
Algorithmica (1993) 9:398-423
Algorithmica
�9 1993 Springer-Verlag New York Inc.

The Searching over Separators Strategy To Solve

Some NP-Hard Problems in Subexponentiai Time x

Ro Z. Hwang, 2 R. C. Chang, 3'4 and R. C. T. Lee 2'4

Abstract. In this paper we propose a new strategy for designing algorithms, called the searching over
separators strategy. Suppose that we have a problem where the divide-and-conquer strategy can not
be applied directly. Yet, also suppose that in an optimal solution to ~his problem, there exists a separator
which divides the input points into two parts, A d and Cd' in such a way that after solving these two
subproblems with Ad and Cd as inputs, respectively, we can merge the respective subsotutions into an
optimal solution. Let us further assume that this problem is an optimization problem. In this case our
searching over separators strategy will use a separator generator to generate all possible separators.
For each separator, the problem is solved by the divide-and-conquer strategy, ff the separator generator
is guaranteed to generate the desired separator existing in an optimal solution, our searching over
separators strategy will always produce an optimal solution. The performance of our approach will
critically depend upon the performance of the separator generator: It will perform well if the tota!
number of separators generated is relatively small. We apply this approach to solve the discrete
Euclidean P-median problem (DEPM), the discrete Euclidean P-center problem (DEPC), the Euclidean
P-center problem (EPC), and the Euclidean traveling salesperson problem (ETSP). We propose
O(n ~ algorithms for the DEPM problem, the DEPC problem, and the EPC problem, and we
propose an O(n ~ algorithm for the ETSP problem, where n is the number of input points.

Key Words. Computational geometry, NP-hardness.

1. Introduction. The divide-and-conquer strategy is a wel l .known approach to

designing efficient algorithms (Aho et al., 1976; Prepara ta and Shamos, t985;

Horowitz and Sahni, 1978; Bentley, 1976, 1980). The basic idea of this approach

is as follows:

(1) We divide the input data into two subsets Ad and Ca.

(2) We then recursively solve the two subproblems with An and Cd as input data,

respectively.

(3) Finally, we find an efficient way to merge the solutions to the two subprobtems

into the solut ion to the original one.

A typical example is the closest-pair problem, which is defined as follows: given

a set of n points in the plane, find the closest pair of these points. We can solve

this problem by the divide-and-conquer approach. First, we find a median line

1 This research work was Partially supported by the National Science Council of the Republic of China
under Grant NSC 79-0408-E007-04.
2 Institute of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
3 Institute of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
4 Academia Sinica, Taipei, Taiwan, Republic of China.

Received August 4, 1990; revised March 15, 1991. Communicated by C. L. Liu.

The Searching over Separators Strategy 399

which divides the data into two subsets of equal size. We then find the closest

pairs in An and Ca, respectively. Let the distance of the closest pair in A n (resp.

Cn) be denoted as d, (resp. db), and d = min(d,, db). To find the closest pair of the

entire set, we only have to examine the points in the strip which centers at the

median line with 2" d as its width. For more details, consult Bentley (1976) and

Preparata and Shamos (1985).

Many problems can be solved by the divide-and-conquer strategy (Horowitz

and Sahni, 1978). It usually yields efficient polynomial algorithms. Unfortunately,

not every problem can be solved efficiently by the divide-and-conquer approach.

One of the reasons is that we cannot easily divide the input data into two unrelated

subsets, such that the two subproblems with these two subsets as inputs can be

solved independently and the solution later merged into an optimal solution.

In this paper we point out that there may exist cases characterized by the

following properties:

(1) The problem is an NP-hard problem. Thus it is quite unlikely that it can be
solved by the divide-and-conquer strategy directly.

(2) On the other hand, as far as an optimal solution S is concerned, there exists

a separator, called B. The separator B divides the input data D into two parts

An and Ca. Then the final solution can be derived by merging the optimal

solutions to subproblems A a and Ca.

(3) The separator B has some kind of characteristic. All possible separators with

such properties can be generated efficiently.

If a problem has the above properties, then although it cannot be solved by the

divide-and-conquer strategy, it can be solved by the searching over separators
strategy which we now propose and explain in the following:

Let us further assume that our problem is an optimization problem, and we are

looking for an optimal solution with the minimum cost. The searching over

separators strategy works as follows:

The Searching over Separators Strategy

Input: A set of input data D.

Output: An optimal solution S and its cost C.

Step

Step

Step

Step

Step

Step

Step

Step

Let us

P points

1. Let C:= oo.

2. Use some procedure, called Procedure A, to generate all possible
separators.

3. For each possible separator B, do:

4. Use B to divide the input data D into two subsets An and C d.

5. Recursively solve the subproblems with A n and C n as inputs,

respectively. Let the solutions be A s and C s, respectively.
6. Merge A S and C~ into S'. Let C' be the cost associated with S'.
7. tf C > C', then S := S', C := C'.

8. Return solution S as an optimal solution and the optimal cost C.

consider a case where we are given a set of n points and we are to select

out of them to form an optimal solution. A straightforward approach is

400 R.Z. Hwang, R. C. Chang, and R. C. T, Lee

tooxamino ..oro (;).o siblo

Therefore, the time complexity of this straightforward approach is at least

Now suppose that we apply the searching over separators strategy to solve this

problem. Let T(n, P) be the time complexity of solving this problem by using the

searching over separators approach. Assume that the separator B has some kind

of characteristic, such that, after dividing, the time complexity of each subproblem

is bounded by T(n, ~.P) and the total number of possible separators and the

time needed to generate these separators are both bounded by O(nC"/g), Where
0 < e < 1 and c is some constant. Then we have the following formula:

T(n, P) <_ O(n c ' /~) . 2" T(n, c~ . P)

<_ O(nC"/g" 2"n~"J~'g), 2" T(n, e2.p)

= O(n~'/~a +~/g))-2 �9 T(n, c~Z:P)

<_ O(n ~ ~,~(1 +,/;+,/~+...~)

< O(n~

Compared with the straightforward approach, the searching over separators

strategy achieves a better performance.

In order for the above searching over separators strategy to work. Procedure

A must be able to produce the particular separator B existing in an optimal

solution as described above. If it does, the searching over separators strategy is

guaranteed to have examined an optimal solution and correctly present it as a

solution.

In this paper we show that the searching over separators strategy can be used

to solve four geometry problems: the discrete Euclidean P-median problem

(DEPM), the discrete Euclidean P-center problem (DEPC), the Euclidean P-center

problem (EPC), and the Euclidean traveling salesperson problem (ETSP).

This paper is organized as follows: In Section 2 we solve the DEPM problem

and the DEPC problems. In Section 3 we extend the method in Section 2 to sotve
the EPC problem. In Section 4 we solve the ETSP problem. Finally, the concluding

remarks are stated in Section 5.

2. The Algorithm To Solve the Discrete Euclidean P-Median Problem

and the Discrete Euclidean P-Center Problem

2.1. Preliminaries. The EPM problem is defined as follows: given n demand

points on the plane, the EPM problem is to select P locations as supply points,
such that the sum of distances from all demand points to their respective nearest

The Searching over Separators Strategy 401

supply points is minimized. The DEPM problem is its related problem, in which
the supply points must be selected from the set of the given demand points. There
are many real-world applications of the DEPM problem. One of these applications
is to choose P locations to build warehouses, such that the sum of distances from
all stores to their respective nearest selected warehouses is minimized.

Formally we can formulate the DEPM problem as follows: given a set D =
{dr, d2,..., dn} of demand points, find a set S of P supply points from the set of
demand points, to minimize the following cost function:

dieD

where l(di, s j) is the Euclidean distance between di and sj.

Megiddo and Supowit (1984) proved that the EPM problem is an NP-hard
problem. Papadimitriou (1981) proved the NP-hardness of the DEPM problem.

The DEPM problem can be solved by enumerating all possible combinations
of P points as the supply points and selecting the set of points which minimizes
the total sum of distances from the n demand points to their respective nearest
supply points. This approach takes O(P. n P+ 1) time (Papadimitriou, 1981). In this
paper we solve the DEPM problem in O(n ~ time.

2.2. The Generalized Discrete Euclidean P-Median Problem. For reasons which
will become clear later, we try to solve a generalized version of the DEPM problem
instead of the original problem. Let us now modify the original DEPM problem
into the 9eneralized discrete Euclidean P-median problem (GDEPM). The GDEPM
problem is defined as follows: given a set D of n demand points, a set fl ~ D of
fixed supply points, and the number P, we have to select a set S of P supply points
from D, where fl and S are disjoint, such that

I min {l(di, sj)}t is minimized.
di~Dks:~S~fl)

To distinguish the different problems, we use the GDEPM-(P, D, fl) problem to
denote the G D E P M problem with P, D, fi as inputs.

We can immediately see that the original DEPM problem is a special case of
the GDEPM problem in which fl is an empty set. Note that we have to distinguish
two kinds of supply points. Thus, throughout the rest of this paper, we use fi to
denote the set of the fixed supply points, and use S to denote the set of the unfixed
supply points.

Essentially, we show that, for an optimal solution S to the GDEPM problem,
there exists a cycle, named the B-cycle. Let B s c S denote the set of unfixed supply
points in the B-cycle. The B-cycle has the following properties:

(1) fBs[is no more than x/8 .(P + 3). (Note that [Bs[denotes the number of points
in the set [Bs[.)

(2) The B-cycle divides the other unfixed supply points in S into the interior part
A s and the exterior part C~, where]As], I Cs[< 2P/3.

402 R.Z. Hwang, R. C. Chang, and R. C: T. Lee

(3) The B-cycle divides D into interior part Ad and exterior part Ca. For each

demand point in A d (resp. Ca), its nearest supply point is in A, ~resp. Cs) or
B~ ~/~.

The third property implies that we can divide the original problem into two

subproblems with ([A~I, Aa, Bs w fi) and (]C~I, Ca, BsW 13) as inputs. We can see

that the solution to the original problem can be obtained by merging the solutions

to the two subproblems. The first property guarantees that the number of possible

separators can be bounded by a tolerable value. The second property guarantees

that the number unfixed supply points in each subproblem is at most 2P/3.

To show the existence of the B-cycle, we first note that we can construct a

Delaunay triangulation (Preparata and Shamos. 1985) out of the unfixed supply

points of an optimal solution with some special arrangement, such that this

Delaunay triangulation is a maximal planar graph in which very face is of size 3

(Nishizeki and Chiba, 1988). Therefore we can use the simple cycle separator

theorem proved by Miller (1986), which was m turn based upon the planar

separator theorem proved by Lipton and Tarjan (Mehlhorn, 1984; Lipton and

Tarjan, 1979). For a comprehensive discussion of this topic~ consult Nishizeki and

Chiba (1988).

Miller (1986) assumed that we were given a planar graph G with nonnegative

weights assigned to vertices, faces, and edges which sum to 1. For our case, we

simply assume that the weights of faces and edges are all zeros. In other words.

weights are assigned only to vertices. For a simple cycle B of G, the size of this

cycle is the number of the vertices on B. Note that a simple cycle of G will always

divide G into two parts, the interior A and the exterior C. The weight of the

interior part (resp. the exterior part) is the sum of weights of vertices in the interior

part (resp. the exterior part). Figure 2.1 shows a planar graph and the thick edges

form a simple cycle. For this case, the size of the cycle, the weight of its interior,

and the weight of its exterior are 7, 0.35, and 0.45, respectively.

The theorem proved by Miller (1986) is now stated as follows. (Note that it is

slightly different from that original one stated by Miller (1986)0 because we do not

assign weights to faces and edges.)

0.05 0.0.5

0.02 ~ 0.05

C O.Ot

O.
0.05

Fig. 2.1. A planar graph. The weight of A = 0.35 < ~ and the weight of C = 0.45 < 2.

The Searching over Separators Strategy 403

THEOREM 2.1 (Miller, 1986). I f G is a 2-connected planar graph with all nonnegative

weights assigned to vertices which sum to 1, there exists a simple cycle, called the

simple cycle separator, of size at most 2 ~ , dividing the graph into interior

and exterior two parts, such that the sum of the weights in both parts is no more

than two-thirds, where d is the maximum face size (the face size is the number of

edges contained in the facial cycle) and k is the number of vertices in G.

In our case we are interested in the maximal planar graph (Nishizeki and Chiba,

1988), where d is equal to 3. Hence the size of the separator is accordingly x / ~ .
Given a set S of P unfixed supply points, the Delaunay triangulation of S cannot

be a maximal planar graph, because the outer face is not necessarily of size 3.
There is a simple way to change the Delaunay triangulation graph into a maximal
planar graph, by adding a set I of three extra points to form a triangle enclosing
all points in S. Let S' = S w I. The Delaunay triangulation of S' is a maximal
planar graph, because its outer face contains exactly three edges and other faces
are triangulated. Hence we can apply Theorem 2.1 to the Delaunay triangulation
of S'.

In our algorithm we treat the three points of the triangle as supply points, and
they are not related to any demand point. We define the enclosing I as follows:
the enclosing points are three points which form a triangular boundary enclosing
all points, such that no demand point's distance to its closest supply point is longer
than its distance to any of the enclosing points. We can see that it is trivial to
find these enclosing points. We simply select them far enough from any of the
demand points.

By applying Theorem 2.1 to S', we can see that there exists a simple cycle

separator B with size less than x f ~ + 3) which divides the Delaunay triangula-
tion graph of S' into the interior and exterior parts, such that the number of
unfixed supply points in each part is less than 2P/3. This result is derived by
assigning zero weights to the enclosing points and equal weights to the unfixed
supply points.

Nevertheless, Miller's simple cycle separator theorem cannot guarantee that the
sets of D and S divided by the simple cycle separator satisfy the third property of
the B-cycle. This is due to the fact that we construct our Delaunay triangulation
graph out of the unfixed supply points in S only and totally ignore the demand

points in D. In Figure 2.2 we show an example. In this example, there exists a

C

"

" ~ ~"v-~" Its nearest supply point
" / .~" isinAs

A V o r o simple cycle separator

Fig. 2.2. An example of a Delaunay triangulation graph. II, demand points; 0, supply points.

404 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

demand point lying in Cd and its closest supply point is in A,, if we treat the
simple cycle separator as the desired B-cycle.

In the following we define the rules which construct the B-cycle from the smaple
cycle separator B. Let Vor(S') denote the Voronoi diagram of S' (Voronoi, 1907;
Preparata and Shamos, 1985; Edelsbrunner, 1987~ and let DT(S'~ denote the
Delaunay triangulation of S' (Delaunay, 1934; Preparata and Shamos. 1985;
Edelsbrunner, 1987). Given a simple cycle separator B on DT{S'), the correspond-
ing B-cycle is defined as follows: for every connected pair of supply points s~ and
sj in the simple cycle separator B, find its associated edge e in the Vor(S'). (Note
that for any edge on the DT(S'), there is an associated edge on Vor(S').) Let one
of the two points of the edge e be v~j. Draw sivlj and vi~sj. This new corresponding
cycle, consisting of all such siv~fs and viisj's, is called the B-cycle of S'.

Consider Figure 2.3. Figure 2.3(a) shows a simple cycle separator and Figure
2.3(b) shows the corresponding B-cycle.

It is obvious that the B-cycle, constructed by the above rules, satisfies the first
property, that is, the number of unfixed supply points in the B-cycle is less than

,,/8"(P + 3). Now we want to show the second property. From Miller's simple
cycle separator, we know that the sets of unfixed supply points divided bv the
simple cycle separator satisfy the second property. Now we want to show. in the
following lemma, that the sets of unfixed supply points divided by a simple cycle
separator B are identical to that divided by its corresponding B-cycle. Yhis way
we can prove the second property.

LEMMA 2.1. The sets of unfixed supply points in the interior and exterior parrs

partitioned by the simple separator cycle B and its corresponding B-cycle are

identical.

(a)

Fig. 2.3. (a) A simple cycle separator and (b)

.

/
!

\

the corresponding B-cycle.

The Searching over Separators Strategy 405

Fig. 2.4. No unfixed supply point in the shaded area.

PROOF. Consider any edge sisi in the separator cycle B. Let e be the Voronoi
edge associated with sisj. Let vq be one of the vertices on e. Consider si, si, and
v~j, as shown in Figure 2.4. According to Theorem 5.8 of Preparata and Shamos
(1985), there is no unfixed supply point in this triangle. Therefore, if we replace
sls~ by s~vij and v~jsi, the partition of unfixed supply points is not changed. []

The last and most important property is the third one. Now we want to show
that, for each demand point in Ae (resp. Cd), its nearest supply point is in A~ (resp.
Cs) or B~ u [3.

THEOREM 2.2. Given an instance of GDEPM(P, D, [3) or GDEPC(P, D, [3), its

optimal solution S, and the corresponding B-cycle, let B~ be the set of supply points

on the B-cycle. The B-cycle divides D (resp. S) into interior and exterior two parts,

called Ad and C~ (resp. A~ and C~). Then, for each demand point in A a (resp. Ca), its

nearest supply point is in A~ (resp. C~) or B~ ~ ft.

PROOF. To show that, for each demand point in Aa (resp. Cd), its nearest supply
point belongs to A~ (resp. C~) or fl ~ B~, we first use the fact that no edge in the
B-cycle crosses V(s') where s'~B~ (where V(s) denotes the Voronoi polygon
associated with s, s e S). This fact is due to the rules constructing the B-cycle.

Let d ~ A d and let the nearest supply point Of d be s e C~. Hence d must be on
V(s), if Vor(S w I) is constructed, where 1 is the set of enclosing points. Because d
is in the interior part of the B-cycle and s is in the exterior part, there must exist
some edges of the B-cycle passing through V(s). However, from the above fact of
the B-cycle, the edges can only cross the polygon associated with the unfixed
supply points in B~. Therefore no such a demand point d exists. This means that
the nearest supply point of any demand point in A d (resp. Ce) must be in A~ (resp.
C~) or B~ u fi. []

The above theorem certifies that the two subproblems are independent. This
independent property is very important because it guarantees the correctness of
our searching over separators approach.

Now let us show a simple example to explain how to divide the input points
by using the B-cycle. In this example we assume that S' is given as in Figure 2.5

and P is 18. The largest size of the B-cycle is therefore at most ,,/8 "(18 + 3). In

406 R.Z. Hwang, R. C. Chang, and R, C. T. Lee

L. �9 II

|0 i i

.r
/ B
m o r n

i i

=o. ~ . \ " . " / /
" /

/

Fig. 2.5. An example of how to divide input points by using a B-cycle. n, demand points; O, supply
points.

Figure 2.5 there are a set of demand points (denoted as squares), a set of unfixed
supply points (drawn as dots), the enclosing points, and the B-cycle of the Delaunay
triangulation of S', constructed out of two enclosing points and four unfixed supply
points. The B-cycle divides the points into two parts. We can see that, for each
demand point in the interior (resp. exterior) part of the B-cycle, its nearest supply
point is either in the interior (resp. exterior) or on the B-cycle.

2.3. Generating Possible B-Cycles. In the preceding subsection we showed the
properties and the existence of a B-cycle. In this section we introduce two
procedures, which will generate possible B-cycles, one of which is the desired
B-cycle.

Let us first discuss the problem of generating a simple cycle separator. A simple

cycle separator consists of less than ~ + 3) points. We exhaustively try all
possible ways of selecting i points out of n + 3 points (including the three enclosing

points), where i ranges from 3 to ,fi(-P + 3) (for a simple cycle needs at least three

The Searching over Separators Strategy 407

points). (Thus, there are at most

ways to select i points.) For each set of i points, we construct a complete graph.
Out of this complete graph, we select any i edges and test whether they form a
simple cycle or not. (Since there are i" (i - 1) edges in the graph, there are at most

0 possible selections. To test whether they form a simple cycle needs
l

at most 0(i2).) One of these cycles must be the desired simple cycle separator.
From the above discussion, we know that the time needed to generate all possible
simple cycle separators is

O (((n + 3) ~ . ~ (i . (i - - 1)) . i 2) = O (n C l . j ~ + c 2) ,

\ \ ~ / 8 (P + 3)/ k i

where c 1 and C 2 are some constants.
Next, we should try to construct the corresponding B-cycle of a given simple

cycle separator by using the rules defined in Section 2.2. Those rules tell us that
we can construct the B-cycle by connecting all such slviSs and vijsj's for each edge
s~sj in the simple cycle, where vlj is the Voronoi polygon shared by V(si) and V(sj),
where V(si) (resp. V(sj)) is the Voronoi polygon associated with si (resp. st). We
cannot find vii directly, for V(sl) and V(sj) are unknown. Therefore we propose an
exhaustive search approach to find all possible candidates of vii. The Voronoi
vertex vij must be the center of the circle formed by s~, sj and the third unknown
point Sk. We know that Sk ~ S w I. Therefore Sk ~ D u I. We may try all points in
D ~ I as the candidates of Sk. This way, for each edge sis~ in the simple cycle, we
have ID u I[= (n + 3) possible viSs, by finding the center of the circumscribed

circles defined by the three points s i, s j, and any point in D ~ I.
Consider the time complexity of the above steps. Step 1 takes

(~ + 3) " (i + 1) ! < (n + 3) i + 1 + 1

steps. Steps 2-8 take O(i 2) time. The time needed in this procedure is

O((n + 3) '+ 1. i2).

Since i + 1 is the number of points in the simple cycle and (i + 1) < x / ~ + 3),
we can see that the time complexity is bounded by O(nC3"/g+c4), where c 3 and c 4
are some constants.

In the next section we show the entire algorithm to solve the GDEPM problem,
by using the above two procedures.

408 R.Z. Hwang, R. C. Chang, and R: C. T. Lee

2.4. The Algorithm and Its Time Complexity~ In this section we present an

algorithm to solve the G D E P M problem. This algorithm is called Algorithm

GDEPM.

Algorithm GDEPM(P, D,/3, S, C). (An algorithm ro solve the G D E P M

problem based upon the search over separators strategy.)

Input: D, a set of n demand points;/~, a set of fixed supply points; and

P; a number.
Output: S, a set of supply points which is an optimal solution to the

G D E P M prob!em; C, the optimal cost of the G D E P M problem.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Let C = oo.

If P _< 3, then do steps 3 5'

For each subset S' c D of P points do:

For all points in D, find their corresponding nearest points

in S' w ~ and sum up all these weighted distances to C'.

I f C > C ' , t h e n C = C ' a n d S - S ' .

Else do steps %13:

Generate all possible B-cycles (using the method discussed in

the above section).

For each possible B-cycle, we divide D into the interior

part A} and the exterior part C5, and do steps 9-13:

For k = 0 to 2P/3 do:

I f (P - i - k) <_ 2P/3 do:

Call GDEPM(k, AS, B'~ ,~/3, S~, C 0.

Call G D E P M (P ~ i - k, C5, B; ~/3, $2, C2).

I f C t + C 2 < C , t h e n S - S ~ w S 2,~B'~and

C = C 1 -~ C 2 .

Now let us discuss the time complexity of Algorithm GDEPM. Let the total

time complexity of this algorithm be T(P). We can see that steps 2-5 take

O(n e+l .P), P < 3. Step 7 needs O(n ~c',/g+~)+(c3"j~+c4)) = O(nC~/g+c6), as described

in the above section, where c 5 = c 1 + c 3 and c 6 = c 2 -,- c,~. Steps 9-13 are bounded

by 0((2P/3). 2. T(2P/3)) _< O(2n. T(2P/3)), for P _< n. Therefore the time complex-

ity from step 7 to step 13 is bounded by O(n c~,/g+c~ 1). T(2P/3). Hence we have the

following formula:

{<O(n~,/g+~+l).T(2P/3) when P > 3.

T(P) O(ne+ 1. p) ~ O(n 4) when P < 3.

When P > 3,

T(P) < O(n c~'/g+~+ t). T(2P/3)

< O(n~,,pf+ ~ + ~). O(n~,,~2/Y~ + c~ + 1). T(4P/9))

' + t) " |og3/2 P) < O(n~S(,/p + ,/2e/3 + ,/4e/9 -..) + (c6 +

< O(nCS.(1/(1-,j~/3)).,~-+lc6+l)-log3/2e) = O(rlO(,/Pl).

Therefore we conclude that T(P) = O(n~

The Searching over Separators Strategy 409

2.5. The Discrete Euclidean P-Center Problem. After showing how the D EP M

problem can be solved by the searching over separators strategy, in this section

we show that the DEPC problem can be solved in exactly the same way.

The DEPC problem is defined as follows: given a set D = {dl, d2, . . . ,dn} of
demand points, find a set S of P supply points from D, in order to minimize

Megiddo and Supowit (1984) proved that the EPC problem is NP-hard. Drezner

proposed an O(n 2v+ 1 "log n) algorithm (Drezner, 1984) for the EPC problem, which

can be improved to O(n 2v-~.log n) by combining it with the result that the

Euclidean 1-center problem can be solved in O(n) time (Megiddo, 1983). The way

of combining these two results is similar to that of Drezner (1987).

We can see that the DEPC problem is almost exactly the same as the D EP M

problem. We need to define a 9eneralized discrete Euclidean P-center problem as

follows: given a set D of n demand points, a set/~ c D of fixed supply points, and

a number P, select a set S of P supply points from D where fl and S are disjoint,

such that

is minimized.

We may denote the above problem as the GDEPC-(P, D,/~) problem or the

GDEP C problem. Thus, if we change step 13 of algorithm D E P M to be as follows:

Step 13. If max{C1, Cz} < C, then S = S 1 u S 2 t j B s and

C = max{C1, C2}.

then algorithm DEPM can also be used to solve the DEPC problem with time
complexity O(n~

3. The Euclidean P-Center Problem

3.1. Drezner's Algorithm. The EPC problem is similar to the DEPC problem,

except in this case the supply points do not have to be chosen from demand points.

Yet, by using Drezner's algorithm (Drezner, 1984), we can easily transfer this
problem to a problem similar to the DEPC problem and thus the search over

separators strategy can be used again.
Note that P circles of radius r can cover n demand points if and only if there

are P supply points and the longest distance between each demand point and its

closest supply points is r. Drezner (1984) pointed out that a circle is defined by
one, two, or three points. For the case of circles defined by three points, these

three points define the boundary of the smallest circle enclosing all three of them.

410 R.Z. Hwang~ R. C. Chang, and R C. Y. Lee

For the case defined by two points, they form the diameter of this circte. A circle

defined by only one point is a degenerated case, where the radius of this circle

can be considered as zero and the entire circle contracts to one point. Hence, we

(~) (n) and (~) circles defined can simply enumerate all of the circles. There are ' 2 '

by one, two. and three points, respectively. We call these circles the bounding circles.

Given any solution to the P-center problem, the largest radius r (the longest of

all distances between each demand point and its closest supply point) must be

equal to the radius of one of the bounding circles bounded by two or three points.

Hence, if we have an algori thm which can determine whether P circles of a given

radius r can cover all these points, we can perform a binary search over all radii

of the bounding circles to find an optimal one.

Let us sort all of the radii of the bounding circles. Then we choose one of them,

say r, and we ask the following question: can P circles of radius r cover the n

points? To answer this question, apparent ly we have to determine where these P

circles should be placed.

Drezner (1984) also showed that there are only O(n 2) possible supply points for

a given radius r. He claimed that there exists a set Sp of O(n 2) possible supply

points, such that if P circles of radius r can cover the n demand points, then we

can find P circles centered at some of the points in Sp which can cover the n

demand points. The points in set Sp are called the possible supply points, found

as follows: For any two points in the n demand points, we find the two circles of

radius r passing through these two points. The set Sp is the union of the centers

of these circles and the n demand points.

N o w let us see why Drezner 's claim holds. Assume that we have found that a

set C = {cl, c2 Ce} of circles of radius r can cover all n demand points. If there

are more than two demand points on the boundary of circle ci ~ C, then the center

of ci belongs to Sp. If there are less than two demand points on the boundary of

circle cj ~ C, then there are two possibilities. One is that this circle covers only one

demand point. In this case we move this circle so that it centers at this demand

point. Another case is that this circle covers more than two demand points. In

this case we can move this circle until two demand points touch the boundary of

this circle. Again this new center belongs to Sp. We can see that these new circles

cover the same set of demand points as the old circles do. So we have a new

solution and the centers of the circles in this solution are all points in Sp.

Therefore we can select any P points in Sp and then check whether these circles

of radius r centered at these P points cover all of the n demand points. Since there

are O(n 2) possible supply points, we have (,O 2) possible selections, and it takes

O(n) time to check whether these P circles cover all points, and O(log n 3) = O(log n)

to do the binary search~ So the time complexity is O(n 2e + 1. log hi.

3.2. The Searehin9 over Separators Strategy To Solve the (P, D, Sp) Circle Cover

Optimization Problem, As we discussed above, our basic problem is as follows:

given a set D of n demand points, a radius r, and a set Sp of O(n z) possible supply

The Searching over Separators Strategy 411

points (generated by using Drezner's algorithm (Drezner, 1984)), determine
whether there exists a set S c Sp of P supply points, such that the P circles of
radius r centered at these P points can cover the n demand points. We call this
problem the (P, D, r, Sp) circle cover decision problem (the (P, D, r, Sp) CCD
problem).

In order to solve the above (P, D, r, Sv) CCD problem, we may first solve the
following (P, D, Sp) circle cover optimization problem (the (P, D, Sp) CCO problem):
given a set D of n demand points and a set Sp of O(n 2) possible supply points, find
the smallest rs, such that P circles of radius rs centered at some P points selected
from Sp can cover the n demand points. We can see that if this r S is longer than
r, then the answer to the (P, D, r, Sp) CCD problem is "false"; otherwise it is "true."
Thus, if the (P, D, Sv) CCO problem is solved, the (P, D, r, Sv) CCD problem is
also solved.

It can be easily seen that the (P, D, Sp) CCO problem is similar to the
GDEPC-(P, D, fl) problem except in this case there are O(n 2) points in Sv and we
select the supply points from Sp, instead of D. Thus the algorithm for solving the
GDEPC problem can be used to solve the (P, D, Sp) CCO problem with time
complexity O(n~

4. The Euclidean Traveling Salesperson Problem

4.1. Preliminaries. In the above sections we described how to apply the searching
over separators strategy to the DEPC problem. We now show how the searching
over separators strategy can be applied to solve the Euclidean traveling salesperson
(ETSP) problem. In this problem, given n points in the plane, we are asked to find
a shortest cycle out of these n points. This problem is an NP-hard problem
(Papadimitriou, 1977; Papadimitriou and Steiglitz, 1976) and it can be solved by
the dynamic programing strategy in time O(2"n 2) (Held and Karp, 1962; Horowitz
and Sahni, 1978; LaMer et al., 1985). A very thorough review of many algorithms
for this problem can be found in Lawler et al. (1985). We show that through the
searching over separators strategy, we can obtain an algorithm for the ETSP
problem with O(n ~ time.

4.2. The Generalized Euclidean Traveling Salesperson Problem. As we did in
solving the DEPM problem, we first generalize our ETSP problem into the
following: Given a set V = {vl, Va,..., v,} of points and a set

T = {(t,, tl),(t2, t~), . . . , (t~, t~)}

of terminal pairs, we want to find a set of m paths, satisfying the following
conditions:

(1) Every path starts from ti and returns to t'i, where 1 <_ i < m.
(2) Every point in V is included in exactly one of these paths.
(3) The total length of these paths is minimized.

412 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

e

Fig. 4.1. An optimal solution to the ETSP problem.

We may call the generalized Euclidean traveling salesperson problem ! the G E T S P

problem) with such V and T as inputs the (V. T~-GETSP problem, When V =

{v2, v3, . . . , v,} and T = {(v~, Vl)}, this G E T S P problem is degenerated to the ETSP

problem with v 1 v, as inputs. Again, for reasons which will become clear later,

we try to solve the G E T S P problem.

Let us imagine that given an ETSP problem with a set V of n points as input

and we have an optimal solution to this problem. We first show that, based upon

the optimal solution, we can find a cycle separator properly dividing the input

sets V into two parts of inputs V~, T~ and V~, T~ of the G E T S P problems such that.

if we solve the two G E T S P problems and then merge the solutions, we can obtain

an optimal solution of the original one.

Consider Figure 4.1, which shows a set of points and an optimal solution to

the ETSP problem. We then add a set I = {I~, 12, 13} of three enclosing points

which inscribe all points m V, and construct a tr iangulation out of the points in

V u I where every edge in the optimal solution is also an edge in this triangulation.

Since this tr iangulation is a maximal planar graph, let the points in I be zero

weighted vertices and lel the others be equal weighted vertices. Then from Miller's

simple cycle separator theorem (Miller, 19861, there exists a simple cycle separator

which divides the points in V into the interior part V~ and the exterior part V~,

respectively, such that there are no more than ,,/8" {n -,- 3t vertices in the simple

cycle separator, [Vaj < 2n/3 and]V~ _< 2n/3, where n is the number of points in v

and in this case n = 6. Here the three input points, namely, a, c, and e are on the

simple cycle separator, as shown in Figure 4.2. Thus we now have two G E T S P

problems, defined as follows:

(1) The interior subproblem with V~ = {f}, T, = {(e, a)} as inputs.

(2) The exterior subproblem with V~ = {b, d}, T~ = {(a, c), tc, e)} as inputs.

After solving the above two G E T S P problems, we obtain the three paths.

Pl = (a, b, c), P2 - (c, d, el, and P3 = (e, f , a). Using a simple mergmg process, we

can derive the original optimal solution p - (a, b, c, d, e, f , m.

The above example shows how to divide the ETSP problem into two G E T S P

problems. For solving the subproblems, we would recursively divide these G E T S P

problems. It is not difficult to see that the G E T S P problem can also be divided

by the same principle, except that there is an extra input data T In this new

dividing process, we construct the tr iangulation out of the points in V, 1. and T.

Also let the points in I be zero weighted vertices and let the others be equal

The Searching over Separators Strategy

I I I 2

[3

Fig. 4.2. A simple cycle separator showing the three input points a, c, and e.

413

weighted vertices. Then, from Miller's simple cycle separator theorem (Miller,
1986), there exists a simple cycle which divides the points in V and T into the
interior parts V,, T'a and the exterior parts V~, T'c, respectively, such that there are

no more than x/8. (n + 2m + 3) vertices in the simple cycle and I V,t + I Z'a] <-

2(n + 2m)/3, I V~I + I T;] -< 2(n + 2m)/3, where 2m is the number of points in T.
In the following we present a dividing process, which would decompose a

(V, T)-GETSP problem into two subproblems. We later show that if we solve these
two subproblems and then merge the two solutions, we would obtain an optimal
solution to the original (V, T)-GETSP problem. As explained later, to execute this
dividing process we must have an optimal solution to the (V, T)-GETSP problem.

A Process To Divide a (V, T)-GETSP Problem into Two Subprobiems

Input: A (K T)-GETSP problem, where V = {Vx, U 2 , . . . , Vn} and T =
{(tl, t]), (t 2, t~) (tin, t;,)}, and an optimal solution to this problem,

namely, a set S of m paths Pl, P2, . . . , Pro"
Output: Two subproblems: the (V~, Tb)-GETSP problem and the (V~, T~)-
GETSP problem, such that the merging of the solutions to the above
two problems will result in an optimal solution to the (V, T)-GETSP
problem.

Step 1. Find the set I = {I 1, 12, I3} of three points which inscribes all
points in V and T.

Step 2. Construct a triangulation graph out of these points in V, T, and
I, such that each edge in the optimal solution is an edge in this
triangulation.

Step 3. Let the weights of points in I be zero and let others be any
nonzero constant. Use a simple cycle separator B to divide V
(resp. the points in T) into the interior part V~ (resp. T'a) and the
exterior part V~ (resp. T;). Lct Vb be the points on the simple cycle
separator B which belong to V.

414 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

Step 4. Let T~ = T~ = ~ .
Step 5. For i = 1 to rn do:

Step 6. Call Procedure

DIVIDE_TERMINAL(pl, V,, V~, T;, T;, Vb, T~, T~).

Step 7. T, = T~ w r / , T~ = T~ tj T~.

Step 8. Output two subproblems: the (V~, T~)-GETSP problem and the
(V~, T~)-GETSP problem.

In the above process the critical procedure is Procedure D I V I D E T E R M I N A L .

This is a linear scan procedure, which scans the points along a path. If the point

being scanned is a point in the simple cycle separator, then some appropriate

action is taken. This procedure is now described:

Procedure DIVIDE TERMINAL(pl, V~, Vc, T;, T;, Vb, T~, F~)

I n p u t : A path Pi = (vii , vi2 vii), V,, V~, T'a, T'~, and Vb.
O u t p u t : r~, and Tic where r / and T~ are both sets of terminal pairs.

Step 1. v' = va , Ti~ = T~ = ~ .

Step 2. For k = 2 to j do:

Step 3, If vik e Vb or k = j, then:

Step 4. If (v' ~ T~) o r (l)ik e r'~) o r (1)i(k_ 1) ~ Va) then:
Step 5. T / = T~ u {(v', vik)}

Step 6. Else
= u

Step 7. v' = vik.

In the following we show an example to illustrate how Procedure D I V I D E -

TERMINAL works. Consider Figure 4.3. We have a path Pi = (a, b, c, d, e, f , g, h),

where a, h e T'c, b, e, g e Vb, c, d e V~, and f ~ V~. Applying the above procedure.

we obtain T~ = {(a, b), (e, g), (9, h)} and T~ = {(b, e)}. We now show that after we
solve the two subproblems, we can merge the two solutions and obtain an optimal

solution to the original problem.
Note that in the dividing process, Procedure DIVIDE_TERMINAL sequenti-

ally divides a path into sets of terminal points. Thus, for path Pi, let us assume

that the terminal pairs resulting in both interior and exterior parts from applying

the above procedure a r e (t i l , t'il), (ti2 , t'i2) (t~j, tlj), where ril and t~j a r e the
starting and terminating points ofpi, respectively. After solving the (Va, T,)-GETSP

El a a simple cycle separator

, " Z V
f

Fig. 4.3. Path Pi = (a, b, c, d, e, f , g, h), where a, h e T;, b, e, g s Vb, c, d e V,, and f s V~.

The Searching over Separators Strategy 415

problem and the (V~, T~)-GETSP problem, til is connected to th through a path,
t~2 is connected to t'~2 through a path, and so on. Moreover, ti~, which is a starting
point of p~, is connected to t',j, which is a terminating point of pi. In other words,
after solving the (V~, Ta)-GETSP problem and the (V~, T~)-GETSP problem, we
have p'~, p~, p ; , . . . , p" in which the starting point and terminating point of P'i are
the same as those of p~ of the optimal solution to the (V, T)-GETSP problem. We
may conclude that after solving the (V,, T,)-GETSP problem and the (V~, T~)-
GETSP problem, we have obtained a solution to the (K T)-GETSP problem. We
now prove that this solution is an optimal solution.

Let S, and Sc denote optimal solutions to the (V~, T~)-GETSP problem and the
(V~, T~)-GETSP problem, respectively. Let S denote an optimal solution to the
(V, T)-GETSP problem, and let COST(S) denote the cost of solution S. We show
that COST(S,)+ COST(S~)= COST(S). Assume otherwise. Then there are two

cases:

Case 1." COST(S,) + COST(So) < COST(S). This is impossible because COST(S)
is the cost of an optimal solution to the (V, T)-GETSP problem.

Case 2: COST(S,) + COST(S~) > COST(S). Let us decompose the optimal solu-
tion into two parts, one relating to points in the (V~, T~)-GETSP problem, denoted
as S'a, and the other relating to points in the (V~, T~)-GETSP problem, denoted as
S;. Then COST(S) = COST(S;) + COST(S;). In other words, we have

COST(S,) + COST(So) > COST(S;) + COST(S;).

Without loss of generality, we may assume that COST(S~) > COST(S'a). Again,
this is impossible because COST(S,) corresponds to the cost of an optimal solution

to the (V,, T,)-GETSP problem.
In conclusion, we have the following lemma:

LEMMA 4.1. Let S, and Sc denote the costs of optimal solutions to the (V,, T~)-

GETSP problem and (V~, T~)-GETSP problem, respectively, and let S denote an

optimal solution to the (V, T)-GETSP problem. Then

COST(S) = COST(Sa) + COST(So).

There is still one problem which we have to solve. Note that after solving two
(V, T)-GETSP problems, we get a set of paths. These paths cannot intersect with
one another because Miller's theorem can only be applied to the planar graph. It
is obvious that there is no intersection in the optimal solution to the ETSP
problem. Assume that S is an optimal solution to some ETSP problem, vlv2 and
v3v 4 are in S, and they intersect each other, then we can draw vlv3, VzV, ~ or VxV4,

v2v 3 instead of VlV 2, v3v4 in S. Both will derive a lower cost than the original one
and one of them must be a legal solution. So we have another legal solution with
lower cost than S. Therefore any cycle with intersections must not be an optimal
solution to the ETSP problem.

We next show that if the initial problem is an ETSP problem~ then at each stage
after solving two GETSP problems, the resulting paths do not intersect and

416 R.Z. Hwang, R. C. Chang, and I~ C. T. Lee

Miller 's theorem can always be applied. Assume otherwise. At a certain stage, two

paths intersect after solving two G E T S P problems. Then after we merge these

paths back recursively, we finally obtain a cycle with intersections. This is

impossible because our initial p rob lem is an ETSP problem, and its solution

should be a cycle without intersections.

4.3. Generat ing Al l Possible Input Instances. Note that the above discussion

is based upon an assumpt ion that an opt imal solution is available to us. Of

course, we do not know any opt imal solution in advance. Therefore our strategy

is to generate all possible simple cycle separators , and then we find the best

result with respect to each possible simple cycle separator . Because the largest size

of a simple cycle separa tor is , j ~ n + 2m - 3), we may select i edges, where

3 < i <_ ,,/8 "(n - 2m + 3), f rom the complete graph constructed f rom the points

in V, T, and I. If these i edges form a simple cycle without any intersect ion then

test whether this cycle can divide the rest of the points in V. T i n t o V~, T; and V~,

T;, such that I V~ u T',] _< 2(n + 2m)/3 and I V~ u r ; l _< 2(n - 2m)/3. If this cycle

satisfies the above conditions, this is a candidate of the simple cycle separator .

Since we exhaustively generate all possible such simple cycles, the one which

derives the best result must be the desired one. The following is our a lgor i thm to

generate all these possible simple cycle separators.

Procedure GEN_CYCLES_BI V, T, B')

Funct ion: Genera te a set B ' of simple cycles of which one is the simple

cycle separa tor on the maxima] p lanar graph from the points in F. T,

and 1, and the edges in the paths of an opt imal solution.

Input : A set V and T.

Output." A set B' of simple cycles.

S t e p l . L e t B ' - ~ a n d l e t T r be the set of points m T.

Step2. F o r i - 3 t o ~ / 8 ([V : [T ' l + 3) do:

Step 3. Find B'~ = {b'slb'~ ~ [V w T' ~J 1) and Ib's - i}.

Step 4. For each b'~ s B's do:

Step 5. Const ruct the complete graph out of the points in b's.

Step 6. For each subset of i edges in G do:

Step 7. If these i edges cannot form a simple cycle, then j ump to

step 6 and try the next instance: else denote this simple

cycle as b.

Step 8. If there exists any intersection in b, then j ump to step 6 and

try the next instance.
Step 9. Use b to divide the points in V and T into interior parts

V,, T'a and the exterior parts t~, T'c. (Apply the point

!ocation algori thm of P repa ra t a and Shamos (1985).) If

[I ga u r ' a > 2(n ~ 2m)/3)or([V~ ,~ T'r > 2(n ~ 2m)/3), then

j u m p to step 6 and try the next instance.

Step 10. B' := B' ~ b.

Step 11. Return B'.

The Searching over Separators Strategy 417

e c
U l a ~ D f

b g []
Fig. 4.4. Two terminal pairs, (a, b) and (c, d), and three points, e,f, and 9, on the simple cycle separator.

This procedure is slightly modified from Procedure GEN_CYCLES_A discussed

in the preceding sections. By using a similar method, we can prove that the time
complexity and the number of cycles are both bounded by O((n + 2m) c~ (,/~ + 2m)+ cb),

where c a and c b are some constants.

In this procedure we show that we can find all possible simple cycle separators.

We still have to face one problem. We have to decide all of the terminal pairs.

For instance, in the example illustrating the dividing procedure, we generate two

sets of terminal pairs T~ = {(a, b), (e, 9), (9, h)} and Ti, = {(b, e)}. Since no optimal
solution is available to us, how can we determine these two sets?

Let us consider Figure 4.4. In Figure 4.4 there are two terminal pairs (a, b) and

(c, d). The points on the simple cycle separator are e, f, and 9. Of course, there

are many other points which are neither terminal points nor points on the simple

cycle separator. From Procedure D I V I D E T E R M I N A L , it can be seen that points

which are neither old terminal points nor points on the simple cycle separator
are irrelevant to our dividing process. Therefore, in the following, we only consider

points which are originally terminal points or points on the simple cycle
separator.

Suppose that we are given two terminal pairs (a, b) and (c, d). We are also given

points on the simple cycle separator e, f, and 9. There are many ways of forming

paths by using these points. Our job means to assign e, f, and 9 to either (a, b) or

(c,d) such that two paths will be formed: one connecting a to b and the other

connecting c to d. In the following we list some of them:

(1) (a,e,b) and (c , f , g , d)

(2) (a, e, b) and (c, 9, f , d)

(3) (a, b) and (c, e, f , ~, d)

(4) (a, b) and (c, f, e, g, d)

(5) (a,f,g,b) and (c, e, d)

(6) (a, g,f, b) and (c, e, d)
and so on.

It can be seen that in each case we assign a subset of e, f, and g to (a, b) and

the rest of the points to (c, d). Note that the subset can be an empty set. Moreover,

after a subset of points from e, f , and g are assigned, they can be permuted.

For each set of paths, there is a corresponding set of terminal pairs. Again, in

418 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

the following we list some of them:

(1) (a, e, b) --* (a, el, (e, b)
(c, f , g, d) ~ (c, f) , (f, g), (g, d)

(2) (a, e, b) ~ (a, el, (e, b)
(c, g, f , d) --+ (c, g), (g, f) , (f, d)

(3) (a,b) ~ (a, b)

(c, e, f , g, d) --, (c, el, (e, f) , (f, 9), (9, d)
(4) (a,b) -+ (a, b)

(c, f , e, g, d) --+ (c, f) , (f, el, (e, 91, (g, d)
(5) (a, f , g, b) ~ (a, f) , (f, g), (9, b)

(c, e, d) --* /c, e), (e, d)

(6) (a, g,f , b) - , (a, g), (g, f) , (f, b)
(c, e, d) - , ~c, el, le, d)

For each terminal pair, we assign it to interior or exterior. For instance, consider
(a, el. Since a is an exterior point, (a, et is an exterior terminal pair. On the other
hand, (g, d) is an interior terminal pair. because d is an interior point. For (f, g),

it can be assigned to either exterior or interior. Therefore. given the set of terminal
pairs {(a, el. (e, b), (c, f) , (f, g), (g, d)}, we can generate the following possible
terminal pairs of the snbproblems:

(1) The interior terminal pairs: {(c, f) , (f, g)}.
The exterior terminal pairs: {(a, el, re, b), (g, d)}.

(2) The interior terminal pairs: {c, f)}.
The exterior terminal pairs: {(a, el, (e, b), (J; g), (g, d)}.

We now list the basic steps to generate all the new terminal pairs. We are given
the original terminals (tl, t'l), (t2, @, (tin, t;,) and the set of nonterminal points
in the simple cycle separator {bl, b2 bk}. Our first step is to generate all
possible permutations of {bl, b2 bk}. For instance, for the above example, we
have

(e, f , g)
~e, g, f)
(g, e, f)
(g, f , e)
(f, g, e)
(L e, 0)

Since there are two original terminal pairs, for each permutation, we view it as a
sequence and generate all possible two continuous subsequences. For example,
consider (e, f , g). There are four possible ways to partition it into two subsequences:

() (e , f ,g)

(el (f, g)
(e, f) (g)
(e , f ,g) ()

The Searching over Separators Strategy 419

Each subsequence can be partitioned in this way. After all sequences are parti-
tioned, we assign the first subsequence to (a, b) and the second subsequence
to (c, d). Thus from the above pairs of subsequences, we have the following
paths:

(a,b) (c ,e , f ,g ,d)
(a,e,b) (c , f ,g ,d)
(a ,e , f ,b) (c,g,d)
(a ,e , f ,g ,b) (c,d)

It may be wondered why (c, e, d), for instance, is not generated. This will be
generated later by applying the procedure to the sequence (f, 9, e). (f, 9, e) can be
partitioned into (f, 9) and (e). This will produce the path (c, e, d).

After generating paths, we then scan each path linearly and produce terminal
pairs. For instance, for (a, e, b), we have (a, e) and (e, b) as terminal pairs.

Note that given a simple cycle separator, the sets V,, V~ of nonterminal points
of the inputs of the subproblems are all the same. The following procedure is our
detailed algorithm to generate all possible input instances of the subproblems:

Procedure GEN_INPUTS(V, T, b, p)
Input: V = {vi, v2 v,}, a set of points;

T = {(t l, t'i), (t2, t~), . . . , (tin, t~,)}, a set of terminal pairs; and
b, a simple cycle which goes through some points in V, T, and I.

Output: p = {(Va, V~, Ta, T~)I(V,, T~), (V~, T~) are the candidates of the
input instances of the interior and exterior subproblems,
respectively.}

Stepl . p = ~ .
Step 2. Use the simple cycle b to divide the points in V and T into the

interior part V,, T'a and the exterior parts V~, T;, respectively.
(Apply the point location algorithm of Preparata and Shamos
(1985).) Let Vb be the nonterminal points of Vin the simple cycle.

Step 3. Generate all permutations of points in Vb.
Step 4. For each permutation q' = (v'i, v~ v~,), call

GEN_SEQUENCES (q', V~, 1, 1).

/* The function of GEN_SEQUENCES views a permutation as
a sequence and generates all possible sequences of m contin-
uous subsequences, as defined in the above discussion. */

Step 5. For each (ql, q2 q,~) E V~ do:
Step6. For each q~=(vil, vi2,...,v~k), find the set of terminal

pairs Tp = {(t i , v i i) , (v i i , vi2), . . . , (Vik , tl) }. If ((t ik , t i j) ~ Tv) and
((tik ~ r'a, t~j e T;) or (tik e T'c, tit e r'~)), then jump to step 5 and
try the next instance.

420 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

Step 7. Generate p' = ~(V,, V~, T~, T~)] T a w T~ = Tp, T~ ~ T~ = ~ , and if
vi or vje T~ (resp. r;), then (vi, v j)~ T~ (resp.
r.).}

Step 8. Let p = p' u p and Tp = ~ .

Step 9. Return p.

Procedure GEN_SEQUENCES(q', V~, Cur, i)
Funct ion:Find V~ = {(ql, q2 q,,)]q~ is a continuous subsequence of

f
q' = (v'l, v2,J �9 V'k). I f j l <j2 , il < i2 and vii u qi2,

then v)2 ~ q}l. All points in qi are disjoint and the
union of points in qi is {v], v~ v~}.}

Step 1. If i = m, then qi = (Your, o--, v~,) and V~ = V~ ~ {(ql, q z , . . . , q~)}
Step 2. Else for j = Cur-1 to k do:

~ t t Step3. If j = Cur-l, then q~ ~ else qi = (c vi) and call
GEN_SEQUENCES(q', V~, j + 1, i + 1).

The time complexity of the recursive procedure GEN_SEQUENCES is equal
to the number of patterns generated in the procedure. The number of patterns
generated is equal to the number of ways to place k nondistinct objects into m

distinct cells. The number of ways to do this is k '

Let us examine the time complexity of Procedure GEN_INPUTS. Step 2 takes
(n + 2m)" k, where k is the number of points in the simple cycle b (Preparata and
Shamos, 1985). Step 3 takes O(k!) <_ O(kk). Step 4 takes

m + k - 1"] < k)~.
(m +

k]

Step 6 takes linear time. Step 7 generates 2 k instances for each (ql, q2 q,.) E V s.

Therefore the time complexity of this procedure and the number of input instances

generated are both bounded by

O(((n + 2m)- k + k k) + (k k" (m + k) k) + kk'(m + k) k .(k + 2k)).

Because k is the size of the simple cycle,

k _ < x / 8 " (n + 2 m + 3) - < x / 8 " (n + 2 m) + 8 x ~ .

We can derive that

O(((n + 2m)' k + U) + (k k" (m + k) k) + k k" (m + k) k" (k + 2k)) <_ (n + 2m) c'~.'" + 2,.). co,,

where c c and c d are some constants.

4.4. Algorithm GETSP and Its Time Complexity. We have shown how to
generate all possible simple cycle separators and how to generate all possible input

The Searching over Separators Strategy 421

instances o f the two subproblems for a given simple cycle. We now state the
algorithm based upon the above two procedures to solve the (V, T)-GETSP

problem.

Algorithm GETSP(V, T, E, C)
Input." Two sets V = {va,/)2 /)n} and T = {(tl, t'l), (t2, t'2) (tin, t'm)},
where all points are on the plane.
Output: A set E of m paths, where the ith path starts from ti and
terminates at t~ (1 < i < m) and each point in V is passed through by
exactly one path, such that total length of all paths is minimized.

Step 1.
Step 2.
Step 3.

Step 4.
Step 5.
Step 6.
Step 7.
Step 8.
Step 9.
Step 10.

C : : oo.

If V = ~ , do step 3, else do steps 4-10:
Let E = {e[e = ht'i, where 1 _< i < m} and let C be the total
length of the edges in E. Return E and C.

Call GEN_CYCLES_B(V, T, B').
For each b 6 B', do:

Call GEN_INPUTS(V, T, b, p)
For each (V a, V~, Ta, Tc)~ D do:

Call GETSP(Va, T,, E~, Ca).

Call GETSP(V~, T~, E~, Co).
If C > C a + C c, then E = E a u Ec, C = C,, + C~.

We recursively divide these subproblems until V = ~ . When V = ~ it means
that there is no nonterminal points. Hence we can directly connect each terminal
pair in T and return the total distance. Each input instance derives a solution. We
select the instance with the smallest cost as the desired one, and eliminate all other

incorrect guesses.
We know that the time complexity and the number of cycles generated in

Procedure GEN_CYCLES_B are both bounded by O((n + 2rn)C~ The
time complexity and the number of input instances generated in Procedure

co(n~- 2m)+cd GEN_INPUTS are bounded by O((n + 2m) ~). Therefore steps 4-6 take
O((n + 2 m) ~ ~ + 2m)cc('fg~g)+~9 = O((n + 2m)~e('/g-4-~)+c 0, where
c e = c, + cc and c I = % + %. Let us consider the size of the subproblems. We
know that [V~ u T'al -< 2(n + 2m)/3 and I V~ ~ T'c] _< 2(n + 2m)/3. However, after
calling Procedure GEN_INPUTS, all points in the simple cycle become the
terminal points in the subproblems. Therefore the sum of numbers of points in Va

and T~ (also in V~ and T~) is no more than 2(n + 2m)/3 + x/8"(n + 2m + 3), for the

number of points in the simple cycle separator is no more than x/8- (n + 2m + 3).
Let T(n + 2m) be the time complexity of Algorithm GETSP with V and T as
inputs, where n is the number of points in V and 2m is the number of points in
T. Then we have the following formula:

T(n + 2m) = O((n + 2m)Ce'('/~5~)+c0" T(2(n + 2m)/3 + x/8-(n + 2m + 3)).

422 R.Z. Hwang, R. C. Chang, and R. C. T. Lee

Let nl = n + 2m. Then we have

r(nl) = O(nC{%/"%~-co" r (2"nl /3 + x/8"(nl + 3)).

W h e n n I is large enough, n~/6 >_ V @ (nl + 3),

T(nl) = O(n~ ~~'/%) +c 0 - T(5 .nl/6),

r(nl) = O(n~ ~((1 /"- s /6" ' '%+'~ %

r(nl) = O(nO(,/,%

Therefore we can derive that

T(n + 2m) = O((n - 2m) ~ 2m.,).

Because the ETSP problem is a special case of the GETSP problem, there is

only one terminal pair in T, and the rime complexity of solving the ETSP problem

is O(n~

5. Concluding Remarks. The divide-and-conquer strategy is a well-known ap-

proach to designing efficient algorithms. In this paper we propose a searching over

separators strategy to solve three geometry problems which cannot be solved by

the divide-and-conquer strategy directly. All these problems have a common

property in their optimal solutions, that is, there exists a separator that can

partition the input data into two parts called A and C, such that if we merge the

optimal solutions to the two subproblems with A and C as inputs, independently,

then we have the optimal solution to the original problem.

Because of the above property, for each case we find a procedure which can

generate all possible separators efficiently. We use these possible separators to

divide the input into two parts and then recursively solve the subproblems. If the

separator is the desired one, then we can find a feasible solution with minimal

cost; otherwise we try the next possible separator.

The four geometric NP-hard problems we solve in this paper are the discrete

Euclidean P-median problem, the discrete Euclidean P-center problem, the

Euclidean P-center problem, and the Euclidean traveling salesperson problem. The

time complexity for the DEPM, the DEPC, and the EPC problems is O(n~

and for the ETSP problem it is O(n~ The best previous results are O(n e+ 1. p)

(Papadimitriou, 1981} for the D E P M problem, O(n2e - l . l ogn) IDrezne r , 1984:

Megiddo, 1983) for the EPC problem, and O(nZ2 ") (Held and Karp, 1962: Horowitz

and Sahni, 1978; Lawler et aL. 1985) for the ETSP problem.

We strongly recommend the reader to consult Smith (!991) which contains many
ideas similar to ours. Smith used his strategy to solve the Steiner tree problem

and the traveling salesoerson problem in subexponential time.

The Searching over Separators Strategy 423

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer Algorithms, Bell

Telephone Laboratories, Inc., New York, 1976.
Bentley, J. L., Divide and Conquer Algorithms for Closest Point Problems in Multidimensional Space,

Ph.D. Thesis, Department of Computer Science, University of North Carolina, 1976.
Bentley, J. L., Multidimensional Divide-and-Conquer, Communications of the Association for Compu-

ting Machinery, Vol. 23, 1980, pp. 214~229.
Delaunay, B., Sur la sphere vide, Izvestiya Akademii Nauk SSSR, Otdelenie Matematicheskii i

Estestvennyka Nauk, Vot. 7, 1934, pp. 793-800.
Drezner, Z., The P-Center Problem--Heuristics and Optimal Algorithms, Journal of the Operational

Research Society, Vol. 35, No. 8, 1984, pp. 741-748.
Drezner, Z., On the Rectangular P-Center Problem, Naval Research Logistics, Vol. 34, 1987,

pp. 229-234.
Edelsbrunner, H., Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
Held, M., and Karp, R. M., A Dynamic Programming Approach to Sequencing Problems, SlAM

Journal on Applied Mathematics, Vol. 10, 1962, pp. 196 2t0.
Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms, Computer Science Press, Reckville,

MD, t978.
LaMer, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B., The Traveling Salesman

Problem~A Guided Tour of Combinatorial Optimization, Wiley-Interscience, New York, 1985.
Lipton, R., and Tarjan, R. E., A Separator Theorem for Planar Graphs, SIAM Journal on Applied

Mathematics, VoL 36, No. 2, 1979, pp. 177-189.
Megiddo, N., Linear-Time Algorithms for Linear Programming in R 3 and Related Problems, SIAM

Journal on Computing, Vol. 12, No. 4, 1983, pp. 759-776.
Megiddo, N., and Supowit, K. J., On the Complexity of Some Common Geometric Location Problems,

SIAM Journal on Computing, Vol. 13, No. 1, 1984, pp. 182-196.
Mehlhorn, K., Data Structure and Algorithms 3: Multi-dimensional Search and Computational Geo-

metry, Springer-Verlag, Berlin, 1984.
Miller, G. L., Finding Small Simple Cycle Separators for 2-Connected Planar Graphs, Journal of

Computer and System Sciences, Vol. 32, 1986, pp. 265-279.
Nishizeki, T., and Chiba, N., Planar Graphs, Theory and Algorithms, Elsevier, Amsterdam, 1988.
Papadimitriou, C. H., Some Computational Problems Related to Database Concurrent Control,

Proceedings of the Conference on Theoretical Computer Seience, University of Waterloo, Waterloo,
Ontario, 1977, pp. 275-282.

Papadimitriou, C. H., Worst-Case and Probabilistic Analysis of a Geometric Location Problem, SIAM

Jourmd on Computing, Vol. 10, 1981, pp. 542-557.
Papadimitriou, C. H., and Steiglitz, K., Some Complexity Results for the Traveling Salesman Problem,

Proceedings of the 8th Annual A CM Symposium on Theory of Computing, New York, 1976, pp. 1-9.
Preparata, F. P., and Shamos M. I., Computational Geometry, Springer-Verlag, New York, 1985.
Smith, W. D., Studies in Computational Geometry Motivated by Mesh Generation, accepted by

Algorithmica, 1991.
Voronoi, G., Nouvelles applications des param~tres continus ~t la th+orie des formes quadratiques.

Premier M+moire: Sur quelques propri6t6s des formes quadratiques positives parfaites, Journal

far die Reine und Angewandte Mathematik, Vol. 133, 1907, pp. 97-178.

