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ABSTRACT 

Objectives: To describe the strategy employed by exudativorous primates during seasonal shifts in food abundance 

using the Javan slow loris as a model. Males and females may cope differently as well as exploit fallback foods in 

different proportions.  

Materials and Methods: Observing 15 free ranging Javan slow lorises over a year, we quantified their seasonal diet 

and nutrient intake using intake rates. We monitored phenology over five plots that were assessed monthly. We 

weighed animals every six months. We analysed all food items slow lorises ingested for macronutrients using the 

nutritional geometry framework.   

Results:  The slow loris diet consisted of eight food categories, with gum and insects being the major food source in 

terms of weight. All food items were available in the wet season and were restricted in the dry season. Males and 

females reacted differently to seasonal abundances with females ingesting more protein, gum, fruits and flowers and 

males ingesting more fibre.  

Discussion: The reproductive costs of gestation and lactation may place a burden on females that requires them to 

alter their foraging strategy during the dry season to ensure enough protein and overall energy is ingested. The 

overall strategy used by these exudativorous primates is one of nutrient maximization as no nutrient was clearly 

preferred over another.  
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INTRODUCTION 

Primates have evolved a variety of ways to cope with the seasonality of their habitats, specifically in regards to the 

flux of available nutrients and energy (Gould et al., 1999; Irwin et al., 2014). Changes in behavior leading to 

reduced metabolic costs (Gould et al., 2011); reduction of fat reserves (Knotts, 1998), changes in physiology i.e. 

torpor (Nowack et al., 2013; Pereira 1993;); alteration of home range size and/or daily distance travelled (Campera 

et al., 2014; Pichon et al., 2016; Sato et al., 2015); and prominently, the ingestion of less preferred (fallback food) 

items (McGraw et al., 2014; Serckx et al., 2015) are all strategies primates may employ to cope with energetically 

restrictive seasons. The term “fallback food” has been used inconsistently in the primatological literature.  Fallback 

foods are not intrinsic, meaning a plant part is not inherently of low quality, but instead fallback foods are 

comparatively observed to have a lower nutritional quality (Lambert and Rothman, 2015). Following optimal 

foraging theory (Charnov, 1976), the highest quality food items should be selected based on what is available, given 

their defined constraints such as requiring substantially more handling or processing time, possessing a higher fiber 

concentration or higher secondary plant metabolite content. All of these factors may ultimately reduce the amount of 

or absorption rate of nutrients, decreasing the nutritional gains of this particular food in regards to the resources 

needed to process it (low quality). When compared to a food item with higher gains and/or requiring a lower 

processing intensity (high quality), the low quality food item is described as fallback and should only be selected 

when the higher quality food is not available. Such selections are relative to what other edible items are available.  

 

Tougher or more fibrous foods have often been labelled as fallback foods, without regard for the morphological or 

physiological adaptations of species that consume them (Constantino et al. 2009; Lambert et al., 2004; Moura and 

Lee, 2004). For such species, animals may select a typical fallback food disproportionally relative to the food’s 

abundance in a given habitat, using it as a preferred food item (Leighton, 1993; Marshall and Wrangham, 2007). 

Fallback foods can be further defined into “staple” and “filler”. The staple fallback foods are always available and 

are a small yet consistent part of the overall diet. This category is in opposition with filler fall back foods, which 

may be available year-round or only seasonally yet very rarely become an important part of the diet, usually when 

preferred foods are absent (McGraw et al., 2014). Preferred food items, often ripe fruit or young leaves, can be eaten 

alongside the modified described staple fall back foods (Marshall and Wrangham, 2007). Many frugivorous species 
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have to survive drastic changes in food availability, often by choosing to ingest a larger variety of plant parts as well 

as possibly insects (Beeson, 1989; Gould et al., 2011; Norconk et al., 2009; Ossi and Kamilar, 2006; Terborgh 

1984). Less is known about how exudativorous or insectivorous primates respond to such seasonal changes. 

 

Gums as a food resource have been reported to be of little nutritional value, containing low levels of crude protein, 

virtually no lipids and mostly comprising soluble fiber (Nash and Whitten, 1989). To gain energy from such food, 

species exploiting them must possess the capacity for fermentation, as well as the ability to cope with plant 

secondary metabolites (PSM). Given both of these anti-feedants (high fiber and PSMs), gum is described as a 

fallback food for many primate species (Smith et al., 2010), especially also because it is usually available year round 

and can act as a staple or filler fallback food. Increasing proportions of gums are consumed by many primate species 

during the dry season when fruits or young leaves are less accessible such as for the grey mouse lemur (Microcebus 

murinus), Senegal bushbaby (Galago senegalensis), the giant mouse lemur (Mirza coquereli), a number of tamarins 

(Saguinus spp.) and marmosets (Cebuella and Callithrix spp.), squirrel monkeys (Saimiri sciureus), red-tailed 

monkeys (Cercopithecus ascanius) and yellow baboons (Papio cynocephalus) (Chapman et al., 2002; Dammhahn 

and Kappeler, 2008; Garber, 1984; Hladik et al., 1980; Oates, 1984; Porter et al., 2007; Raboy et al., 2008; 

Sugiyama and Koman, 1992; Stone, 2007). Gum was considered a fallback food in these studies.  

 

Slow lorises display a suite of morphological adaptations that are centered on exploiting exudate food sources, and it 

is now widely accepted to categorize them as exudativorous primates (Burrows et al., 2015). Although originally 

suggested to be frugivorous based on comparisons with pottos (Charles-Dominique, 1977), wild field studies have 

clearly demonstrated that slow lorises (Nycticebus) are specialized exudativores (gum specialists) (Nekaris, 2014). 

The largest of the lorisines (1.1-2.4 kg), the Bengal slow loris (N. bengalensis) has been observed spending the 

majority of its feeding time on exudates (Pliosugnoen et al., 2010; Swapna et al., 2010), with only 4.45% time spent 

eating fruit (Das et al., 2014). The smaller bodied pygmy slow loris (N. pygmaeus) (350-550 g) has rarely been 

observed to ingest fruit in the wild, focusing on a diet of gum, nectar and insects (Streicher 2009; Starr and Nekaris, 

2013). A three-month study of the Javan slow loris (900 g), N. javanicus found that the majority of feeding time was 

spent on exudates, insects and nectar (Rode-Margono et al., 2014). In peninsular Malaysia, Wiens et al. (2006) 
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found two-thirds of the diet of wild N. coucang (650-850 g) was exudates (Barrett, 1984; Wiens et al., 2006).  None 

of these studies however quantified the nutritional content of slow loris diets.  

 

Quantitative feeding ecology research has allowed for a deeper understanding of primates’ differing strategies  to 

seasonality (Norscia et al., 2006).  The framework of nutritional geometry (FNG) alone has allowed for in-depth 

analyses of how species react during lean seasons as population or refined sex-specific strategies, especially 

concerning reproductive costs (Ganzhorn, 2002; Pichon and Simmen, 2015; Rothman et al., 2008). The FNG’s 

unique characteristic allows the simultaneous portrayal of an animal’s response to resource availability. For 

example, this method has been used to define empirically the term 'lean season' as well as quantitatively identify if 

any food items are being used as a fallback food with quantitative data (Felton et al., 2009; Simpson and 

Raubenheimer, 2002). It is an integrative framework and allows inclusion of multiple food components, and is not 

limited to two axes. By characterizing two of three nutritional parameters, the third can be implied in geometric 

space, and a three-dimensional model of major nutrient intakes can be displayed. Alternatively, the methodology can 

also graph the relative importance of one nutrient relative to others through time. It also allows to model single 

individual or entire population nutrient intakes'. With primates, this methodology has been successfully applied to 

Peruvian spider monkeys (Ateles chamek - Felton et al. 2009), Chacma baboons (Papio ursinus - Johnson et al., 

2013), mountain gorillas (Gorilla beringei - Rothman et al., 2011), Bornean orangutans (Pongo pygmaeus - Vogel et 

al., 2012), guereza (Colobus guereza - Johnson et al., 2015) and two strepsirhines, diademed sifakas (Propithecus 

diadema - Irwin et al., 2014, 2015) andwhite-footed sportive lemurs (Lepilemur leucopus - Droscher et al., 2016).  

 

In this study, we aim to describe quantitatively the seasonal feeding strategies of an exudativore, using the Javan 

slow loris as a model species. We examine the presence of a lean season by measuring energy intake between 

seasons and to determine if gum is indeed a fallback food by analyzing its usage, rather than intrinsically labelling it 

by using food intake rates to plot nutrient intake per season. To rule out other possible theories of fallback food 

usage, we report the seasonal proportions of time spent feeding on food items as well as intake for both sexes and 

seasons to control for sex-specific changes in food habits.  
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MATERIALS AND METHODS 

Study site and subjects 

We analyzed data from free-ranging Javan slow lorises (n=15) in an agro-forest environment on the active volcano 

Mt. Papandayan, surrounding the village of Cipaganti (S7°6'6"-7°7' and E107°46' - 107°46'5") in West Java, 

Indonesia, between June 2014 and June 2015. Nekaris initiated a long-term study in the area in 2011. The agro-

forest mosaic consisted of agricultural plots interspersed among between thick rows of various trees, bamboos and 

undergrowth plants. This habitat enabled generally good visibility of the slow lorises despite high human presence 

and disturbance. Although modified, the habitat provided a variety of both preferred and avoided plant species of 

varying nutritional quality. We caught slow lorises by hand and collared them following previous protocols (Rode-

Margono, et al., 2014) with radio collars (BioTrack, UK – 16 g on average, 1.9% of body weight). We tracked the 

slow lorises using a six-element Yagi antenna and SIKA receiver (BioTrack, UK) and observed them using next 

generation LED headlamps with a red filter (CluLite, UK). In order to calculate activity periods, we equipped four 

individuals (male n=2, female n=2) with ActiWatch Mini Loggers (CamnTech, Germany) on their radio collar for 

four months, allowing us to multiply quantified intake rates by the appropriate activity times. We set epoch lengths 

at every minute at 100% intensity. The field site is near the equator and day lengths vary little throughout the year 

(Rode-Margono, and Nekaris, 2014). 

 

We also observed captive Javan slow lorises (n=10) at Cikananga Wildlife Rescue Centre (CWRC - S7°03'27.04" 

and E106° 54'36.63"), near Sukabumi, West Java, Indonesia. We conducted gum intake rate trials  at CWRC on ten 

individually housed adult Javan slow lorises (male n=5, female n=5). 

 

Observational data 

Although Java is classified as aseasonal, we defined two clear climatic periods that we hereafter refer to as seasons. 

We defined the “wet season” as receiving more than 60 mm per month (November to April) (Rode-Margono and 

Nekaris, 2014). The “dry season” ranged between 5 and 60 mm of rainfall per month between May and October. We 

followed radio-collared slow lorises in two observation periods during the night, from 18:00h to 0:00h and 00:00h to 

06:00 h, each covering one different animal per period. Every individual slow loris was observed on a random 

schedule to prevent bias, however all observations were counterbalanced throughout the wet and dry seasons. We 
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caught each slow loris at least every six months for a health check that included weighing using a hanging clip scale 

(Pesola). We used values for 13 adult or sub-adult slow lorises with weight information (female n=42, male n= 29) 

obtained between 2012 and 2015. Females may have been gestating when weighed, resulting in higher BW. This 

factor is not an issue with regards to analysis as these variations may impact the nutrient intake of gestating females, 

and understanding this strategy is essential to comprehend their natural feeding ecology. . We used instantaneous 

behavior sampling (Altmann, 1974) with a 15-minute interval as well as all-occurrence feeding behavior sampling 

(Nekaris and Rasmussen, 2003). We collected data on a total of 256 days over the course of 12 months (1470 hours, 

5.8 hours/night average), totaling 7191 instantaneous points of data. At each instantaneous sample point where the 

slow loris was observed feeding, we recorded the category of food being consumed and plant species. During all 

occurrence sampling, we recorded the category of food being ingested, plant species, and the measurement of intake. 

We recorded gum feeding only when a slow loris was visibly ingesting tree gum and not simply gouging the tree 

cambium; we recorded duration in seconds. We defined nectar feeding as a slow loris using its tongue to lap up 

nectar without consuming the flower; we recorded the number of flowers visited. If one flower was revisited, it was 

not counted again for that evening.  We defined fruit feeding as a slow loris eating the non-flower reproductive plant 

part. We noted if the seed(s) was/were ingested or not, and recorded the leftover weight after consumption. After the 

slow loris moved away, we approached the left over fruit and collected the leftovers and placed them in a sealed 

plastic bag. It was impossible to identify the insects being eaten. We thus could only record the size of the insect in 

relation to the slow loris' hand(s). We thus divided insect feeding into three size categories small (much smaller than 

the palm of one hand, caught with mouth or one hand), medium (caught in air or on substrate with one hand with the 

insect being roughly the same size as the slow loris’ hand) and large (caught with two hands, insect being larger than 

one of the loris’ hands) with number caught consumed being recorded (Nekaris and Rasmussen, 2003). For leaf 

eating, we noted whether a leaf was mature or immature and how many were consumed. We defined flower feeding 

as the consumption of flower reproductive parts, with the amount of flowers ingested. We calculated the average 

amount of nectar within one Calliandra calothyrsus (Fabaceae) by sampling 100 inflorescences, totalling 451 

flowers and measuring the volume of nectar within each flower using a microcapillary tube. The average quantity of 

nectar obtained was 22.55 (SD ±1.82) µL. The average fresh weight of each food item quantified was: 2.5 g (SD 

±0.06) for flowers, 1.2 g (SD ±0.03) for young leaves, 83 g (SD ±4.20) for persimmons (Diospyros kaki, 
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Ebenaceae), 990 g (SD ±130.55) for jackfruit (Artocarpus heterophyllus, Moraceae), 0.010, 0.60 and 1.1 g for small 

medium and large insects respectively.  

  

Captive gum intake rate trials 

We harvested one kg of wild gum from the Cipaganti field site and transported it fresh to CWRC. We fed each of 

the ten slow lorises (weight range 862 to 1020 g) 10 g of the wild gum (Acacia decurrens, Fabaceae, the same 

species we observed being ingested by the wild slow lorises) and, using a stopwatch, recorded the amount of time 

required to eat this 10 g. If consumption stopped, or the slow loris became disinterested, we stopped the stopwatch 

until ingestion resumed. We repeated this experiment on two separate occasions one week apart with each slow loris 

observed on the same night. We provided the gum by placing it in wooden logs, each cut to 20 cm long, with a deep 

longitudinal groove, 5 cm deep.  

 

Intake rates 

We used the equation (equation 1) to calculate food intake rate F (gram/hour), for individual i, for food item f and 

for season s, modified from Rothman et al. (2008). We summed the collected measurement of intake data for 

individual i of food f during season s and multiplied it by the intake rate (I) of food f to transfer the intake into 

grams. Recorded values for I (as fresh weight) are: 0.0212 g/sec for gum, 0.002255 g/flower for nectar, 50 g/fruit for 

persimmon, 475 g/fruit for jackfruit, 0.010, 0.60 and 1.1 g/insect for small, medium and large insects respectively, 

2.5 g/flower for eucalyptus flowers (Eucalyptus spp.) and 1.2 g/leaf for young bamboo leaves (Gigantochloa cf. 

ater). The total sum was divided by the amount of hours (H) individual i was observed during season s.  

(Eq 1)Fifs= 
∑ 𝑊𝑖𝑓𝑠𝐼𝑓𝑓

H𝑖𝑠
 

We averaged values obtained by equation 1 to yield average daily values for the wet and dry season for the entire 

study population as well as for each sex separately. Values reported include seasonal daily averages only, similar to 

Irwin et al. (2015) due to the widely variable counterbalancing of observations for each individual. 

 

Phenology and insect availability 

We organized five 10 m by 10 m phenology plots in random locations using a GIS map at five different altitudes 

inhabited by slow lorises: 1200, 1300, 1350, 1500 and 1600 m above sea level that contained 21, 14, 54, 13, 23 adult 
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trees and bamboo species, respectively. A total of 16 different tree and bamboo species occurred within our plots, 

which is representative of the agro-forest environment. We did not count domestic crop plants in the phenology 

plots. We modified methods from Chapman et al. (1999). We numbered and labelled trees and each month scored 

those with a diameter at breast height (DBH) > 5 cm for the amounts of young leaves, mature leaves, flowers, unripe 

fruits, and ripe fruits. The scoring system used included: 0 = none present, 1 = 0-50% of capacity reached and 2= > 

50% of the capacity was reached.  

 

For insect availability, we calculated catch density using a malaise trap and three sticky traps twice a week for the 

duration of the study (Benton et al., 2002). We used both trap types in three different locations that we rotated 

weekly. We placed the malaise trap only in areas between trees used by the slow lorises and placed sticky traps on 

trunks and branches of trees often frequented by slow lorises. We divided the weight (g) caught for each month by 

the total weight caught over 12 months and used them as gross indicators of availability for each category. We 

sampled insects according to Rode-Margono et al. (2015) using a malaise trap and three different sticky traps 

nightly. Catch rate was so low that it was not possible to obtain a large enough mass for the three different size 

categories of insects recorded in this study (small, medium and large). Therefore, we combined the samples of all 

three insects into proportions reflecting their yearly intake; thus one analyzed sample reflected the weighted yearly 

intake.  

 

For plant availability, we tallied the frequency of each plant part consumed per species of plant and averaged the 

values monthly to equal a mean availability score of the field site for each possible food source per month. We 

averaged these in turn to obtain a mean availability score for the entire study period for each food item. To 

determine if food items were being eaten in proportion to their availability, we plotted the mean yearly availability 

score for each food type against the yearly contribution of that food source for each individual slow lorises diet 

(based on intake weights) as per Johnson et al. (2013). We used a Spearman's Correlation test to determine if the 

contribution of food items to the diet correlated with their availability.  

 

Sample collection and chemical analyses 
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We collected any food item for chemical analyses that we observed being ingested by any wild slow loris. We 

collected at least 500 g (fresh weight) of the food item from the trees actually fed on. We only analyzed the plant 

part ingested by the slow lorises. If more than one tree of the same species was fed on for the same food item, we 

took samples from many different trees and pooled the results in order to create a representative sample. We 

weighed samples and placed them in trays wrapped in mosquito netting and dried them in indirect sunlight for two 

days (24 hours’ worth of sunlight) with temperatures reaching up to 32°C within the tray. We then reweighed dried 

samples and placed them in plastic sealed bags with silica gel packets, and then placed them in another plastic bag of 

silica gel. We placed all samples in a cooler in a dry equipment room until transported for laboratory analysis.  

We conducted nutrient analyses in the Nutrition Laboratory of Lembaga Ilmu Pengetahuan Indonesia (Indonesian 

Institute of Sciences, also known as LIPI) in Bogor, West Java, Indonesia. Nutritional analyses followed Norconk 

and Conklin-Brittan (2004). We estimated crude protein (CP) by the Kjeldahl method for total nitrogen, multiplying 

results by 6.25 (Norconk and Conklin-Brittain, 2004; Pierce et al., 1958), we determined total ash by incinerating 

the sample (0.5 g) at 550°C overnight in a muffle furnace; we determined crude fat by ether extract for four days 

(Williams, 1984), free soluble sugars via phenol/sulfuric acid colorimetric assay, calibrated for sucrose (Strickland 

and Parsons, 1972), and total non-structural carbohydrates (TNC) by calculation (equation 3). We analysed fibers as 

neutral detergent fiber (NDF) and acid detergent fiber (ADF)  using the Van Soest method (Van Soest, 1996). 

 

It was not possible to collect enough nectar for standard chemical analyses, therefore, we used 85 ul microcapillary 

tubes to measure the average volume of nectar in each flower (Morrant et al. 2009), and we used a portable hand-

held refractometer to estimate soluble sugar contents as per Bolten et al. (1979). We only observed the nectar of 

Calliandra calothyrsus being ingested; therefore we sampled 100 inflorescences, totaling 451 flowers. Energy 

values of each food item were calculated as per Irwin et al. (2012) in equation 2, by summing up the caloric energy 

values for each macronutrient:  

(Eq 2) E= (CP*4) + (CF*9) + (TNC*4) + (NDF*1.6) 

Where E is total energy in Kcal, CP is percentage of crude protein in DM, CF is crude fat in DM and TNC is total 

non-structural carbohydrates in DM. Total non-structural carbohydrate amounts were calculated by equation 3 

where A is ash. Our gross estimate for TNC does not include the fiber fractions of neutral detergent fiber (NDF 

which is an estimate for lignin, cellulose and hemi-cellulose (Van Soest, 1994). The digestive system of Nycticebus 
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is morphologically adapted to ferment some amount of plant fiber matter, although not yet quantified (Stevens and 

Hume, 2004). We assume the Javan slow loris is able to digest approximately 40% of NDF intake, resulting in an 

assimilation of 1.6 kcal/g of NDF based on the hindgut-fermenting chimpanzee (Pan troglodytes) (Conklin-Brittain 

et al. 2006). We may be overestimating our energetic modelling as this is a starting point for understanding slow 

loris feeding ecologies (Sayers et al. 2010).  

(Eq 3) TNC=100-A-CP-CF-NDF 

 

Data analyses 

We determined average seasonal nutrient intake amounts (N) for nutrient n ingested by individual i during season s 

using equation 4. We multiplied the sum of the food intake rates (eq 1) for food f for individual i and season s by the 

fresh matter content (M) of nutrient n for food f were added up and multiplied by the activity period A. We averaged 

every individual average daily intake for each nutrient to determine the average daily seasonal intake of each 

nutrient. This was used to calculate protein energy (PE) by multiplying the crude protein amount by 4 kcal/g, and 

calculating the non-protein energy (NPE) by multiplying TNC by 4 kcal/g DM, NDF by 1.6 kcal/g DM, and crude 

fat by 9 kcal/g DM and summing.  

(Eq 4) Nnis=(∑ 𝐹𝑓M𝑛𝑓𝑛 )A 

We employed right angle mixture triangles (RMT) to visualize which energy source was variable and which was 

controlled between the seasons. We plotted the proportions of protein, total carbohydrates and crude fat energy 

against each other on a scatter plot in all combinations, leaving the outlier to be interpreted as the implicit axis 

(Raubenheimer, 2011). We plotted the average daily PE versus NPE for both dry and wet season. We also plotted 

the average daily seasonal intake of protein in grams versus combination of fat and carbohydrates for males and for 

females in order to determine if they adopt different strategies seasonally. For this graph only we used adults, 

reducing numbers to n=7 (males) and n=8 (females).     

 

After we checked that there was no multicollinearity between the independent variables by using a linear regression 

analysis (VIF values between 1.000 and 1.150), we used a Generalized Linear Mixed Model (GLMM) with an 

identity link function and inverse Gaussian distribution of the response variable (based on visual inspection) to 

determine the effect of sex and season on nutrient intake and proportion of the diet food items. Nutrients we tested 
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were crude protein, crude fat, NDF, ADF, carbohydrates, TNC, total energy and protein:non-protein energy, 

obtained from proportions of the various diet items (gum, nectar, fruits, insects, flowers and leaves), all using the 

seasonal average daily intake data in grams for each individual. Individual was used as a random factor in the 

GLMM. We conducted all statistical analyses in SPSS 22 (IBM Software).        

 

RESULTS 

We recorded the slow lorises feeding on six plant species and various insect species (Table 1). Each plant species 

was used for one plant part whether it was gum, fruit, young leaf, etc. We only observed the mesocarp of fruits being 

eaten; slow lorises discarded the skin and seeds. Slow lorises ingested insects in their entirety; legs or wings were 

not removed. Lastly, we did not observe any mature leaves being eaten, only young leaves. The activity loggers 

revealed an average active cycle of 11.95 hours (SD ± 0.12), which we rounded up to 12 hours for the purpose of 

our average daily nutrient intake. Results of the captive gum intake trials resulted in a rate of 0.021 g/s (SD ±0.006) 

(n=10). 

 

We found the average sugar content in Calliandra nectar to be 22.82 (SD ±5.12) Brix, which equates to 253 g of 

sugar per L of nectar, which we estimate to be 98% of DM and 22.55% as fed (AF). Average hourly intake rates for 

each food items’ category under both seasons and also yearly were tabulated in table 2. The average seasonal 

proportions of each feed category of instantaneous and intake data do not match, presenting different magnitudes of 

consumption (fig. 1). The phenology and proportion of diet correlation were not significantly correlated (rho=0.192, 

P=0.070, n=84), which points to an aseasonal use of these resources (fig. 2).  

 

The average daily intake ratio of protein (PE) and non-protein energy (NPE = fat + TNC+ NDF) for both the dry and 

wet seasons for each individual (wet n=15 dry n =15) is depicted in figure 3. Non-protein energy was more 

important during the dry season with a slope of y=1.018x, SD ± 0.38 (R2=0.8057), where y is NPE and x is PE, than 

during the wet season (y=0.723x, SD ± 0.52 R2=0.8374). The point with the highest protein content has no 

significant effect on the results of this figure as its removal alters the wet season ratio to y=0.793x.  
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We used right angle mixture triangles (RMT) to graph which macronutrient was used as a consistent and controlled 

energy source for both the dry and wet seasons, where the implicit axes was fat (fig. 4A), carbohydrates (fig. 4B) 

and protein (fig. 4C). The proportions were tightly controlled as they demonstrated similar patterns across seasons.  

The proportion of fat energy was constant throughout the year (~20%). The energy from protein and carbohydrates 

could be used interchangeably year round.  

 

The average weight of adult female Javan slow lorises during the wet season was 930.07 g (± 71.28) versus 844.31 g 

(± 97.46) for the dry season. The male's weight was 898.05 g ± 74.01 in the wet season, and 887 g ± 80.93 in the dry 

season. Overall average weight for our study individuals over three years of data was 900.47 g (± 83.46).  

The results of the GLMM show that females had a higher intake of crude protein (B=+0.314 SE= 0.7400), gum (B= 

+15.953 SE= 37.5419), fruit (B= +4.875 SE= 20.0763) and insects (B= +20.081 SE= 17.3900) and males had a 

higher intake of ADF (B= -0.840 SE= 0.4437); season had a significant effect on ADF (B= -1.328 SE=0.4917), gum 

(B= +18.493SE= 38.8800), insects (B= +25.933 SE= 19.2735), flowers (B= -36.145 SE= 16.25) and leaves (B= 

46.45 SE= 13.94). The interaction between sex and season had an effect on ADF (B= +0.994 SE= 0.305), flowers 

(B= +27.88 SE= 10.0839) and leaves (B= -19.999 SE= 8.6488) (Table 3).  

 

DISCUSSION 

Characterizing the diet of the Javan slow lorises 

Our data indicate that the Javan slow loris consumes a narrow range of food items found within the study area (table 

1). As a note of caution, we acknowledge that the nature of our field site, with crops and planted trees and bushes 

with economic value, may provide different sources of food and nutrients from Javan slow lorises found in primary 

forests. Plant diversity, nutrient intake and phenology could vary significantly, potentially resulting in different 

results than observed here. However, since our studied slow loris population is breeding regularly and thus is likely 

to receive an adequate nutrition we believe that our results represent a valid contribution for future comparisons with 

other Nycticebus studies. Although the field site was largely affected by anthropogenic disturbances, our results may 

be indicative of slow loris evolutionary adaptations rather than a mere result of disturbance. For example, fruit and 

other food items (flowers and leaves) were available year round and yet the individuals chose to ingest gum as a 

majority food item. All other studied slow loris species (studied in secondary or primary forests) also reported an 
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exudate and insect based natural diet (Starr and Nekaris, 2013; Das et al. 2015; Wiens et al. 2006). Future studies in 

secondary or primary forest areas are necessary to obtain more robust conclusions in support of the observed trend. 

 

As expected, gum was the staple food of this exudativorous primate ranging from 38 to 60% of diet intake, being 

exploited in both the wet and dry season (fig. 1). The Javan slow loris exhibited the same gouging feeding behaviors 

as described in Nekaris (2014), which is similar to all Nycticebus taxa studied thus far. The slow lorises would 

anchor their lower mandible into the cambium and use the upper maxilla to bite into the tree and remove pieces of 

cambium. This process is repeated until the desired size and depth has been reached to stimulate gum production. 

Along with gum, we also recorded insect feeding during the majority of observation periods. Nectar from the 

flowers of Calliandra calothyrsus was seasonally consumed, as the flowers mostly bloom during the wet season, 

although a small amount was also present in the diet during the dry season.  

 

We observed the slow lorises ingesting a variety of plant parts rarely reported as part of the slow loris diet. They 

targeted the young  leaves of only one of three bamboo species available, Gigantochloa cf. ater as well as the 

flowers of Eucalyptus spp.; both of which contained high levels of NDF (> 40 %). Following the Jarman-Bell rule 

(Gaulin, 1974), the larger size of N. javanicus would allow it to subsist on a diet that contains more fermentable food 

items when compared to the smaller N. pygmaeus, which has a higher amount of insects within its diet (Starr and 

Nekaris, 2013). The total amount of potentially fermentable plant food items (gum, leaves, flowers) is still lower in 

proportion than what was observed for the largest N. bengalensis, which theoretically should have the largest 

fermentation capacity of the slow lorises due to its large size (Das et al., 2014). With an average weight of 900 g, N. 

javanicus may have similar fermentation capabilities as the 1 kg white-footed sportive lemur (Lepilemur leucopus), 

which is entirely folivorous, as both genera exhibit complex large intestines with a well-developed cecum (Droscher 

et al., 2016). However differences in gut microflora, surface area and presence of diverticula will impact fiber 

digestibility. A complete diet necessitating fermentation is predicted to be energetically sustainable only for a 

primate with a mass is greater than 700 g (Kay, 1984). Javan slow lorises are at the cusp of reaching the metabolic 

weight where it would be very difficult for them to consume enough insects to meet their energetic requirements 

(Rothman et al., 2014). Both Kay (1984) and Rothman et al. (2014) do not factor in the reduced metabolic rates of 

strepsirrhine primates, that at this weight, may potentially allow them to flow between a more fermentable diet or a 
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more insect based diet to meet their needs. This potential flexibility is consistent with our observations as the intake 

of insects ranged from 12 % of intake during the dry season to 27 % during the wet season.  

 

Lastly, we observed fruit feeding rarely within our field site. Only two fruits were ingested, the domesticated 

persimmon (D. kaki) and jackfruit (A. heterophyllus). Jackfruit was available year round but we only observed one 

instance of feeding, and persimmon was heavily abundant between late dry seasons until early wet season, yet we 

only saw four feeding bouts of this food item (fig. 2). Other domestic fruits widely available but never seen to be 

consumed by Javan slow lorises included banana, mango, avocado, guava, custard apple, snake fruit, and rambutan. 

Indeed the avoidance of these abundant fruits further reinforces the current body of evidence that Nycticebus are not 

frugivores. Although gum is overall a low quality food item and may fit the description of a fallback food for many 

species (see Smith, 2010), it comprises the majority of the diet of N. javanicus even when other food items were 

available, providing evidence that gum is an obligate food source for the Javan slow loris. Being the only venomous 

primate, slow lorises are hypothesized to ingest specific compounds from one or more of their food items and 

metabolically alter it to bolster their biologically produced venom (Nekaris et al., 2013). Gum or noxious insects 

may potentially contain the necessary compound(s), perhaps making gum even more important than solely for 

nutrition. Future  analyses are necessary to clarify this aspect.  

 

Seasonal feeding ecology  

The Javan slow lorises employed two different nutritional strategies between the abundant wet season where protein 

energy was easier to obtain, and leaner dry season that necessitated a more important non-protein energy income. 

The varying seasonal availability of food items such as leaves, flowers, nectar and insects meant that the slow lorises 

had to alter their feeding intake in order to balance their needs between seasons (fig. 3). Although energy amounts 

may seem low in respects to representing average daily amounts, Figure 3 corresponds to intake ratios, similar to 

Johnson et al. (2015), who also observed some small amounts and did not control for outliers. The dry season has 

lower food abundance than the wet season; however it was not as drastic as lean seasons described for other 

primates (Curtis 2004; Felton et al., 2009; Rothman et al., 2006) since it allowed for the slow lorises to maintain 

their overall energy intake.  During the dry season, NPE:PE shows a shift towards non-protein energy, whereas 

during the wet season, protein energy becomes favored. The wet season has an abundance of all food types, which 
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would allow the free-ranging slow lorises to select their intake from a larger variety of food items. The main source 

of protein for this population of N. javanicus is insects, whose ingested amounts are significantly affected by season, 

i.e. much higher in the wet season (table 3). Feeding on insects during the wet seasons apparently led to both a 

relatively constant proportion of energy from fat and a higher protein intake than during the dry season, when energy 

needs drove a higher carbohydrate (gum) intake. High NPE foods such as nectar, flowers and leaves, whose average 

daily-ingested amounts were also affected by season, are also exploited more during the wet season.  

 

Diet switching is a strategy used by slow lorises seems to be a response to variations in food availability. This trend 

was also observed by the generalist Propithecus (Pichon and Simmen, 2015; Sato et al., 2015). Eulemur spp., fruit 

specialists, did not employ diet switching, but instead resorted to a cathemeral lifestyle and increase total foraging 

time (Sato et al., 2015). This option is not available to the nocturnal slow loris, as our data-loggers indicate an 

essential lack of activity during the day. Mountain gorillas (Gorilla beringei) over-eat protein to reach carbohydrate 

energy requirements, which is a strategy that would not apply for slow lorises considering their main food items are 

exclusively high in either carbohydrates (gum) or in fat and protein (insects) (Rothman et al., 2011). The overall 

strategy of diet switching, however, is still possible. Exudativorous primates such as the slow loris should be able to 

find tune their nutrient intake throughout the seasons by balancing the intake of different food items, which is 

supported by our data. Nycticebus javanicus were thus able to manage their nutrient intake during temporary shifts 

of availability using nutritional strategies similar to generalist leaf-eating primates.  

 

The analysis of the proportion of energy ingested from fat, carbohydrates (TNC and 40% of NDF) and protein in a 

right-angle mixture triangle depicted a tightly controlled response to seasonal food availability (Raubenheimer et al., 

2015). Fat energy intake is relatively constant throughout the year while protein and carbohydrates are used 

somewhat interchangeably without regards for seasonal food availability (fig. 4). This strategy is different than what 

has been observed in Colobus guereza where carbohydrates and fats are used interchangeably, both of which are the 

major energy providing macronutrients (Johnson et al., 2013). Chimpanzees exhibit a trend similar to slow lorises, 

decreasing protein during the lean season, substituting it with carbohydrate energy also being able to adjust between 

them (Conklin-Brittain et al., 1998). The main source of fat for the slow lorises is insects, and the stable and 

relatively low proportion of fat energy of the diet suggests the slow lorises are controlling their intake. The main 



17 
 

source of carbohydrates was from gum, which must be consumed as the main source of available energy. The intake 

of gum and insects seem to be finely balanced throughout the year. Young leaf specialist Avahi meridionalis 

branched out into broader folivory during the lean season, selecting from a large array of lower quality leaves.  

During this time they must cope with a higher fiber and lower protein intake, also increasing their structural 

carbohydrate intake during their lean season (Norscia et al., 2011). In this study, gum intake was significantly 

affected by season, which supports these observations (table 3). Although gum is available year round, reliance on it 

as a food item and source of energy increases during the dry season hence NPE energy intake is more prominent 

during the dry season. The variation between energy proportions of this triangle mixture may be largely due to the 

seasonal intake of the nutrient dense insects (also significantly affected by season in the GLMM).  During the 

abundant wet season, insects are easily available and their intake balanced alongside flowers, leaves and gum which 

may explain variations observed in total NPE:PE ratio. The frugivorous atelines preferred to over-eat food items, 

therefore over-consuming carbohydrates and fat in order to reach their protein requirements (Felton et al., 2009) 

whereas N. javanicus can interchangeably use the proportions of foods eaten in order to ensure minimal 

requirements. Further evidence that Nycticebus spp. are employing a mix of strategies to cope with varying seasonal 

food availability are necessary; again, however, their strategies appear to be more akin to folivores than frugivores. 

 

The effect of sex on nutrient selection 

Crude protein, ADF, gum fruit and insect intake were all shown to be significantly affected by sex of the slow loris 

(table 3). Males and females form pairs where both individuals have their own superimposed territories; hence, it 

would appear that the seasonal abundances within each individual's territory can explain some amount of these 

differences or we would have observed similar patterns amongst the sexes from varying territories (Nekaris, 2014). 

Although males and females are comparable in mass, the energetic costs of reproduction may place a burden, which 

requires a larger demand for females, as shown by O'Mara and Hickey (2014) where female L. catta became much 

more efficient and selective during periods of lactation (and higher energy/nutrient needs). Acid detergent fibers are 

composed mainly of lignin and cellulose found in all plant food items except gum. Our results in Table 1 include a 

value for ADF although theoretically this component should not be present. Both ADF and NDF represent variable 

and complex carbohydrates; although analyses were properly conducted; different soluble fibre fractions may also 

be measured in these assays, depending on the sample matrix (Hall, 2003; 2007). Both females and males increased 
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their protein intake during the wet period; this increase is expected since they included more insects in their diet 

during the wet period, this is expected since insects were a larger proportion of their diet during the wet season. 

While the response of a male may vary, female strepsirrhines in general tend to increase their protein intake 

seasonally more so than males (Gould et al., 1999; Gould et al. 2011; LaFleur and Gould, 2009; Meyers and Wright, 

1993; Overdorff, 1993; Rasamimanana and Rafidinarivo, 1993; Sauther, 1994; Yamashita et al. 2015; Vasey, 2002). 

Fruit intake was similar between seasons yet we observed females consuming more fruit than males (4 bouts versus 

1), possibly due to their higher energetic needs, especially during the dry season. They increase NPE intake by 

increasing gum intake, of which a larger amount was ingested during the dry season. Although not ingested in 

particularly large amounts, the seasonal intake of flowers and leaves may also be a significant source of fermentable 

fiber energy for females as its intake was  affected by an interaction between sex and season. Although small overall 

amounts, we cannot dismiss them as unimportant. Being a potentially available source of energy, leaves, flowers, 

and gums may have provided essential energy and fiber as well as other micronutrients not measured here (i.e. 

vitamins, minerals). The results from the GLMM were all supported by our data and observations.      

 

The exudativorous N. javanicus seems to follow a foraging strategy more closely resembling a generalist folivore, 

rather than a frugivore. At our field site, the lean season was characterized by a qualitative decrease of food items 

(flowers, leaves, insects and nectar) (Ganzhorn, 1992).  Generalist frugivores should preferentially ingest fruit when 

it is available yet broaden their range of food items ingested during the lean season (Norscia et al., 2006). These 

diets are expected to result in an overall decrease in protein and digestible carbohydrate intake during the lean 

season but will recover in the following season, possibly causing seasonal fattening. These food choices are based 

on nutritional composition. Calculations for dietary energy value estimates are based on many assumptions, often 

extrapolated from chemical analyses of unique feeds (for which the assays may not be explicitly validated), as well 

as digestibility/metabolizability data based on the most suitable physiological models, in this case, both human and 

non-human primates. Until more detailed experimental data are specifically derived describing digestibility and 

fermentation in the slow loris, these estimated values represent our best efforts to document and clarify nutrient 

utilization by exudativorous primates.      
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Slow lorises were able to manage their nutrient intake meticulously and maintain constant contributions of fat 

energy while using carbohydrate and protein interchangeably. NPE was prioritized during the dry season probably 

due to their higher gum intake, similar to the energy and protein maximization rule described in Altmann (2006). 

Leaf eating primates will prioritize protein only if protein is limiting in their environment (Ganzhorn et al., 2016). 

The only significant source of protein for our slow lorises was insects, with their availability decreasing in the lean 

season. The slow lorises were able to continue ingesting protein to meet their requirements. Their protein intake 

became more consistent in its proportion with crude fat and carbohydrates when protein was difficult to find. This 

behavior is also consistent with the behavior of a generalist leaf eating primate. The slow lorises were able to control 

their NPE:PE as thoroughly as some generalist species (Johnson et al., 2012; 2015), which is consistent with slow 

lorises following an energy and nutrient maximization strategy.  
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