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Abstract

The ultimate goal of neural interface research is to create links between the nervous system and

the outside world either by stimulating or by recording from neural tissue to treat or assist people

with sensory, motor, or other disabilities of neural function. Although electrical stimulation

systems have already reached widespread clinical application, neural interfaces that record neural

signals to decipher movement intentions are only now beginning to develop into clinically viable

systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage

clinical recording systems and focus on systems that record single-unit action potentials. We then

address the potential for neural interface research to enhance basic scientific understanding of

brain function by offering unique insights in neural coding and representation, plasticity, brain-

behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific

challenges faced by these systems before they are widely adopted by severely motor-disabled

patients.
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INTRODUCTION

Research to develop systems that can help restore sensory function, communication, and

control to impaired humans is coalescing into a new branch of experimental neuroscience,

variously named brain-machine interfaces (BMIs), brain-computer interfaces (BCIs), neural

prostheses, or neural interface systems (NISs). This emergence is evidenced by the dramatic

increase in the number of publications and presentations related to NISs in neuroscientific

journals and conferences. NISs have captured the broader public imagination by providing

the possibility of freeing ourselves from the limitations of our bodies by forming a direct

interaction between the brain and the outside world. More importantly, NIS research offers

the possibility of helping people with severe sensory and motor disabilities better interact

with their world, thereby improving their quality of life. However, an important question

that has often been raised by neuroscientists is whether this emerging area of research and

technology can also provide fundamental scientific knowledge about nervous system
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function, especially in humans. Does NIS research legitimately constitute a scientific

discipline within the neurosciences, or does it belong within a subfield of biomedical

engineering such as neural engineering, which is focused mainly on producing useful

technology? In this review, we begin with recent clinically relevant advances in NIS

research, dealing mainly with neuromotor prosthesis studies that tie together basic and

translational research using single neuron recordings. We then critically evaluate

neuroscientific contributions that this emerging field is providing. We finish with our view

of the future challenges in NIS research and its ability to advance neuroscience. Although

we briefly discuss recent, promising developments in noninvasive, electroencephalogram

(EEG)-based NISs, our emphasis in this review is invasive systems that rely on extracellular

microelectrode recordings of action potentials (spikes) from neuronal populations.

BACKGROUND

The field of NISs is actually quite broad and could include any form of connection between

the brain and the outside world beyond the natural interfaces provided by the sensory and

motor systems. Input NISs apply electrical stimulation to some part of the central or

peripheral nervous system to help restore sensory processing or to improve function by

modulating neural activity in certain brain diseases. The most successful neural interfaces

today fall into the stimulation category because they are already available to humans. They

include the cochlear implant (Gifford et al. 2008, Wilson & Dorman 2008) to restore

audition in the hearing impaired and the deep brain stimulator (DBS) (Arle & Alterman

1999) to relieve the symptoms of Parkinson disease and dystonia. Output NISs, which are

the focus of this review and are referred to simply as NISs throughout this review, record

electrical potentials from the brain to read out ongoing neural activity. Most commonly, this

readout is used to predict cognitive intentions, motor plans, or actions of an organism to

replace a lost connection to the outside world, but this information may also aid in diagnosis

of disease or injury or to guide therapy.

The scientific origins of NISs go back at least to the emergence of behavioral neuro-

physiology research in the 1960s when Evarts performed his pioneering electrophysiological

experiments from primary motor cortex (MI) of awake, behaving primates (Evarts 1968).

Evarts found that the firing rates of individual MI neurons in monkeys were strongly

correlated with the force or torque generated by the joints during arm movements. A

landmark paper published by Humphrey and colleagues (1970) demonstrated that the

kinematic and kinetic time course of a monkey's single-joint wrist movement could be

predicted quite accurately using a small population of simultaneously recorded MI neurons,

further elucidating the type of population or ensemble processing that occurs in the cortex to

produce movement. Another landmark study, by Fetz (1969), demonstrated that monkeys

could volitionally control the activity of single MI neurons using visual biofeedback and

reward. Monkeys were reinforced for moving an analog dial with a meter arm whose

position was controlled by the firing rate of a neuron being recorded. This experiment

provided initial evidence that primates could learn feedback control of neural activity

without intervening movements.

These early studies also clarify an important distinction between two forms of this neural

interface research: (a) open-loop prediction or decoding from multisite recordings, of which

the Humphrey study is an excellent example, and (b) closed-loop control, of which the Fetz

study is one of the first examples. In a more recent example of NIS research showing open-

loop prediction, Wessberg and colleagues (2000) demonstrated that it was possible to predict

the 2D and 3D position of a monkey's hand in real time using neuronal ensembles from

various cortical areas. This prediction signal was then used to move a robotic arm in a

remote location, demonstrating that sufficient information was present in the sample of

Hatsopoulos and Donoghue Page 2

Annu Rev Neurosci. Author manuscript; available in PMC 2010 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



neurons to reconstruct arm movements and that this motion could be performed in nearly

real time. This study is an example of open-loop prediction but not of closed-loop control

because the animal did not receive any form of sensory feedback from the robot and thus

was unaware that it was moving the robotic arm. In contrast, a recent study demonstrated

that a monkey could control the 3D position of a robot's end effector as well as its 1D

gripper to feed itself (Velliste et al. 2008). This finding is qualitatively different from the

Wessberg study because the animal's goal was to control the robot, and not its own arm, to

grab the food and bring it to its mouth. This study is an example of a closed-loop control

NIS. One might argue that prediction by itself as manifested by the first example is actually

just part of behavioral electrophysiology and is not a constituent of the NIS paradigm.

However, this study as well as numerous other studies involving open-loop prediction/

decoding were essential in forming the foundation for future NIS research. Especially

significant are the studies of Georgopoulos and colleagues (Georgopoulos et al. 1986, 1988),

who demonstrated how populations of spiking neurons can predict arm kinematics in space.

These studies were not necessarily motivated by the desire to build NISs, but they certainly

advanced knowledge necessary to build a neural interface. As we later argue, these efforts

also seek to establish principles of neural function and therefore also make fundamental

contributions to neuroscientific knowledge.

After initial developments in EEG-based NISs pioneered by W. Gray Walter in the 1960s

(Bladin 2006), neural interface research experienced a marked resurgence in the late 1990s

with a number of demonstrations of closed-loop control using neuronal spikes. Chapin and

colleagues (1999) demonstrated a rat's ability to control a one-dimensional feeder using

multielectrode recordings from sensorimotor cortex. This was followed by a number of

studies (Carmena et al. 2003, Musallam et al. 2004, Santhanam et al. 2006, Serruya et al.

2002, Taylor et al. 2002) showing that closed-loop control in primates is possible. That is,

monkeys could replace actions of its hand with a command derived directly from neural

populations in the cortex to perform actions. Importantly, the monkeys in these studies were

observing the consequences of their control and could use that visual information to guide

behavior. All these studies describe a common architecture for closed-loop NISs, consisting

of four components: (a) a multielectrode recording array, (b) a mapping or decoding

algorithm, (c) an output device, and (d ) sensory feedback (Figure 1).

CLINICAL APPLICATIONS

NIS research using multineuron recording sensors has now been translated from preclinical

proof of concept to early-stage human clinical trials (Hochberg et al. 2006, Kennedy &

Bakay 1998). The motivation for these trials is to create a device that can be used by

individuals with movement impairment to regain control, communication, and

independence. This advance also provides a new opportunity for long-term

neurophysiological investigation in human cortex at the level of single and multiple neurons

and local field potentials (LFPs), which has previously never been possible.

NISs are being created to help the large number of people who have limited movement

abilities owing to damage or disease of the motor system. A number of disorders disconnect

an otherwise healthy cerebral motor system from the muscles, leading to various degrees of

paralysis but with retention of the ability to plan and imagine making movements. These

conditions include trauma, such as spinal cord injury, which renders ~100,000 Americans

tetraplegic; strokes, which interrupt descending motor pathways, with the most devastating

being a pontine stroke, which can disconnect all descending control to produce a locked-in

state; and degenerative disorders such as amyotrophic lateral sclerosis (ALS, or Lou

Gehrig's disease), in which alpha motor neurons (and likely cerebral neurons) progressively

die. Cerebral palsy, muscular dystrophy, and limb amputation may also lead to the inability
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to execute voluntary actions. In each case, muscle control by the brain is lost, while cerebral

mechanisms to generate movement intentions could remain relatively intact (Enzinger et al.

2008, Shoham et al. 2001). Thus, an NIS may be a means to directly deliver motor

commands from the brain to assistive technologies, bypassing the biological lesion to restore

control and independence to those with paralysis. Assistive technologies are aids to function;

they can include any device from a simple switch, a computer cursor, a robot, or an artificial

limb. A neural command with sufficiently rich and stable information could be used to

operate any of these devices. Neural signals could also be used to recouple the brain to the

muscles through functional electrical stimulation (FES). An FES system converts command

signals into stimulation trains, which the FES system uses to activate muscles (Peckham et

al. 2002). With a neural command source, an FES system could allow movement intentions

to produce arm movements once again, although the complexity of artificially coordinating

the myriad of arm muscles used for normal human arm movements is daunting.

Like their preclinical counterparts, the clinical NIS must have a sensor for recording

volitional signals, a decoding algorithm, an effector, and some form of feedback. Here, we

emphasize those recently tested systems that are based on intracortical signals to derive

commands because they establish a new link between human and nonhuman primate

behavioral neurophysiology experiments. They provide insights into human neural processes

not available from surface field potentials, which is the other main control signal source

being tested for NISs (Birbaumer 2006). Kennedy (Kennedy et al. 2000, 2004; Kennedy &

Bakay 1998) developed the first spike-based approach for NISs using a sensor of

individually implanted microwires encased in glass cones so that neurites would grow into

the cone and establish long-lasting connections to the nervous system. Using a few channels,

humans with tetraplegia from stroke or degenerative disease showed that they could activate

spiking or LFPs from cortical neurons to move a cursor.

An ongoing pilot study of the first human chronically implanted multielectrode array-based

NIS has made several advances in recording, decoding, and demonstrating potential use of a

pilot NIS system. This system, termed BrainGate, is based on spiking signals recorded from

a 4 × 4 mm array of 100 Si microelectrodes in a fixed 10-by-10 arrangement placed within

the motor cortex arm area. Studies to date utilizing four patients with tetraplegia have

demonstrated participants’ ability to produce two-dimensional cursor control that can be

used to operate a computer and control a robot arm to perform simple grip and transport

actions (Hochberg et al. 2006). These studies demonstrated that both spiking and LFPs

remain in motor cortex and can be volitionally modulated in the absence of movement, years

after spinal cord injury (Hochberg et al. 2006) or stroke (Kim et al. 2007b). Patterns of

activity appear to be similar to those observed in intact monkeys when movement is actually

performed. This demonstration, that MI displays similar activity when movement is

imagined and performed, raises fundamental questions about the nature of neural activity in

MI and provides a key finding necessary for any further development of spike-based NISs.

Control achieved by human participants using continuous control commands derived from

linear decoders was quite similar to that achieved with the same algorithms in preclinical

studies using able-bodied monkeys, discussed above (Carmena et al. 2003, Serruya et al.

2002, Taylor et al. 2002, Velliste et al. 2008). Improvements in the decoders using Kalman

filters showed not only the ability to make smooth point-to-point movements, but also the

ability to stop cursor motion and select targets by clicking on the basis of decoding an

intended hand squeeze (Kim et al. 2007b). Using this improvement, a participant in three

test sessions was able to point and click to one of eight screen targets, never selecting the

wrong target and rarely (<4%) failing to make correct target selections. However, to achieve

this success, movements were slow, taking 6.4 s, on average, to move from the middle of the

screen to a target at the screen's edge and click on it. These initial findings suggest that
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practical NISs for humans with paralysis are feasible and that this field is on a path to

improving independence, control, and in the case of locked-in persons, communication,

which is otherwise severely limited.

SCIENTIFIC IMPLICATIONS

Whereas the clinical potential of an NIS is clearly evident, it may be less obvious how

neural interface research has added to our understanding of functional properties of the brain

and, therefore, whether this research constitutes a fundamental endeavor in neuroscience. To

support this proposition, we demonstrate that both open- and closed-loop forms of neural

interface research have advanced understanding in neural coding, distributed

representations, parametric multiplexing, spike-field potential relations, plasticity, cortical

mirror responses, brain-body uncoupling, and recording in chronically injured patients.

New Approaches to Understanding Neural Coding

The NIS paradigm has become a standard test bed for evaluating particular encoding models

that have been postulated to relate movement features to neuronal responses. Traditional

approaches to studying encoding have relied on building peri-event time histograms, tuning

curves, and regression models (Ashe & Georgopoulos 1994; Fu et al. 1993, 1995;

Georgopoulos et al. 1982). NIS research has motivated the development of decoding models

that invert the problem to predict movement from the responses of neuronal populations,

thus providing a direct test of the information available from a simultaneously active group

of neurons. In this regard, the population vector method has demonstrated that a population

of MI neurons contains sufficient information for animals to achieve closed-loop control of a

virtual object in 3D space (Taylor et al. 2002) as well as the end point arm position and

gripper aperture velocity of a robot arm (Velliste et al. 2008). This approach begins with a

linear velocity encoding model that relates the instantaneous velocity (i.e., direction and

speed) of the hand to the neuron's firing rate (Georgopoulos et al. 1982, Moran & Schwartz

1999) to estimate the preferred velocity of the neuron. To decode instantaneous velocity, the

preferred directions of the neuronal population are then vectorally added, weighted by the

firing rate of each neuron.

A statistically principled approach begins with an encoding model that estimates the

conditional probability of a neuron's response, given the motor behavior of the animal

(Brockwell et al. 2004, Kemere et al. 2004, Sanger 1996, Shoham et al. 2005, Wu et al.

2006, Wu & Hatsopoulos 2008). Assuming conditional independence, the conditional

probability of a population response can be estimated by multiplying the single neuron

encoding models, and maximum likelihood estimation of the motor behavior can be

performed. Alternatively, by invoking a prior distribution on the behavior and applying

Bayes’ rule, this model can be inverted to estimate the probability of the behavior

conditioned on the population response. Similar approaches for decoding sensory stimuli as

well as motor behaviors have been used by a number of groups (Barbieri et al. 2004a,b;

Paninski et al. 2007; Sanger 2003; Wiener & Richmond 2002).

DISTRIBUTED REPRESENTATIONS

Results from NIS studies have provided further support for highly distributed arm

movement representations in the frontal and parietal cortices and have extended this

knowledge to the human motor cortex. Despite clear evidence for functional specialization

of movement planning and performance in motor, premotor, and parietal cortical areas

(Andersen & Buneo 2002, Buneo & Andersen 2006, Luppino & Rizzolatti 2000), it has

become evident from NIS experiments that large networks of neurons are active to various

degrees even during simple movements. For example, neural interface studies have directly
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compared decoding performance from simultaneously recorded neuronal populations in

various cortical areas including the ipsi- and contralateral primary motor (MI), dorsal

premotor (PMd), supplementary motor (SMA), primary somatosensory (SI), and posterior

parietal cortices (Carmena et al. 2003, Hatsopoulos et al. 2004, Wessberg et al. 2000).

Investigators observed significant differences in decoding performance across different

cortical areas that could help determine which area to implant for optimal NIS performance,

but what is particularly surprising is the fact that all tested areas exhibited a certain degree of

accurate arm-movement decoding performance. These results strongly support the view that

ordinary forms of voluntary limb motor control recruit large numbers of neurons in

distributed areas encompassing many regions of the frontal and parietal cortices.

Multiplexing of Movement Parameters

Another related and somewhat surprising result from NIS research is that different

movement components, parameters, and features may be multiplexed in the same distributed

network. Recent studies have shown that both transport and grip components can be

controlled from a single, simultaneously recorded population of cortical neurons in monkeys

(Carmena et al. 2003, Velliste et al. 2008) and in tetraplegic humans (Hochberg et al. 2006,

Kim et al. 2007b). In the animal studies, the position of a device as well as the grip force/

grasp aperture were simultaneously controlled by using two different linear mappings from a

single neuronal population, whereas in the human study, grip state was decoded in a binary

fashion at the same time that two-dimensional cursor motion was controlled. These findings

provide direct evidence for the idea that mixed control of hand and arm exists within small

regions of primate cortex, a view that influences theories of motor coding but conflicts with

some studies of functional segregation using indirect imaging methods (Beisteiner et al.

2001).

Relationship between Spikes and Field Potentials

Developments in NISs have rekindled scientific inquiry into the relationship between

electrical field potentials [EEG, electrocorticogram (ECoG), and LFP] and spiking. Research

paths into these two fundamental electrical signals of the nervous system have largely

drifted apart when considered as signals that code information in neural systems (Bullock

1997). Most inquiries related to information coding at the systems level have focused on

spiking patterns. Field potentials are a major signal used for diagnostic aids in human

disease (as in epilepsy), although they are also of great interest for use as control signals for

NISs, especially because they can operate using external, noninvasive sensors (Wolpaw &

McFarland 2004). Studies have begun to investigate how information in the field potential

compares with that in spikes (Belitski et al. 2008, Buneo et al. 2003, Donoghue et al. 1998,

Murthy & Fetz 1996, Pesaran et al. 2002). This work promises to help clarify the nature and

origin of the wide spectrum of field potentials, their roles as information-carrying signals,

and their relationships to spiking in single neurons.

Learning and Cortical Plasticity

A closed-loop NIS offers an important setting for studying the relationship between cortical

plasticity and learning. A number of experiments have reported short-term (over the course

of minutes within a single recording session) and long-term (over the course of multiple

days) improvements in device control. Neural interface experiments using recordings from

primary motor cortex (Taylor et al. 2002) and posterior parietal cortex (Musallam et al.

2004) have documented modest but significant linear increases in percent correct

performance ranging from 0.08 to 0.9 percentage points per recording session over the

course of 30–70 daily sessions. Carmena and colleagues (2003) have directly compared the

chronic improvements in online control from SMA, PMd, MI, and SI and found the largest

linear increase in performance from SMA. At the same time, a number of studies have
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documented systematic variations in neural modulation and directional tuning at the single

neuron level during short-term exposure to an NIS (Carmena et al. 2003, Taylor et al. 2002,

Zacksenhouse et al. 2007). Thus, this research provides detailed assessment of neural tuning

dynamics.

An important question is whether these adaptation phenomena offer something unique to our

understanding of neural plasticity that we cannot or have not learned from traditional

learning and plasticity experiments. The relationship between learning and neural plasticity

is often studied in behavioral electrophysiological experiments by examining changes in

single-unit activity in a particular brain region after an animal has been exposed to some

learning paradigm. This approach has been fruitful, but it has its limitations. First, this

approach is inherently correlational, so one cannot determine whether the changes in neural

activity have any causal relationship with the behavioral changes (Figure 2A1). Second,

even if there is evidence to suggest an indirect causal relationship between the recorded

brain area and behavior through downstream areas (Figure 2A2), it is still unclear to what

degree the behavioral changes associated with learning are due to plasticity downstream or

upstream from the area being studied.

The NIS paradigm forms a direct, causal link between the recorded brain area and behavior

via the decoding algorithm so any behavioral changes can be attributed to changes in neural

modulation from the recorded brain area, although these neural changes are not necessarily

due to synaptic modification. In particular, a neural interface using recordings from MI can

rule out the possibility that plasticity is occurring in the spinal cord, neuromuscular junction,

or muscles because they have been removed from the sensorimotor loop (Figure 2b).

Although there are afferent projections from the muscles and spinal cord back to the cortex,

they do not likely contribute to the observed behavioral changes because the animal is often

not significantly moving its arm (Carmena et al. 2003, Lebedev et al. 2005, Velliste et al.

2008). Of course, the NIS paradigm cannot necessarily localize exactly where any synaptic

plasticity may be occurring. That is, the modifications in neural activity observed within the

recorded brain area could be a consequence of synaptic plasticity occurring in upstream

brain areas that provide altered inputs to the recorded brain area.

Brain-Body Uncoupling

In a closed-loop NIS paradigm, it remains a mystery as to how a population of recorded

neurons can be co-opted to control an artificial device without moving the limb, which was,

under normal circumstances, moved by the activation of the same population. Several

studies have documented the fact that monkeys that are exposed to an NIS paradigm will

eventually stop moving or minimally move their own limbs when guiding the artificial

device through cortical control (Carmena et al. 2003, Lebedev et al. 2005, Serruya et al.

2002, Taylor et al. 2002, Velliste et al. 2008). In all these cases, tiny movements or

subthreshold activation of motor neurons could not be ruled out. However, what is

impressive is that the original gross action that was used for control was substituted for

another behavior, despite the involvement of a similar pattern of MI activity. Whether this

change in behavior is a result of short-term plasticity, a newly learned motor pattern, or

active inhibition of downstream cortico-spinal circuits remains untested. A lucid explanation

of this phenomenon would have far-reaching implications for mechanisms underlying

adaptation to novel control situations.

Mirror-Like Responses in MI

An effort to solve a problem inherent to NISs for motor-disabled patients led to advances in

understanding fundamental response properties of neurons in motor cortex. Building a

decoding mapping between neural ensemble activity and motor output requires collecting
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data in which neural activity and motor behavior are concurrently recorded, which is not

possible for persons who are paralyzed. We recently discovered that passive visual

observation of a familiar task can elicit responses in the primary motor cortex that closely

resemble those observed when the animal actually performs the task (Tkach et al. 2007).

Indeed, decoding filters were built for paralyzed persons while they observed computer-

controlled motion of a cursor (Hochberg et al. 2006). However, unlike in our animal studies,

the human participants were asked to imagine they were producing the cursor motion. Our

recent discovery of mirror-like single neuron responses in the primary motor cortex was

directly motivated by a desire to elicit motor cortical activity to build a neural interface

mapping between neural activity and observed motion without explicit movement.

Recording in Chronically Injured Human Patients

Finally, clinical NISs have provided the opportunity to engage in cellular physiology in

persons with injury and degenerative diseases. They have shown that neural spiking and

LFP activity survive years after damage including transection of layer V pyramidal cell

axons in the cord or the pons (Hochberg et al. 2006, Kennedy & Bakay 1998). Moreover,

these studies have shown that tetraplegic persons can volitionally modulate MI activity in

the absence of any ability to move. This result is surprising because a variety of animal and

indirect human studies suggest that the motor cortex can reorganize rapidly in response to

injury (Dancause et al. 2005, Donoghue et al. 1990, Giraux et al. 2001, Nudo 2006, Sanes et

al. 1990), which apparently has not occurred in similar form in those studied so far. Thus,

the results of these human studies have raised a number of issues related to the function of

MI and the nature of cortical plasticity, including whether different mechanisms operate in

humans and in other species or whether the types of injury or disease result in different types

of functional responses.

FUTURE CHALLENGES AND OPPORTUNITIES

Technical Challenges

We believe important technical issues must be addressed as NISs become useful

technologies for disabled patients. First, no multielectrode recording arrays have currently

been fully verified to stably and reliably record action potentials from multiple single units

for extended periods of time (i.e., over many years). Reliable chronic recording has been an

area of considerable concern, although both cone electrodes (Kennedy et al. 1992a,b) and

micro-electrode arrays can record for many months in monkeys (Suner et al. 2005) and

humans (Kim et al. 2007b). We have sometimes encountered loss of recordings associated

with complex connectors and faulty insulating materials in chronically implanted electrode

arrays. Ongoing testing of advanced and improved versions of these sensors will be required

to achieve long-term viability of implants.

A second important technical challenge for a long-term human NIS is the creation of a fully

implantable system that can provide high-bandwidth information. A fully implantable sensor

is necessary to eliminate cabling, which limits mobility, as well as the need for percutaneous

connectors, which can present an ongoing infection concern. In addition, implantable

systems have the advantage that they are hidden from view, improving the cosmetic appeal

of such systems. Creation of high-channel count, high-bandwidth implantable systems,

which are required for spiking signals, is complex particularly because initial signal

processing must now be completed inside the body. Active electronics of this complexity are

difficult to seal fully, can induce excess heat, and require power and wireless

communication. Despite these formidable challenges, several groups are now developing

these systems (Kim et al. 2007a, Patterson et al. 2004, Rizk et al. 2007, Song et al. 2005).

This type of technology could also be a boon to animal researchers because this would allow
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long-term, continuous recording of multiple neurons, potentially in multiple areas, which in

turn would reveal new experimental paradigms. Early work with this approach has already

begun (Mavoori et al. 2005, Santhanam et al. 2007).

Controlling More Degrees of Freedom

As neural interface technologies are extended to control the numerous degrees of freedom

(DOF) of the hand as well as the arm, this challenge begs the scientific question of how

many independent control signals can be extracted from a neural ensemble. The arm has

seven DOF, whereas the hand has more than 20 DOF. Several psychophysical studies,

however, have indicated that natural grasp postures and reaching-to-grasp movements reside

in a much smaller subspace of physically possible movements (Ingram et al. 2008, Mason et

al. 2001, Santello 2002). Using principal components analysis, these studies have shown that

a large proportion (i.e., >75%) of the kinematic variance of natural grasping behaviors can

be accounted for with two or three principal components. With restricted goals, state-of-the-

art neural interface technology that currently can recover four DOF (3 spatial dimensions

plus 1 grasp DOF) is not that far from controlling the apparent complexities of certain

natural motor behaviors.

However, reach-to-grasp is only one, albeit important, category of neuroethological

movement. Moreover, more encephalized vertebrates, particularly those with developed

neocortex and rich cortico-spinal and corticomotoneuronal projections, can learn new arm

and hand movements that include fractionated finger movements (Nudo et al. 1995; Nudo &

Masterton 1990a,b; Schieber 1991). The NIS paradigm may provide a unique opportunity to

study the neuronal limits of independent control systematically. In particular, given a

neuronal ensemble of size N, is it possible to derive a number of independent control signals

that approaches N or even surpasses that number?

Controlling a Dynamical System

An important issue that has received little or no attention is whether an NIS can provide

control signals to an output device that has physically realistic dynamics. Most previous

studies have developed decoding algorithms that map neural ensemble activity to a

kinematic signal such as position or velocity, which guides a massless, virtual object or

controls a physical device via a controller, thereby negating any inherent dynamics that the

device may possess (Figure 3a) [see, however, Carmena et al. (2003), who demonstrate that

grip force can be controlled in a closed-loop NIS]. The fact that NISs have largely ignored

dynamics is somewhat surprising given the evidence that the motor cortex may be encoding

kinetic (Cabel et al. 2001, Cheney & Fetz 1980, Evarts 1968, Hepp-Reymond et al. 1978,

Kalaska et al. 1989, Sergio et al. 2005, Smith et al. 1975, Taira et al. 1996) or muscle-like

(Morrow & Miller 2003, Pohlmeyer et al. 2007, Santucci et al. 2005, Westwick et al. 2006)

parameters of motion.

An alternative decoding approach is to map neural ensemble activity directly to torque and

force signals, which guide the dynamics of the physical device (Figure 3b). We have

recently shown that motor cortical ensembles can quite faithfully reconstruct (i.e., in an

open-loop, off-line setting) the joint torque profiles of the shoulder and elbow, despite their

relatively larger bandwidth (Fagg et al. 2007, 2009). It will be interesting to determine

whether closed-loop control of a dynamical system is possible and, perhaps, is even superior

to closed-loop systems that decode position and velocity signals.

Other Forms of Sensory Feedback

Researchers are currently interested in augmenting neural interfaces with other forms of

sensory feedback in addition to vision to achieve more realistic motor control. It is well-
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documented that somatosensory feedback in the form of tactile and proprioceptive sensation

is critical for normal motor control (Ghez et al. 1990). This finding is evident particularly in

patients with large-fiber sensory neuropathy who manifest slow and uncoordinated

movements, particularly those movements involving multiple joints (Ghez et al. 1995;

Gordon et al. 1995; Sainburg et al. 1993, 1995; Sanes et al. 1985). The effects of the

proprioceptive system on movement are generally extremely fast (~70 ms) (Crago et al.

1976), whereas visual feedback is often delayed, resulting in movement instabilities. In

principle, somatosensory feedback can be implemented either by artificially stimulating

peripheral and central sensory systems or by naturalistically providing tactile and

proprioceptive feedback using an approach referred to as extended physiological

proprioception (Simpson 1973).

Artificial Feedback

For several decades, researchers have tried to provide amputees with sensory feedback to aid

in control of mechanical prostheses (Phillips 1988; Shannon 1976, 1979). This feedback has

come about in the form of either mechanical stimulation of peripheral tissue or electrical

stimulation of residual nerves (Dhillon & Horch 2005). We term these efforts as examples of

associative, artificial feedback because, in most cases, there is an artificial transfer function

between the state of the prosthesis and the features of the stimulation, which must be

associated through learning by the user. That is, the relationship between the position of the

pros-thesis and the mechanical or electrical stimulation parameter is not innately identified

by the patient. An example of associative, artificial feedback in the context of a cortically

controlled NIS is described in a recent study that showed how vibrotactile stimulation of the

arm of normal human subjects could be used as a sensory feedback signal for controlling a

one-dimensional EEG-based NIS (Chatterjee et al. 2007). In this example, subjects

voluntarily modulated EEG power in the mu frequency-band to move a virtual device

toward the left or right. In addition to visual feedback, the subjects received vibratory

stimulation, the frequency of which was proportional to the one-dimensional position of the

virtual device. This linear mapping between position and stimulation frequency is not

inherently understood by the patient but can be learned, which suggests that paralyzed

persons operating prosthetic systems could incorporate sensory feedback to improve control.

It would also be of great interest to learn how the functional properties of neural populations

in humans evolve as these new mappings are learned.

Extended Physiological Proprioception

Tactile and proprioceptive feedback can be provided in a more natural way such that the link

between the subject's biological sensors and the state of the device can be directly

understood. One important form of natural feedback was termed extended physiological

proprioception (EPP) by Simpson, who proposed an approach to improving prosthetic

control in amputees in which residual proprioception and tactile sensation could be used in a

natural way to “feel” and guide prostheses (Doubler & Childress 1984a,b; Simpson 1973,

1974). The idea is to link the joints or degrees of freedom of a prosthesis directly with intact

physiological degrees of freedom that possess residual proprioception. An example of EPP

in amputees was proposed recently in which a magnet surgically implanted in the distal end

of the residual humerus of an arm amputee could be used to control powered rotation of a

pros-thesis attached to the residual humerus (Li & Kuiken 2008). A magnetic sensor placed

on the external arm stump could sense the shifts in magnetic field strength as voluntary

rotation of the residual humerus occurs. This mechanism would drive the rotation of the

motorized lower-arm prosthesis. At the same time, natural proprioception in the residual

muscles, ten-dons, and joint capsule of the humerus could assist the patient in “sensing” the

motion of the prosthesis.
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EPP is a simple but powerful approach that could be used with a cortically driven neural

interface. This approach could be implemented in several ways: through the use of an

exoskeletal robot or through functional electrical stimulation (FES). Control signals from the

cortical implant could drive the motion of the exoskeleton, which a patient “wears” and

which would, in turn, passively move the arm and hand of the paralyzed patient. Residual

proprioception in certain user populations could be recruited to improve control of the

exoskeletal robot. Alternatively, FES could be used to stimulate sets of limb muscles, and

residual proprioception could sense the position and motion of the limb. A range of feedback

sensors are also being used for FES applications and could deliver feedback to implanted

cortical stimulation arrays (Inmann et al. 2001, Inmann & Haugland 2004, Sinkjaer et al.

2003). Although it is not yet tested, electrical stimulation of Brodmann's areas 3a and 2 may

be directly interpreted as proprioceptive state information much like Romo has shown that

electrical stimulation of the somatosensory cortex can be used to make tactile perceptual

judgments (Romo et al. 1998).

CONCLUSION

The creation of the NIS paradigm has been motivated by a desire to create devices to treat

and recover functioning in patients with severe sensory and motor disabilities. Output NISs

are now at the cusp of moving from research proofs of concept and pilot human clinical

trials to useful devices as input NISs already have. We have demonstrated that this paradigm

has also offered a unique framework for studying basic scientific problems in coding,

representation, and plasticity in neuronal ensembles. As current and future challenges are

addressed to create useful systems for patients, this field may further expand our

understanding of how large systems of neurons compute, adapt, and interact with the outside

world.
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Glossary

BCI brain-computer interface

NIS neural interface system

Input NIS stimulates the central or peripheral nervous system to restore

sensory function or improve function by altering neural activity

associated with brain disease

Output NIS records signals from the central or peripheral nervous system to

decipher the cognitive or motor intentions of an organism

MI primary motor cortex

Open-loop prediction records neural activity to predict the kinematic, kinetic, or goal

state of an organism's peripheral motor apparatus

Closed-loop control records neural activity that acts to guide a device controlled by

an organism. Organism receives sensory feedback

LFP local field potential
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Extended physiological

proprioception (EPP)

a method for using the natural kinesthetic system to guide the

motion of a device
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Figure 1.

The four components of a closed-loop, neural interface system: (1) a recording array that

extracts neural signals, (2) a decoding algorithm that translates these neural signals into a set

of command signals, (3)an output device that is controlled by these command signals, and

(4) sensory feedback in the form of vision and potentially other sensory modalities.

Transparent head image is courtesy of ©iStockphoto.com/Kiyoshi Takahase Segundo.
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Figure 2.

(a) A schematic of a typical electrophysiological experiment investigating the cortical

correlates of motor learning. An electrode records changes in neural activity from a cortical

area that (A1) may not be causally related to behavioral changes observed in behavioral

output or (A2) may not be directly connected with the behavioral output. (b) A schematic of

a typical neural interface experiment in which a multielectrode array records signals from

the same cortical areas as in a. In this case, changes in neural activity are causally related to

the output behavior of the device being controlled by the neural interface.
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Figure 3.

(a) An NIS paradigm in which kinematic parameters are decoded and sent to either a virtual

object or a physical plant, both of which passively follow the kinematic commands. In the

case of a physical plant, a proportional-derivative (PD) controller parameterized by a

stiffness (K) and viscosity (B) generates a force or torque signal such that the plant is forced

to follow the desired kinematics. (b) An NIS paradigm in which kinetic parameters are

decoded and act as control variables on a dynamic system.

Hatsopoulos and Donoghue Page 20

Annu Rev Neurosci. Author manuscript; available in PMC 2010 August 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t


