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The "Screening Phase Transitions" in the 
Two-Dimensional Coulomb Gas 
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The Mayer series of a Coulomb gas with fixed ultraviolet cutoff is studied in two 
dimensions. In particular, we show the existence of infinitely many thresholds 
T n = (e2/8~k)(1- 1/2n) 1, k =Boltzmann's  constant, e=electr ic  charge, n = 
1, 2,..., which are conjectured to reflect a sequence of transitions from pure mul- 
tipole phase (the Kosterlitz Thouless region) to a plasma phase (the Debye 
screening region) via an infinite number of "intermediate phases." 
Mathematically we prove that the Mayer series' coefficients of order up to 2n 
are finite if the temperature T is < T,,. For T <  T~ all the coefficients are finite 
and the gas can he formally interpreted as a multipole gas with multipoles with 
finite activity. 

KEY WORDS:  Coulomb gas; sine-Gordon field theory; renormalization 
group; multipole gas. 

1. I N T R O D U C T I O N  

We define the partition function for the two-dimensional Coulomb gas in a 
box I and with ultraviolet cutoff as 

Zo(I, fl, 2)= ~. Z dxl""dx,  
n = 0 cq,.. . ,Gn 

~ i a i  = 0 

X e x p [ - - f l  2 ffiGjW(xi--xJ) 1 .  . 
l '<  J 

lim Z(o-m(I, fi, 2) (1.1) 
R ~ o o  
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134 Ga l lavo t t i  and Nicol6 

where /3 is the "inverse temperature," /3 = 1/kT, 2 is the "activity" of the 
charges, Ol,..., an are the charges of the particles at positions xl,..., xn, W is 
the Coulomb potential with ultraviolet cutoff: 

W(x,  y)  = k 2 + 1 

-- im ' ;  ( ' ' )  R~oo(-~)2 d2k(eik(x-y)-l) .k2q_7_2R k2q_l 

- l i r a  W ( re(x, y) (1.2) 

and Z(o-m(L fl) is defined as the intermediate term in (1.1) with W (-m 
replacing W, where we have arbitrarily fixed 7 > 1; Z(0 - m  is the partition 
function for the neutral gas with infrared cutoff at scale 7 R. 

The name's motivation is clear if one remarks that for I x - y ]  >> 1, 

1 
W(x-  y )~-~  log Ix-y[--1 

If one expands ]II-a log Zo(I, fl, 2) in powers of 2 it is very unclear 
what happens to the coefficients of the resulting power series in the limit as 
I I I - - '~ .  

In this paper we prove that, if fl > fin = (Szffe2)( 1 - 1/2n), the first 2n 
coefficients have a limit as I/~ R 2. Our bounds are very poor in their n 
dependence. 

This statement is proved by showing that important cancellations take 
place. The tool we use for exhibiting such cancellations is the "sine-Gordon 
transformation" whereby the problem is reduced to a field theory problem 
and the cancellations become related to a renormalizability problem of 
rather simple nature, which has been basically understood in 
Benfatto et aL (~) and Nicol6. (21 

2. THE S I N E - G O R D O N  T R A N S F O R M A T I O N  

It is convenient to observe that 

lim Z~o-m(I, fl, 2)==- lim Z(-m(I, fl, 2) (2.1) 

where the Z function in the right-hand side denotes a suitable nonneutral 
Coulomb gas partition function, i.e., 
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,=0 \ 2 /  n! 
fin d X l  " " d x  n 

o-1 ~n 

x e x p [ - ~ ( ~ o - / )  C ( e,~ 

x exp [ - / ~  ; .  aiajW(-m(xi, xj)] (2.2) 
l < J  

where we have introduced, for later use, 

y) = f (2.3) k2+?-2R k 2+1 

so that C(-R'~ 0) = (1/2~) log yR, making (2.1) obvious. 
Of course there are many other weights which depress the charged 

configurations. The one used in (2.1) is, however, very significant as it 
allows us to turn the problem of studying Z ( m(/,/~, 2) into a field theory 
problem. 

In fact, let 0 (R.o) be the Gaussian random field on R 2 with covariance 
(2.3). It is easy to check (and it is well known; see Frohlich (3) and Park (4)) 
that if e2fl = o~ 2, 

z( R~(I,/~, ,~)=f P(d~, ~-R,~ 

= f P(dO (-R'~ 

exp 2 f~ cos c@~ -R,~ dx 

expI~+l~fiexp(i~aO~ R'~ dx]  (2.4) 

To prove the identity (2.4)just expand the exponential as a power series 
and use 

p(dO(- R.o)) exp icw]O(~; R,~ = exp - ~- ~ aiajC(-R'~ xj) 
j 1 i,j  

(2.5) 

after some simple algebra to treat the diagonal terms in (2.5) one obtains 
(2.2). 

3. A D I G R E S S I O N  ON T H E  BASIC  P R O P E R T I E S  OF 
G A U S S I A N  I N T E G R A L S  

We shall make extensive use of the following properties of Gaussian 
integrals which we summarize here without proof; they are well-known 
consequences of definitions combined with the basic identity. (2.5). 
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Let ~(0~, ~1~,,.. be independently distributed Gaussian fields indexed 
by x ~ f2, 12 being an arbitrary set of indices (R 2 in our applications). 

Denote g(j) the expectation with respect to ~9 (j), i.e., the integral over 
the distribution P(dO (jl) of 0(J). Similarly g(j,p)= g(j)...g(p); g denotes the 
expectation with respect to all the Os. 

If fl,..., fq are q linear functionals of ~(o) .... (i.e., iff~,..., fq are q linear 
Gaussian random variables, one defines 

:e'Yk: = e(~Z/2)g(fZ)ei~fk (3.1) 

"Wick ordered exponential." 
If F1,..., Fq are any q random variables, one defines 

g~ Fq; nl,..., nq) 

-c~2----;.-?~q logg exp )~jFj O (3.2) 

and the beautiful "Wick's theorem" states (see, for instance, Gallavotti, 
Ref. 5, Appendix A): 

o~r(:ei:f~:,..., :ei%:; 1, 1 ..... 1) 

= Z [I  ( e:~c()~)- 1) (3.3) 
�9 E a  2 ~  

where a is the set of connected graphs joining q points so that no pair of 
points is joined by more than one link and 2 = (i, j )  is a graph line joining 
(i, j )  and 

C(2) = go(f~fj) if )~ = (i, j)  

Note that if f l  and f2 are independent 

:ei(fl+f2): = : e / f ~ :  : e / f 2 :  

(3.4) 

(3.5) 

With the above notations, (2.4) is rewritten 

( .  

Z~-m(i, fl, ,~ ) = J P ( dlp ( R,O)) 

O~ 2 
x{expI~exp(---~C(-'~'~ I :exp(ic~a0(~ R,o)): dxl} 

(3.6) 
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4. DUALITY T R A N S F O R M A T I O N  OF THE INFRARED 
PROBLEM INTO AN ULTRAVIOLET PROBLEM 

The "infrared" problem of studying (2.4) or (3.6) involves the proper- 
ties of the field 0(-R,o), which is a "Yukawa field" with mass 7 R and 
cutoff 1. 

By a trivial change of scale this can be changed into a Yukawa field 
with mass 1 and cutoff ? +R 

Simply define 
(p~< m = 0~yce,0) (4.1) 

whose covariance is [-see (2.3)] 

r ( 2 ) z  \ p 2 +  1 pZ+y2R (4.2) 

so that 

z~-~(I, p, ~)= f P(d~o~ ~ )  

• o +lTexp :exp(iac~q0~< m): de]  

(4.3) 

We see that (4.3) is a "charged Yukawa gas with ultraviolet cutoff 7 R, 
mass 1, coupling 

2 exp - ~ - C  (R'O)(0,0) = 72R--(~2/4~)R 

and volume ~-RL" 
So we apply the methods for the massive Yukawa gases to study (4.3), 

based on the "renormalization group," developed in Benfatto et  a/. (6'1) (see 
Gallavotti, Ref. 5, for a review). 

5. MULT ISCALE D E C O M P O S I T I O N  OF THE 
S I N E - G O R D O N  FIELD. EFFECTIVE POTENTIAL A N D  ITS 
G R A P H I C A L  REPRESENTATION 

Let 

1 ( ,  1)  c~~162 a2peip,~ ., 14p2 <+~ (5.1) 
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and observe the trivial identity 

R - - 1  

C(<m(~, q) = ~ c(k)(~, r/), c(k)(~, q ) =  C(~ 7~) (5.2) 
k=o 

This allows us to represent q~(<m as a sum of R independent Gaussian 
fields ~p(o~, q)(1),..., (p(R), 

R 1 

E (5.3) 
k - 0  

with ~(k) having covariance C (k/. It should be observed that this represen- 
tation of ~0 ~<m has the scale-invariance property that all the fields q~(k) 
have identical distribution up to a trivial scaling. Namely, ~o~ k) has the same 

r~(O) distribution as w?r 
Given 

7(2 ~2/4~)R fl :exp(i~a~0~<m): d~ (5.4) 

we define the "effective potential" on "scale k" by 

exp[V(~)(q~(~kl)] = f exp[V(~0(<m) p(d~o(k+ ~1)... P(dq~(R 1))] (5.5) 

and V (k), defined by (5.5), can be computed by a recursive application of 
the formula [see (3.2)], 

l o g e ( e F ) =  ~ gT(F;k)_ ~ gT(F, .... F;1,...,1) 
k! k! k = l  k = l  

= ~ eT(F,..., F) (5.6) 
k! k = l  

where we eliminate the ls in the truncated expectations of k variables: 
gT(F, .... F; 1 ..... 1) -- gr(F,..., F), to simplify the notations. Note that 
gV(F,..., F; 1,..., 1) = gT(F; k). 

Applying (5.6) to (5.5) we see that 

v(" 2)= ~R-1)(V; n) 
n! n = l  

v(R 3 ) =  a m! (R 2) n~=l n! ; m 

(5.7) 

and so on. 
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The (5.7) has an obvious graphical interpretation (see Gallavotti and 
Nicol6 (7) and Gallavotti(5)). 

Let 0 be a tree graph (Fig. 1) with n end points and one root r (i.e., 
one single branch connects the lowest tree vertex to the next vertex). The 
tree will be ordered from the root toward the end points. All the vertices 
different from the root and the end points will be called "inner vertices." 

We define n(O) as follows: If 0 is a trivial tree, i.e., with no inner ver- 
tices, 0 - r - - l ,  we set n(O) = 1. If 0 branches after the root into s sub- 
trees, then let 01,..., Op be the ones among 0~,..., 0~ which are pairwise dis- 
tinct and let ql ,..., qp be the multiplicity that 01 ,..., Op have in 01 ..... 0,. Then 
let n(O)=ql!(n(Ol)  ql "''qp!(Vl(Op)) qp. This allows us to define n(O)induc- 
tively. 

We now interpret each end point of 0 as representing V. We append to 
each vertex v of 0 a label h~, - l~<hv~<R,  so that the labels strictly 
increase as one climbs the tree. Then we interpret each inner vertex v of the 
decorated tree (0, h) as representing g v  "i.e., a truncated expectation (h,~), 
operation with respect to the field ~o (hv~ and each tree branch joining a pair 
of vertices v', v, v '<v ,  as ~(h~,+l~r ~h~-l). 

Then, given (0, h) we can define V(O, h) as follows: 

T V(O,h)=Chr+l""Eh~o_lO~hvo(V(O1;hl) ..... V(Os;hs) ) (5.8)  

if v o is the first inner vertex of 0 out of which bifurcate s trees 01 ..... 0s-with 
the labels hi,..., hs inherited from (0, h). Equation (5.8) allows us to define 
V(O, h) inductively in terms of V(O, h) for the trivial tree h; R which, 
of course, will be defined to be ghr+l"''gR-l(V). Hence V(0, h) has a 
meaning for all the tree's decorations h in which the end points are given 
scale index R: "admissible trees." Since we only consider here such trees we 
shall not explicitly write in the pictures the end points' scale index. 
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It  is easy to check by induct ion tha t  (5.7) can be writ ten as 

v(k) = ~ v(o, h) (5.8) 
(o,.) n(O) 

hr ~ k 

Clearly V(O, h) is an integral over  n points  if 0 has n end points  and a 
sum over  n charges a l  ..... a~ = _+1 as follows f rom (5.4). 

Therefore,  it is convenient  to have an expression for the integral 's  
argument .  

Fo r  this purpose  we simply add to the tree 0 other  decorat ions:  
namely,  the i th endpoin t  will be given indices x~, a~ and  the in terpre ta t ion 
of the h (~,~) branches  will be (if 0o : trivial tree) 

V(0o, h, a, ~ ) = ~ 7  ( - / ) :exp(icm~o~h)): (5.9) 

If we denote  7 = (0, h, o, {) a decora ted  tree of this new type 

n = l  6 t ' " e Y n  0 h ; h r ~ k  
N(O) = n 

where N(O) is the n u m b e r  of end points  of 0 and 9(7) is defined as in (5.8) 
recursively: 

V(7 ) = ~ + 1"" r ~hTvo(V(71) ' ' ' ' '  V(Ts)) (5.11) 

with obvious  notat ions.  

6. T H E  C O U L O M B  G A S  AS A M U L T I P O L E  G A S  

We find now an explicit form for (5.11) and give a possible inter- 
pre ta t ion to it. 

G iven  a decora ted  tree 7 and  vertex v > r-= root  of 7, we define v' as 
the vertex of 7 immedia te  predecessor  of  v, v (~) ..... v (s") the immedia te  suc- 
cessors of v, 7v the subtree of 7 consisting of v', v and the successors of v, 
and 

~o()(yv)-- ~ ~riq)~)) (6.1) 
iGV 

where i e v means  tha t  the end point  ~i is an end point  of 7~; one could also 
write i ~> v, i =- end point.  
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If (0, h , ~ , { ) = 7  we call S(7)="shape ofT"-- (0, 6) and put 
n ( 7 )  - n(O). 

A tree 7, actually its shape, is allowed to identify a family of 
hierarchically arranged clusters of end points' positions. We call v also the 
cluster ( ~ ) ~  of end point positions of 7~ and 

d(v) - diameter of the cluster v 

We define, given 7 and two vertices v, w e 7, 

(6.2) 

C(l(v ,  w) =- C(@)(7~) qr - ~ C()(~,, ~j) a,crj (6.3) 
i~v 
j~w 

where (.) denotes any index [e.g., (h) or ( < h )  or others that will be 
introduced later] and C () denotes the appropriate covariance. So (6.3) is 
some kind of electrostatic energy between the clusters v and w. If v = w it is 
a "self-energy." 

Then one guesses that 

(6.4) P(7) = 9(7) :exp [i~o(-< h'~(7) ]: 

where ~'(7) is a suitable function of 7 and one easily proves inductively a 
recursion relation on 9(7). Namely, 

9(7)= 9(7i exp -c~z 2 c(<hv)(v(i)' v(j) 
i i< j  

"tear (i,j) e T 
(6.5) 

which is an immediate consequence of (5.11) combined with the ansatz 
(6.4) and Wick's theorem (3.3), if v denotes the first inner vertex of 7 and a v 
are the graphs described in (3.3) joining sv abstract points (which can be 
concretely identified with the clusters v(1),..., v (=~) which are enclosed in v 
thought as a cluster). 

Equation (6.5) reduces, inductively, the proof of the ansatz (6.4) to the 
case in which 7 has no inner vertex: in this case it is, however, obvious as 
(5.9) says. 

Equation (6.5) allows us to write 

] o g Z ( - R ) ( ~ ' ] ' [ ~ ) :  ~'  Z • f 9 ( 7 )  d ~ l  -" �9 d~n 

h,hr = --1 

(6.6) 
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which is, of course, the Mayer series for our Coulomb gas. Bounds on the 
nth order term in (6.6), obviously proportional to )f, will be discussed in 
following sections. 

Here we make a single remark which permits the interpretation of the 
Coulomb gas partition function as the partition function of a set of mul- 
tipoles with short-range forces. 

For this purpose we go back to (3.6) and define the fields ~ and 
~(R. -~)  with covariances given, respectively, by 

1 ( 1 
Cxy - (2rc)2 f dp e ' ~  y) p2 + 7-2 

C( x R,-~)= 1 ( 1 
(2n) 2 f dp e ip(~ y) y p 2 + 7  2R 

1) 
p2 + 1 =- C(x  - y) 

(6.7) 

so that ~ + ~(-R, 1)has the same distribution as ~9 (-R'~ [see (2.3)]. 
Then ~(-R, ~) has the same distribution up to scaling as cp (<R-~) 

[see (4.1)] and using [see (3.5)], 

:exp[i0{a(0vRr + 0~RR, 11)]: 
0{ 2 

= e x p ( ~ C o o )  exp(i0{alPvR~):exp(ia0{cP{ < R 1)): (6.8) 

we see, from (4.3), that 

Z(-m(2, I, fi)=fP(dt~ {exp ~ y '  ~ *  fv 
n = 1 ~ O ,N(O)  = n R1 

h,hr = 1 

x d~l" d~"  ~ Y 7 (~2/4~)e exp(i0{crj0,%) : 

x ~'(0, h, r {) exp [ -  cd ~ criajC(yR(~t- ~j))l} 
i < j  

(6.9) 

where (1/2re)log7 (R 1) is the covariance at 0 (i.e. C(oo R, 1)) and the * 
recalls that the trees considered in the above formula differ from the ones 
so far considered because the end point frequency is R -  1 instead of R and ^ 
the on V reminds one that in the inductive definition (5.11) one starts 
from (5.9) without the factor (2/2) 7 2 R T ( - - ~ z / 4 ~ z ) R  a n d  with cp (<R 1) instead of 
q)(<R) 
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So, for suitably defined A~ [see (9.1)], (6.9) implies that Z (R)  can be 
written as 

Z(-R)(f~,l ,~)=f P(d~J)exp ~ 2 fi nAo(Xl'' 'Xn) 

If we develop the exponential in powers and perform the (trivial) Gaussian 
integrals proceeding in the same way used to prove the identity between 
(2.2) and (2.4), we realize that (6.10) can be interpreted as the partition 
function of a gas of multipoles. There will be multipoles localized in 
dxl dx2"'" dx, with charge ~r i in dxi. Multipoles differing by a translation 
will be considered "of the same species"; their activity is 

Acq . a,(Xl,... , Xn) dx2"" dx n (6.1 1) 

and two multipoles interact with energy 

~2 i ~ a,ajCx,y; (6.12) 
i--l j--1 

with C given by (6.7). $o the interaction is a short-range "electrostatic" 
interaction with positive Fourier transform and ultraviolet cutoff too. 

Of course, if one wants to go beyond a formal interpretation, one has 
to check that the total activity of each species is well defined even as 
R--* oo. 

The following seems to us a reasonable definition of the "activity of 
the multipole Q": Consider the Gibbs factor associated with N multipoles 
(X1, r~l),..., (XN, ~U) of positions X1 = (x~),..., x (I)~ ~ = (x~m,..., x (u)) ni 1~"'~ �9 N n N 
and charges Q(~): 

A,,I(X~)'"A,,N(XN ) exp[ -- U,,, ... ,N(X, ,..., XN)] (6.13) 
(yl,...,(~ N nl,...,nNfiXed 

and suppose that the integral of this expression over X;,..., XN, with one 
point fixed in each Xj, can be bounded by 

N 

1~ ~(n~) (6.14) 
J ~ l  

Then we say that the activity of the multipole of charge Q(~) is bounded by 
~(n~), ni being the number of charges in the multipole. 
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It will be a corollary of this paper that the bound (6.14) holds with an 
R-independent ~(n) if n ~< 2p and if/? >/~p; furthermore ~(n) ~ R~ ~ 0 if n is 
odd. 

In other words, the multipoles have finite activity in the above sense if 
the Mayer coefficients of the same order are finite as R --, oe. 

A better definition of the activities of the multipoles would be the 
following: Consider the integral of (6.13) over all the Xi keeping for each of 
them one point fixed and this quantity should be positive. If so, one would 
consider its logarithm and write it as 

~(Q~I))... ~(Q(N)) exp[ ~jQl,...,Qu( ~ l ..... ~N)] (6.15) 

Then, if UQ~..,Q~(~ ..... ~U) can be interpreted as a short-range 
(many-body) potential and if the potentials of U and the ~'s admit a limit as 
R --* o% one would say that the multipoles have finite activity. 

This second deeper sense will not be investigated here. 

7. T H E  M A I N  B O U N D  O N  T H E  C O E F F I C I E N T S  OF 
M A Y E R  SERIES 

The results stated in the abstract follow easily from the following 
estimate: 

Let 0 be a tree and let Q~ >~ 0 be defined for each vertex v of 0. 
Let e be a Q-admissible charge configuration on the end points of 0, 

i.e., a charge configuration such that the charge Q(v) of the cluster v of end 
points (Q(v) = Z i ~  ai) verifies IQ(v)l = Q~. 

Then 

V(O, h, ~, ~) 
~,lQ(v)l = Qv 

gn ~)(ct2/4~)hv~ . ~ (:z2/4x)Q2vohvo 

v o v >  v 0 
v i n n e r  Qv = 0 

v > r  

where Kn is a suitable constant t~ > O, h~/is the frequency of the vertex to 
which the ith end point of 0 is attached, Vo is the first inner vertex of the 
tree O, and n is the number of end points. 
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We postpone to the next section checking (7.1). Here we proceed to 
show that it easily implies that all the Mayer coefficients of order ~< 2p are 
finite uniformly in R if cd > fl2p, and tend to zero as R ~ oo if they are of 
odd order ~< 2p. 

The contribution of the trees with given 0 to the virial coefficient of 
order n is, from (6.6), simply estimated by the integral of the right-hand 
side of (7.1) over all the is except one, times 7 2R.3 

It is easy to check that 

f e x p  [ - ~  ~ ,h~. d(v) 1 d~2"d~n<~ K n 1-[ 7 -2('~-l)hv (7.2) 
v > r v i n n e r  

where K is a suitable constant and sv is the number of vertices in 0 which 
follow v immediately. This will be left to the reader [see Gallavotti (s), for a 
proof, in Appendix A]. 

Substituting (7.2) into the integral of (7.1), one obtains the following 
bound on the contribution of 0 to the nth-order Mayer series coefficient: 

(01) Kn IC' ~ (~2/4rc)hvi 7 -(~2/4rr)Q{~176 

h i 

t) > V 0 

having used C(-e'~ 0) = (1/2n)R log 7 and C(~ 0) = (1/2n) log 7- 
Using Y.ih~,=Yvi .... nv(hv-hv,), Zvi . . . .  h~(sv-l)--Z~i . . . .  ( n ~ - l )  

(h~-  h~,) if n ~ -  number of points in the cluster then (7.3) becomes, if a = 
~2/4rC -- 2, 

R ~ y - 2 e , / - . ~ R ~ (  1- [ y [ ~ + 2  ~/4~,0~-2(~ ~,ae~o]~ho--h~'t) 

v > u O  
v i n n e r  

[any 0 + 2 -- (c~2/4n)Q2 ]h~0 x y o~ ' (7.4) 

So we have reduced the problem to the easy discussion of a bunch of 
geometric sums. 

The analysis of (7.4) is as follows: 
Consider first the case ~2> 8Tg. 

3 The Y-2R comes from (6.6) which has to be divided by II[ rather than tI[ y 2R, while the 
integral over ~1 only gives III y 2R 

822/39/ '1-2-10 



146 Gallavotti and Nieol6 

In this case a ~> 0 and (7.4) can be bounded by 

~) 2Ry--naR E Y [-anvO-(a2/47z)Q~O + 2]hvO 

)< E y(anv + 2e)(hv--hv,) 

v>v 0 
v inne r  

Since Z~>~o (hv -hv  ') <~ n(R-h~o) this expression can be bounded by 

if Qoo=O: ~ Y (2--2an)(R--hvo)~--naR ~ I  Y anv(hv-hS) 

{h~} v > ~o 
v inne r  

{ho} v>vo 
v inner  

(7.6) 

Leaving the easier case m2= 8~, a = 0, to the reader, suppose a > 0 and 
choose e < 1/2n. Then (7.6), (7.7) imply uniform boundedness of the order 
n Mayer coefficient if we show that 

J = E y  -~ FI (7.7) 
h v inne r  

is uniformly bounded in R, which also implies that the odd coefficients 
vanish necessarily (because Q~0 r 0). 

To bound J observe that 0 must contain a vertex w out of which bifur- 
cate on!y branches ending in end points. 
Summing over h w, between h w, and R, alone yields 

~)a( R -- hw' )nw 
J~<7 -~R~ ~ 1-[ ~.o~ho-h~,) 

{hv}r~w 1 - -  y --a v inner  
v@w 

_ 7 al~(n - n~) j ,  

( 1 - 7  -~) ~ ~ 7~'o{ho ho,)= 
{hv}vC-w vi . . . .  (1 __y-a) 

v~-w 

(7.8) 

where n'v is the number of end points that can be reached from v not 
counting the nw ones that can be reached from w. 

Of course J '  is very similar to J but "pertains to a simpler tree" with 
one vertex and n~ end points less. Hence repeating the argument 

j ~ ( l _ y - a )  n (7.9) 
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Suppose now that ~ 2 < 8 ~ ,  cd>~p=8rc ( l -1 /2p ) .  In this case a < 0  
and by taking ~ small enough the summations over h~, v inner and v > Vo, 
in (7.4) do not cause any problem so that (7.4) is bounded by 

R 

Rn] l - -2R~- -anR  E ~ [an+ 2=(~ 

hvo ~ O 

K n  ~ R[ - 2 -- an + an + 2 (~x2/4rc)Q~0] 2,5 ] 
f R n ? ,  2R~) naR R = Rn~) (cr o r  <. (7.10) 

where the first bound holds if the series over hv0 geometrically diverges if 
extended up to h~0= +o% i.e., if an+2-(~2/4~)Q~2>0,  and the second 
holds if the series converges or diverges linearly. Clearly this is exactly the 
bound that we want, because na + 2 > 0 for n ~< 2p. 

8. C A N C E L L A T I O N S  

It remains to prove the bound (7.1). 
The recursion relation (6.5) allows us to represent the quantity to 

bound in the left-hand side of (7.1) as the factor [(2/2)7(2-~2/4=)R]" mul- 
tiplied by the factor 

IQ(v)l = Qv 

x l-[ (exp[--c~2C(h~ v(J~)]-- 1)} (8.1) 
(i,J) E ~cv 

where viii,..., v ('~) are the s~ immediate followers of v. The expression that 
we really have to bound is obtained by summing (8.1) over the selections of 
the graphs %, per each v. Recall that % is a connected graph connecting the 
clusters v(l~,..., v (sv). 

With some simple algebra one rewrites (8.1) as 

exp C~<h~ 4i 
r i 

x [ I  exp - ~ 2 C(h~ v(Jl) 
vinner i,j 

x l~ (exp[-cdC(h~ (~ v(J / ) ] -  1) (8.2) 
(i,j)e'Cv 
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where h~ is the frequency of the inner vertex which is directly connected to 
the ith end point ~ i ,  and 

C ( p , q )  ~ 

Let 

and observe that 

E C ( h ) =  C ( < q ) -  C ( < p )  (8.3) 
p < ~ h < q  

aC(h~( ~, ~ ) = C(h~176 g, ~ ) -- C(h~'"h~( O, O) 

C(h~176 ~, V (j~) = Q~c(h~ O) + ~ OCr ~, V (j~) 
i , j  i ,j  

so that (8.1) becomes the product of 

2 n h 2 ~(~ /4)z)(~i=lh~,--~'~inner(hv v')Qv) 

times 

] G= Z H exp--TEac(h~)(V(i) ,v(J))  
r IQ(v)l = Qv vinner i ,j  

x H (exp[--a2c(h~(v(~ v(J3)]- 1)} 
(i,j) e ~v 

having used C(~ 0) = (1/2re) log 2, c(h~"h~I( O, O) = (h~ -- h~,) C(~ 0). 
Hence it remains only to prove that (8.7) can be bounded by 

V > V 0 V > V 0 
vinner 

(8.4) 

The following simple inequalities, for some K >  0, 

(8.5) 

(8.6) 

(8.7) 

(8.1o) const ( 9  r e--e'v~d(~3)(~>~oT--(h~--h~')(~--~) ) 
v inner Qv = 0 

(see Appendix A) imply immediately, from (8.7), that the sum in (8.7) is 
termwise bounded by 

IC~h")(w, t)l ~< K[(7 h~ d(w)) ~1 ~)~0w~176 d(t)) ~1 r exp [ - t r  h~ d(w, t)] 

I~cr t)l ~< K{ [~,Hd(w))] (1 --r d(t)]  (l - ~)%o} 

x [V h~ d(w u t)] ~1 -~)(1- ~owo)(i - ~o,o) (8.9) 

(8.8) 
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In fact it is clear that each term if (8.7) has the bound 

const { QiI~ner e- r ~ >[~0 yh~'d(v)l(i-~)}eKZ~Dh~d(~)]~ (8.11) 
Q~ = o 

where the first factor comes from bounding the 1-[(~,;) in (8.7) using its 
exponential decay in (8.9) and observing that each neutral vertex v appears 
as a member of at least one of the pairs (v (~), v (j~) ~ r~, except Vo itself, i.e., 
except v '=  r, and the remaining part from bounding the other factor of 
(8.7) using the estimates (8.9). d*(v) is the length of the shortest path con- 
necting the clusters v (1) ..... v (so) immediately inside v. The path itself need not 
be connected, being connected only modulo v ~ ..... v (~, i.e., only if the 
points in v(~/,..., v (~'t are regarded connected. Hence d*(v) may be substan- 
tially smaller than d(v). 

Nevertheless the inequality ?h >~ (1 -- ? l)(?h + 7 h- ~ + ... + 1) and the 
connectedness of each r~ immediately implies 

Y~ 7h~d*(v)>~(1--? -~) ~ 7~'~d(v) 
v > r  v > r  

so that (8.11) can be bounded by 

(8.12) 

const { I ]  exp[K[Th~d(v)] 1 ~ - K ( 1 - ?  1)?h~]}{ [ I  [Th~'d(v)] l ~} 
v > r  t ~ > v o  

v i n n e r  Qv = 0 

(8.13) 

Setting ~ = K ( 1 - ?  1)/2 and using 

exp K[vh~ 'd (v ) ] l -~ -~ (1 - ' /  d(v) d(v) 1 ~<const? -(1-~h~ 

(8.14) 
one gets (8.10). 

To see that the second factor in (8.10) can be replaced by its square 
requires showing that the sum over the charges leads to cancellations in the 
bound to G. The rest of the section is devoted to this problem. 

We first write the admissible configurations 6 in a convenient way. 
Namely, we associate to each vertex v a number / ~ =  +1 if Q~>0 and 
#~ = 4-1 if Q v = 0. Then we fix one admissible configuration ~ and define 

ai = ffi H #~, i =  1,..., n (8.15) 
iGV 

where v ~ i means that the ith end point of 0 is inside v. 
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Then it is clear that it will be sufficient to prove the bound (8.8) for 
the partial sum of (8.1) made over the ~s of the form (8.15). 

The existence of the cancellations is easily done in an abstract context. 
We call wl ,..., Wq the neutral vertices following vo. They are supposedly 

labeled so that first come the minimals, then the minimals among the ones 
which follow each of the minimals, etc., hierarchically. 

We imagine that the above sum is partially performed by summing 
over #1,..., #p at fixed/~p +1 ..... #q with #i = #wi and we guess after a while its 
structure. 

It is clear that such a sum will have to be a function of 

C(hv) ~(ho~ C(h~) ~(h~ (8.16) 
W~ ' W~  ~ ab ~ - -VlV 2 

where C denote covariances of type C (h) or 3C (h) evaluated in a charge con- 
figuration with #1 = #2 = "'" =/~p = 1 and #p+ 1,-.., #q fixed; the arguments 
of the covariances are written as subscripts and a, b are any end points of 
the tree that can be reached climbing it from v without meeting any of the 
Wp+l,..., Wq vertices; w, ~ are among the wl,..., Wq; vl, v2 are not com- 
parable to any among Wp+ 1,..., Wq or follow the "same" among them; ~ is 
an arbitrary vertex and such is also v in h~. 

We make the following ansatz: The result of the summation over 
#1,..-, #p is a sum of expressions like 

x q~( ~ ~(h~ } , ,  -~e { (~(h~)/=~ ,, { C(~)}, ,(C(h") ~--~2 - ) (8.17) 

where ~ is a suitable analytic function, the w, # in the first bracket are 
among wl,..., Wp, while # is among Wp+l,..., Wq; and the w, ~ in the second 
bracket are all among the Wp+~,..., Wq. ~b is assumed bounded by the 
exponential of the sum of its arguments and the following two properties 
are supposed to hold: 

(1) The set of the w, #s appearing in the second bracket together 
with the ~s in the first product covers W+l . . . . .  W q ,  

(2) Consider the "intervals" (v, w] or (v, ~ ]  relative to pairs v, w and 
v, # appearing inside the same covariance in the 
one among w~,..., Wp is inside at least two possibly 
tervals." 

The ansatz is valid for p = 0, as is proved 

first product: then every 
identical of such "tree in- 

by using e x -  1 =xE(x ) ,  
where E(x)  is analytic of exponential growth, in the factors of the second 
product of (8.7) and absorbing the Es and the factors in the first product 
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into the function 2. If it is assumed valid for p = 1 ..... fi then it easily 
follows for p = t5 + 1, if one makes use of the analyticity of q~ and of the 
following relations, valid if C() -= C () with #p + 1 = 1: 

Cww~+l--(hv) - - # p + l - -  C(hV)ww~+t' C(h~ #~+ lCw~+lO for w#wr162 
-(h~_ ~(ho) + ~(;(ho)_ -(h~) C w a - - ] / / 5 + 1  Wp+la--', wa Cwf+la) if W#+l>w 

(8.18) 
w~ -- t"fi+ 1 Wp+lW -- Wp+lW," WIS+ 1 

t~lV 2 t)lV 2 

and then performs the sum over/xf +2= + 1. 
Hence property (1) above implies that for p = q the summation over 

the ~ts and hence the whole G [see Eq. (8.7)] can be bounded as a sum of 
terms like 

constexp{K~[~h~d(v)]~-~} l~> [,/h~d(w,] ~-~ (8.19) 

where the product ranges over a suitable set of pairs v, w and the union of 
the tree intervals (v, w] covers each neutral vertex w~ > v 0 at least twice, 
i.e., 

F~ (h~-ho)~>2 Y~ (h~-h~,) (8.20) 
w~-v v>-v 0 

Q~ - 0 

Moreover from (8.10) G can also be bounded by 

cons t (  [ I  e K~?~d(~)) (8.21) 
v > r  

vinner 

and using the bounds (8.19), (8.21) together the proof of the bound (7.1) is 
completed. 

9. T H E  A C T I V I T Y  S E R I E S  

It follows from (6.9) that 

A•(Xl  ' ""  Xn)~"  Z 2 *  ~ (2-c~2/4~z)R ~'(0, h, ~, ~ - R x )  

O:N(O)=n h ; h r = - - 1  

xexpl--  ~c~2aiajC(xi-xj) ] 
i < j  

(9.1) 
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where the * reminds us that the end points' frequencies of 0 are now R -  1 
rather than R, and where the last term arises because 

I~I :exp (ic~o-j ~/~yR): 
j = l  

 exp[- Z 1 
i < j  \ j / 

Consider an expression like (6.13), integrated over all the points in 
X1,..,, XN except one in each of them. 

The result will be, setting Cj = xjT-R, 

f d ,~ l . . ,  d,=_N y(nj-1)2RA,j(~R,~j ) exp[--~au,~... .N(~'I .... ) ]  (9.3) 

where ~-1,.--, F-N are simply 7-RX1, ~/-RX2,... and d* means that one 
integrates only over the components ~:),...,--Jg(J/ of the multipole ,*j-= 

To study the bound (6.14) we treat first the case N =  1. The others 
reduce to it quite easily. 

So we study 

f d~2""d~,7 -2R[)~ (2--~2/4rc)R) n - ~ 7  exp[- -  ~2U~(Te~)] 

tQ(v)l = Q~ 

v i n n e r  i < j 

x I ]  {exp[--cc2C(h~( v(~ v(J))]-- 1}] (9.4) 
( i , j )  e "rv / 

because this is the expression for ~,~A, , (~ , . . . ,~ , )d~z '"d~,  that is 
obtained from (9.1) proceeding in the same way as done to obtain (8.1). 

The situation is now very simple: (9.4) is very similar to (8.1) except 
for a factor which we write as 

exp[ --~2U,~(TR~) ] = 1 -- ~ZU~(TR{) E(U~(TR{)) (9.5) 

where E(x) = (e ~ - 1)Ix is a function, analytic in x, bounded by e ~. 
Inserting (9.5) into (9.4) gives a first term, from the 1, which is exactly 

the one studied in Sections 7 and 8 and a second term proportional to 

C(TR(~i-- ~j)) a~aj (9.6) 
i < j  
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This is a charge-dependent term which can affect the cancellation 
argument of Section 8, hence the bounds of Section 7. 

Without going through the argument of Section 8, it should be clear 
that the contribution to (9.4) from the second term of (9.5), proportional 
to (9.6), will be bounded in the same way as described in Section 8 except 
that some w may now be counted less than two times because the 
corresponding Cs are replaced by C(,/R(~-~')) coming from (9.6) with 
~, ~'ew'. 

Clearly this spoils part of the bounds in Section 8. However, C has 
range 1. Hence, the presence of a term like C(TR(~- r leads to an essen- 
tial improvement. In fact, our bound will now become a sum of terms like 

v > r  Q v = O  

x l~ IC(yR(d,.,,- #2.,,)) ?(1 ~("~ (9.7) 
Q~,=O 
vCB 

where B is a subset of the set of neutral vertices and ~1,~, ~2,v are in two dif- 
ferent clusters immediately following v', one of which is v itself. 

The C factors together with the exponential factor integrated over 
~2,--., ~ improve the bound (7.2) by a factor 

[ I  7 2(R-h,.) (9.8) 
v C B  

Qv - o 

because each C forces ~2,~ to stay within y-R of ~l,v while in the bound 
(7.2) it is forced to stay only within 7-h~' of it so that one can multiply (7.2) 
by the factor (9.8) to obtain the bound on the relevant integral. 

Hence, since 2(R-hv)~2(h~-hv) the improvement (9.8) on the 
integral compensates for the fact that in (9.7) some neutral vertices con- 
tribute only 7 (1-~)~h~ h~,) and not 7 2(1 ~)(hv-h0.) So we find that (9.4) is 
uniformly bounded in R and vanishes if Qv0 ~ 0 for R --. oo. 

The same argument applies to the case N >  1. One gets exactly the 
same bound on ~(n) multiplied by a suitable N-independent factor. 

R e m a r k s .  (i) In principle the bound (7.4) to the contribution of 0 
to the nth-order Mayer series coefficient is also an upper bound and it 
could happen that the coefficient of order k of the Mayer series stays finite 
when c~2> c~, also for k < 2n although its upper bound diverges. To rule 
out this highly unlikely possibility one should prove a lower bound for the 
coefficients of the same type but with different values of the constants. Sire- 
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ple investigations on some examples seem to show that this is true unless 
some very special cancellations occur. 

(ii) It is remarkable that the thresholds e2 n above which the 
Coulomb gas (with u.v. cutoff) "generates molecules" made by p ~< 2n are 
precisely the same thresholds at which the Yukawa gas collapses into 
neutral clusters o fp  ~< 2n particles in the ultraviolet limit (Benfatto et al.(1)). 
This shows a "duality" between the infrared properties of the Coulomb gas 
and the ultraviolet properties of the Yukawa gas in the interval [4~, 87c). 

(iii) If we write 

1 
P = ~ log Z ( m(2, I,/~) 

= ~ G{p(fl, I ,R)  2P+5~k+l(fl, 2, I,R))~ k+l (9.9) 
p<~k 

we have shown that the coefficients ~Yp(/?,/, R) admit limits as R--* oc 
which are uniformly bounded in I: in fact it is clear that they also converge 
to a limit as I---, R 2. It is therefore natural to conjecture that, Vk, if ~2 > 8z~ 
and for k ~< 2n if ~2 > ~2 n it is 

~k+ 1(/~, 2, / ,  R) ~< const V/, R (9.10) 

if 2 is small enough. If this is true it should be reasonable to think that the 
pressure is in fact C (n) in 2 if ~2> e2 n and 2 small enough. In fact the 
pressure might even be analytic in 2 for 0~ 2 large and 2 small (private com- 
munication by T. Spencer). This conjecture suggests that while the tem- 
perature decreases the Coulomb gas presents an infinite sequence of phase 
transitions passing from the plasma phase, cd < 4~, with the Debye screen- 
ing phenomena, to the multipole phases, 4~ < c~ 2 < 8~z, where one can con- 
jecture that some partial screening effects are left which prevent the for- 
mation of too large multipoles. The "Kosterlitz Thouless" regime, c~2> 8~z, 
would be the last stage of this sequence of phase transitions in which 
bound states of any size are possible in thermal equilibrium. 

(iv) The analysis of the conjecture on Nk+l made after Eq. (9.10), for 
any k if ~2 > 8Tg and for k ~< 2n if c~ 2 > ~n ,  with c~2, < 8~ but ~22n > c~,, is in 
progress and hopefully will be published in a forthcoming paper. 
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APPENDIX A: THE BOUNDS (8.9) 

For the first bound it suffices to take h~ = 0 by scale invariance. 
Then, if w =  (xl,..., x,~), t =  (Yl,---, Y,~) with respective charges 

al ..... ~,,~, ~1,..., ~,~, it is 

C(O)(w, t) = ( 2 ~  f (~nl- l tTic- P~O()-~ff2-1lAj Spy:) 

so that if Xo, Yo are the centers of mass of w, t and using 

a~e'pX~=e'p~~ [Qw + ~ cri(e ip(x~-x~ 1)] (A2) 
i = l  i = 1  

and the similar identity for t: 

1 e -  ~p(xo yo) 
C(~ t) = QwQ~ (2~)2 (1 + p2)(y2 + p2) dp 

~ .  II .(pip(y,'-- yO) __ 1 ) 

+ Q; I e  ip(~o-yo)~J(rJ(e-ip(~ x ~  

(27r)2J (1 +p2) (72+p2  ) dp 

l ( Z j  ~j8 - ,p(xj-  xo) __ 1 )(Zj #i 8ip(yj yo) __ l ) 
e (1 + p~)(~2 + p~) + ( ~  )2 f -ip(xo-,o) dp 

(A3) 
implying the first bound in (8.9) via 

~ j ( e  iP(x'-x~ p(x;--Xo)l ~ (A4) 

and the independently known exponential decay of C(~ as 
I x -  yt ~ 0o. 

If at least one among Qw, Q, is zero, the second of (8.9) follows from 
the first written for h instead of hv and then summing it over h between hv, 
and h~, forgetting the exponential term (~< 1). In fact, in this case 6C (ho)= 
Zh~- ~ C(h) i.e., the C()(0, 0) subtraction in (8.4) is irrelevant. h = h~, 

Suppose Qw r 0, Q, ~ 0; then we use 

1 r  (e '~(~-~)- 1) 

~<_~1_,~f 2 E p ( ~ - . ) l  '-~ ap~<const I~-~1 ~ ~ (AS) 
(2~) (1 u  
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so that  

I~C~?l ~< const 

and (8.9) is proved. 

h 

2 2 2  
~ e w t l e t p = O  

Gallavotti and Nicol6 

(~P I~-~1)' ~<<.const(Thd(w, t ) )  1 - e  (A6) 
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