until the
short refutations manifest themselves. This is the main idea
behind the Cube-and-Conquer SAT solving paradigm [16],
which was crucial to solve the Pythagorean Triples Problem.

Consider again the Boolean Schur Triples Problem on
the existence of a red/blue coloring of 1, . . . , 9 without a
monochromatic solution of a+b = c. Figure 1 shows the SAT
encoding, consisting of 32 clauses using the Boolean vari-
ables x1, . . . , x9. If variable xi is assigned to true (false),
then number i is colored red (blue). For each of the 16 solu-
tions of a+ b = c, there are two clauses: one stating that at
least one of a, b, or c must be colored red, one stating that
at least one of them must be colored blue. A binary tree is
shown right beside the clauses. Each internal node contains
a splitting variable xi. The left branches assign decision
variables to false (blue edge), while the right branches as-
sign decision variables to true (red edge). Each leaf node
represents an assignment that would result in a conflict dur-
ing UCP. For example, for the left-most leaf node, x1 and
x3 are assigned to false (blue): thus x2, x4 have to be set
to true (due to 1 + 2 = 3 and 1 + 3 = 4), forcing x6 to
false (2+4 = 6), which forces x7 and x9 to true (1+6 = 7
and 3 + 6 = 9), which yields the conflict 2 + 7 = 9 with all
three set to true (red). This node matches the first clause
in the proof of Figure 2. The binary tree (a simple form of
look-ahead solving) illustrates that heuristics can reduce the
number of assignments to be evaluated from 512 to 6.

Due to the limited size of the example formula, relatively
simple heuristics are sufficient to reduce the number of cases
from 512 to 6. One such simple heuristic is MOMS, refer-
ring to Maximum Occurrences in clauses of Minimal Size.
Initially, all clauses are ternary and variable x1 occurs most
frequently. Therefore x1 is used as the first decision variable.
After simplification, several variables occur most frequently
in binary clauses (twice), but variable x3 has the best tie
break (occurrences in remaining ternary clauses). Therefore
variable x3 is the best decision on the second level of the
tree. Finally, variable x5 is the most occurring variable in



Figure 2: Proof and unit clause justification of the Boolean Schur Triples Problem.

Proof Unit clause justification

(x1 ∨ x3) (��x1 ∨ x2 ∨��x3), (��x1 ∨��x3 ∨ x4), (��x2 ∨��x4 ∨ x6), (��x1 ∨��x6 ∨ x7), (��x3 ∨��x6 ∨ x9), (��x2 ∨��x7 ∨��x9)

(x1 ∨ x5) (��x1 ∨ x3), (��x1 ∨ x4 ∨��x5), (��x1 ∨��x5 ∨ x6), (x2 ∨��x4 ∨��x6), (��x2 ∨��x5 ∨ x7), (��x3 ∨��x4 ∨��x7)

(x1) (��x1 ∨ x3), (��x1 ∨ x5), (x2 ∨��x3 ∨��x5), (��x3 ∨��x5 ∨ x8), (��x2 ∨ x6 ∨��x8), (��x1 ∨��x8 ∨ x9), (��x3 ∨��x6 ∨��x9)

d(x1 ∨ x3)

d(x1 ∨ x5)

(x3) (x1), (��x1 ∨ x2 ∨��x3), (��x1 ∨��x3 ∨ x4), (��x2 ∨��x4 ∨ x6), (��x1 ∨��x6 ∨ x7), (��x3 ∨��x6 ∨ x9), (��x2 ∨��x7 ∨��x9)

(x5) (x1), (x3), (��x1 ∨ x4 ∨��x5), (��x1 ∨��x5 ∨ x6), (x2 ∨��x4 ∨��x6), (��x2 ∨��x5 ∨ x7), (��x3 ∨��x4 ∨��x7)

⊥ (x1), (x3), (x5), (x2 ∨��x3 ∨��x5), (��x3 ∨��x5 ∨ x8), (��x2 ∨ x6 ∨��x8), (��x1 ∨��x8 ∨ x9), (��x3 ∨��x6 ∨��x9)

binary clauses on the third level.
A crucial aspect of solving the Boolean Pythagorean Triples

Problem was the use of a dedicated look-ahead heuristic
based on the recursive weight heuristic for random 3-SAT
formulas. The three magic constants in this heuristic have
been manually tweaked to achieve strong performance on
the Boolean Pythagorean Triples Problem [15]. We estimate
that the use of this optimized look-ahead heuristic reduced
the number of cases by at least two orders of magnitude com-
pared to alternative heuristics, such as focus heuristics or
MOMS. Look-ahead heuristics were popular in the nineties,
but they have been mostly ignored after CDCL emerged.
The usefulness of look-head heuristics to boost the perfor-
mance on hard problems may revive the interest.

3. PROOFS OF UNSATISFIABILITY
The unpredictable effectiveness of SAT solvers, together

with their non-trivial implementations (needed for real-world
efficiency), raise the question of whether their results can be
trusted. If a problem has a solution, it is easy to verify that
the given solution is correct: simply check whether the so-
lution satisfies at least one literal in every clause. However,
a claim that no solution exists is much harder to validate.
Since SAT solvers use many complicated techniques that
could result in implementation as well as conceptual errors,
a method is required to verify unsatisfiability claims.

There are two approaches to deal with the trust issue of
complicated software: prove its correctness or produce a cer-
tificate which can be validated with a simple program. Work
in the first direction resulted in verified SAT solving [31].
However, this approach has two disadvantages: only some
state-of-the-art techniques are verified, and verification is
performed only on “higher levels”, and thus excludes the
low-level implementation tricks that are crucial for fast per-
formance. Both disadvantages slow down the verified solver
substantially, making it useless in most practical settings.

The second approach has been more successful in the con-
text of SAT solving. We refer to a certificate of an unsat-
isfiability claim as a proof of unsatisfiability. What kind of
format would be useful for such proofs? The ideal proof for-
mat facilitates five properties: (1) proof production should
be easy to ensure that it will be supported by many solvers;
(2) proofs should be compact in order to have small over-
head; (3) proof validation should be simple, otherwise the
trust issue persists; (4) proof validation should be efficient
to make verification useful in practice; and (5) all techniques
should be expressible, otherwise solvers will be handicapped.

There is a trade-off between these properties. For example,
more details in a proof should allow a more efficient valida-
tion procedure. However, adding details makes proofs less
compact and harder to produce.

Initially, proofs of unsatisfiability were based on resolu-
tion. Although useful in some settings, it is hard or even
impossible to achieve the properties of easy production (1),
compactness (2), and expressibility (5) for such proofs. The
alternative is clausal proofs [12] for which it is now possible
to achieve all five properties.

What is a clausal proof of unsatisfiability for a SAT prob-
lem? Basically, we start with the given list of clauses, and
add or delete clauses, until finally we add the empty clause
⊥, which marks unsatisfiability, since there is no literal in it
to satisfy. The most basic restriction on adding clauses is,
that the addition is solutions-preserving, that is, all solutions
(at that point, taking all previous additions and deletions
into account) also satisfy the added clause. This guarantees
correctness: if all additions are solutions-preserving, and we
are able to add ⊥ (which has no solution), then the original
SAT problem must be unsatisfiable. For example, consider
the formula F = (x ∨ y) ∧ (x ∨ y). Adding the clause (x) to
F is solutions-preserving: F has two solutions and in both
solutions x is assigned to true.

It is important to validate that clause addition steps are
solutions-preserving, otherwise we do not have a proof, just
some sort of claim. This verification should be cheap to
perform, and the basic criterion is as follows. Suppose a for-
mula F is given, and the clause C is claimed to be solutions-
preserving for F . Take the assignment that sets all literals
in C to false. If UCP on F results in a conflict, then the
clause is indeed solutions-preserving, since we checked that
it is not possible to falsify C while satisfying F . This realizes
the first three ideal proof format properties: easy, compact,
and simple. The solver can just output the learned clauses,
without a justification, and validation happens by UCP.

SAT solvers do not only learn lots of clauses, but also
aggressively delete them to achieve fast UCP. Proofs should
include this deletion information in order to realize efficient
validation. Furthermore, proof checkers require dedicated
UCP algorithms to make proof validation as fast as proof
production [14]. Combining these techniques realizes the
fourth ideal proof property (efficient validation).

A proof of our running example is shown in Figure 2. The
proof consists of six clause addition steps and two clause
deletion steps. The latter have a “d” prefix and do not re-
quire checking. The correctness of each clause addition step
is checked using UCP, and shown using a unit clause justifi-



cation: a sequence of clauses that become unit, ending with
a falsified clause that marks the conflict. The unit clause jus-
tification is omitted from the proof to ensure compactness,
but the checker constructs a justification during validation.

Some SAT solving techniques may change (add or remove)
solutions which can significantly reduce solving time. In
order to express such techniques —to have also the final ideal
proof property (expressible)— support is required for proof
steps that go beyond the above solutions-preservation. This
is realized by the concept of solutions-preserving modulo x
for some literal x. Let ϕ be an assignment. We denote by
ϕ⊕x the assignment obtained by flipping the truth value for
literal x in ϕ. In case x is unassigned in ϕ, then x is assigned
to true in ϕ⊕ x. For a given formula F , addition of clause
C is solutions-preserving modulo x if for all solutions ϕ of
F at least one of ϕ or ϕ⊕ x satisfies F and C.

For example, consider the formula F = (x ∨ y) ∧ (x ∨ y)
again. The addition of clause (x ∨ y) to F is solutions-
preserving modulo y. Recall that F has two solutions. The
first solution ϕ1, where x is true and y is true, also satisfies
(x ∨ y). The second solution ϕ2, where x is true and y is
false, falsifies (x ∨ y), but ϕ2 ⊕ y satisfies F and (x ∨ y).

How to check that adding clause C is solutions-preserving
modulo x? We use the following efficient criterion: x ∈ C,
and for all D ∈ F with x ∈ D we have that setting all
literals in C as well as all literals in D \ {x} to false yields
a conflict via UCP. The proof format that encapsulates this
inference in a single step is called the “DRAT” format4, and
is supported by state-of-the-art solvers.

It is instructive to show that this criterion guarantees
adding C to F is solutions-preserving modulo x. The criti-
cal clauses are the D ∈ F with x ∈ D, since here flipping of
x might change a satisfied clause to a falsified clause. First
observe that from the criterion follows that all C ∪ (D \{x})
are solutions-preserving w.r.t. F . Now assume that ϕ is a to-
tal satisfying assignment for F which falsifies C (otherwise ϕ
satisfies F∧C and we are done). Thus ϕ falsifies x, and ϕ⊕x
satisfies C. Since all C ∪ D \ {x} are solutions-preserving
w.r.t. F , ϕ satisfies all C ∪ D \ {x}. Hence ϕ satisfies all
D \ {x} (because ϕ falsifies C), and so does ϕ ⊕ x as well,
and thus indeed ϕ⊕ x satisfies all D. QED

The DRAT format seems to be a good proof format for
existing and future SAT solvers, as it has all the five proper-
ties of an ideal proof format. Moreover, DRAT proofs can be
efficiently checked even in parallel, and they have been used
to validate the results of the annual international SAT com-
petitions since 2013. For the Boolean Schur Triples Problem
with n = 9, there exists a DRAT proof consisting of only
four clause additions: (x1∨x4), (x1), (x4),⊥. Validating this
proof involves more details, which can be obtained by using
the DRAT proof checker DRAT-trim4.

Indeed, DRAT in a theoretical sense is equivalent to one
of the most powerful systems studied in proof complexity,
Extended Frege with Substitution, and thus it should offer
“proofs as short as possible” [4]. The Extension Rule basi-
cally states that the clauses (x ∨ a ∨ b) ∧ (x ∨ a) ∧ (x ∨ b)
can be added if no literals x and x occur in the formula. In
fact, each of the clauses are solutions-preserving modulo x
or x according to the above criterion.

Proof size nevertheless becomes an issue. Although DRAT
proofs are “compact”, the size of the DRAT proof of the

4The format description and checking tool are available at
https://github.com/marijnheule/drat-trim

Boolean Pythagorean Triples Problem is 200 terabytes. An
obvious challenge of such a huge file is its storage. Also,
dealing with such files increases the complexity of proof vali-
dation algorithms, which will need to support parallel check-
ing. On the other hand, it is possible to trade complexity
for space by adding details to the proof that facilitate fast
checking. In order to make this feasible, the proof can be
trimmed using a non-verified checker which also adds the
checking details. This approach has been successfully ap-
plied to validate the 200 terabytes proof using a checker
which was formally verified in Coq [8].

4. RAMSEY THEORY AND COMPLEXITY
A popularized summary of Ramsey Theory is that “com-

plete chaos is impossible” [26]. More concretely, Ramsey
Theory deals with patterns that occur in well-known sets
such as the set of natural numbers or the set of graphs. For
example, coloring the natural numbers with finitely many
colors will result in a monochromatic Schur triple a+ b = c.

Hundreds of papers have been published on determining
the smallest size of sets such that a given pattern must start
to occur [32]. The most famous pattern is related to Ramsey
numbers R(k): the smallest n such that all red/blue edge
colorings of the complete graph with n vertices have a red or
a blue clique of size k. Only the first four Ramsey numbers
are known. Paul Erdős famously told a story about aliens
who threatened to obliterate earth unless humans provided
them with the value of R(5) — with a proof, we may add
here. Putting all mankind behind this project would do the
job in a year. Yet if aliens asked for R(6), we should opt for
the Hollywood resolution and obliterate them instead [13].

Many problems in Ramsey Theory appear to be solved
only using large case splits (especially for the determination
of Ramsey-type numbers), and thus using SAT is a natu-
ral option. Also SAT formulations of these problems are
easy and natural. In order to determine the smallest subset
in which a pattern starts to occur using SAT, two formu-
las need to be solved. First, it has to be shown that for
any smaller subset there exists a counter-example. This is
typically easy, because the formula is satisfiable. The sec-
ond formula, encoding the existence of the pattern, is much
harder to solve as now unsatisfiability must be shown.

The first major success of SAT solving in Ramsey Theory
was determining the sixth Boolean van der Waerden num-
ber [22]: vdW(6) = 1132. The number vdW(k) expresses
the smallest n such that any red/blue coloring of the num-
bers 1 to n results in a monochromatic arithmetic progres-
sion of length k. The computation used multiple clusters as
well as dedicated SAT-solving hardware (FPGAs) for sev-
eral months. Unfortunately, no proof was produced during
the computation, making it impossible to verify the result.
This raises several trust issues, because errors could have
been made on several levels. For example, was the splitting
correct and thus has the whole search space been explored?
Also, FPGA solvers have been tested much less thoroughly
compared to state-of-the-art solvers.

The first important problem with a verified clausal proof
is the Erdős Discrepancy Problem (EDP), which is about
“complete uniformity is impossible”. The problem conjec-
tures that any infinite sequence s1, s2, . . . with si = ±1
contains for any positive integer C a subsequence sd, s2d,
s3d, . . . , skd, for some positive integers k and d, such that
|
∑k

i=1 sid| ≥ C. Using colors, the conjecture says that for



every C ≥ 1 and every red/blue coloring of 1, 2, . . . there is
a finite initial segment of some progression d, 2d, 3d, . . . for
some d ≥ 1, such that the discrepancy between the num-
ber of color-occurrences is at least C (one color occurs at
least C-times more than the other). The conjecture has
been a long-standing open problem even for C = 2. The
case C = 2 was eventually solved using SAT by providing
the exact bound [21], also applying Cube-and-Conquer. The
encoding of this problem is more involved than the simple
encoding of Ramsey problems (which are just hypergraph
coloring problems), and thus, though a clausal proof has
been provided, correctness is more of an issue than in cases
of Ramsey Theory. Computationally, EDP is much eas-
ier [21], and a much smaller proof exists (about a gigabyte)
than in our case. Finally a general mathematical existence
proof has been provided [35]. This mathematical proof was
called “much more satisfying” than the computational ap-
proach [25]. However, there is for example the possibility
that the Pythagorean Tuples Conjecture (see below) is not
provable with current methods. Furthermore, the SAT ap-
proach is actually a rather“satisfying approach”when taking
into account its deep connections to formal methods.

The Pythagorean Tuples Conjecture states that Ptn(k;m)
—with k the length of the tuple and m the number of
colors— exists for all k ≥ 3 and m ≥ 2. That is, for ev-
ery partitioning of {1, . . . ,Ptn(k;m)} into m parts, some
part contains a Pythagorean tuple of size k. We have shown
that Ptn(3; 2) = 7825. The value of Ptn(3; 2) was con-
jectured [30] not to exist after determining the numbers
Ptn(k; 2) for 4 ≤ k ≤ 31. We have meanwhile computed the
only known Pythagorean tuples numbers for three colors:
Ptn(5; 3) = 191, Ptn(6; 3) = 121, and Ptn(7; 3) = 102. We
also established Ptn(3; 3) > 107, and this lower bound (via
local-search algorithms) seems still far away from the exact
bound. So it is imaginable that a mathematical existence-
proof can not be found, and finiteness of Ptn(3; 3) might
never be established. It is furthermore conceivable that the
Pythagorean Tuples Conjecture is true but the best proofs
are SAT-like. Thus formal proofs in systems like ZFC would
only exist for concrete k and m, while there would not exist
a single proof for all k and m. No mathematical existence
proofs have yet been established for any Ptn(k;m) (see“alien
truth statements” for further discussions).

Before coming to the industrial applications of SAT, we
remark that the Ramsey numbers [33] R(k) are very differ-
ent from the Boolean Pythagorean Triples Problem: namely
the latter is “random-like” and thus has no symmetries (be-
sides the trivial color symmetries). Currently SAT solving is
more successful in the absence of strong symmetries, while
Ramsey numbers currently have too much structure for an
automated attack. More sophisticated symmetry-breaking
techniques are required to improve the performance.

5. BRUTE-FORCE FORMAL METHODS
SAT solvers are a key technology in formal methods for

applications, such as bounded model checking [5] and equiv-
alence checking. In bounded model checking, given a tran-
sition system and an invariant such as a safety property,
the SAT solver determines for some appropriate finitization,
whether there exists a sequence of transitions that violates
the safety property. Equivalence checking is used to deter-
mine the equivalence of a specification and an implementa-
tion or two different implementations. The SAT solver is

asked to find an input such that some output differs. No-
tice that the existence of a solution means that the safety
property is violated or that there exists a counter-example
for equivalence.

All problems discussed so far could be expressed as a
propositional formula. For many interesting problems, how-
ever, this is not the case and they require a richer logic for
its representation. That does not mean that SAT technology
cannot be used to solve these problems. On the contrary:
more and more problems that require a richer logic are being
solved efficiently using SAT.

The key idea is to abstract away those parts of a given
problem that cannot be expressed as propositional logic. A
solution of the abstracted problem may not be a solution
of the given problem, while a refutation of the abstracted
problem is also a refutation of the given problem. In case
a solution of the abstracted problem is obtained, which is
not a solution for the given problem, then the abstraction
is refined by adding a clause that prevents the SAT solver
from finding that solution (and potentially similar solutions)
again. This is repeated until either a refutation or a solution
for the given problem is found. Incremental SAT solving [10]
facilitates an efficient implementation of this approach.

This approach has been very successful in automated the-
orem proving (ATP). The long-time champion in the annual
ATP competitions is Vampire [36], which has been tightly
integrated with a SAT solver. Other strong ATP solvers, in-
cluding iProver and Leo, incorporate SAT solvers as well.
The major interactive theorem provers, such as ACL2, Coq,
and Isabelle, support the usage of SAT solvers to deal with
subproblems that can be expressed in propositional logic. In
this setting, SAT solvers are treated as a black-box and the
emitted proofs are validated in the theorem provers. An-
other successful extension of SAT in this direction is Satis-
fiability Modulo Theories (SMT) [9]. It uses multiple theo-
ries, such as linear arithmetic, uninterpreted functions, and
bit-vectors, and replaces constraints in a theory by propo-
sitional variables. SMT solvers, such as Z3, Boolector,
CVC4, and Yices have been highly successful.

6. ALIEN TRUTHS
The core argument against solving a problem by brute

force is that it does not contribute to understanding the
problem. In that view, the proof is meaningless and hard
to generalize, and a human mathematical proof is preferred.
Furthermore, without understanding errors seem more likely,
although validation can be done by highly trusted systems.

The proponents of “elegant” proofs appear to consider
problems with only very long proofs as not interesting or
not relevant. But even unprovable statements, like the fa-
mous Continuum Hypothesis, have an important place in
mathematics. If we do not study the limits of our current
knowledge, we will stay ignorant forever, always restricted
to a “safe space”, neglecting problems we assume to be too
hard. Furthermore, what is a limit of one discipline is a
core subject of another discipline. Computational complex-
ity and Ramsey theory have close relations. Understanding
the hardness of problems from Ramsey instances could lead
to major breakthroughs [27]. For example, why is prov-
ing the Ramsey property for a + b = c rather easy, while
a2 + b2 = c2 appears to be a very hard problem? In gen-
eral, even small propositional problems might have only very
large proofs. If we would ignore this area, then we would al-



low random holes in our knowledge. The question“why there
are no short proofs”, and “what makes a problem hard”, are
deep and fascinating questions, and we consider them some
of the most important problems of our times.

To better discuss the untold stories of computer science,
complexity theory, and SAT, let’s call alien a provable and
rather short mathematical statement with only a very long
proof. Artificial alien statements can be constructed using
Gödel’s methods. Whether a natural truth statement can
be shown to be alien, such as the Pythagorean Triples Prob-
lem, is of highest relevance. Even if a short proof for the
Pythagorean Triples Problem may be constructed, that is
unlikely to be the case for the exact bound result. Now there
is actually a whole spectrum of possibilities between human
truths and alien truths. Classical mathematical statements
for which a paper proof exists, such as Schur’s Theorem [34],
we consider as human truth statements. Hence the vast
body of mathematical works belongs to this category. Fur-
thermore, we consider mathematical statements that have
been proven mostly manually, but with some computer help,
weakly human. More specifically, such statements have a
large case-split, which could potentially be understood by
humans, but which have only been checked mechanically. An
example of such a statement is the Four-Color Theorem [37].
The proof by Appel and Haken considers 663 cases in its im-
proved version. The case-split is fully understood and hu-
manly constructed. A theorem prover only checks the cases.
Coming to larger cases, we refer to a weakly alien truth state-
ment as a giant humanly generated case-split which can be
validated using plain brute-force methods. For example, it
has been shown that the minimum number of givens is 17
in Sudoku by enumerating all possible cases with 16 givens
and refuting them all [29] (5 472 730 538 cases after symme-
try breaking). Although impossible to evaluate by humans,
it could be directly done mechanically. This result is ex-
pected to be weakly alien, as it is unlikely that there exists
a small enough case-split that is checkable by humans.

We arrive at a better understanding of “alien”, namely
a truth statement is alien if humanly understandable case-
splits are way too big for any plain brute-force method, but
there exists a giant case-split that mysteriously avoids an
enormous exponential effort. Examples of truth statements
that are expected to be alien are that vdW(6) = 1132 [22]
and that the exact bound of EDP with C = 2 is 1161 [21]. A
plain brute-force approach to those problems would require
the evaluation of 21132 and 21161 cases, respectively. Brute
reasoning using SAT solvers significantly reduced the size
of the case-splits and allowed determining their truth. We
think it is relevant to make a further distinction: the above
two alien truth statements express the exact bound, but
for both cases there is a mathematical existence proof that
the pattern cannot be avoided indefinitely. Now also high-
level statements, such as any red/blue coloring of the natural
numbers yields a monochromatic Pythagorean triple, could
be alien, when the exact bound result, Ptn(3; 2) = 7825,
is the only proof. We call such statements indeed strongly
alien. If a mathematical existence proof would be found for
the above statement, then only the exact bound statement
remains, which is simply alien. This happened for the Erdős
Discrepancy Problem: the exact bound was computed using
SAT, and later a mathematical existence proof was given.

Finally, for some truth statements, we may never be able
to produce a proof. A possible example problem of this

type is the statement that every 3-coloring of the natural
numbers yields a monochromatic Pythagorean triple. As
already discussed, experiments show that Ptn(3; 3) > 107,
where lower bounds are relatively easy to compute. Proofs
of upper bound results are much harder to obtain: for exam-
ple, Ptn(3; 2) > 7824 can be computed in one CPU-minute
with local search, while computing Ptn(3; 2) ≤ 7825 required
more than 40 000 CPU-hours. We call decidable truth state-
ments extra alien if a proof can never be computed.

The concept of alien truth statements deals with the size
of proofs, but it touches naturally on unprovability (in cur-
rent systems like ZFC). It is conceivable that Ptn(3; 3) does
not exist, i.e., the natural numbers are 3-colorable without
a monochromatic Pythagorean triple. However, this may
not be provable, since the coloring is too complex. On the
other hand, it is conceivable that all Ptn(3;m) with m ≥ 3
exist (note that a SAT solver can prove them in principle),
but these statements are all alien or extra-alien. Since these
proofs grow with m, the general statement that all Ptn(3;m)
with m ≥ 3 exist, is then unprovable in principle.

7. CONCLUSIONS
Recent successes in brute reasoning, such as solving the

Erdős Discrepency Problem and the Pythagorean Triples
Problem, show the potential of this approach to deal with
long-standing open math problems. Moreover, proofs for
these problems can be produced and verified completely au-
tomatically. These proofs may be big, but we argued that
compact elegant proofs may not exist for some of these prob-
lems, in particular (but not only) for the exact bound results.
The size of these proofs does not influence the level of cor-
rectness, and these proofs may reveal interesting information
about the problem.

In contrast to popular belief, mechanically produced huge
proofs can actually help in understanding the given prob-
lem. We can try to understand their structure, and making
them thus smaller. Hardly any research has been done yet
in this direction apart from removing redundancy in a given
proof. Possibilities are changing the heuristics of a solver
or introducing new definitions of frequently occurring pat-
terns in the proof. Indeed, simply validating a clausal proof
does not only produce a yes/no answer as to whether the
proof is correct, but also provides an unsatisfiable core con-
sisting of all original clauses that were used to validate the
proof — revealing important parts of the problem. The size
of the core depends on the type of problem. Problems in
Ramsey Theory typically have quite a large core and there-
fore provide limited insight. Many bounded model checking
problems, however, have small unsatisfiable cores, thereby
showing that large parts of the circuit were not required to
determine the safety property.

To conclude, it is definitely possible to gain insights by
using SAT. However that “insight” might need to be re-
interpreted here, and might work on a higher level of ab-
straction. Every paradigm change means asking different
questions. Gödel’s Incompleteness Theorem solved partially
the question of the consistency of mathematics by showing
that the answer provably cannot be delivered in the näive
way. Now the task is to live up to big complexities, and to
embrace the new possibilities. Proofs must become objects
for investigations, and understanding will be raised to the
next level, how to find and handle them.

So, when the day finally comes and the aliens arrive and



ask us about Ptn(3; 3), we will tell them: “You know what:
finding the answer yourself gives you a much deeper under-
standing than just telling you the answer – here you have
the SAT solving methodology, that’s the real stuff!” And
then humans and aliens will live happily ever after.

Wir müssen wissen. Wir werden wissen.
(We must know. We will know.)

David Hilbert, 1930
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