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The Searching over Separators Strategy To Solve 

Some NP-Hard Problems in Subexponentiai Time x 

Ro Z. Hwang,  2 R. C. Chang, 3'4 and  R. C. T. Lee 2'4 

Abstract. In this paper we propose a new strategy for designing algorithms, called the searching over 
separators strategy. Suppose that we have a problem where the divide-and-conquer strategy can not 
be applied directly. Yet, also suppose that in an optimal solution to ~his problem, there exists a separator 
which divides the input points into two parts, A d and Cd' in such a way that after solving these two 
subproblems with Ad and Cd as inputs, respectively, we can merge the respective subsotutions into an 
optimal solution. Let us further assume that this problem is an optimization problem. In this case our 
searching over separators strategy will use a separator generator to generate all possible separators. 
For each separator, the problem is solved by the divide-and-conquer strategy, ff the separator generator 
is guaranteed to generate the desired separator existing in an optimal solution, our searching over 
separators strategy will always produce an optimal solution. The performance of our approach will 
critically depend upon the performance of the separator generator: It will perform well if the tota! 
number of separators generated is relatively small. We apply this approach to solve the discrete 
Euclidean P-median problem (DEPM), the discrete Euclidean P-center problem (DEPC), the Euclidean 
P-center problem (EPC), and the Euclidean traveling salesperson problem (ETSP). We propose 
O(n ~ algorithms for the DEPM problem, the DEPC problem, and the EPC problem, and we 
propose an O(n ~ algorithm for the ETSP problem, where n is the number of input points. 

Key Words. Computational geometry, NP-hardness. 

1. Introduction. The divide-and-conquer  strategy is a wel l .known approach to 

designing efficient algorithms (Aho et al., 1976; Prepara ta  and  Shamos, t985; 

Horowitz  and Sahni, 1978; Bentley, 1976, 1980). The basic idea of this approach 

is as follows: 

(1) We divide the input  data  into two subsets Ad and Ca. 

(2) We then recursively solve the two subproblems with An and  Cd as input  data, 

respectively. 

(3) Finally, we find an efficient way to merge the solutions to the two subprobtems 

into the solut ion to the original one. 

A typical example is the closest-pair problem, which is defined as follows: given 

a set of n points  in the plane, find the closest pair  of these points. We can solve 

this problem by the divide-and-conquer  approach. First, we find a median  line 
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which divides the data into two subsets of equal size. We then find the closest 

pairs in An and Ca, respectively. Let the distance of the closest pair in A n (resp. 

Cn) be denoted as d, (resp. db), and d = min(d,, db). To find the closest pair of the 

entire set, we only have to examine the points in the strip which centers at the 

median line with 2" d as its width. For  more details, consult Bentley (1976) and 

Preparata and Shamos (1985). 

Many problems can be solved by the divide-and-conquer strategy (Horowitz 

and Sahni, 1978). It usually yields efficient polynomial algorithms. Unfortunately, 

not every problem can be solved efficiently by the divide-and-conquer approach. 

One of the reasons is that we cannot easily divide the input data into two unrelated 

subsets, such that the two subproblems with these two subsets as inputs can be 

solved independently and the solution later merged into an optimal solution. 

In this paper we point out that there may exist cases characterized by the 

following properties: 

(1) The problem is an NP-hard problem. Thus it is quite unlikely that it can be 
solved by the divide-and-conquer strategy directly. 

(2) On the other hand, as far as an optimal solution S is concerned, there exists 

a separator, called B. The separator B divides the input data D into two parts 

An and Ca. Then the final solution can be derived by merging the optimal 

solutions to subproblems A a and Ca. 

(3) The separator B has some kind of characteristic. All possible separators with 

such properties can be generated efficiently. 

If a problem has the above properties, then although it cannot be solved by the 

divide-and-conquer strategy, it can be solved by the searching over separators 
strategy which we now propose and explain in the following: 

Let us further assume that our problem is an optimization problem, and we are 

looking for an optimal solution with the minimum cost. The searching over 

separators strategy works as follows: 

The Searching over Separators Strategy 

Input: A set of input data D. 

Output: An optimal solution S and its cost C. 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Let us 

P points 

1. Let C:=  oo. 

2. Use some procedure, called Procedure A, to generate all possible 
separators. 

3. For each possible separator B, do: 

4. Use B to divide the input data D into two subsets An and C d. 

5. Recursively solve the subproblems with A n and C n as inputs, 

respectively. Let the solutions be A s and C s, respectively. 
6. Merge A S and C~ into S'. Let C' be the cost associated with S'. 
7. tf C > C', then S :=  S', C :=  C'. 

8. Return solution S as an optimal solution and the optimal cost C. 

consider a case where we are given a set of n points and we are to select 

out of them to form an optimal solution. A straightforward approach is 
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Therefore, the time complexity of this straightforward approach is at least 

Now suppose that we apply the searching over separators strategy to solve this 

problem. Let T(n, P) be the time complexity of solving this problem by using the 

searching over separators approach. Assume that the separator B has some kind 

of characteristic, such that, after dividing, the time complexity of each subproblem 

is bounded by T(n, ~.P) and the total number of possible separators and the 

time needed to generate these separators are both bounded by O(nC"/g), Where 
0 < e < 1 and c is some constant. Then we have the following formula: 

T(n, P) <_ O(n c ' /~)  . 2" T(n, c~ . P) 

<_ O(nC"/g" 2"n~"J~'g), 2" T(n, e2.p)  

= O(n~'/~a +~/g))-2 �9 T(n, c~Z:P) 

<_ O(n ~ ~,~(1 +,/;+,/~+...~) 

< O(n~ 

Compared with the straightforward approach, the searching over separators 

strategy achieves a better performance. 

In order for the above searching over separators strategy to work. Procedure 

A must be able to produce the particular separator B existing in an optimal 

solution as described above. If it does, the searching over separators strategy is 

guaranteed to have examined an optimal solution and correctly present it as a 

solution. 

In this paper we show that the searching over separators strategy can be used 

to solve four geometry problems: the discrete Euclidean P-median problem 

(DEPM), the discrete Euclidean P-center problem (DEPC), the Euclidean P-center 

problem (EPC), and the Euclidean traveling salesperson problem (ETSP). 

This paper is organized as follows: In Section 2 we solve the DEPM problem 

and the DEPC problems. In Section 3 we extend the method in Section 2 to sotve 
the EPC problem. In Section 4 we solve the ETSP problem. Finally, the concluding 

remarks are stated in Section 5. 

2. The Algorithm To Solve the Discrete Euclidean P-Median Problem 

and the Discrete Euclidean P-Center Problem 

2.1. Preliminaries. The EPM problem is defined as follows: given n demand 

points on the plane, the EPM problem is to select P locations as supply points, 
such that the sum of distances from all demand points to their respective nearest 
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supply points is minimized. The DEPM problem is its related problem, in which 
the supply points must be selected from the set of the given demand points. There 
are many real-world applications of the DEPM problem. One of these applications 
is to choose P locations to build warehouses, such that the sum of distances from 
all stores to their respective nearest selected warehouses is minimized. 

Formally we can formulate the DEPM problem as follows: given a set D = 
{dr, d2,..., dn} of demand points, find a set S of P supply points from the set of 
demand points, to minimize the following cost function: 

dieD 

where l(di, s j) is the Euclidean distance between di and sj. 

Megiddo and Supowit (1984) proved that the EPM problem is an NP-hard 
problem. Papadimitriou (1981) proved the NP-hardness of the DEPM problem. 

The DEPM problem can be solved by enumerating all possible combinations 
of P points as the supply points and selecting the set of points which minimizes 
the total sum of distances from the n demand points to their respective nearest 
supply points. This approach takes O(P. n P+ 1) time (Papadimitriou, 1981). In this 
paper we solve the DEPM problem in O(n ~ time. 

2.2. The Generalized Discrete Euclidean P-Median Problem. For reasons which 
will become clear later, we try to solve a generalized version of the DEPM problem 
instead of the original problem. Let us now modify the original DEPM problem 
into the 9eneralized discrete Euclidean P-median problem (GDEPM). The GDEPM 
problem is defined as follows: given a set D of n demand points, a set fl ~ D of 
fixed supply points, and the number P, we have to select a set S of P supply points 
from D, where fl and S are disjoint, such that 

I min {l(di, sj)}t is minimized. 
di~Dks:~S~fl ) 

To distinguish the different problems, we use the GDEPM-(P, D, fl) problem to 
denote the G D E P M  problem with P, D, fi as inputs. 

We can immediately see that the original DEPM problem is a special case of 
the GDEPM problem in which fl is an empty set. Note that we have to distinguish 
two kinds of supply points. Thus, throughout the rest of this paper, we use fi to 
denote the set of the fixed supply points, and use S to denote the set of the unfixed 
supply points. 

Essentially, we show that, for an optimal solution S to the GDEPM problem, 
there exists a cycle, named the B-cycle. Let B s c S denote the set of unfixed supply 
points in the B-cycle. The B-cycle has the following properties: 

(1) fBs[ is no more than x/8 .(P + 3). (Note that [Bs[ denotes the number of points 
in the set [Bs[.) 

(2) The B-cycle divides the other unfixed supply points in S into the interior part 
A s and the exterior part C~, where ]As], I Cs[ < 2P/3. 
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(3) The B-cycle divides D into interior part Ad and exterior part Ca. For each 

demand point in A d (resp. Ca), its nearest supply point is in A, ~resp. Cs) or 
B~ ~/~. 

The third property implies that we can divide the original problem into two 

subproblems with ([A~I, Aa, Bs w fi) and (]C~I, Ca, BsW 13) as inputs. We can see 

that the solution to the original problem can be obtained by merging the solutions 

to the two subproblems. The first property guarantees that the number of possible 

separators can be bounded by a tolerable value. The second property guarantees 

that the number unfixed supply points in each subproblem is at most 2P/3. 

To show the existence of the B-cycle, we first note that we can construct a 

Delaunay triangulation (Preparata and Shamos. 1985) out of the unfixed supply 

points of an optimal solution with some special arrangement, such that this 

Delaunay triangulation is a maximal planar graph in which very face is of size 3 

(Nishizeki and Chiba, 1988). Therefore we can use the simple cycle separator 

theorem proved by Miller (1986), which was m turn based upon the planar 

separator theorem proved by Lipton and Tarjan (Mehlhorn, 1984; Lipton and 

Tarjan, 1979). For a comprehensive discussion of this topic~ consult Nishizeki and 

Chiba (1988). 

Miller (1986) assumed that we were given a planar graph G with nonnegative 

weights assigned to vertices, faces, and edges which sum to 1. For our  case, we 

simply assume that the weights of faces and edges are all zeros. In other words. 

weights are assigned only to vertices. For a simple cycle B of G, the size of this 

cycle is the number of the vertices on B. Note that a simple cycle of G will always 

divide G into two parts, the interior A and the exterior C. The weight of the 

interior part (resp. the exterior part) is the sum of weights of vertices in the interior 

part (resp. the exterior part). Figure 2.1 shows a planar graph and the thick edges 

form a simple cycle. For  this case, the size of the cycle, the weight of its interior, 

and the weight of its exterior are 7, 0.35, and 0.45, respectively. 

The theorem proved by Miller (1986) is now stated as follows. (Note that it is 

slightly different from that original one stated by Miller (1986)0 because we do not 

assign weights to faces and edges.) 

0.05 0.0.5 

0.02 ~ 0.05 

C O.Ot 

O. 
0.05 

Fig. 2.1. A planar graph. The weight of A = 0.35 < ~ and the weight of C = 0.45 < 2. 
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THEOREM 2.1 (Miller, 1986). I f  G is a 2-connected planar graph with all nonnegative 

weights assigned to vertices which sum to 1, there exists a simple cycle, called the 

simple cycle separator, of size at most 2 ~ ,  dividing the graph into interior 

and exterior two parts, such that the sum of the weights in both parts is no more 

than two-thirds, where d is the maximum face size (the face size is the number of 

edges contained in the facial cycle) and k is the number of vertices in G. 

In our case we are interested in the maximal planar graph (Nishizeki and Chiba, 

1988), where d is equal to 3. Hence the size of the separator is accordingly x / ~ .  
Given a set S of P unfixed supply points, the Delaunay triangulation of S cannot 

be a maximal planar graph, because the outer face is not necessarily of size 3. 
There is a simple way to change the Delaunay triangulation graph into a maximal 
planar graph, by adding a set I of three extra points to form a triangle enclosing 
all points in S. Let S' = S w I. The Delaunay triangulation of S' is a maximal 
planar graph, because its outer face contains exactly three edges and other faces 
are triangulated. Hence we can apply Theorem 2.1 to the Delaunay triangulation 
of S'. 

In our algorithm we treat the three points of the triangle as supply points, and 
they are not related to any demand point. We define the enclosing I as follows: 
the enclosing points are three points which form a triangular boundary enclosing 
all points, such that no demand point's distance to its closest supply point is longer 
than its distance to any of the enclosing points. We can see that it is trivial to 
find these enclosing points. We simply select them far enough from any of the 
demand points. 

By applying Theorem 2.1 to S', we can see that there exists a simple cycle 

separator B with size less than x f ~  + 3) which divides the Delaunay triangula- 
tion graph of S' into the interior and exterior parts, such that the number of 
unfixed supply points in each part is less than 2P/3. This result is derived by 
assigning zero weights to the enclosing points and equal weights to the unfixed 
supply points. 

Nevertheless, Miller's simple cycle separator theorem cannot guarantee that the 
sets of D and S divided by the simple cycle separator satisfy the third property of 
the B-cycle. This is due to the fact that we construct our Delaunay triangulation 
graph out of the unfixed supply points in S only and totally ignore the demand 

points in D. In Figure 2.2 we show an example. In this example, there exists a 

C 

" 

" ~  ~"v-~" Its nearest supply point 
" / .~" isinAs 

A V o r o  simple cycle separator 

Fig. 2.2. An example of a Delaunay triangulation graph. II, demand points; 0, supply points. 
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demand point lying in Cd and its closest supply point is in A,, if we treat the 
simple cycle separator as the desired B-cycle. 

In the following we define the rules which construct the B-cycle from the smaple 
cycle separator B. Let Vor(S') denote the Voronoi diagram of S' (Voronoi, 1907; 
Preparata and Shamos, 1985; Edelsbrunner, 1987~ and let DT(S'~ denote the 
Delaunay triangulation of S' (Delaunay, 1934; Preparata and Shamos. 1985; 
Edelsbrunner, 1987). Given a simple cycle separator B on DT{S'), the correspond- 
ing B-cycle is defined as follows: for every connected pair of supply points s~ and 
sj in the simple cycle separator B, find its associated edge e in the Vor(S'). (Note 
that for any edge on the DT(S'), there is an associated edge on Vor(S').) Let one 
of the two points of the edge e be v~j. Draw sivlj and vi~sj. This new corresponding 
cycle, consisting of all such siv~fs and viisj's, is called the B-cycle of S'. 

Consider Figure 2.3. Figure 2.3(a) shows a simple cycle separator and Figure 
2.3(b) shows the corresponding B-cycle. 

It is obvious that the B-cycle, constructed by the above rules, satisfies the first 
property, that is, the number of unfixed supply points in the B-cycle is less than 

,,/8"(P + 3). Now we want to show the second property. From Miller's simple 
cycle separator, we know that the sets of unfixed supply points divided bv the 
simple cycle separator satisfy the second property. Now we want to show. in the 
following lemma, that the sets of unfixed supply points divided by a simple cycle 
separator B are identical to that divided by its corresponding B-cycle. Yhis way 
we can prove the second property. 

LEMMA 2.1. The sets of unfixed supply points in the interior and exterior parrs 

partitioned by the simple separator cycle B and its corresponding B-cycle are 

identical. 

(a) 

Fig. 2.3. (a) A simple cycle separator and (b) 

. 

/ 
! 

\ 

the corresponding B-cycle. 
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Fig. 2.4. No unfixed supply point in the shaded area. 

PROOF. Consider any edge sisi in the separator cycle B. Let e be the Voronoi 
edge associated with sisj. Let vq be one of the vertices on e. Consider si, si, and 
v~j, as shown in Figure 2.4. According to Theorem 5.8 of Preparata and Shamos 
(1985), there is no unfixed supply point in this triangle. Therefore, if we replace 
sls~ by s~vij and v~jsi, the partition of unfixed supply points is not changed. [] 

The last and most important property is the third one. Now we want to show 
that, for each demand point in Ae (resp. Cd), its nearest supply point is in A~ (resp. 
Cs) or B~ u [3. 

THEOREM 2.2. Given an instance of GDEPM(P, D, [3) or GDEPC(P, D, [3), its 

optimal solution S, and the corresponding B-cycle, let B~ be the set of supply points 

on the B-cycle. The B-cycle divides D (resp. S) into interior and exterior two parts, 

called Ad and C~ (resp. A~ and C~). Then, for each demand point in A a (resp. Ca), its 

nearest supply point is in A~ (resp. C~) or B~ ~ ft. 

PROOF. To show that, for each demand point in Aa (resp. Cd), its nearest supply 
point belongs to A~ (resp. C~) or fl ~ B~, we first use the fact that no edge in the 
B-cycle crosses V(s') where s'~B~ (where V(s) denotes the Voronoi polygon 
associated with s, s e S). This fact is due to the rules constructing the B-cycle. 

Let d ~ A d and let the nearest supply point Of d be s e C~. Hence d must be on 
V(s), if Vor(S w I) is constructed, where 1 is the set of enclosing points. Because d 
is in the interior part of the B-cycle and s is in the exterior part, there must exist 
some edges of the B-cycle passing through V(s). However, from the above fact of 
the B-cycle, the edges can only cross the polygon associated with the unfixed 
supply points in B~. Therefore no such a demand point d exists. This means that 
the nearest supply point of any demand point in A d (resp. Ce) must be in A~ (resp. 
C~) or B~ u fi. [] 

The above theorem certifies that the two subproblems are independent. This 
independent property is very important because it guarantees the correctness of 
our searching over separators approach. 

Now let us show a simple example to explain how to divide the input points 
by using the B-cycle. In this example we assume that S' is given as in Figure 2.5 

and P is 18. The largest size of the B-cycle is therefore at most ,,/8 "(18 + 3). In 
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L. �9 II  
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Fig. 2.5. An example of how to divide input points by using a B-cycle. n, demand points; O, supply 
points. 

Figure 2.5 there are a set of demand points (denoted as squares), a set of unfixed 
supply points (drawn as dots), the enclosing points, and the B-cycle of the Delaunay 
triangulation of S', constructed out of two enclosing points and four unfixed supply 
points. The B-cycle divides the points into two parts. We can see that, for each 
demand point in the interior (resp. exterior) part of the B-cycle, its nearest supply 
point is either in the interior (resp. exterior) or on the B-cycle. 

2.3. Generating Possible B-Cycles. In the preceding subsection we showed the 
properties and the existence of a B-cycle. In this section we introduce two 
procedures, which will generate possible B-cycles, one of which is the desired 
B-cycle. 

Let us first discuss the problem of generating a simple cycle separator. A simple 

cycle separator consists of less than ~ + 3) points. We exhaustively try all 
possible ways of selecting i points out of n + 3 points (including the three enclosing 

points), where i ranges from 3 to ,fi(-P + 3) (for a simple cycle needs at least three 
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points). (Thus, there are at most 

ways to select i points.) For each set of i points, we construct a complete graph. 
Out of this complete graph, we select any i edges and test whether they form a 
simple cycle or not. (Since there are i" (i - 1) edges in the graph, there are at most 

0 possible selections. To test whether they form a simple cycle needs 
l 

at most 0(i2).) One of these cycles must be the desired simple cycle separator. 
From the above discussion, we know that the time needed to generate all possible 
simple cycle separators is 

O ( ( ( n + 3 )  ~ . ~ ( i . ( i - - 1 ) ) . i 2 ) = O ( n C l . j ~ + c 2 ) ,  

\ \ ~ / 8 ( P  + 3)/ k i 

where c 1 and C 2 are some constants. 
Next, we should try to construct the corresponding B-cycle of a given simple 

cycle separator by using the rules defined in Section 2.2. Those rules tell us that 
we can construct the B-cycle by connecting all such slviSs and vijsj's for each edge 
s~sj in the simple cycle, where vlj is the Voronoi polygon shared by V(si) and V(sj), 
where V(si) (resp. V(sj)) is the Voronoi polygon associated with si (resp. st). We 
cannot find vii directly, for V(sl) and V(sj) are unknown. Therefore we propose an 
exhaustive search approach to find all possible candidates of vii. The Voronoi 
vertex vij must be the center of the circle formed by s~, sj and the third unknown 
point Sk. We know that Sk ~ S w I. Therefore Sk ~ D u I. We may try all points in 
D ~ I as the candidates of Sk. This way, for each edge sis~ in the simple cycle, we 
have ID u I[ = (n + 3) possible viSs, by finding the center of the circumscribed 

circles defined by the three points s i, s j, and any point in D ~ I. 
Consider the time complexity of the above steps. Step 1 takes 

( ~ + 3 )  " ( i + 1 ) ! < ( n + 3 ) i + 1 + 1  

steps. Steps 2-8 take O(i 2) time. The time needed in this procedure is 

O((n + 3) '+ 1. i2). 

Since i + 1 is the number of points in the simple cycle and (i + 1) < x / ~  + 3), 
we can see that the time complexity is bounded by O(nC3"/g+c4), where c 3 and c 4 
are some constants. 

In the next section we show the entire algorithm to solve the GDEPM problem, 
by using the above two procedures. 
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2.4. The Algorithm and Its Time Complexity~ In this section we present an 

algorithm to solve the G D E P M  problem. This algorithm is called Algorithm 

GDEPM.  

Algorithm GDEPM(P,  D,/3, S, C). (An algorithm ro solve the G D E P M  

problem based upon the search over separators strategy.) 

Input: D, a set of n demand points;/~, a set of fixed supply points; and 

P; a number. 
Output: S, a set of supply points which is an optimal solution to the 

G D E P M  prob!em; C, the optimal cost of the G D E P M  problem. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Step 8. 

Step 9. 

Step 10. 

Step 11. 

Step 12. 

Step 13. 

Let C = oo. 

If P _< 3, then do steps 3 5' 

For each subset S' c D of P points do: 

For all points in D, find their corresponding nearest points 

in S' w ~ and sum up all these weighted distances to C'. 

I f C > C ' , t h e n C = C ' a n d S - S ' .  

Else do steps %13: 

Generate all possible B-cycles (using the method discussed in 

the above section). 

For  each possible B-cycle, we divide D into the interior 

part A} and the exterior part C5, and do steps 9-13: 

For k = 0 to 2P/3 do: 

I f ( P -  i -  k) <_ 2P/3 do: 

Call GDEPM(k,  AS, B'~ ,~/3, S~, C 0. 

Call G D E P M ( P  ~ i - k, C5, B; ~/3, $2, C2). 

I f C  t + C  2 < C , t h e n S - S ~ w S  2,~B'~and 

C = C 1 -~ C 2 . 

Now let us discuss the time complexity of Algorithm GDEPM.  Let the total 

time complexity of this algorithm be T(P). We can see that steps 2-5 take 

O(n e+l .P), P < 3. Step 7 needs O(n ~c',/g+~)+(c3"j~+c4)) = O(nC~/g+c6), as described 

in the above section, where c 5 = c 1 + c 3 and c 6 = c 2 -,- c,~. Steps 9-13 are bounded 

by 0((2P/3). 2. T(2P/3)) _< O(2n. T(2P/3)), for P _< n. Therefore the time complex- 

ity from step 7 to step 13 is bounded by O(n c~,/g+c~ 1). T(2P/3). Hence we have the 

following formula: 

{<O(n~,/g+~+l).T(2P/3) when P > 3. 

T(P) O(ne+ 1. p) ~ O(n 4) when P < 3. 

When P > 3, 

T(P) < O(n c~'/g+~+ t). T(2P/3) 

< O(n~,,pf+ ~ + ~). O(n~,,~2/Y~ + c~ + 1). T(4P/9)) 

' + t ) " |og3/2 P)  < O(n~S(,/p + ,/2e/3 + ,/4e/9 -..) + (c6 + 

< O(nCS.(1/(1-,j~/3)).,~-+lc6+l)-log3/2e) = O(rlO(,/Pl). 

Therefore we conclude that T(P) = O(n~ 
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2.5. The Discrete Euclidean P-Center Problem. After showing how the D EP M 

problem can be solved by the searching over separators strategy, in this section 

we show that the DEPC problem can be solved in exactly the same way. 

The DEPC problem is defined as follows: given a set D = {dl, d2, . . .  ,dn} of 
demand points, find a set S of P supply points from D, in order to minimize 

Megiddo and Supowit (1984) proved that the EPC problem is NP-hard. Drezner 

proposed an O(n 2v+ 1 "log n) algorithm (Drezner, 1984) for the EPC problem, which 

can be improved to O(n 2v-~.log n) by combining it with the result that the 

Euclidean 1-center problem can be solved in O(n) time (Megiddo, 1983). The way 

of combining these two results is similar to that of Drezner (1987). 

We can see that the DEPC problem is almost exactly the same as the D EP M 

problem. We need to define a 9eneralized discrete Euclidean P-center problem as 

follows: given a set D of n demand points, a set/~ c D of fixed supply points, and 

a number P, select a set S of P supply points from D where fl and S are disjoint, 

such that 

is minimized. 

We may denote the above problem as the GDEPC-(P,  D,/~) problem or the 

GDEP C  problem. Thus, if we change step 13 of algorithm D E P M  to be as follows: 

Step 13. If max{C1, Cz} < C, then S = S 1 u S 2 t j B s  and 

C = max{C1, C2}. 

then algorithm DEPM can also be used to solve the DEPC problem with time 
complexity O(n~ 

3. The Euclidean P-Center Problem 

3.1. Drezner's Algorithm. The EPC problem is similar to the DEPC problem, 

except in this case the supply points do not have to be chosen from demand points. 

Yet, by using Drezner's algorithm (Drezner, 1984), we can easily transfer this 
problem to a problem similar to the DEPC problem and thus the search over 

separators strategy can be used again. 
Note that P circles of radius r can cover n demand points if and only if there 

are P supply points and the longest distance between each demand point and its 

closest supply points is r. Drezner (1984) pointed out that a circle is defined by 
one, two, or three points. For  the case of circles defined by three points, these 

three points define the boundary of the smallest circle enclosing all three of them. 
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For  the case defined by two points, they form the diameter of this circte. A circle 

defined by only one point  is a degenerated case, where the radius of this circle 

can be considered as zero and the entire circle contracts to one point. Hence, we 

( ~ )  ( n )  and ( ~ )  circles defined can simply enumerate all of  the circles. There are ' 2 ' 

by one, two. and three points, respectively. We call these circles the bounding circles. 

Given any solution to the P-center problem, the largest radius r (the longest of 

all distances between each demand point  and its closest supply point) must  be 

equal to the radius of one of  the bounding  circles bounded  by two or three points. 

Hence, if we have an algori thm which can determine whether P circles of  a given 

radius r can cover all these points, we can perform a binary search over all radii 

of the bounding circles to find an optimal one. 

Let us sort all of the radii of  the bounding  circles. Then we choose one of  them, 

say r, and we ask the following question: can P circles of radius r cover the n 

points? To answer this question, apparent ly we have to determine where these P 

circles should be placed. 

Drezner  (1984) also showed that there are only O(n 2) possible supply points for 

a given radius r. He claimed that there exists a set Sp of O(n 2) possible supply 

points, such that if P circles of  radius r can cover the n demand points, then we 

can find P circles centered at some of the points in Sp which can cover the n 

demand points. The points in set Sp are called the possible supply points, found 

as follows: For  any two points in the n demand  points, we find the two circles of 

radius r passing through these two points. The set Sp is the union of  the centers 

of these circles and the n demand points. 

N o w  let us see why Drezner 's  claim holds. Assume that  we have found that a 

set C = {cl, c2 . . . . .  Ce} of circles of radius r can cover all n demand points. If there 

are more  than two demand  points on the boundary  of  circle ci ~ C, then the center 

of ci belongs to Sp. If  there are less than two demand points on the boundary  of 

circle cj ~ C, then there are two possibilities. One is that  this circle covers only one 

demand point. In this case we move this circle so that it centers at this demand 

point. Another  case is that this circle covers more  than two demand points. In 

this case we can move this circle until two demand points touch the boundary  of 

this circle. Again this new center belongs to Sp. We can see that these new circles 

cover the same set of  demand points as the old circles do. So we have a new 

solution and the centers of the circles in this solution are all points in Sp. 

Therefore we can select any P points in Sp and then check whether these circles 

of radius r centered at these P points cover all of  the n demand points. Since there 

are O(n 2) possible supply points, we have (,O 2) possible selections, and it takes 

O(n) time to check whether these P circles cover all points, and O(log n 3) = O(log n) 

to do the binary search~ So the time complexity is O(n 2e + 1. log hi. 

3.2. The Searehin9 over Separators Strategy To Solve the (P, D, Sp) Circle Cover 

Optimization Problem, As we discussed above, our  basic problem is as follows: 

given a set D of  n demand points, a radius r, and a set Sp of O(n z) possible supply 
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points (generated by using Drezner's algorithm (Drezner, 1984)), determine 
whether there exists a set S c Sp of P supply points, such that the P circles of 
radius r centered at these P points can cover the n demand points. We call this 
problem the (P, D, r, Sp) circle cover decision problem (the (P, D, r, Sp) CCD 
problem). 

In order to solve the above (P, D, r, Sv) CCD problem, we may first solve the 
following (P, D, Sp) circle cover optimization problem (the (P, D, Sp) CCO problem): 
given a set D of n demand points and a set Sp of O(n 2) possible supply points, find 
the smallest rs, such that P circles of radius rs centered at some P points selected 
from Sp can cover the n demand points. We can see that if this r S is longer than 
r, then the answer to the (P, D, r, Sp) CCD problem is "false"; otherwise it is "true." 
Thus, if the (P, D, Sv) CCO problem is solved, the (P, D, r, Sv) CCD problem is 
also solved. 

It can be easily seen that the (P, D, Sp) CCO problem is similar to the 
GDEPC-(P, D, fl) problem except in this case there are O(n 2) points in Sv and we 
select the supply points from Sp, instead of D. Thus the algorithm for solving the 
GDEPC problem can be used to solve the (P, D, Sp) CCO problem with time 
complexity O(n~ 

4. The Euclidean Traveling Salesperson Problem 

4.1. Preliminaries. In the above sections we described how to apply the searching 
over separators strategy to the DEPC problem. We now show how the searching 
over separators strategy can be applied to solve the Euclidean traveling salesperson 
(ETSP) problem. In this problem, given n points in the plane, we are asked to find 
a shortest cycle out of these n points. This problem is an NP-hard problem 
(Papadimitriou, 1977; Papadimitriou and Steiglitz, 1976) and it can be solved by 
the dynamic programing strategy in time O(2"n 2) (Held and Karp, 1962; Horowitz 
and Sahni, 1978; LaMer et al., 1985). A very thorough review of many algorithms 
for this problem can be found in Lawler et al. (1985). We show that through the 
searching over separators strategy, we can obtain an algorithm for the ETSP 
problem with O(n ~ time. 

4.2. The Generalized Euclidean Traveling Salesperson Problem. As we did in 
solving the DEPM problem, we first generalize our ETSP problem into the 
following: Given a set V = {vl, Va,..., v,} of points and a set 

T =  {(t,, tl),(t2, t~), . . . , ( t~,  t~)} 

of terminal pairs, we want to find a set of m paths, satisfying the following 
conditions: 

(1) Every path starts from ti and returns to t'i, where 1 <_ i < m. 
(2) Every point in V is included in exactly one of these paths. 
(3) The total length of these paths is minimized. 
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e 

Fig. 4.1. An optimal solution to the ETSP problem. 

We may call the generalized Euclidean traveling salesperson problem ! the G E T S P  

problem) with such V and T as inputs the (V. T~-GETSP problem, When V = 

{v2, v3, . . . ,  v,} and T = {(v~, Vl)}, this G E T S P  problem is degenerated to the ETSP  

problem with v 1 . . . . .  v, as inputs. Again, for reasons which will become clear later, 

we try to solve the G E T S P  problem. 

Let us imagine that  given an ETSP problem with a set V of  n points as input 

and we have an optimal solution to this problem. We first show that, based upon 

the optimal solution, we can find a cycle separator properly dividing the input 

sets V into two parts of inputs V~, T~ and V~, T~ of the G E T S P  problems such that. 

if we solve the two G E T S P  problems and then merge the solutions, we can obtain 

an optimal solution of the original one. 

Consider Figure 4.1, which shows a set of points and an optimal solution to 

the ETSP  problem. We then add a set I = {I~, 12, 13} of three enclosing points 

which inscribe all points m V, and construct  a tr iangulation out  of the points in 

V u I where every edge in the optimal solution is also an edge in this triangulation. 

Since this tr iangulation is a maximal planar graph, let the points in I be zero 

weighted vertices and lel the others be equal weighted vertices. Then from Miller's 

simple cycle separator  theorem (Miller, 19861, there exists a simple cycle separator 

which divides the points in V into the interior part  V~ and the exterior part  V~, 

respectively, such that  there are no more than ,,/8" {n -,- 3t vertices in the simple 

cycle separator, [Vaj < 2n/3 and ]V~ _< 2n/3, where n is the number  of points in v 

and in this case n = 6. Here the three input points, namely, a, c, and e are on the 

simple cycle separator, as shown in Figure 4.2. Thus  we now have two G E T S P  

problems, defined as follows: 

(1) The interior subproblem with V~ = {f},  T, = {(e, a)} as inputs. 

(2) The exterior subproblem with V~ = {b, d}, T~ = {(a, c), tc, e)} as inputs. 

After solving the above two G E T S P  problems, we obtain the three paths. 

Pl = (a, b, c), P2 - (c, d, el, and P3 = (e, f ,  a). Using a simple mergmg process, we 

can derive the original optimal solution p - (a, b, c, d, e, f ,  m. 

The above example shows how to divide the ETSP  problem into two G E T S P  

problems. For  solving the subproblems, we would recursively divide these G E T S P  

problems. It is not  difficult to see that the G E T S P  problem can also be divided 

by the same principle, except that  there is an extra input data T In this new 

dividing process, we construct  the tr iangulation out of the points in V, 1. and T. 

Also let the points in I be zero weighted vertices and let the others be equal 
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Fig. 4.2. A simple cycle separator showing the three input points a, c, and e. 

413 

weighted vertices. Then, from Miller's simple cycle separator theorem (Miller, 
1986), there exists a simple cycle which divides the points in V and T into the 
interior parts V,, T'a and the exterior parts V~, T'c, respectively, such that there are 

no more than x/8. (n + 2m + 3) vertices in the simple cycle and I V,t + I Z'a] <- 

2(n + 2m)/3, I V~I + I T;] -< 2(n + 2m)/3, where 2m is the number of points in T. 
In the following we present a dividing process, which would decompose a 

(V, T)-GETSP problem into two subproblems. We later show that if we solve these 
two subproblems and then merge the two solutions, we would obtain an optimal 
solution to the original (V, T)-GETSP problem. As explained later, to execute this 
dividing process we must have an optimal solution to the (V, T)-GETSP problem. 

A Process To Divide a (V, T)-GETSP Problem into Two Subprobiems 

Input: A (K T)-GETSP problem, where V = {Vx, U 2 , . . .  , Vn} and T = 
{(tl, t]), (t 2, t~) . . . . .  (tin, t;,)}, and an optimal solution to this problem, 

namely, a set S of m paths Pl, P2, . . . ,  Pro" 
Output: Two subproblems: the (V~, Tb)-GETSP problem and the (V~, T~)- 
GETSP problem, such that the merging of the solutions to the above 
two problems will result in an optimal solution to the (V, T)-GETSP 
problem. 

Step 1. Find the set I = {I 1, 12, I3} of three points which inscribes all 
points in V and T. 

Step 2. Construct a triangulation graph out of these points in V, T, and 
I, such that each edge in the optimal solution is an edge in this 
triangulation. 

Step 3. Let the weights of points in I be zero and let others be any 
nonzero constant. Use a simple cycle separator B to divide V 
(resp. the points in T) into the interior part V~ (resp. T'a) and the 
exterior part V~ (resp. T;). Lct Vb be the points on the simple cycle 
separator B which belong to V. 



414 R.Z. Hwang, R. C. Chang, and R. C. T. Lee 

Step 4. Let T~ = T~ = ~ .  
Step 5. For  i = 1 to rn do: 

Step 6. Call Procedure 

DIVIDE_TERMINAL(pl,  V,, V~, T;, T;, Vb, T~, T~). 

Step 7. T, = T~ w r / ,  T~ = T~ tj T~. 

Step 8. Output two subproblems: the (V~, T~)-GETSP problem and the 
(V~, T~)-GETSP problem. 

In the above process the critical procedure is Procedure D I V I D E T E R M I N A L .  

This is a linear scan procedure, which scans the points along a path. If the point 

being scanned is a point in the simple cycle separator, then some appropriate 

action is taken. This procedure is now described: 

Procedure DIVIDE TERMINAL(pl, V~, Vc, T;, T;, Vb, T~, F~) 

I n p u t :  A path Pi = (vii ,  vi2 . . . . .  vii), V,,  V~, T'a, T'~, and Vb. 
O u t p u t :  r~, and Tic where r / and T~ are both sets of terminal pairs. 

Step 1. v' = va ,  Ti~ = T~ = ~ .  

Step 2. For  k = 2 to j do: 

Step 3, If vik e Vb or k = j, then: 

Step 4. If (v' ~ T~) o r  (l)ik e r'~) o r  (1)i( k_ 1) ~ Va) then: 
Step 5. T / = T~ u {(v', vik)} 

Step 6. Else 
= u 

Step 7. v' = vik. 

In the following we show an example to illustrate how Procedure D I V I D E -  

TERMINAL works. Consider Figure 4.3. We have a path Pi = (a, b, c, d, e, f ,  g, h), 

where a, h e T'c, b, e, g e Vb, c, d e V~, and f ~ V~. Applying the above procedure. 

we obtain T~ = {(a, b), (e, g), (9, h)} and T~ = {(b, e)}. We now show that after we 
solve the two subproblems, we can merge the two solutions and obtain an optimal 

solution to the original problem. 
Note that in the dividing process, Procedure DIVIDE_TERMINAL sequenti- 

ally divides a path into sets of terminal points. Thus, for path Pi, let us assume 

that the terminal pairs resulting in both interior and exterior parts from applying 

the above procedure a r e  ( t i l  , t'il), (ti2 , t'i2) . . . . .  (t~j, tlj), where ril and t~j a r e  the 
starting and terminating points ofpi, respectively. After solving the (Va, T,)-GETSP 

El a a simple cycle separator 

, " Z V  
f 

Fig. 4.3. Path Pi = (a, b, c, d, e, f ,  g, h), where a, h e T;, b, e, g s Vb, c, d e V,, and f s V~. 
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problem and the (V~, T~)-GETSP problem, til is connected to th through a path, 
t~2 is connected to t'~2 through a path, and so on. Moreover, ti~, which is a starting 
point of p~, is connected to t',j, which is a terminating point of pi. In other words, 
after solving the (V~, Ta)-GETSP problem and the (V~, T~)-GETSP problem, we 
have p'~, p~, p ; , . . . ,  p" in which the starting point and terminating point of P'i are 
the same as those of p~ of the optimal solution to the (V, T)-GETSP problem. We 
may conclude that after solving the (V,, T,)-GETSP problem and the (V~, T~)- 
GETSP problem, we have obtained a solution to the (K T)-GETSP problem. We 
now prove that this solution is an optimal solution. 

Let S, and Sc denote optimal solutions to the (V~, T~)-GETSP problem and the 
(V~, T~)-GETSP problem, respectively. Let S denote an optimal solution to the 
(V, T)-GETSP problem, and let COST(S) denote the cost of solution S. We show 
that COST(S,)+ COST(S~)= COST(S). Assume otherwise. Then there are two 

cases: 

Case 1." COST(S,) + COST(So) < COST(S). This is impossible because COST(S) 
is the cost of an optimal solution to the (V, T)-GETSP problem. 

Case 2: COST(S,) + COST(S~) > COST(S). Let us decompose the optimal solu- 
tion into two parts, one relating to points in the (V~, T~)-GETSP problem, denoted 
as S'a, and the other relating to points in the (V~, T~)-GETSP problem, denoted as 
S;. Then COST(S) = COST(S;) + COST(S;). In other words, we have 

COST(S,) + COST(So) > COST(S;) + COST(S;). 

Without loss of generality, we may assume that COST(S~) > COST(S'a). Again, 
this is impossible because COST(S,) corresponds to the cost of an optimal solution 

to the (V,, T,)-GETSP problem. 
In conclusion, we have the following lemma: 

LEMMA 4.1. Let S, and Sc denote the costs of optimal solutions to the (V,, T~)- 

GETSP problem and (V~, T~)-GETSP problem, respectively, and let S denote an 

optimal solution to the (V, T)-GETSP problem. Then 

COST(S) = COST(Sa) + COST(So). 

There is still one problem which we have to solve. Note that after solving two 
(V, T)-GETSP problems, we get a set of paths. These paths cannot intersect with 
one another because Miller's theorem can only be applied to the planar graph. It 
is obvious that there is no intersection in the optimal solution to the ETSP 
problem. Assume that S is an optimal solution to some ETSP problem, vlv2 and 
v3v 4 are in S, and they intersect each other, then we can draw vlv3, VzV, ~ or VxV4, 

v2v 3 instead of VlV 2, v3v4 in S. Both will derive a lower cost than the original one 
and one of them must be a legal solution. So we have another legal solution with 
lower cost than S. Therefore any cycle with intersections must not be an optimal 
solution to the ETSP problem. 

We next show that if the initial problem is an ETSP problem~ then at each stage 
after solving two GETSP problems, the resulting paths do not intersect and 
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Miller 's theorem can always be applied. Assume otherwise. At a certain stage, two 

paths intersect after solving two G E T S P  problems. Then after we merge these 

paths back  recursively, we finally obtain a cycle with intersections. This is 

impossible because our  initial p rob lem is an ETSP  problem,  and its solution 

should be a cycle without  intersections. 

4.3. Generat ing Al l  Possible  Input  Instances.  Note that  the above discussion 

is based upon an assumpt ion  that  an opt imal  solution is available to us. Of  

course, we do not know any opt imal  solution in advance.  Therefore our  strategy 

is to generate all possible simple cycle separators ,  and then we find the best 

result with respect to each possible simple cycle separator .  Because the largest size 

of a simple cycle separa tor  is , j ~ n  + 2m - 3), we may  select i edges, where 

3 < i <_ ,,/8 "(n - 2m + 3), f rom the complete  graph  constructed f rom the points 

in V, T, and I. If  these i edges form a simple cycle without  any intersect ion then 

test whether  this cycle can divide the rest of the points in V. T i n t o  V~, T;  and V~, 

T;, such that I V~ u T',] _< 2(n + 2m)/3 and I V~ u r ; l  _< 2(n - 2m)/3. If this cycle 

satisfies the above conditions, this is a candidate of  the simple cycle separator .  

Since we exhaustively generate all possible such simple cycles, the one which 

derives the best result must  be the desired one. The following is our  a lgor i thm to 

generate all these possible simple cycle separators.  

Procedure GEN_CYCLES_BI  V, T, B') 

Funct ion:  Genera te  a set B ' of simple cycles of which one is the simple 

cycle separa tor  on the maxima] p lanar  graph from the points  in F. T, 

and 1, and the edges in the paths  of an opt imal  solution. 

Input :  A set V and T. 

Output." A set B' of simple cycles. 

S t e p l .  L e t B ' - ~ a n d l e t  T r be the set of points m T. 

Step2.  F o r i - 3 t o ~ / 8 ( [ V  : [ T '  l + 3 )  do: 

Step 3. Find B'~ = {b'slb'~ ~ [ V w  T'  ~J 1) and Ib's - i}. 

Step 4. For  each b'~ s B's do: 

Step 5. Const ruct  the complete  graph out  of the points in b's. 

Step 6. For  each subset of  i edges in G do: 

Step 7. If  these i edges cannot  form a simple cycle, then j ump  to 

step 6 and try the next instance: else denote  this simple 

cycle as b. 

Step 8. If there exists any  intersection in b, then j ump  to step 6 and 

try the next instance. 
Step 9. Use b to divide the points in V and T into interior parts 

V,, T'a and the exterior parts  t~, T'c. (Apply the point  

!ocation algori thm of P repa ra t a  and Shamos  (1985).) If 

[I ga u r '  a > 2(n ~ 2m)/3)or([  V~ ,~ T'r > 2(n ~ 2m)/3), then 

j u m p  to step 6 and try the next instance. 

Step 10. B' := B' ~ b. 

Step 11. Return B'. 
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e c 
U l a ~  D f  

b g [] 
Fig. 4.4. Two terminal pairs, (a, b) and (c, d), and three points, e,f, and 9, on the simple cycle separator. 

This procedure is slightly modified from Procedure GEN_CYCLES_A discussed 

in the preceding sections. By using a similar method, we can prove that the time 
complexity and the number of cycles are both bounded by O((n + 2m) c~ (,/~ + 2m)+ cb), 

where c a and c b are some constants. 

In this procedure we show that we can find all possible simple cycle separators. 

We still have to face one problem. We have to decide all of the terminal pairs. 

For instance, in the example illustrating the dividing procedure, we generate two 

sets of terminal pairs T~ = {(a, b), (e, 9), (9, h)} and Ti, = {(b, e)}. Since no optimal 
solution is available to us, how can we determine these two sets? 

Let us consider Figure 4.4. In Figure 4.4 there are two terminal pairs (a, b) and 

(c, d). The points on the simple cycle separator are e, f,  and 9. Of course, there 

are many other points which are neither terminal points nor points on the simple 

cycle separator. From Procedure D I V I D E T E R M I N A L ,  it can be seen that points 

which are neither old terminal points nor points on the simple cycle separator 
are irrelevant to our dividing process. Therefore, in the following, we only consider 

points which are originally terminal points or points on the simple cycle 
separator. 

Suppose that we are given two terminal pairs (a, b) and (c, d). We are also given 

points on the simple cycle separator e, f,  and 9. There are many ways of forming 

paths by using these points. Our job means to assign e, f,  and 9 to either (a, b) or 

(c,d) such that two paths will be formed: one connecting a to b and the other 

connecting c to d. In the following we list some of them: 

(1) (a,e,b) and ( c , f , g , d )  

(2) (a, e, b) and (c, 9, f ,  d) 

(3) (a, b) and (c, e, f ,  ~, d) 

(4) (a, b) and (c, f,  e, g, d) 

(5) (a,f,g,b) and (c, e, d) 

(6) (a, g,f,  b) and (c, e, d) 
and so on. 

It can be seen that in each case we assign a subset of e, f,  and g to (a, b) and 

the rest of the points to (c, d). Note that the subset can be an empty set. Moreover, 

after a subset of points from e, f ,  and g are assigned, they can be permuted. 

For  each set of paths, there is a corresponding set of terminal pairs. Again, in 
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the following we list some of them: 

(1) (a, e, b) --* (a, el, (e, b) 
(c, f ,  g, d) ~ (c, f ) ,  (f, g), (g, d) 

(2) (a, e, b) ~ (a, el, (e, b) 
(c, g, f ,  d) --+ (c, g), (g, f ) ,  (f, d) 

(3) (a,b) ~ (a, b) 

(c, e, f ,  g, d) --, (c, el, (e, f) ,  (f, 9), (9, d) 
(4) (a,b) -+ (a, b) 

(c, f ,  e, g, d) --+ (c, f) ,  (f, el, (e, 91, (g, d) 
(5) (a, f ,  g, b) ~ (a, f) ,  (f, g), (9, b) 

(c, e, d) --* /c, e), (e, d) 

(6) (a, g,f ,  b) - ,  (a, g), (g, f ) ,  (f, b) 
(c, e, d) - ,  ~c, el, le, d) 

For  each terminal pair, we assign it to interior or exterior. For  instance, consider 
(a, el. Since a is an exterior point, (a, et is an exterior terminal pair. On the other 
hand, (g, d) is an interior terminal pair. because d is an interior point. For  (f,  g), 

it can be assigned to either exterior or interior. Therefore. given the set of terminal 
pairs {(a, el. (e, b), (c, f ) ,  (f,  g), (g, d)}, we can generate the following possible 
terminal pairs of the snbproblems: 

(1) The interior terminal pairs: {(c, f) ,  (f, g)}. 
The exterior terminal pairs: {(a, el, re, b), (g, d)}. 

(2) The interior terminal pairs: {c, f)}. 
The exterior terminal pairs: {(a, el, (e, b), (J; g), (g, d)}. 

We now list the basic steps to generate all the new terminal pairs. We are given 
the original terminals (tl, t'l), (t2, @, .. . .  (tin, t;,) and the set of nonterminal points 
in the simple cycle separator {bl, b2 . . . . .  bk}. Our  first step is to generate all 
possible permutations of {bl, b2 . . . . .  bk}. For  instance, for the above example, we 
have 

(e, f ,  g) 
~e, g, f )  
(g, e, f )  
(g, f ,  e) 
(f, g, e) 
(L e, 0) 

Since there are two original terminal pairs, for each permutation,  we view it as a 
sequence and generate all possible two continuous subsequences. For  example, 
consider (e, f ,  g). There are four possible ways to partition it into two subsequences: 

( )  (e , f ,g)  

(el (f,  g) 
(e, f )  (g) 
(e , f ,g)  ( )  
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Each subsequence can be partitioned in this way. After all sequences are parti- 
tioned, we assign the first subsequence to (a, b) and the second subsequence 
to (c, d). Thus from the above pairs of subsequences, we have the following 
paths: 

(a,b) (c ,e , f ,g ,d)  
(a,e,b) (c , f ,g ,d)  
(a ,e , f ,b)  (c,g,d) 
(a ,e , f ,g ,b )  (c,d) 

It may be wondered why (c, e, d), for instance, is not generated. This will be 
generated later by applying the procedure to the sequence (f, 9, e). (f, 9, e) can be 
partitioned into (f, 9) and (e). This will produce the path (c, e, d). 

After generating paths, we then scan each path linearly and produce terminal 
pairs. For instance, for (a, e, b), we have (a, e) and (e, b) as terminal pairs. 

Note that given a simple cycle separator, the sets V,, V~ of nonterminal points 
of the inputs of the subproblems are all the same. The following procedure is our 
detailed algorithm to generate all possible input instances of the subproblems: 

Procedure GEN_INPUTS(V, T, b, p) 
Input: V = {vi, v2 . . . . .  v,}, a set of points; 

T = {(t l, t'i), (t2, t~), . . . ,  (tin, t~,)}, a set of terminal pairs; and 
b, a simple cycle which goes through some points in V, T, and I. 

Output: p = {(Va, V~, Ta, T~)I(V,, T~), (V~, T~) are the candidates of the 
input instances of the interior and exterior subproblems, 
respectively.} 

Stepl .  p = ~ .  
Step 2. Use the simple cycle b to divide the points in V and T into the 

interior part V,, T'a and the exterior parts V~, T;, respectively. 
(Apply the point location algorithm of Preparata and Shamos 
(1985).) Let Vb be the nonterminal points of Vin the simple cycle. 

Step 3. Generate all permutations of points in Vb. 
Step 4. For each permutation q' = (v'i, v~ . . . . .  v~,), call 

GEN_SEQUENCES (q', V~, 1, 1). 

/* The function of GEN_SEQUENCES views a permutation as 
a sequence and generates all possible sequences of m contin- 
uous subsequences, as defined in the above discussion. */ 

Step 5. For each (ql, q2 . . . . .  q,~) E V~ do: 
Step6. For each q~=(vil,  vi2,...,v~k), find the set of terminal 

pairs Tp = {( t i ,  v i i ) ,  (v i i  , vi2),  . . .  , (Vik , tl) }. If (( t ik ,  t i j  ) ~ Tv) and 
((tik ~ r'a, t~j e T;) or (tik e T'c, tit e r'~)), then jump to step 5 and 
try the next instance. 
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Step 7. Generate p' = ~(V,, V~, T~, T~)] T a w T~ = Tp, T~ ~ T~ = ~ ,  and if 
vi or vje T~ (resp. r;), then (vi, v j)~ T~ (resp. 
r.).} 

Step 8. Let p = p' u p and Tp = ~ .  

Step 9. Return p. 

Procedure GEN_SEQUENCES(q', V~, Cur, i) 
Funct ion:Find V~ = {(ql, q2 . . . . .  q,,)]q~ is a continuous subsequence of 

f 
q' = (v'l, v2,J �9 V'k). I f j l  <j2 ,  il < i2 and vii u qi2, 

then v)2 ~ q}l. All points in qi are disjoint and the 
union of points in qi is {v], v~ . . . . .  v~}.} 

Step 1. If i = m, then qi = (Your, o--, v~,) and V~ = V~ ~ {(ql, q z , . . . ,  q~)} 
Step 2. Else for j  = Cur-1 to k do: 

~ t  t Step3. If j =  Cur-l, then q~ ~ else qi = (  c . . . . . . .  vi) and call 
GEN_SEQUENCES(q', V~, j + 1, i + 1). 

The time complexity of the recursive procedure GEN_SEQUENCES is equal 
to the number of patterns generated in the procedure. The number of patterns 
generated is equal to the number of ways to place k nondistinct objects into m 

distinct cells. The number of ways to do this is k ' 

Let us examine the time complexity of Procedure GEN_INPUTS. Step 2 takes 
(n + 2m)" k, where k is the number of points in the simple cycle b (Preparata and 
Shamos, 1985). Step 3 takes O(k!) <_ O(kk). Step 4 takes 

m + k - 1"] < k)~. 
(m + 

k ] 

Step 6 takes linear time. Step 7 generates 2 k instances for each (ql, q2 . . . . .  q,.) E V s.  

Therefore the time complexity of this procedure and the number of input instances 

generated are both bounded by 

O(((n + 2m)- k + k k) + (k k" (m + k) k) + kk'(m + k) k .(k + 2k)). 

Because k is the size of the simple cycle, 

k _ < x / 8 " ( n + 2 m + 3 ) - < x / 8 " ( n + 2 m ) +  8 x ~ .  

We can derive that 

O(((n + 2m)' k + U) + (k k" (m + k) k) + k k" (m + k) k" (k + 2k)) <_ (n + 2m) c'~.'" + 2,.). co,, 

where c c and c d are some constants. 

4.4. Algorithm GETSP and Its Time Complexity. We have shown how to 
generate all possible simple cycle separators and how to generate all possible input 
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instances o f  the two subproblems for a given simple cycle. We now state the 
algorithm based upon the above two procedures to solve the (V, T)-GETSP 

problem. 

Algorithm GETSP(V, T, E, C) 
Input." Two sets V = {va,/)2 . . . . .  /)n} and T = {(tl, t'l), (t2, t'2) . . . . .  (tin, t'm)}, 
where all points are on the plane. 
Output: A set E of m paths, where the ith path starts from ti and 
terminates at t~ (1 < i < m) and each point in V is passed through by 
exactly one path, such that total length of all paths is minimized. 

Step 1. 
Step 2. 
Step 3. 

Step 4. 
Step 5. 
Step 6. 
Step 7. 
Step 8. 
Step 9. 
Step 10. 

C : :  oo. 

If V = ~ ,  do step 3, else do steps 4-10: 
Let E = {e[e = ht'i, where 1 _< i < m} and let C be the total 
length of the edges in E. Return E and C. 

Call GEN_CYCLES_B(V, T, B'). 
For each b 6 B', do: 

Call GEN_INPUTS(V, T, b, p) 
For each (V a, V~, Ta, Tc)~ D do: 

Call GETSP(Va, T,, E~, Ca). 

Call GETSP(V~, T~, E~, Co). 
If C > C a + C c, then E = E a u Ec, C = C,, + C~. 

We recursively divide these subproblems until V = ~ .  When V = ~ it means 
that there is no nonterminal points. Hence we can directly connect each terminal 
pair in T and return the total distance. Each input instance derives a solution. We 
select the instance with the smallest cost as the desired one, and eliminate all other 

incorrect guesses. 
We know that the time complexity and the number of cycles generated in 

Procedure GEN_CYCLES_B are both bounded by O((n + 2rn)C~ The 
time complexity and the number of input instances generated in Procedure 

co( n~- 2m)+cd GEN_INPUTS are bounded by O((n + 2m) ~ ). Therefore steps 4-6 take 
O((n + 2 m ) ~ ~  + 2m)cc('fg~g)+~9 = O((n + 2m)~e('/g-4-~)+c 0, where 
c e = c, + cc and c I = % + %. Let us consider the size of the subproblems. We 
know that [V~ u T'al -< 2(n + 2m)/3 and I V~ ~ T'c] _< 2(n + 2m)/3. However, after 
calling Procedure GEN_INPUTS, all points in the simple cycle become the 
terminal points in the subproblems. Therefore the sum of numbers of points in Va 

and T~ (also in V~ and T~) is no more than 2(n + 2m)/3 + x/8"(n + 2m + 3), for the 

number of points in the simple cycle separator is no more than x/8- (n + 2m + 3). 
Let T(n + 2m) be the time complexity of Algorithm GETSP with V and T as 
inputs, where n is the number of points in V and 2m is the number of points in 
T. Then we have the following formula: 

T(n + 2m) = O((n + 2m)Ce'('/~5~)+c0" T(2(n + 2m)/3 + x/8-(n + 2m + 3)). 
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Let nl = n + 2m. Then we have 

r(nl)  = O(nC{%/"%~-co" r (2"nl /3  + x/8"(nl + 3)). 

W h e n  n I is large enough, n~/6 >_ V @  (nl + 3), 

T(nl) = O(n~ ~~'/%) +c 0 - T(5 .nl/6), 

r(nl) = O(n~ ~( (1 /"-  s /6" ' '%+'~  ..... .% 

r(nl)  = O(nO(,/,% 

Therefore we can derive that 

T(n + 2m) = O((n - 2m) ~ 2m.,). 

Because the ETSP problem is a special case of the GETSP  problem, there is 

only one terminal pair in T, and the rime complexity of solving the ETSP problem 

is O(n~ 

5. Concluding Remarks. The divide-and-conquer strategy is a well-known ap- 

proach to designing efficient algorithms. In this paper we propose a searching over 

separators strategy to solve three geometry problems which cannot be solved by 

the divide-and-conquer strategy directly. All these problems have a common 

property in their optimal solutions, that is, there exists a separator that can 

partition the input data into two parts called A and C, such that if we merge the 

optimal solutions to the two subproblems with A and C as inputs, independently, 

then we have the optimal solution to the original problem. 

Because of the above property, for each case we find a procedure which can 

generate all possible separators efficiently. We use these possible separators to 

divide the input into two parts and then recursively solve the subproblems. If the 

separator is the desired one, then we can find a feasible solution with minimal 

cost; otherwise we try the next possible separator. 

The four geometric NP-hard  problems we solve in this paper are the discrete 

Euclidean P-median problem, the discrete Euclidean P-center problem, the 

Euclidean P-center problem, and the Euclidean traveling salesperson problem. The 

time complexity for the DEPM,  the DEPC, and the EPC problems is O(n~ 

and for the ETSP problem it is O(n~ The best previous results are O(n e+ 1. p) 

(Papadimitriou, 1981} for the D E P M  problem, O(n2e - l . l ogn) IDrezne r ,  1984: 

Megiddo, 1983) for the EPC problem, and O(nZ2 ") (Held and Karp, 1962: Horowitz 

and Sahni, 1978; Lawler et aL. 1985) for the ETSP problem. 

We strongly recommend the reader to consult Smith (!991) which contains many 
ideas similar to ours. Smith used his strategy to solve the Steiner tree problem 

and the traveling salesoerson problem in subexponential time. 
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