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1. INTRODUCTION

Scratch is a visual programming environment that lets users create interactive,
media-rich projects. People have created a wide range of projects with Scratch,
including animated stories, games, online news shows, book reports, greeting
cards, music videos, science projects, tutorials, simulations, and sensor-driven
art and music projects (Figure 1).

The Scratch application is used to create projects containing media and
scripts. Images and sounds can be imported or created in Scratch using a built-
in paint tool and sound recorder. Programming is done by snapping together
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Fig. 1. Screenshots from Scratch projects created by users, including a news show, an interactive
story, a drawing tutorial, and a game.

colorful command blocks to control 2-D graphical objects called sprites mov-
ing on a background called the stage. Scratch projects can be saved to the file
system or shared on the Scratch Web site.

The original design of Scratch was motivated by the needs and interests of
young people (ages 8 to 16) at after-school computer centers such as the Intel
Computer Clubhouses [Resnick et al. 2003]. Scratch added programmability
to media-manipulation activities that are popular in youth culture, and it en-
couraged young people to learn through exploration and peer sharing, with
less focus on direct instruction than other programming languages. Initially,
Scratch was used primarily in informal learning settings such as community
centers, after-school clubs, libraries, and homes, but increasingly it is used in
schools as well.

The Scratch project began in 2003, and the Scratch software and Web site1

were publicly launched in 2007. Scratch is free, available in nearly 50 lan-
guages, and more than two million copies have been downloaded from the
Scratch Web site. In addition, Scratch software is often redistributed by school
systems and educational organizations. For example, Scratch is distributed by
One Laptop Per Child and has been shipped on hundreds of thousands of XO
laptop computers. Since the launch, more than a million Scratch projects have

1See scratch.mit.edu.
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been uploaded to the Web site by more than 120,000 users. Roughly 1500 new
projects are uploaded to the Web site every day—on average, more than one
new project every minute.

Scratch builds on the constructionist ideas of Logo [Kafai and Resnick 1996;
Papert 1980] and Etoys [Kay 2010; Steinmetz 2002]. To help users make their
projects personally engaging, motivating, and meaningful, Scratch makes it
easy to import or create many kinds of media (images, sounds, music). The
Scratch Web site provides a social context for Scratch users, allowing users to
share their Scratch projects, receive feedback and encouragement from their
peers, and learn from the projects of others [Resnick et al. 2009].

A key goal of Scratch is to introduce programming to those with no previous
programming experience. This goal drove many aspects of the Scratch design.
Some of the design decisions are obvious, such as the choice of a visual blocks
language, the single-window user interface layout, and the minimal command
set. Others are less obvious, such as how the target audience influenced the
type system and the approach to error handling. This article explores aspects
of the Scratch programming environment and language design that make it
easier for young people to explore, express themselves, and learn.

2. PROGRAMMING ENVIRONMENT

Many users learn Scratch as they go, trying commands from the palette or ex-
ploring code from existing projects. To encourage such self-directed learning,
the Scratch programming environment was designed to invite scripting, pro-
vide immediate feedback for script execution, and make execution and data
visible.

2.1 Single-Window User Interface

The Scratch user interface strives to make navigation easy. It uses a single-
window, multi-pane design to ensure that key components are always visible.
Scratch avoids floating palettes, which can get buried, and minimizes the use
of panes that show only on demand.

Figure 2 shows the Scratch window, which has four main panes. The left
pane is the command palette with buttons to select categories. The middle pane
shows the scripts for the currently selected sprite, with folder tabs to view and
edit the costumes (images) and sounds owned by that sprite. The large pane
on the upper right is the stage, where the action happens. The bottom-right
pane shows thumbnails of all sprites in the project, with the currently selected
sprite highlighted.

To invite scripting, the command palette is always visible. The commands
are divided into eight categories such as Motion, Looks, Sound, and Con-
trol. This avoids long, potentially overwhelming, lists of commands: in most
palettes, all the commands can be viewed without scrolling. In each category,
the most self-explanatory and useful commands appear near the top of the com-
mand palette. Command blocks are color-coded by category, helping users find
related blocks.
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Fig. 2. The Scratch user interface.

2.2 Liveness and Tinkerability

A key feature of Scratch is that it is always live [Maloney and Smith 1995].
There is no compilation step or edit/run mode distinction. Users can click on a
command or program fragment at any time to see what it does. In fact, they
can even change parameters or add blocks to a script while it is running. By
eliminating potentially jarring mode switches and compilation pauses, Scratch
helps users stay engaged in testing, debugging, and improving their projects.

We say that Scratch is tinkerable because it lets users experiment with com-
mands and code snippets the way one might tinker with mechanical or elec-
tronic components. Tinkerability encourages hands-on learning and supports
a bottom-up approach to writing scripts where small chunks of code are assem-
bled and tested, then combined into larger units.

Tinkerability helps users discover the functionality of blocks. A block can
be tested by clicking on it, even in the palette. Function blocks show their
return value in a cartoon-like “talk bubble” (Figure 3). To help users more
easily explore what blocks do, each block comes with default parameters that
give an illuminating demonstration of what that block does. Scratch has help
screens for every command, accessible via the right-button menu, but many
users learn about commands just by trying them.

Scratch does not require that the user create complete scripts before running
the projects. Program fragments can be left in the scripting pane and are saved
with the project. Such fragments play a role similar to commented-out code in

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 16, Pub. date: November 2010.



The Scratch Programming Language and Environment · 16: 5

Fig. 3. Blocks can be tested simply by clicking on them. A white border indicates that a block or
stack is running. Function blocks show their output in a talk bubble.

Fig. 4. Feedback for an error is red (left). When single-stepping is enabled, the currently execut-
ing block glows a bright yellow (right).

a text-based language. When troubleshooting, a long script can be broken into
pieces and each piece tested independently.

2.3 Making Execution Visible

Scratch provides visual feedback to show script execution. When a script is
running, it is surrounded by a glowing white border (Figure 3). This feedback
helps the user understand when scripts are triggered and how long they run.
If a script encounters an error (e.g., dividing by zero), the border turns red and
the block that caused the error is highlighted in red (Figure 4).

Scratch can also show command sequencing and flow of control. Enabling
single-stepping (selected from a menu) causes blocks to flash as they run
(Figure 4). Even when single-stepping mode is not enabled, Scratch updates
the display after every command. Seeing the effect of every command, even if
only as a brief flash on the screen, provides important visual clues when trou-
bleshooting.

2.4 No Error Messages

When people play with LEGO R© bricks, they do not encounter error messages.
Parts stick together only in certain ways, and it is easier to get things right
than wrong. The brick shapes suggest what is possible, and experimentation
and experience teaches what works.
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Fig. 5. Scratch variable monitors (left) and list monitor (right). The optional slider allows a
variable to be used as a control.

Similarly, Scratch has no error messages. Syntax errors are eliminated be-
cause, like LEGO R© bricks, blocks fit together only in ways that make sense.
But Scratch also strives to eliminate run time errors by making all blocks be
failsoft. Rather than failing with an error message, every block attempts to
do something sensible even when presented with out-of-range inputs. For ex-
ample, the “set size” block bounds the range of its parameter so that it cannot
make the sprite excessively large (possibly exceeding system limits) or invisibly
small.

Of course, eliminating error messages does not eliminate errors. The user
must still think carefully to write scripts that do what they want and must
trouble-shoot scripts that do not work as expected. However, even when a script
does not do the right thing, it does something, and that is a good start. A pro-
gram that runs, even if it is not correct, feels closer to working than a program
that does not run (or compile) at all.

2.5 Making Data Concrete

In most text-based programming languages, variables are invisible, abstract,
and difficult to understand. Like earlier systems such as Boxer [diSessa and
Abelson 1986], Scratch turns variables into concrete objects that the user can
see and manipulate, making them easier to understand through tinkering and
observation.

In Scratch, a variable can appear on the stage as a variable monitor

(Figure 5). Monitors allow users to see the effect of commands such as “change
x by 1”, helping them build a mental picture of how variables work. But mon-
itors are not only an aid to understanding; they are also useful for their own
sake as readouts (e.g., to display the score in a game) or, using the optional
slider, as controls.

Scratch also has monitors for lists. When a list monitor is on the stage, quick
animations show the effects of list operations. For example, when a list element
is accessed, the index of that element flashes.

Small design details can make a big difference. In early versions of Scratch,
a newly created variable was not displayed on the stage, and the gesture to
make that happen was not obvious. Many users did not discover variables, even
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when they needed them. After changing the design so that a newly-created
variable is immediately displayed, many more users started using variables.

2.6 Minimizing the Command Set

Scratch strives to minimize the number of command blocks while still support-
ing a wide range of project types. One might argue that flexibility, programmer
convenience, and extra features are more important than a small command set.
However, in Scratch, unlike a text-based language, every command consumes
screen space in the command palettes, so there is a higher “cost” to increasing
the command set. Adding more commands requires either adding more cate-
gories or forces the user to scroll down to see all the commands within a given
category. Either way, a larger command set makes it harder to find a given
command in the palettes.

Scratch 1.0 had 92 command blocks. As Scratch has evolved, it has been
a constant struggle to keep down the number of commands. Every release
adds new features and new commands. Occasionally, a command is withdrawn.
(Withdrawn commands, called obsolete blocks, are still supported by the run-
time system to allow old projects to run.) However, more commands have been
added than removed. Scratch 1.4 has 125 command blocks, although some of
them do not appear until needed.

One strategy for reducing the number of command blocks is to group a set
of related operations into a single block with a drop-down menu to select the
specific operation. Examples of this technique include the scientific math func-
tion block (a dozen math functions) and the image effect blocks (seven image
effects), both of which were originally collections of individual blocks.

Another strategy is to make sets of command blocks appear on demand when
they are first needed. For example, the five blocks to control the motor of the
LEGO WeDo R© robotics kit motor appear when a WeDo USB hub is plugged
into the computer. Similarly, the blocks to access variables and lists appear
only after a variable or list has been created.

3. PROGRAMMING LANGUAGE

This section examines the design of the Scratch programming language: its
syntax (i.e., visual blocks), type system, object model, inter-object communica-
tions, and approach to concurrency.

3.1 Syntax

Scratch scripts are built by snapping together blocks representing statements,
expressions, and control structures. The shapes of the blocks suggest how they
fit together, and the drag-and-drop system refuses to connect blocks in ways
that would be meaningless. In Scratch, the visual grammar of block shapes
and their combination rules play the role of syntax in a text-based language.

There are four kinds of Scratch blocks: command blocks, function blocks,
trigger blocks, and control structure blocks, as shown in Table I. When com-
mand blocks are snapped together to create a sequence of commands, or stack,
the notches and bumps fit together like puzzle pieces.
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Table I. Scratch Block Types

Control structure blocks are a kind of command block with one or more
nested command sequences. The form of control structure blocks makes them
easy to use. In most text-based languages, the closing delimiters for control
structures can be omitted or misplaced, leading to errors. In Scratch, a control
structure block is an indivisible unit. The closing arm of a loop or conditional
block is part of the block itself—it cannot be misplaced—and the nesting of
the enclosed command sequence is manifest. Instructors using Scratch as a
quick introduction to programming before switching to a text-based language
report that some students continue to “think in Scratch blocks” as a form of
pseudocode, even after moving to the text-based language [Malan and Leitner
2007].

Command blocks are like the statements of a text-based language; function
blocks are like operators. Function blocks are not joined in linear sequences
like command blocks. Instead, they are used as arguments to commands and
nested together to build expressions.

Trigger blocks connect events (such as startup, mouse clicks, and key
presses) to the stacks that handle those events. For example, all stacks starting
with a green flag trigger block are run when the user clicks the start button.

Some blocks have embedded parameter slots. The shape of a parameter slot
shows the parameter type: number, string, boolean, etc. Some parameter slots
(ones with a white background) allow the user to enter a value from the key-
board. Others have drop-down menus or color choosers. Most parameter slots
can accept a function block.

When assembling scripts, Scratch only allows blocks to be connected in
meaningful ways. A command block connects when dropped into command
sequence, but a function block will not connect if dropped in the same place.
As the user drags a block, Scratch gives visual feedback showing possible se-
quence insertion points (command blocks) or parameter slot targets (function
blocks).
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Fig. 6. Shapes indicate type. On the left, command blocks with parameter slots for boolean,
number, and string parameters. On the right, boolean and number function blocks.

Fig. 7. Visual feedback while dragging a function block. On the left, the white highlight shows
that a boolean block can be inserted into the boolean slot. On the right, absence of the highlight
shows that a number block cannot be inserted.

Disassembling stacks is easy. Grabbing the top block of a stack drags the
entire stack; grabbing a block in the middle of a stack detaches that block and
any blocks below it. Using the blocks editor feels natural and easy, and users
often discover how to use it without being told.

3.2 Data Types

Scratch has three first-class data types: boolean, number, and string. These are
the only data types that can be used in expressions, stored in variables, or re-
turned by built-in functions. In the Scratch visual language, the shape of a pa-
rameter slot indicates the data type expected and the shape of a function block
indicates the type returned (Figure 6). While there are three parameter slot
shapes, there are only two function block shapes: boolean and number/string.
This is a consequence of the fact that Scratch variables are untyped and can
contain either numbers or a strings.

The Scratch editor only allows a function block to be inserted into a
parameter slot if the result would not violate the data typing constraints
(Figure 7). Boolean parameter slots are the most strict, accepting only boolean
function blocks. Number and string parameter slots are less strict. They
accept a function block of any type, coercing the parameter to the target type if
necessary.

A Scratch variable can hold values of any data type. This avoids requiring
that the user specify the type of a variable when it is created. Scratch auto-
matically converts between numbers and strings depending on context. For
example, if the string “123” is passed to an arithmetic operation, it is converted
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to a number, while if a number is passed to the “say” command, it is converted
to a string. Given the goals of Scratch, automatic conversion is preferable to
requiring the user to explicitly convert between types.

Scratch currently supports only three first-class data types. How might the
visual grammar be extended to handle additional first-class types in the future?
One approach would be to create a new slot/function shape for each new type.
But if many types were added, that approach could lead to visual clutter and
potential confusion. An alternative approach is to have all new types share
the same rounded shape already used for numbers and strings, consistent with
Scratch’s untyped variables. This design choice mirrors the choice between
static and dynamic typing in text-based languages.

3.3 Sprites: The Scratch Object Model

Sprites are objects: they encapsulate state (variables) and behavior (scripts).
However, since Scratch has neither classes nor inheritance, it is an object-based
language but not an object-oriented one. (A language must support inheritance
to be called object-oriented [Wegner 1987].)

Commands operate only on the sprite in which they appear; one sprite can-
not invoke a command such as “move” on a different sprite. In object-oriented
terms, the implicit receiver of every command is the sprite in which it appears.
(An early prototype of Scratch allowed cross-sprite commands, but users found
that confusing.)

Every sprite has its own independent set of scripts. This design involves a
tradeoff. On one hand, it is easy to understand. The scripts in a given sprite tell
the entire story about that sprite’s behavior; the user need not look up the class
hierarchy or follow a prototype chain to find inherited scripts. Furthermore,
code changes are localized: editing a script affects only the sprite in which that
script appears, whereas in other languages editing an inherited method can
have far-reaching and possibly unexpected consequences.

On the other hand, without classes or some other code-sharing mechanism,
it is more work to manage multiple sprites with identical behavior, such as the
bricks in a Breakout game. In such cases, the user typically creates a single
sprite with the desired behavior, then uses the stamp tool to make as many
copies as desired. If the behavior of the sprites needs to be changed after the
copies have been made, the user can either make the same change in every
copy or delete all but one of the copies, edit that sprite’s scripts, and then make
a new set of copies.

Manually copying sprites grows tedious. Advanced Scratch users often ask
for a command to copy, or clone, a sprite under program control. We tried sev-
eral forms of cloning in earlier versions of Scratch, but discovered three com-
plications: (1) a run-away program can overrun the stage with clones, making
the system unresponsive; (2) using the current broadcast mechanism, it was
difficult to invoke a script on only the new clone; and (3) it required extra logic
to destroy the clone when it was no longer needed. The second two problems
tend to exacerbate the first. We are currently exploring a new clone mechanism
that addresses these issues.
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Fig. 8. A broadcast command and two scripts it triggers.

3.4 Inter-Sprite Communications and Sharing

As mentioned, sprites cannot call each other’s scripts directly. Instead, Scratch
uses a broadcast mechanism to support inter-sprite communication and syn-
chronization. Any sprite can broadcast a message (an arbitrary string). A
broadcast triggers all scripts in all sprites that begin with a matching “when I
receive <msg>” trigger block. For example, in response to the broadcast mes-
sage “scene two,” several sprites representing the characters in a story might
start acting out that scene (Figure 8).

The Scratch broadcast model is one-to-many, because a given broadcast can
trigger many scripts (possibly in multiple sprites); loosely-coupled, because it
does not matter how many receivers there are; and asynchronous, because
the “broadcast” command does not wait until the triggered scripts complete.
A “broadcast” can start scripts that loop forever, similar to starting a thread.
Scratch also has a synchronous variant of broadcast that waits until all trig-
gered scripts have completed.

There are two benefits to not allowing sprites to control each other directly.
First, when trying to understand why a sprite does something (e.g., moves in a
certain way), the scope of possibilities is limited to scripts within that sprite it-
self. Second, and more importantly, because sprites are self-sufficient and only
loosely coupled to other sprites, they can be moved between projects without
breaking dependencies. This allows sprites to be shared.

Sharing sprites encourages code reuse and collaboration. For example, a
sprite with generic arrow key motion controls could be shared so that other
Scratch users can import that sprite into their own projects. In the process of
adapting a sprite for their own purposes, users are exposed to new commands
and programming techniques. Sharing sprites also fosters collaboration: when
users are working together, each of them can independently develop sprites
and then combine those sprites to create the final project.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 16, Pub. date: November 2010.



16: 12 · J. Maloney et al.

Fig. 9. Three concurrent scripts for the ball in a paddle game.

3.5 Procedures

Early versions of Scratch had a mechanism for creating procedures. In early
field tests, however, many users were confused by procedures since they seemed
very similar to broadcasts—both involved associating a name with a collection
of commands. In the interest of simplicity and minimalism, procedures were
removed from the language before Scratch was officially released, and Scratch
has gotten along surprising well without them.

Yet procedural abstraction is one of the “powerful ideas” of computer
science and procedures have practical value as a way to structure code as
projects grow. The Scratch team is considering reintroducing procedures as
a way for users to define their own command blocks. Other researchers have
been developing a variant of Scratch that supports not only procedures but
first-class functions, closures, and a complete functional programming system
[Harvey and Mönig 2010].

3.6 Concurrency

Concurrency (or “multi-threading”) is often considered an advanced program-
ming technique. Yet our everyday world is highly concurrent, so Scratch users
are not surprised that a sprite can do several things at once. For example, in
a simple paddle game, one script might move the ball, another might make
it bounce when it hits the paddle, and another might end the game when
the player misses the ball (Figure 9). In Scratch, all of these scripts can run
concurrently.

Scratch lacks the explicit concurrency control mechanisms often found in
other programming languages, such as semaphores, locks, or monitors. In-
stead, Scratch builds concurrency control into its threading model in a way
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Fig. 10. A simple synchronization lock in Scratch.

that avoids most race conditions, so that users do not need to think about these
issues. This is done by constraining where thread switches can occur.

In many preemptive threading models, a thread switch can occur between
any two instructions. In the Scratch model, a thread switch can occur in only
two places: (1) on a command that waits explicitly (e.g., “wait 1 second”) or (2)
at the end of a loop. A thread switch cannot occur in the middle of a sequence
of non-waiting statements, or between the test of an “if” command and its body.

The Scratch threading model allows users to reason about a script in isola-
tion, giving little or no consideration to potential side effects from the inter-
leaved execution of other scripts. For example, in the code shown in Figure 10,
the command that sets the “busy” variable is guaranteed to be executed im-
mediately after the test, without any other thread getting control. As this ex-
ample shows, the Scratch threading model supports a kind of implicit “critical
section” that, in theory, allows the user to create their own synchronization
mechanisms. In practice, such mechanisms are seldom necessary.

Although the Scratch threading model avoids most race conditions, it does
not eliminate all concurrency issues. The most common one that arises in
Scratch is when multiple scripts are triggered by an event or broadcast, and
the ordering of those scripts is not what the user expects. However, once users
understand that multiple scripts triggered at the same time are run in an ar-
bitrary order, they readily understand the solution, which is to have the event
trigger a single script which then triggers the other scripts in the desired order.

4. COMPARISON WITH ALICE AND GREENFOOT

Like Scratch, Alice, and Greenfoot are intended to introduce programming to
those without prior experience and, as a result, the three systems share many
of the same design goals. For example, all three systems support rich graphics
and sound and let users create projects that connect to their interests.

Both Alice and Greenfoot target older students than Scratch, introduce
class-based object-oriented programming, and emphasize Java or Java con-
cepts, making them suitable as preparation for the Advanced Placement Exam
in Computer Science. Greenfoot, since it is Java, also allows students to ex-
plore high-performance computation (e.g., complex simulations or cryptogra-
phy problems) and to extend the system. Alice is the only one of these systems
that supports 3-D graphics.

Scratch targets younger users than the other two systems, focuses on self-
directed learning, and emphasizes tinkerability. While all three systems allow
media to be imported, Scratch includes tools to draw images and record sounds.
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The 2-D images used by Scratch and Greenfoot are easier to create and edit
than the the 3-D models used by Alice. The Scratch command set is designed
to encourage a wider variety of project types than the other two systems, and
the ability to easily share projects on the Scratch Web site, with its active user
community, provides motivation and opportunities to learn from others.

Scratch has been used as an introduction to both Alice and Greenfoot. The
transition from Scratch to Greenfoot is especially smooth, since both are 2-D
systems and Scratch’s sprites and stage map directly to Greenfoot’s actors and
world.

5. CONCLUSIONS

The Scratch programming system strives to help users build intuitions about
computer programming as they create projects that engage their interests. The
user interface layout, with its prominent command palette and central script-
ing area, invites users to program. The Scratch blocks language eliminates syn-
tax errors, allowing users to focus on interesting problems right away, rather
than struggling merely to get their program to compile. Block shapes and vi-
sual feedback while dragging help the user learn how to assemble programs
and use data types. Runtime error messages are avoided through failsoft com-
mands, while a carefully designed concurrency model avoids race conditions.

The Scratch programming language emphasizes simplicity. The type system
and object model were designed to work smoothly without prior explanation,
yet to make perfect sense on closer examination. Scratch has a surprisingly
small number of commands, especially given the wide range of project types it
supports. A loosely-coupled inter-object communication system allows sprites
to be exchanged without breaking dependencies, fostering collaboration and
code sharing.

The system is always live, with no run/edit switch, so commands or code
snippets can be run with a click, and graphical feedback shows execution. Vari-
ables and lists have concrete visualizations, so the effect of data operations can
be seen immediately. These features support and reward discovery through
tinkering.

The Scratch programming environment and language work together to cre-
ate a system that is exceptionally quick to learn—users can be programming
within fifteen minutes—yet with enough depth and variety to keep users en-
gaged for years.
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