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Abstract The tri-axial search-coil magnetometer (SCM) belongs to the FIELDS instrumen-
tation suite on the Magnetospheric Multiscale (MMS) mission (Torbert et al. in Space Sci.
Rev. (2014), this issue). It provides the three magnetic components of the waves from 1 Hz to
6 kHz in particular in the key regions of the Earth’s magnetosphere namely the subsolar re-
gion and the magnetotail. Magnetospheric plasmas being collisionless, such a measurement
is crucial as the electromagnetic waves are thought to provide a way to ensure the conver-
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sion from magnetic to thermal and kinetic energies allowing local or global reconfigurations
of the Earth’s magnetic field. The analog waveforms provided by the SCM are digitized
and processed inside the digital signal processor (DSP), within the Central Electronics Box
(CEB), together with the electric field data provided by the spin-plane double probe (SDP)
and the axial double probe (ADP). On-board calibration signal provided by DSP allows the
verification of the SCM transfer function once per orbit. Magnetic waveforms and on-board
spectra computed by DSP are available at different time resolution depending on the selected
mode. The SCM design is described in details as well as the different steps of the ground
and in-flight calibrations.

Keywords Search-coil magnetometer · Magnetosphere · Magnetotail · Magnetopause ·
Magnetic reconnection · Magnetospheric multi-satellite mission

1 Introduction

The Magnetospheric Multiscale mission aims at increasing our understanding of major fun-
damental plasma physics processes such as magnetic reconnection, particle acceleration and
turbulence (Burch 2014). In a collisional plasma, binary collisions between particles ensure
that plasma dynamics is adequately described by a fluid-like theory such as the magnetohy-
drodynamics (MHD). Then binary collisions can generate a diffusion across the magnetic
field leading to a net plasma transport or a dissipation allowing magnetic reconnection to oc-
cur. However, in the Earth’s magnetosphere the mean free path for binary collisions between
particles is larger than the size of magnetosphere and the plasma can be considered as colli-
sionless. In absence of collisions, particles can still interact with fluctuating electromagnetic
fields giving rise to anomalous resistivity and anomalous transport. These electromagnetic
fields can be related to waves, microinstabilities or turbulence. Thus accurate measurements
of electromagnetic fluctuations are crucial to investigate the dynamics of basic processes in
collisionless plasmas (Torbert et al. 2014). The tri-axial search-coil magnetometer (SCM)
together with the spin-plane double probe (SDP, Lindquist et al. 2014) and the axial double
probe (ADP, Ergun et al. 2014) provide the three-dimensional electromagnetic fields up to
6 kHz. All these analog waveforms are digitized by the digital signal processor (DSP) then
transmitted to the central data processing unit (CDPU) within the Fields central electron-
ics box (CEB), together with the two waveforms provided by the analog fluxgate (AFG)
and digital fluxgate (DFG) magnetometers (Russell et al. 2014) and data from the electron
drift instrument (EDI, Vaith et al. 2014). The time synchronization of all Fields components
has been carefully investigated and is described in a companion paper (Torbert et al. 2014).
Finally, all fields as well as particle measurements are collected and stored by the central
instrument data processor (CIDP) which also provides power, time synchronization signals
and commands. The MMS SCM has been designed and built by the Laboratoire de Physique
des Plasmas (LPP). It has a long heritage and its relatives are still working nominally in the
solar system onboard the Cassini (Gurnett et al. 2004), Cluster (Cornilleau-Wehrlin et al.
1997, 2003) and THEMIS (Roux et al. 2009; Le Contel et al. 2008) missions.

As was done for the Cluster mission, the four MMS satellites will evolve in a tetrahedral
configuration in order to estimate electric current densities as well as other gradients of the
medium (density, temperature, pressure) but will cover smaller intersatellite distances from
10 to 100 km. While Cluster satellites follow a polar orbit, MMS spacecraft (s/c hereafter)
will have an equatorial orbit in order to optimize the crossing of the key regions such as the
equatorial subsolar region and the central region of the magnetotail. From the point of view
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of the wave measurements, it will allow a characterization of electromagnetic waves with
smaller wavelengths compared to those investigated by the Cluster mission which scanned
larger intersatellite distances. As waves with short wave lengths can be more sensitive to
Doppler shift effect related to fast flowing plasma, their analysis will benefit from the high-
time resolution of the particle measurement (150 ms for the ion moments).

In the next section, the main science objectives, as well as the SCM requirements, are
presented. In Sect. 3, the principle of the instrument is explained and MMS SCM design
(sensor and preamplifier) is described in details in Sect. 4. Calibration and testing are pre-
sented in Sect. 5. Finally, Sect. 6 summarizes the different SCM operational modes, data
products and on-board calibration sequence.

2 Science Objectives and Requirements

One of the main science objectives of the MMS mission is to provide a thorough description
of the physical mechanisms which can lead to the reconnection of magnetic field lines within
and around the Earth’s magnetosphere. Indeed, the magnetic energy can be transferred to the
plasma via the magnetic reconnection, thereby leading to particles acceleration and heating.
Furthermore, on the dayside, magnetic reconnection can allow the solar wind plasma to
penetrate into the magnetosphere, crossing the otherwise closed magnetopause boundary.
In the night side, it can allow the fast transport of the plasma from the mid-magnetotail,
the assumed location of the reconnection region, toward the quasi-dipolar near-Earth tail
and contribute to the ejection of plasmoid/flux rope in the far tail. In the framework of the
Hall magnetic reconnection model, the decoupling between the magnetic field lines and the
particles happens at different scales for ions and electrons (Birn et al. 2001, and references
therein). In the absence of a finite guide field, the sizes of the different regions correspond
to the inertial lengths of ions and electrons while with a finite guide field, ions are demagne-
tized at the effective gyration (Larmor) radius scale (Hesse et al. 1999; Pritchett and Coroniti
2004, and references therein). Inertial effects are therefore considered as the dominant ef-
fect allowing the reconnection to occur. Yet, in the smallest (electron) diffusion region, the
dynamics is thought to be controlled by whistler or kinetic Alfvén waves (KAW) depending
on the presence of a finite guide field (Mandt et al. 1994; Rogers et al. 2001; Drake et al.
2008). These waves could accelerate the electrons outside the electron diffusion region and
enable fast magnetic reconnection.

Another way to get the decoupling between the magnetic field and the particles in
a collisionless plasma, is to consider the interaction of the particles with the electro-
static/electromagnetic fluctuations. Such field fluctuations can rise from waves, local micro-
instabilities and/or turbulence. This interaction with electrostatic (Tsurutani and Thorne
1982) or electromagnetic fluctuations (e.g., Perraut et al. 1979; Gendrin 1983; Chaston et al.
2008) can allow the plasma to diffuse through the magnetic field lines leading to the so-
called anomalous diffusion. Anomalous diffusion may, or may not, evolve toward a station-
ary regime of the system. These wave/particle interactions can also produce an anomalous
plasma resistivity and then make collisionless magnetic reconnection possible (Huba et al.
1977). Micro-instabilities such as current-driven instabilities with large growth rates can
also directly trigger larger scale modification of the magnetic field configuration and gen-
erate strong electromagnetic fluctuations in a broad frequency range (e.g., Lui et al. 1996;
Daughton 1999). Finally, these interactions can also lead to the formation of non-linear
coherent structures which can modify the plasma equilibrium and the transport of mass,
momentum and energy (e.g., Cattell et al. 2005; Parks et al. 2007; Andersson et al. 2009).
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One specific aspect of natural collisionless plasmas confined by an external magnetic
field—produced by the internal motion of the core materials of the planet or the star—is
their dynamics which are based on periodic motions. Indeed, in addition to the classical
gyromotion of the charged particles around the magnetic field lines, particles are bouncing
back and forth along the magnetic field line between their mirror points and then drift around
the central object (Northrop and Teller 1960; Roederer 1967). Each of these three periodic
motions can lead to resonant interactions between particles and electromagnetic waves with
frequencies matching these periodic oscillations (Tur et al. 2010; Fruit et al. 2013, and refer-
ences therein). Furthermore, the fast bouncing motion of electrons (due to their small mass)
along the magnetic field is able to neutralize any charge separation due to differential per-
pendicular motion between ions and electrons. As a consequence, a quasi-static electric field
can easily be shielded by electrons and the plasma transport can be inhibited (Pellat et al.
1994; Le Contel et al. 2000, 2001). The low frequency eigenmodes of these periodic sys-
tems are quite difficult to identify (e.g., Chen and Hasegawa 1991; Hurricane et al. 1995).
Such effects do not occur when the frequency of the perturbations is larger than the particle
bounce frequency; then a fluid approach can safely be used to describe plasma dynamics
(Weiland 2000). They can be also ignored if electrons are prevented from bouncing, for
instance due to interaction with some electromagnetic waves (Le Contel et al. 2001). The
Earth’s magnetotail is a classical example of collisionless and magnetically confined plasma.
In the dayside, the situation is even more complex as it corresponds to the interaction be-
tween a cold, dense and large scale plasma (the solar wind/magnetosheath plasma) and a
hot, dilute plasma confined at smaller scale by the Earth’s magnetic field: a very asymmetric
system. Therefore, in the night side as well as in the dayside, plasma acceleration, transport
or turbulence are physical processes which are far from being fully understood.

Whatever the physical process and the chosen model, it is therefore crucial to ensure
comprehensive measurements of the 3D electromagnetic fields in an extended frequency
range from the quasi-MHD domain (∼ mHz) to high frequency waves (∼ kHz). Thanks
to polarization analyses based on magnetic field measurement (e.g., Means 1972; Samson
and Olson 1980) and to estimates of the wave phase velocity from the ratio between the
amplitudes of electric and magnetic components, these different mode waves can be identi-
fied. Well synchronized measurements of the magnetic and electric fluctuations also allow
calculation of the Poynting vector and determination of the source and the direction of prop-
agation of waves.

There is also a strict alignment requirement that arises out of the need to resolve tem-
poral and spatial structures as measured by the four MMS spacecraft. The Cluster mission
has shown that for waves with large wave vectors, the wave frequency in the s/c frame can
be strongly Doppler-shifted. This was demonstrated using the k-filtering technique that de-
termines the wave vector as function of frequency. This technique needs to assume the time
stationarity and the spatial homogeneity of the time series at least at the scale of the ana-
lyzed period (Pinçon and Lefeuvre 1991; Sahraoui et al. 2003). Thus, at the dayside with
the shocked solar wind plasma of the magnetosheath as well as in the nightside during fast
plasma transport periods, the analysis of the small wave length fluctuations requires a high
time resolution measurement of the ion velocity in order to move the data from the s/c frame
to the plasma frame. Finally, such an analysis also requires that any phase shift introduced
either by the misalignment between the magnetometers axis and the s/c axis or by a time in-
accuracy δt between s/c measurements are no larger than few degrees (Pinçon and Lefeuvre
1992; Sahraoui et al. 2003).

Since the wave power is known to be quite large during sudden magnetospheric recon-
figuration events in the nightside as well as in the dayside, there was no need to have a SCM
sensitivity better than those of Cluster and THEMIS search-coils. On the other hand, the
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SCM allocated mass was very stringent. Thus the MMS SCM is designed to reduce the
mass, as compared to THEMIS for instance, without reducing too much the sensitivity.
Therefore the SCM requirements are a tradeoff between mass and sensitivity.

2.1 Dayside Region

The understanding of the mechanisms by which the solar wind plasma can penetrate into the
magnetosphere through the magnetopause dayside or/and flanks is still a matter of debate.
Magnetic reconnection, diffusive (Tsurutani and Thorne 1982; Gendrin 1983; Chaston et al.
2008) and impulsive penetration (Lemaire 1977; Sibeck 1990), Kelvin–Helmholtz instabil-
ity (Sckopke et al. 1981; Hasegawa et al. 2004; Smets et al. 2007) are physical mechanisms
which are still extensively studied (see Phan et al. 2005 for a detailed review). Again, what-
ever the mechanism the electromagnetic fluctuations are thought to play an important role
(anomalous resistivity, anomalous transport across the magnetic field, acceleration and heat-
ing).

The level of magnetic fluctuations at the magnetopause is known to be higher than in the
magnetosheath. For instance in the ultralow-frequency range (ULF: 0–10 Hz) it can reach
an integrated power about 100 nT2 whereas from 5 Hz to 1 kHz almost in the extremely-low
frequency (ELF: 10 Hz–3 kHz) range, it was measured about 1 nT2 (Gurnett et al. 1979;
Perraut et al. 1979). Magnetic spectral densities were measured up to 300 pT/

√
(Hz) by

GEOS-2 s/c in the 0–10 Hz frequency range (Rezeau et al. 1986, 1989). More recently,
a statistical study from Cluster data suggests that the ULF wave integrated power at the
magnetopause depends upon the ULF integrated power of the magnetosheath waves and
varies from 0.1 to 100 nT2 (Attié et al. 2008). In the ULF/ELF range, lower-hydrid waves
(mainly electrostatic), KAW and whistler mode waves have been identified as the main con-
tributors of wave activity. While lower-hydrid waves were found in some cases to be intense
enough to ensure significant resistivity (Cattell et al. 1995), the opposite was also concluded
(Bale et al. 2002) except across thin current sheets (Vaivads et al. 2004). On the other hand,
Doppler-shifted KAW amplitudes were shown (Chaston et al. 2008) to be also sufficiently
large to provide cross-field diffusion at an equivalent collisional rate (Bohm rate). In these
latter studies, magnetic spectral densities were measured about 10–100 pT/

√
(Hz). Further-

more, KAW are invoked as a possible candidate to heat magnetosheath electrons along the
ambient magnetic field in the magnetopause current layer (Roux et al. 2011). At higher fre-
quency, large amplitude whistler mode waves were detected in association with thin current
sheets (Stenberg et al. 2005) or magnetic field minima (Vaivads et al. 2004) and proposed
as a tracer of the first opened magnetic lines during the dayside reconnection process; the
corresponding magnetic spectral densities were about 30 pT/

√
(Hz).

2.2 Nightside Region

In the magnetotail, lower hydrid waves have been also invoked to provide anomalous re-
sistivity needed in resistive magnetic reconnection models. As in the dayside observations,
these waves were found not to be intense enough in some studies (Shinohara et al. 1998)
while in others they reached a sufficient intensity to provide the necessary resistivity (Cat-
tell and Mozer 1987). Shinohara et al. (1998) reported magnetic spectral densities larger
than 30 pT/

√
(Hz) around 10 Hz. In the same ULF/ELF range but below the lower hybrid

frequency, fast plasma flows detected in the magnetotail were shown to be associated with
strong emissions of KAW which could be responsible for a significant energy loss from the
flows (Chaston et al. 2012). At higher frequency, whistler mode wave emissions were often
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reported through the magnetotail in association with flux rope signatures or electron beams
(Gurnett et al. 1976; Kennel et al. 1986; Zhang et al. 1999). More recently, these waves were
detected during local near-Earth dipolarisation (Le Contel et al. 2009), dipolarisation front
crossing (Khotyaintsev et al. 2011), mid-tail substorm activity (Wei et al. 2007) and trapped
within non linear ion scale magnetic structures (Tenerani et al. 2012, 2013). All these mea-
surements correspond to magnetic spectral densities about 10–100 pT/

√
(Hz) between 10

to 100 Hz and 0.1–0.03 pT/
√

(Hz) between 100 Hz to ∼1 kHz (about the local electron
gyrofrequency). Finally, electron scale solitary waves (electrostatic as well as electromag-
netic) have been identified in the magnetotail during substorm events thanks to waveform
captures at very high sampling rates onboard Cluster (e.g., Cattell et al. 2005) or THEMIS
satellites (Ergun et al. 2009; Andersson et al. 2009; Tao et al. 2011). These studies show that
the magnetic component amplitudes associated with these non-linear structure can reach
∼50 pT–200 pT around 400–800 Hz.

2.3 Requirements

Thus, both dayside and nightside low-frequency wave emissions are expected to generate
magnetic spectral densities larger than 2 pT/

√
(Hz) near the upper limit of the ULF range.

Whistler mode waves which could play a crucial role during the reconnection process are
expected to be emitted at higher frequency (f > 20 Hz) in the ELF range and with spectral
densities about 10–100 pT/

√
(Hz). At higher frequencies (∼800 Hz corresponding to 1.2 ms

time scale), solitary waves which are detected during fast variations of the magnetic field
configuration have magnetic amplitudes about 50 pT–200 pT. The SCM provides the three
components of the magnetic fluctuations in the 1 Hz–6 kHz nominal frequency range which
includes the lower hybrid wave and KAW frequency range as well as whistler mode waves
(up to their cut off frequency equal to the electron gyrofrequency) and solitary waves. The
noise equivalent magnetic induction (NEMI or sensitivity) of the search-coil antenna needs
to be less than or equal to: 2 pT/

√
(Hz) at 10 Hz, 0.3 pT/

√
(Hz) at 100 Hz and 0.05 pT/

√
(Hz)

at 1 kHz. The SCM resolution at 1 kHz has been fixed to 0.15 pT.
The mass allocated to the SCM sensor (including mounting structure and connector but

without harness) and the preamplifier are 239 g and 222 g respectively. The SCM power al-
location is 166 mW whatever the selected mode. Finally, The SCM shall meet performance
requirements during science operations with a + z axis to spin axis misalignment of less
than 1.0 deg. Also, the SCM sensor tube orientation with respect to the local SCM instru-
ment coordinate system X-axis vector (directed along the magnetic boom) and Y-axis vector
(aligned with the Z s/c axis), individually shall be less than ±0.2 deg to each vector, with
an associated knowledge of ±0.2 deg. Note that the total timing uncertainty of the science
measurements with respect to international atomic time (TAI) is required to be less than
500 microseconds.

In the next section, the SCM instrument is described in details and the SCM compliance
with all these requirements is discussed.

3 Description of the Instrument

3.1 Magnetic Amplification

When a magnetic field H is applied on a ferromagnetic material, the latter becomes magne-
tized. In a linear, homogeneous and isotropic material, this magnetization M is linked to the
magnetic field by M = χH. It implies an increase in flux density B:

B = µ0(H + M) = µ0(1 + χ)H = µH (1)
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Fig. 1 Ferrite core and winding

with µ0 (resp. µ) being the magnetic permeability of vacuum (resp. of the material), and
χ the magnetic susceptibility. When magnetic field lines exit from the ferromagnetic core,
a magnetic interaction appears which is opposite to the magnetic field. This interaction,
named demagnetizing field Hd, is related to the shape of the core through the demagnetizing
coefficient tensor Nd and magnetization by

Hd = −NdM (2)

By combining (1) and (2), we can express the ratio between the flux density inside of the fer-
romagnetic body Bi and outside Bext . This ratio µapp , called apparent permeability, depends
on the relative initial permeability of the ferromagnetic core µr = µ/µ0 and the demagne-
tizing field factor Nd,j in a given direction (j = x, y, z).

µapp,j =
Bi

Bext

=
µr

1 + Nd,j (µr − 1)
(3)

In the case of rods or cylinders with high aspect ratio m (i.e. m = length/diameter =
L/d ≫ 1), the formulas for ellipsoid given in Osborn (1945) allow to a good estimate of
demagnetizing factor in the longitudinal direction (z) as Nd,z = (L(2m) − 1)\m2.

A way to increase magnetic amplification consists in the implementation of magnetic
concentrators (Coillot et al. 2007) at the ends of the ferromagnetic core. Let us consider a
ferromagnetic core of length L, with a diameter d in the central region and a diameter D at
the two extremities (Fig. 1). The formula for apparent permeability becomes:

µapp,j =
µr

1 + Nd,j (L/D) d2

D2 (µr − 1)
(4)

For a given set of length, diameter and magnetic material, an increase in diameter of the
magnetic concentrators will lead to a significant increase in apparent permeability. Coillot
et al. (2007) report an increase in apparent permeability larger than 50 %. This increase al-
lows a reduction of the number of turns of the winding, all things being equal. Thus the mass
of the winding and the thermal noise due to the resistance of the winding will be reduced.
To take advantage of this improvement, design of the sensor by means of mathematical
optimization was implemented.

3.2 Electrical Modeling of the Induction Sensor

The principle of the induction sensor derives from Faraday’s law. For N coils of section S,
the voltage e is given by e = −Ndφ\dt , where φ is the magnetic flux through one coil. The
voltage is proportional to the time derivative of the flux, thus the higher the frequency, the
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Fig. 2 Induction sensor
equivalent electrical circuit

Fig. 3 Principle of search-coil
with feedback loop

higher the output voltage will be (up to the limit of the resonance frequency of the coil). The
use of a ferromagnetic core to increase the sensitivity leads to the following formula:

e = −NµappS
dB

dt
(5)

where µapp is given by (4) in the case of a magnetic concentrator and B is the magnetic flux
density. The RLC elements of the equivalent circuit which has the same frequency behavior
as the search coil antenna are sketched in Fig. 2. Explicit values of the resistance, the induc-
tance and the capacitance can be found in Coillot and Leroy (2012). Note that in case of a
multi layer winding the capacitance between layers will be preponderant compared with the
capacitance between each coil. Then, assuming the temporal variations as ∝ exp(jωt) the
transfer function between the output of the measurable voltage and the flux density can be
expressed as

Vout

B
=

−jωNµappS

(1 − LCω2) + jRCω
(6)

It shows that the induced voltage will increase with the frequency up to the resonance of the
induction sensor (1/

√
LC). In order to measure natural plasma waves in a wide frequency

range, this resonance has to be removed. This is why a flux feedback is implemented in the
conditioning electronics, which allows a wide band coverage.

3.3 Electronic Conditioning of Induction Sensors by Means of Flux Feedback

A flux feedback low noise amplifier is used for MMS induction magnetometer. The flux
feedback (Fig. 3) generates a flux opposite to the flux to be measured. It allows a removal
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Fig. 4 SCM block diagram

of the main resonance. Alternative solutions using current amplifier are reported by many
authors (e.g., Tumanski 2007). Both flux feedback and current amplifier provide an efficient
removal of the first resonance and a flattening of the transfer function of induction sensors.
In the case of the flux feedback amplifier, the output transmittance is

T (jω) =
Vout

B
=

−jωNµappSG

(1 − LCω2) + j (RCω + M/Rf b)
(7)

where M is the mutual inductance between the measurement winding and the feedback
winding, Rf b is the feedback resistance and G = (1 + R2/R1) is the gain of the amplifier.

4 SCM Design

The SCM consists in a tri-axial set of magnetic sensors with its associated preamplifier box.
The SCM sensor is mounted on the same five meter boom as the analog flux-gate magne-
tometer (AFG), 4 meters from the s/c. The SCM preamplifier box is mounted on the s/c deck
(outside of the central electronics box) near the base of the AFG/SCM magnetometer boom.
The SCM block diagram is shown in Fig. 4. The power (±8 V) is provided by the low volt-
age power supply (LVPS) within the CEB. The SCM preamplifier is connected to the digital
signal processor (DSP) which digitizes and processes the three analog waveforms delivered
by SCM as well as those delivered by SDP and ADP electric field antennas. Furthermore,
all electromagnetic wave forms (SCM, ADP and SDP) corresponding to the low frequency
part of the frequency range (f < 6.5 kHz) are low pass filtered by analog filters (a 5 poles
Bessel) implemented in the DSP. The filters have a cutoff frequency of 6.5 kHz at an am-
plitude −3 dB (±1 dB max) from the maximum pass band amplitude. Once per orbit, the
DSP injects a calibration signal into the SCM. A thermistor mounted on the SCM structure
provides the temperature measurement at the level of the SCM sensor (housekeeping).

4.1 Sensor

The SCM sensor consists of three magnetic sensors mounted on a tri-axial structure (Fig. 5).
This structure was designed to ensure a precise alignment of the sensors with respect to the
satellite axis. The orthogonality of the three mechanical axis of this structure is better or
equal to 0.05 deg in order to satisfy the final ±1 deg required between SCM and s/c axis.
Yet, it has been found on FM2 unit that the torque applied on the screws fixing each sensor
on the SCM structure leads to a small rotation of the structure and as a consequence of the
Y and Z sensors around the X-axis. Thus the error of alignment between the SCM Y tube
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Fig. 5 SCM FM1 tri-axial
sensor with its pigtail connector

with respect to the Y-axis vector of the SCM coordinate system (corresponding to the Z
spacecraft axis) has been measured larger than the required ±0.2 deg. This error has been
precisely measured using 3D metrology for all FM except FM1 (already delivered). These
alignment measurements will be used to build a correction matrix for post processing cor-
rections. With regard to the FM1, in-flight intercalibrations between AFG/DFG and SCM
(using spin modulation) on FM2, FM3 and FM4 will allow us to determine the FM1 correc-
tion matrix. These matrices will be included in the SCM calibration program. As explained
in Sect. 3.1, the core of magnetic sensor is made of ferromagnetic material. Its characteristics
(composition and shape) are optimized to obtain a high magnetic amplification with a low
mass. The core length is 10 cm and the diameter 4 mm. Then a primary winding with a large
number of turns (more than ten thousands) is implemented to collect the voltage induced by
the time variation of the magnetic flux. Finally a secondary winding with a smaller number
of turns provides a flux feedback. As discussed in Sect. 3.3, this feedback circuit allows a
removal of the resonance and flattens the frequency response of the antenna. Furthermore
flux feedback removes the phase variations associated with temperature variations.

Internal electrostatic shielding is implemented around each antenna to minimize their
sensitivity to electric fields. This electrostatic shielding is also reinforced by the multi-layer
insulation or thermal blanket added to ensure the thermal isolation of the sensors. The mass
of the SCM sensor including the tri-axis structure is 214 g.

4.2 Preamplifier

The three analog signals are routed to the SCM preamplifier via the SCM harness equipped
with a silver-plated copper conductive shield braid. The SCM preamplifier, designed at LPP,
has been realized in multi-chip vertical technology (hybrid) by the French 3D PLUS com-
pany (Fig. 6). Each channel has two stages of amplification. The first stage has a low-noise
input and a gain of 46 dB. The second stage has a gain of 31.5 dB and ensures low and high-
pass filtering. A power supply regulation is also implemented as well as a calibration buffer
in order to receive the onboard calibration signal sent by DSP. The mass and the power
consumption of the SCM preamplifier are 206 g (including the housing, mass of the 3D
PLUS module being 37 g) and 130 mW respectively. SCM characteristics are summarized
in Table 1.
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Fig. 6 SCM FM1 preamplifier
in its housing. The central golden
square is the 3D PLUS cube that
includes the three channels’
amplifiers and a power supply
regulator

Table 1 Summary of SCM mechanical, mass and power characteristics

Sensor 3 (100 mm length) antennas mounted on a peek structure
at 4 meters from the s/c body

Mass sensor (with tri-axis structure) 214 g

Mass pream-amplifier (with housing) 206 g (including 37 g for 3D PLUS cube)

Total 420 g

Power 130 mW

5 Calibration and Testing

5.1 Calibration and Testing Plan

The SCM sensor, pre-amplifier and harness have been calibrated for gain and phase at
the national magnetic observatory of Chambon-la-Forêt. The facility already used for the
search-coil calibration of the previous missions (Cassini, Cluster, THEMIS, hereafter called
original facility) was no longer fully operational (2 axes were damaged) and moreover the
gain measurement with the last single available axis was found to be biased up to almost
ten percents (∼1 dBV/nT) above 1 kHz. A new three-axis system has been built by LPP
simultaneously with the development and manufacturing of the SCM units. It consists of
three large diameter Helmholtz coils (2 m) mounted on a polycarbonate structure to ensure
a homogeneous magnetic field at the scale of the sensor and in the MMS SCM nominal fre-
quency range 1 Hz–6 kHz (Fig. 7). The accuracy of the facility was verified using a sensor
reference for which the theoretical transfer function is fully known. Yet, the new facility has
been only ready for the calibration of SCM FM2 and following models. Thus SCM FM1
has been calibrated with the original facility. In order to check for the homogeneity of the
SCM calibration and get rid of possible uncertainties, SCM FM2 has been calibrated using
both test facilities.

Furthermore, the in-flight intercalibration between AFG/DFG and SCM based on the use
of the spin modulation (Tspin = 20 sec) requires the measurement of the SCM transfer func-
tion at very low frequency; in the range of the spin frequency. SCM gain being very small at
such low frequencies and the spectrum analyzer used to measure the transfer function being
also less sensitive, a different calibration setup has been preferred for the lowest frequency
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Fig. 7 New system of three-axis
Helmholtz coils at
Chambon-la-Forêt

range. It consists in using a single Helmholtz coil with a smaller diameter of 1 m but a larger
number of windings. This latter equipment produces the larger magnetic field required to
compensate for the small SCM gain at very low-frequencies. Gains and phases measured
with these two different setups match within 0.1 dBV/nT (∼1 %).

5.2 Transfer Function of the On-Board Calibration Circuit

A known signal (in volts) is injected into the secondary winding of each antenna and the
SCM output signal is measured. The frequency of the signal is varied logarithmically from
50 kHz to 0.1 Hz. The gain (resp. phase) is obtained by computing the ratio (resp. the phase
shift) between these output and input signals for each channel.

Gain and phase measurements can be perturbed if they are performed at laboratory in
a mu-metal box. Indeed, the field generated by injecting a current in the secondary wind-
ing can be modified by the coupling with the mu-metal walls of the box. Therefore, these
measurements are also recorded at Chambon-la-Forêt.

They will be considered as references for comparison with on-orbit estimations of the
transfer function of the calibration circuit. Figure 8 shows the gain curve of the calibration
circuit for SCM FM2.

5.3 SCM Transfer Function

As explained in Sect. 5.1, the SCM transfer function (gain and phase shift) has been mea-
sured for each antenna of the four flight models as well as for the spare model from 30 mHz
up to 50 kHz using two different set-ups. During the whole calibration sequence, the SCM
sensor was mounted on a s/c magboom-like interface in order to align its axis with the
Helmholtz coil axis. For the SCM nominal frequency range (1 Hz–6 kHz), SCM sensor was
located in the center of the tri-axis structure equipped with 2 m diameter Helmholtz coils.
Each antenna is calibrated separately from 0.1 Hz to 50 kHz. SCM FM1 has been calibrated
using the original facility. SCM FM2 have been calibrated both in the original and new fa-
cilities while subsequent units were only calibrated in the new facility. The signal injected
to the Helmholtz coil circuit is driven by a spectrum analyzer. Output signals are gathered
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Fig. 8 SCM FM2 transfer function of the calibration circuit

Fig. 9 FM2 SCM transfer function (gain) in dBV/nT from 30 mHz to 50 kHz

by the same spectrum analyzer which computes module ratio and phase shift between input
and output signals.

For the low-frequency range (0.03 Hz–0.5 Hz), the SCM sensor was located on the 1 m
diameter single-axis Helmholtz coils and then rotated for calibrating each SCM axis. Fig-
ure 9 shows that FM2 low-frequency transfer function and transfer function in the nominal
frequency range match within 0.1 dBV/nT. Note that it has been checked that the addition
of the thermal blanket (engineering model provided by Goddard team) does not modify the
SCM gain and phase by more than 0.1 dBV/nT and 1 deg respectively (not shown). Thanks
to the implementation of a new winding scheme the multiple secondary resonances, which
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Fig. 10 Gain difference (Goriginal -Gnew ) in dB, between original and new facilities at Chambon-la-Forêt

were observed in preceding missions above the maximum frequency (6.5 kHz for MMS) no
longer appear on the measured transfer function.

Gain and phase shift at 1 kHz are displayed for each model in Table 2. It can be seen that
the gain measured in the original facility (FM1, FM2) is somewhat smaller (−0.8 dBV/nT)
than measured in the new one. Gain and phase differences between the two facilities have
been calculated in the full frequency range (Fig. 10). The discrepancy between the gain
measurement at the two facilities starts at about 100 Hz and can reach 0.8 dBV/nT above
1 kHz while the discrepancy in the phase shift is about 2 deg above 100 Hz (not shown).

Therefore, FM1 transfer function will be corrected using the discrepancy measurements
of FM2 transfer function (Fig. 10). Note that this new facility has been also used to calibrate
the search-coil magnetometer of the Mercury magnetospheric orbiter (developed in collab-
oration between the European and the Japanese space agencies) for which one axis—the
dual band search-coil (DB-SC)—has been built by LPP with a design for the low-frequency
range very similar to the SCM design (Kasaba et al. 2010).

Finally, an analytic SCM transfer function has been obtained and compared to the mea-
sured one. The agreement is very good as shown in Appendix A. Such an analytic function
allows elimination of the remnant 50 Hz tones in the measured transfer function.

5.4 Noise Equivalent Magnetic Induction (NEMI)

NEMI or sensitivities are measured for each antenna from 0.03 Hz up to 50 kHz. They are
obtained from the measurement of the SCM output noise measured in volts and converted
in nT by using respective SCM gain for each antenna. During this noise measurement, SCM
sensor, preamplifier and harness are located within the mu-metal box (which is grounded
in a way that minimizes any current loop via the ground connection) in the new facility in
order to reduce the background noise. Figure 11 shows the FM2 NEMI measurements for
the three channels. For all FMs, NEMI are compliant as shown in Table 3. Furthermore,
during the LPP verification tests, it was found that the output noise around 10 Hz of the X
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Fig. 11 SCM FM2 NEMI measurements. SCM sensitivity requirements are superposed in blue

Table 3 All SCM NEMI at 10 Hz, 100 Hz, 1 kHz. Note that FM1 NEMI is not corrected from the gain error
introduced by the original facility

MMS observatory 10 Hz [Req: 2 pT/
√

(Hz)] 100 Hz [Req: 0.3 pT/
√

(Hz)] 1 kHz [Req: 0.05 pT/
√

(Hz)]

Obs1 X/Y/Z 1.56/1.76/1.70 0.17/0.15/0.14 0.029/0.028/0.028

Obs2 X/Y/Z 1.96/2.23/2.06 0.17/0.18/0.18 0.024/0.025/0.025

Obs3 X/Y/Z 2.00/1.79/1.82 0.16/0.15/0.16 0.025/0.022/0.023

Obs4 X/Y/Z 1.60/1.87/1.74 0.14/0.18/0.16 0.025/0.023/0.025

Spare X/Y/Z 2.80/1.85/1.86 0.17/0.16/0.18 0.026/0.027/0.024

channel of one the SCM preamplifier exceeded the expected value leading to a sensitivity
non conformance of the corresponding channel. SCM team has requested and obtained the
authorization to use this SCM preamplifier in the SCM spare unit. As a matter of fact, it
can be seen in Table 3 that the X channel sensitivity of the SCM spare exceeds the SCM
requirements at 10 Hz by 40 % but is compliant elsewhere. The SCM output noise depends
on the contributions of the different noise sources: noise generated by the preamplifiers and
quantification noise. The effect of different noise sources is described in Appendix B.

5.5 DFG/AFG/SCM Interference Testing

The respective locations of the three magnetometers onboard MMS satellites have been
determined from two interference testing campaigns performed in the amagnetic chamber
of the French magnetic observatory of Chambon-la-Forêt. The first one on November 2006
was performed by DFG and SCM teams in order to estimate the possible perturbations
of DFG electronics on SCM. SCM noise measurements have been performed for different
distances between DFG and SCM sensors; the DFG preamplifier was installed outside the
amagnetic chamber. The minimum distance for which the level of perturbations generated
by DFG (in the high range gain ±8000 nT) was below the SCM sensitivity was estimated to
be 2 m. Possible disturbance on the DFG measurements induced by the SCM ferromagnetic
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Table 4 SCM level 2 data products

Variable name Type Label Unit

Epoch CDF_TIME_TT2000 TT2000 Nanoseconds

mms#_scm_scs_gse CDF_REAL4[3] Bx, By, Bz in GSE nT

mms#_scm_scf_gse CDF_REAL4[3] Bx, By, Bz in GSE nT

mms#_scm_scb_gse CDF_REAL4[3] Bx, By, Bz in GSE nT

mms#_scm_schb_gse CDF_REAL4[3] Bx, By, Bz in GSE nT

core were also assessed and described in a companion paper by the DFG team (Russell et al.
2014). Briefly, remnant magnetic fields of the SCM core can modify the offset of DFG and
the magnetic core can also change the scale factor of the DFG sensor. Both effects were
found to be negligible with a distance of 1 m between the two sensors.

The second campaign was held on January 2008 with AFG and SCM teams still using the
amagnetic chamber. It aimed to estimate the perturbations on SCM generated by AFG due
to its excitation current flowing through its cables. Again, the minimum distance between
SCM sensor and AFG cables for which the generated perturbations were below the SCM
sensitivity was determined. Assuming a Bessel filter of 5th order, it was concluded that a
distance between the AFG cables and the SCM sensor of about 7 cm (or 5 cm with a 6th
order filter) left the SCM sensitivity unchanged. The minimum distance between AFG and
SCM sensors was also determined. It was established that a separation of about 1 m was
sufficient to ensure a nominal functioning for both instruments.

Following these two testing campaigns, the Fields team proposed the MMS configuration
described in Sect. 4 with AFG and SCM mounted on the same 5 m magnetometer boom,
AFG being at the tip, SCM 4 m from the s/c body and DFG at the tip of the opposite 5 m
magnetometer boom.

6 SCM Operational Modes, Data Products and On-Board Calibration

6.1 Operational Modes and Data Products

Different SCM operational modes will depend on the orbit and on the magnetospheric re-
gions. Basically, the orbit, which lasts about 24 hours in Phase 1 and 68 hours in Phase 2,
is divided in two parts: slow survey and fast survey periods covering the perigee region and
the region of interest respectively. In the slow survey mode (scs), SCM data are sampled at
8 samples per second (S/s) and at 32 S/s in fast survey mode (scf). During the fast survey
mode period i.e. inside the region of interest, burst (scb) and high-burst (schb) mode can be
triggered thanks to the Burst Trigger Scheme described in Torbert et al. (2014). The sample
frequency during the burst mode is 1024 S/s (resp. 8192 S/s) in the dayside (resp. nightside)
region. The high-burst mode is always sampled at 16384 S/s whatever the magnetospheric
region. Level 2 SCM data products correspond to calibrated SCM data in GSE frame. They
are summarized in Table 4. Note that onboard SCM FFT spectra are generated by DSP and
described by Torbert et al. (2014).

6.2 On-Board Calibration

The SCM calibration is executed once per orbit shortly after the transition from slow to fast
survey. The calibration signal sweep, delivered by DSP, is broken into 4 segments with in-
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Table 5 Characteristics of the
four segments of the on-board
calibration signal generated by
the DSP

Segment 1 2 3 4

Duration (s) 64 4 0.3125 0.078125

Cal. Signal 0.125 2 32 512

Frequencies (Hz) 0.25 4 64 1024

0.5 8 128 2048

1 16 256 4096

Sampling Rate (S/s) 16 256 4096 16384

creasing sample frequencies and the whole calibration sequence lasts less than 90 sec. The
frequency of the calibration signal doubles every 4 cycles from 0.125 Hz to 4096 Hz. Each
segment will consist of four different frequencies as shown in Table 5. Then the calibration
signal is injected into the SCM secondary winding as explained in the previous section. The
input voltage can be fixed at four different values (peak-to-peak value): 1.25 V, 2.5 V, 5 V
(default value), and 10 V. On the ground, data recorded during on-board SCM calibration
sequence will allow us to rebuild the SCM transfer function (gain and phase shift) of the
calibration circuit and to track any modifications of the initial SCM transfer function. Then
assuming that variations of the calibration circuit transfer function are proportional to the
SCM transfer function, the latter can be corrected for. Time domain as well as Fourier do-
main methods have been developed. Both techniques give good results. The former method
is based on convolution of the output signal with a sinusoid for each 4 cycles at one fre-
quency as shown in Fig. 12. The latter method consist of calculating the complex Fourier
transform of both input and output signals for each segment then getting the ratio of the
spectral densities and the phase difference of the two complex spectra. Results are plotted
in Fig. 13.

7 Conclusion

The SCM instrument measures the 3D magnetic field fluctuations in the 1 Hz–6 kHz
nominal frequency range. The tri-axis system of magnetic antennas is very compact
(100 mm3) and light (∼214 g). It is connected to a low noise and low power consump-
tion (∼130 mW) preamplifier built in a robust 3D PLUS technology and the total SCM
mass (sensor + preamplifier) is about 420 g. Its sensitivity is less or equal than 2 pT/

√
(Hz)

at 10 Hz, 0.18 pT/
√

(Hz) at 100 Hz and 0.025 pT/
√

(Hz) at 1 kHz and is therefore fully
compliant with the MMS requirement. With electric field measurements provided by the
SDP and ADP instruments, the SCM instrument will allow characterization of the elec-
tromagnetic field fluctuations which are expected to play a crucial role in many different
physical processes in the collisionless magnetospheric plasma. Thanks to the on-board cal-
ibration signal delivered by the DSP once per orbit on each s/c, any possible modifications
of the SCM transfer function shall be identified and compensated during the mission. Such
verifications are particularly important for very precise multisatellite analysis based on the
measurements of amplitude and/or phase of the magnetic fluctuations on board of the four
MMS spacecraft.
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Fig. 12 From the top: example of X, Y and Z waveforms of input (red, divided by a factor 5 to be plotted in
the same scale), output (black) and estimated (blue) calibration signals for the 2nd segment (2, 4, 8, 16 Hz),
estimated gain and phase shift of the three channels superposed with Chambon gain and phase shift (dashed

line) measurements. Discrepancies at high frequency appear as the calibration signal frequency gets closer to
the sample frequency
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Appendix A: Analytical SCM Transfer Function

The analytical transfer function results from the combination of the transfer function of the
feedback flux amplifier given by (7) and the transmittances of the filtering. First of all, by
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Fig. 13 From the top: example of X, Y and Z waveforms of input (red) and output (black) calibration signals
for the 2nd segment (2, 4, 8, 16 Hz), corresponding complex Fourier spectra (X: black, Y: green, Z: red) and
estimated gain and phase shift of the three channels superposed with Chambon gain (dotted line) and phase
shift (dashed line) measurements. Discrepancies at high frequency appear as the calibration signal frequency
gets closer to the sample frequency

considering the low-pass filtering behavior of the first stage preamplifier of gain G1, we
obtain:

T (jω) =
Vout

B
=

−jωNµappS
G1

1+jω/ωG1

(1 − LCω2) + j (RCω + G1
1+jω/ωG1

M/Rf b)
(8)
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Fig. 14 FM4 transfer function for X-axis: measured versus modeled

Then, low frequencies are filtered out by a high-pass filter given by:

Thp(jω) =
−jω/ωhp

1 + jω/ωhp

(9)

And finally, the signal is amplified by the second stage of the preamplifier (G2) and the high
frequencies are also filtered out by the following filter:

Tlp(jω) =
−jω/ωlpG2

1 + jω/ωlp

(10)

The total transfer function will be obtained by combining the three transfer functions:

Ttot (jω) = T (jω)Thp(jω)Tlp(jω) (11)

Next, the theoretical transfer function is computed and compared to the measured one at
Chambon-la-Forêt observatory (cf. Sect. 5.3). The comparison displayed in Fig. 14 between
the measured and calculated transfer functions is rather good. Some disturbances around
50 Hz, corresponding to the power supply line in France, are visible on the measured transfer
function. The use of the theoretical transfer function permits to remove it and also to smooth
the low-frequency part of the TF which is very sensitive to disturbances.

Appendix B: Internal SCM Noise Sources

The total SCM output noise depends on the different noise source contributions in the full
frequency range (Coillot and Leroy 2012). At low frequency (i.e. ω ≪ 1/

√
LC), the spectral

density of the output noise PSDout can be expressed:

PSDout (f ) = (G1 × G2)
2
(

4kT R + e2
PA +

(

Zi2
PA

))

(12)

where G1 and G2 are respectively the gains of first and second stages of the preamplifier,
T is the temperature, k the Boltzmann constant, R the resistance of the primary coil of the
antenna, Z the antenna impedance, ePA and iPA the preamplifier input voltage and current
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respectively. Since the current noise is rather small (<100 fA/
√

Hz) the last term can be
neglected and the previous equation becomes:

PSDout (f ) = (G1 × G2)
2
(

4kT R + e2
PA

)

(13)

Using the SCM design parameters, we can get an estimation of the output voltage noise
at low frequency (

√
PSDout ) about: 165 µV/

√
Hz. Then, the quantization which permits to

convert the analog signal into a digital one must be suited to the output noise. This quantiza-
tion should permit the study of natural wave spectrum at level comparable to the noise floor
of the magnetometer. For this purpose, the low significant bit (LSB) of the analog-to-digital
converter (ADC) should be determined in such a way that the r.m.s value of the output noise
should be sufficient to cause a bit change at each sampling step with a high probability.

In other words, at each sampling, the probability p of bit change defined by

p(−LSB/2 < x < LSB/2) =
∫ LSB/2

−LSB/2
f (x)dx (14)

should be as close as possible to 1. In this expression, f (x) is a Gaussian law which is typical
of white noise (while low frequency noise is neglected in this approach) and writes f (x) =
1\(σ

√
2π) exp(−x2\(2σ 2)). The standard-deviation σ of the Gaussian law is equivalent to

the r.m.s value of the noise Vn determined by:

σ = Vn =

√

∫ Fmax

0
PSDout (f )df ≃

√

PSDout (f ) × Fmax (15)

where Fmax represents the maximum frequency of the analog electronic conditioner. In prac-
tice, the integration can be limited to the bandwidth of the preamplifier (i.e. the cutoff fre-
quency of the second stage, namely: Fmax = flp), especially because of the aliasing filtering
which will cut strongly the noise outside the frequency band. Practically, to digitize the noise
with a probability sufficiently high (close to 0.9) to be able to keep the noise fluctuations,
the digitization should verify

LSB

2
≤ Vn (16)

Under this consideration and assuming a white noise over the full frequency band (while
in practice the noise could be slightly reduced in the frequency range where the transfer
function flattened depending on Rf b value), the estimated value of the output r.m.s voltage
noise is approximately Vn = 12 mV. However, the amplifier output is scaled to the ADC
using a 6 dB attenuator, the RMS noise value becomes Vn = 6 mV. On the other hand, the
digitization of SCM is done using 16 bits over a dynamic range of ±2.5 V. Thus, the LSB
value is 76 ∼ µV and condition given by (16) is amply verified.
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