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Abstract
Sharp bounds are given for the second Hankel determinant of the logarithmic coefficients of
strongly starlike and strongly convex functions.
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1 Introduction

Denote byH the class of analytic functions in D := {z ∈ C : |z| < 1} with Taylor expansion

f (z) =
∞∑

n=1

anz
n, z ∈ D, (1)

and let A be the subclass of f normalized by f ′(0) = 1. Let S denote the subclass of
univalent functions in A.

For f ∈ S, logarithmic coefficients γn := γn( f ) of f are defined by

Ff (z) := log
f (z)

z
= 2

∞∑

n=1

γn( f )z
n, z ∈ D, log 1 := 0. (2)

and play a crucial role in the theory of univalent functions, and in articular to prove the Milin
conjecture ([19], see also [7, p. 155]). We note that for the class S sharp estimates are known
only for γ1 and γ2, namely,

|γ1| ≤ 1, |γ2| ≤ 1

2
+ 1

e2
= 0.635 . . .
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Estimating the modulus of logarithmic coefficients for f ∈ S and various subclasses has
been considered recently by several authors (e.g., [1, 2, 5, 8, 12, 24]).

For q, n ∈ N, the Hankel determinant Hq,n( f ) of f ∈ A of the form (1) is defined as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...

an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣

,

and in particular many authors have examined the second and the third Hankel determinants
H2,2( f ) and H3,1( f ) over selected subclasses ofA, (see e.g., [4, 11] with further references).
We note that H2,1( f ) = a3 − a22 is the well known coefficient functional which for S was
studied first in 1916 by Bieberbach (see e.g., [9, Vol. I, p. 35]).

Based on the these ideas, in this paper and in [10] we propose research study of the Hankel
determinants Hq,n(Ff /2) which entries are logarithmic coefficients of f . We are therefore
concerned with

Hq,n(Ff /2) =

∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1

γn+1 γn+2 · · · γn+q
...

...
...

...

γn+q−1 γn+q · · · γn+2(q−1)

∣∣∣∣∣∣∣∣∣

.

Differentiating (2) and using (1) we obtain

γ1 = 1

2
a2, γ2 = 1

2

(
a3 − 1

2
a22

)
, γ3 = 1

2

(
a4 − a2a3 + 1

3
a32

)
, (3)

and so

H2,1(Ff /2) = γ1γ3 − γ 2
2 = 1

4

(
a2a4 − a23 + 1

12
a42

)
. (4)

Note that when f ∈ S, then for fθ (z) := e−iθ f (eiθ z), θ ∈ R,

H2,1(Ffθ /2) = e4iθ

4

(
a2a4 − a23 + 1

12
a42

)
= e4iθ H2,1(Ff /2), (5)

so |H2,1(Ffθ /2)| is rotationally invariant.
In this paper we find sharp upper bounds for H2,1(Ff /2) in the case when f is strongly

starlike or strongly convex function of order α, defined respectively as follows. Given α ∈
(0, 1], a function f ∈ A is called strongly starlike of order α if

∣∣∣∣arg
z f ′(z)
f (z)

∣∣∣∣ < α
π

2
, z ∈ D, arg 1 := 0. (6)

Also, a function f ∈ A is called strongly convex of order α if
∣∣∣∣arg

{
1 + z f ′′(z)

f ′(z)

}∣∣∣∣ < α
π

2
, z ∈ D, arg 1 := 0. (7)

We denote these classes by S∗
α and Sc

α respectively, noting that S∗
1 =: S∗ and Sc

1 =: Sc are
the classes of starlike and convex functions, respectively.

The class of strongly starlike functions was introduced by Stankiewicz [21, 22], and
independently by Brannan and Kirwan [3] (see also [9, Vol. I, pp. 137-142]). Stankiewicz
[22] found an external geometrical characterization of strongly starlike functions andBrannan
and Kirwan gave a geometrical condition called δ-visibility, which is sufficient for functions
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to be strongly starlike. SubsequentlyMa andMinda [16] proposed an internal characterization
of functions in S∗

α based on the concept of k-starlike domains. Further results regarding the
geometry of strongly starlike functions were given in [14, Chapter IV], [15] and [23].

In view of (6) and (7) both classes S∗
α and Sc

α can be represented using the Carathéodory
class P , i.e., the class of analytic functions p in D of the form

p(z) = 1 +
∞∑

n=1

cnz
n, z ∈ D, (8)

having a positive real part in D. Thus the coefficients of functions in S∗
α and Sc

α have a
convenient representation in terms of the coefficients of functions in P. Therefore obtaining
the upper bound of H2,1(Ff /2), we base our analysis on well-known expressions for c2
(e.g., [20, p. 166]), and c3 (Libera and Zlotkiewicz [17, 18]), and c4 obtained recently in
[13], all of which are contained in the following lemma [13]. Let D := {z ∈ C : |z| ≤ 1} and
T := {z ∈ C : |z| = 1}.
Lemma 1 If p ∈ P and is given by (6) with c1 ≥ 0, then

c1 = 2ζ1, (9)

c2 = 2ζ 2
1 + 2(1 − ζ 2

1 )ζ2 (10)

and
c3 = 2ζ 3

1 + 4(1 − ζ 2
1 )ζ1ζ2 − 2(1 − ζ 2

1 )ζ1ζ
2
2 + 2(1 − ζ 2

1 )(1 − |ζ2|2)ζ3. (11)

for some ζ1 ∈ [0, 1] and ζ2, ζ3 ∈ D.

For ζ1 ∈ T, there is a unique function p ∈ P with c1 as in (9), namely,

p(z) = 1 + ζ1z

1 − ζ1z
, z ∈ D.

For ζ1 ∈ D and ζ2 ∈ T, there is a unique function p ∈ P with c1 and c2 as in (9)–(10),
namely,

p(z) = 1 + (
ζ1ζ2 + ζ1

)
z + ζ2z2

1 + (
ζ1ζ2 − ζ1

)
z − ζ2z2

, z ∈ D. (12)

For ζ1, ζ2 ∈ D and ζ3 ∈ T, there is a unique function p ∈ P with c1, c2 and c3 as in
(9)–(11), namely,

p(z) = 1 + (
ζ2ζ3 + ζ1ζ2 + ζ1

)
z + (

ζ1ζ3 + ζ1ζ2ζ3 + ζ2
)
z2 + ζ3z3

1 + (
ζ2ζ3 + ζ1ζ2 − ζ1

)
z + (

ζ1ζ3 − ζ1ζ2ζ3 − ζ2
)
z2 − ζ3z3

, z ∈ D. (13)

We will also use the following lemma.

Lemma 2 [6] Given real numbers A, B,C, let

Y (A, B,C) := max
{
|A + Bz + Cz2| + 1 − |z|2 : z ∈ D

}
.

I. If AC ≥ 0, then

Y (A, B,C) =
⎧
⎨

⎩

|A| + |B| + |C |, |B| ≥ 2(1 − |C |),
1 + |A| + B2

4(1 − |C |) , |B| < 2(1 − |C |).

123
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II. If AC < 0, then

Y (A, B,C)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − |A| + B2

4(1 − |C |) , −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1 − |C |),

1 + |A| + B2

4(1 + |C |) , B2 < min
{
4(1 + |C |)2,−4AC(C−2 − 1)

}
,

R(A, B,C), otherwise,

where

R(A, B,C) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|A| + |B| − |C |, |C |(|B| + 4|A|) ≤ |AB|,
−|A| + |B| + |C |, |AB| ≤ |C |(|B| − 4|A|),
(|C | + |A|)

√
1 − B2

4AC
, otherwise.

2 Strongly starlike functions

We prove the following sharp inequality for |H2,1(Ff /2)| for the class S∗
α.

Theorem 1 If f ∈ S∗
α, α ∈ (0, 1], then

|H2,1(Ff /2)| = |γ1γ3 − γ 2
2 | ≤ 1

4
α2. (14)

The inequality is sharp.

Proof Fix α ∈ (0, 1] and let f ∈ S∗
α be given by (1). Then by (6),

z f ′(z) = (p(z))α f (z), z ∈ D, (15)

for some p ∈ P given by (8). Substituting (1) and (8) into (15) and equating coefficients
gives

a2 = αc1, a3 = α

4

[
2c2 + (3α − 1)c21

]
,

a4 = α

36

[
12c3 + 6(5α − 2)c1c2 + (17α2 − 15α + 4)c31

]
.

(16)

Since the class S∗
α is invariant under the rotations and (5) holds, we may assume that a2 ≥ 0,

so by (16) that c1 ≥ 0, i.e., in view of (9) that ζ1 ∈ [0, 1]. Hence from (4) and (9)–(11) we
obtain

γ1γ3 − γ 2
2 = 1

4

(
a2a4 − a23 + 1

12
a42

)

= α2

576

[
48c1c3 − 12(1 − α)c21c2 − 36c22 + (7 + α)(1 − α)c41

]

= α2

36

[
(4 − α2)ζ 4

1 + 6α(1 − ζ 2
1 )ζ 2

1 ζ2 − 3(3 + ζ 2
1 )(1 − ζ 2

1 )ζ 2
2

+12(1 − ζ 2
1 )(1 − |ζ2|2)ζ1ζ3

]
.

(17)

A. Suppose that ζ1 = 1. Then by (17), for α ∈ (0, 1],

|γ1γ3 − γ 2
2 | = α2(4 − α2)

36
≤ α2

4
.
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B. Suppose that ζ1 = 0. Then by (17), for α ∈ (0, 1],

|γ1γ3 − γ 2
2 | = α2

4
|ζ2|2 ≤ α2

4
.

C. Suppose that ζ1 ∈ (0, 1). Then since |ζ3| ≤ 1 from (17) we obtain

|γ1γ3 − γ 2
2 |

≤ α2

36

[∣∣(4 − α2)ζ 4
1 + 6α(1 − ζ 2

1 )ζ 2
1 ζ2 − 3(3 + ζ 2

1 )(1 − ζ 2
1 )ζ 2

2

∣∣

+12(1 − ζ 2
1 )(1 − |ζ2|2)ζ1

]

≤ α2

3
ζ1(1 − ζ 2

1 )
[|A + Bζ2 + Cζ 2

2 | + 1 − |ζ2|2
]
,

(18)

where

A := (4 − α2)ζ 3
1

12(1 − ζ 2
1 )

, B := 1

2
αζ1, C := −3 + ζ 2

1

4ζ1
.

Since AC < 0, we now apply Lemma 2 only for the case II.
C1. Note that the inequality

−4AC

(
1

C2 − 1

)
− B2 = (4 − α2)ζ 2

1 (3 + ζ 2
1 )

12(1 − ζ 2
1 )

(
16ζ 2

1

(3 + ζ 2
1 )2

− 1

)
− α2

4
ζ 2
1 ≤ 0

is equivalent to

− (4 − α2)(9 − ζ 2
1 )

3(3 + ζ 2
1 )

− α2 ≤ 0,

which evidently holds for ζ1 ∈ (0, 1).
However, the inequality |B| < 2(1 − |C |) is equivalent to αζ 2

1 < −(1 − ζ 2
1 )(3 − ζ 2

1 ),

which is false for ζ1 ∈ (0, 1).
C2. Since

4(1 + |C |)2 = (ζ 2
1 + 4ζ1 + 3)2

4ζ 2
1

> 0

and

−4AC

(
1

C2 − 1

)
= − (4 − α2)ζ 2

1 (9 − ζ 2
1 )

12(3 + ζ 2
1 )

< 0,

a simple calculation shows that the inequality

α2ζ 2
1

4
= B2 < min

{
4(1 + |C |)2,−4AC

(
1

C2 − 1

)}
= − (4 − α2)ζ 2

1 (9 − ζ 2
1 )

12(3 + ζ 2
1 )

is false for ζ1 ∈ (0, 1).
C3. Next note that the inequality

|C |(|B| + 4|A|) − |AB| = 3 + ζ 2
1

4ζ1

(
1

2
αζ1 + (4 − α2)ζ 3

1

3(1 − ζ 2
1 )

)
− α(4 − α2)ζ 4

1

24(1 − ζ 2
1 )

≤ 0

123
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is equivalent to (α − 1)(α2 − α − 8)ζ 4
1 − 6(α2 + α − 4)ζ 2

1 + 9α ≤ 0. However the last
inequality is false for ζ1 ∈ (0, 1) since (α − 1)(α2 − α − 8) ≥ 0 and α2 + α − 4 < 0 for
α ∈ (0, 1].

C4. Note that the inequality

|AB| − |C |(|B| − 4|A|)

= α(4 − α2)ζ 4
1

24(1 − ζ 2
1 )

− 3 + ζ 2
1

4ζ1

(
1

2
αζ1 − (4 − α2)ζ 3

1

3(1 − ζ 2
1 )

)
≤ 0

(19)

is equivalent to
δ(ζ 2

1 ) ≥ 0, (20)

where

δ(t) := 9α − 3(8 + 2α − 2α2)t − (8 + 7α − 2α2 − α3)t2, t ∈ (0, 1).

We see that for α ∈ (0, 1],
8 + 2α − 2α2 > 0, 8 + 7α − 2α2 − α3 > 0, (21)

and the discriminant Δ := 144(4 + 4α − α3) > 0 for α ∈ (0, 1]. Thus we consider

t1,2 := 3(8 + 2α − 2α2) ∓ 12
√
4 + 4α − α3

−2(8 + 7α − 2α2 − α3)
.

From (21) it follows that t2 < 0 and so it remains to check if 0 < t1 < 1. The inequality
t1 > 0 is equivalent to 8α + 7α2 − 2α3 − α4 > 0 which is true for α ∈ (0, 1]. Further, the
inequality t1 < 1 can be written as

256 + 256α − 100α2 − 104α3 + 5α4 + 10α5 + α6 > 0

which is true since

256 + 256α − 100α2 − 104α3 + 5α4 + 10α5 + α6

> 52 + 256α + 5α4 + 10α5 + α6 > 0, α ∈ (0, 1].
Therefore (20), and so (19) is valid for 0 < ζ1 ≤ ζ ′ := √

t1. Then by (19), Lemma 2 and the
fact that ϕ decreases, we obtain

|γ1γ3 − γ 2
2 | ≤ α2

3
ζ1(1 − ζ 2

1 )(−|A| + |B| + |C |)

= α2

36
ϕ(ζ1) ≤ α2

36
ϕ(0) = α2

4
,

(22)

where

ϕ(u) := 9 − 6(1 − α)u2 − (1 + α)(7 − α)u4, 0 ≤ u ≤ ζ ′.

C5. It remains to consider the last case in Lemma 2, which in view of C4, holds for
ζ ′ < ζ1 < 1. Then by (18),

|γ1γ3 − γ 2
2 | ≤ α2

3
ζ1(1 − ζ 2

1 )(|C | + |A|)
√

1 − B2

4AC

= α2

18
ψ(ζ1) ≤ α2

18
ψ(ζ ′),

(23)

123
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where

ψ(t) := [
9 − 6t2 + (1 − α2)t4

]
√

3 + (1 − α2)t2

(4 − α2)(3 + t2)
, ζ ′ ≤ t < 1.

To see that the last inequality in (23) is true, note that the function ψ is decreasing, since

ψ ′(t) = − t

(4 − α2)(3 + t2)2

√
(4 − α2)(3 + t2)

3 + (1 − α2)t2

× [
4(9 − (1 − α2)2t4)(3 + t2) + 3α2(3 − (1 − α)t2)(3 − (1 + α)t2)

]
< 0

for ζ ′ < t < 1.
Simple but tedious computations show that

ϕ(ζ ′) = ψ(ζ ′).

Hence from (22) and (23) we see that

α2

18
ψ(ζ ′) ≤ α2

4
.

D. Summarizing from parts A-C we see that inequality (14) follows.
Equality holds for the function f ∈ A given by (15), where

p(z) := 1 + z2

1 − z2
, z ∈ D. (24)

Then c1 = c3 = 0 and c2 = 2, so by (16), a2 = a4 = 0 and a3 = α, and therefore by (3),
γ1 = γ3 = 0 and γ2 = α/2, which completes the proof of the theorem. ��

For α = 1 we obtain the following result for the class S∗ of starlike functions [10].

Corollary 1 If f ∈ S∗, then

|γ1γ3 − γ 2
2 | ≤ 1

4
.

The inequality is sharp.

3 Strongly convex functions

We prove the following sharp inequality for |H2,1(Ff /2)| in the class Sc
α.

Theorem 2 If f ∈ Sc
α, α ∈ (0, 1], then

|γ1γ3 − γ 2
2 | ≤

⎧
⎪⎪⎨

⎪⎪⎩

α2

36
, 0 < α ≤ 1

3
,

α2(17 + 18α + 13α2)

144(4 + 6α + α2)
,

1

3
< α ≤ 1.

(25)

Both inequalities are sharp.

123
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Proof Fix α ∈ (0, 1] and let f ∈ Sc
α be given by (1). Then by (7),

f ′(z) + z f ′′(z) = f ′(z)(p(z))α, z ∈ D, (26)

for some p ∈ P given by (8). Substituting (1) and (8) into (26) and equating coefficients we
obatin

a2 = 1

2
αc1, a3 = α

12

[
2c2 + (3α − 1)c21

]
,

a4 = α

144

[
12c3 + 6(5α − 2)c1c2 + (17α2 − 15α + 4)c31

]
.

(27)

As in the proof of Theorem 1 we may assume that c1 ≥ 0, i.e., in view of (9) that ζ1 ∈ [0, 1].
Hence from (4) and (9)–(11) we have

γ1γ3 − γ 2
2 = α2

2304

[
24c1c3 + 4(3α − 2)c21c2 − 16c22 + (α2 − 6α + 4)c41

]

= α2

144

[
(2 + α2)ζ 4

1 + 6α(1 − ζ 2
1 )ζ 2

1 ζ2 − 2(1 − ζ 2
1 )(2 + ζ 2

1 )ζ 2
2

+6(1 − ζ 2
1 )(1 − |ζ2|2)ζ1ζ3

]
.

(28)

A. Suppose that ζ1 = 1. Then by (28), for α ∈ (0, 1],

|γ1γ3 − γ 2
2 | = α2(2 + α2)

144
. (29)

B. Suppose that ζ1 = 0. Then from (28), for α ∈ (0, 1],

|γ1γ3 − γ 2
2 | = α2

36
|ζ2|2 ≤ α2

36
. (30)

C. Suppose that ζ1 ∈ (0, 1). Since |ζ3| ≤ 1 from (28) we obtain

|γ1γ3 − γ 2
2 |

≤ α2

144

[∣∣(2 + α2)ζ 4
1 + 6α(1 − ζ 2

1 )ζ 2
1 ζ2 − 2(1 − ζ 2

1 )(2 + ζ 2
1 )ζ 2

2

∣∣

+ 6(1 − ζ 2
1 )(1 − |ζ2|2)ζ1

]

= α2

24
ζ1(1 − ζ 2

1 )
[|A + Bζ2 + Cζ 2

2 | + 1 − |ζ2|2
]
,

(31)

where

A := (2 + α2)ζ 3
1

6(1 − ζ 2
1 )

, B := αζ1, C := −2 + ζ 2
1

3ζ1
.

Since AC < 0, we apply Lemma 2 only in the case II.
C1. Note that the inequality

−4AC

(
1

C2 − 1

)
− B2 = 2(2 + α2)ζ 2

1 (2 + ζ 2
1 )

9(1 − ζ 2
1 )

(
9ζ 2

1

(2 + ζ 2
1 )2

− 1

)
− α2ζ 2

1 ≤ 0

is equivalent to −2(2 + α2)(4 − ζ 2
1 ) ≤ 9α2(2 + ζ 2

1 ), which evidently holds for ζ1 ∈ (0, 1).
Moreover, the inequality |B| < 2(1 − |C |) is equivalent to 3αζ 2

1 < −2(1 − ζ1)(2 − ζ1),

which is false for ζ1 ∈ (0, 1).

123
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C2. Since

4(1 + |C |)2 = 4(ζ 2
1 + 3ζ1 + 2)2

9ζ 2
1

> 0

and

−4AC

(
1

C2 − 1

)
= −2(2 + α2)ζ 2

1 (4 − ζ 2
1 )

9(2 + ζ 2
1 )

< 0,

we see that the inequality

α2ζ 2
1 = B2 < min

{
4(1 + |C |)2,−4AC

(
1

C2 − 1

)}
= −2(2 + α2)ζ 2

1 (4 − ζ 2
1 )

9(2 + ζ 2
1 )

is false for ζ1 ∈ (0, 1).
C3. Next observe that the inequality

|C |(|B| + 4|A|) − |AB| = 2 + ζ 2
1

3ζ1

(
αζ1 + 2(2 + α2)ζ 3

1

3(1 − ζ 2
1 )

)
− (2 + α2)αζ 4

1

6(1 − ζ 2
1 )

≤ 0

is equivalent to
φ(ζ 2

1 ) ≤ 0, (32)

where

φ(t) := (−3α3 + 4α2 − 12α + 8)t2 + (8α2 − 6α + 16)t + 12α, t ∈ (0, 1).

Note that 8α2 − 6α + 16 > 0 for α ∈ (0, 1] and −3α3 + 4α2 − 12α + 8 ≥ 0 for α ∈
(0, α0], where α0 ≈ 0.74858 . . . . Thus for α ∈ (0, α0] inequality (32) is evidently false. If
α ∈ (α0, 1], then Δ := 4

(
52α4 − 72α3 + 217α2 − 144α + 64

)
> 0, and so we consider

t1,2 := −4α2 + 3α − 8 ∓ √
52α4 − 72α3 + 217α2 − 144α + 64

−3α3 + 4α2 − 12α + 8
.

Observe now that t1 > 1. Indeed, the inequality t1 > 1 is equivalent to the evidently true
inequality

√
52α4 − 72α3 + 217α2 − 144α + 64 > 3α3 − 8α2 + 15α − 16,

since the right hand side is negative for all α ∈ (α0, 1]. Further, t2 < 0. Indeed this inequality
is equivalent to −3α3 + 4α2 − 12α + 8 < 0 which clearly holds for α ∈ (α0, 1]. Thus we
deduce that the inequality (32) is false.

C4. Note next that the inequality

|AB| − |C |(|B| − 4|A|) = (2 + α2)αζ 4
1

6(1 − ζ 2
1 )

− 2 + ζ 2
1

3ζ1

(
αζ1 − 2(2 + α2)ζ 3

1

3(1 − ζ 2
1 )

)
≤ 0 (33)

is equivalent to
δ(ζ 2

1 ) ≤ 0, (34)

where

δ(s) := (3α3 + 4α2 + 12α + 8)s2 + 2(4α2 + 3α + 8)s − 12α, s ∈ (0, 1),

123
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so that Δ := 4
(
52α4 + 72α3 + 217α2 + 144α + 64

)
> 0 for α ∈ (0, 1]. Therefore s1 < 0,

where

s1,2 := −(4α2 + 3α + 8) ∓ √
52α4 + 72α3 + 217α2 + 144α + 64

3α3 + 4α2 + 12α + 8
.

Moreover 0 < s2 < 1 holds. Indeed, both inequalities s2 > 0 and s2 < 1 are equivalent to
the evidently true inequalities

36α4 + 48α3 + 144α2 + 96α > 0,

and

9α6 + 48α5 + 102α4 + 264α3 + 264α2 + 336α + 192 > 0,

respectively. Thus (34), and so (33) is valid only when

0 < ζ1 ≤ √
s2 =: ζ ′.

Then by (31) and Lemma 2,

|γ1γ3 − γ 2
2 | ≤ 1

24
α2ζ1(1 − ζ 2

1 )(−|A| + |B| + |C |) = ϕ(ζ1),

where

ϕ(u) := α2

144

[−(α2 + 6α + 4)u4 + 2(3α − 1)u2 + 4
]
, 0 ≤ u ≤ ζ ′.

Since

ϕ′(u) = −α2u

36

[
(α2 + 6α + 4)u2 + 1 − 3α

]
, 0 < u < ζ ′,

we see that for 0 < α ≤ 1/3, the function ϕ decreases and so

ϕ(u) ≤ ϕ(0) = α2

36
, 0 ≤ u ≤ ζ ′. (35)

In the case 1/3 < α ≤ 1,

0 < u0 :=
√

3α − 1

α2 + 6α + 4
< ζ1 (36)

is a unique critical point of ϕ, which is a maximum.
It remains therefore to establish the second inequality, i.e., u0 < ζ1, which is equivalent

to
r(α) :=117α8 + 240α7 − 149α6 − 1212α5 − 4344α4

− 6288α3 − 4464α2 − 1920α − 448 < 0, α ∈ (0, 1],
and since

r(α) ≤ −149α6 − 1212α5 − 4344α4 − 6288α3 − 4464α2 − 1920α − 91 < 0

for α ∈ (0, 1], we deduce that u0 < ζ1.

Thus for 1/3 < α ≤ 1, we have

ϕ(u) ≤ ϕ(u0) = α2(17 + 18α + 13α2)

144(4 + 6α + α2)
, 0 ≤ u ≤ ζ ′. (37)
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C5.Wenow consider the last case in Lemma 2, which in view of C4 holds for ζ ′ < ζ1 < 1.
Then by (31),

|γ1γ3 − γ 2
2 | ≤ α2

24
ζ1(1 − ζ 2

1 )(|C | + |A|)
√

1 − B2

4AC
= ψ(ζ1) ≤ ψ(ζ ′), (38)

where

ψ(u) := α2

144
(α2u4 − 2u2 + 4)

√
13α2 + 8 + (4 − 7α2)u2

2(2 + α2)(2 + u2)
, ζ ′ ≤ u ≤ 1.

To show that the last inequality in (38) holds, observe that ψ is decreasing. Indeed, by a
simple computation,

ψ ′(u) = − α2x

288(2 + α2)(2 + x2)2

√
2(2 + α2)(2 + u2)

13α2 + 8 + (4 − 7α2)u2

× [
4(1 − α2u2)(2 + u2)

(
13α2 + 8 + (4 − 7α2)u2

)

+27α2(α2u4 − 2u2 + 4)
]
,

for ζ ′ < u < 1. Note that

13α2 + 8 + (4 − 7α2)u2 > 0, ζ ′ < u < 1, (39)

which is clearly true for 0 < α ≤ 2/
√
7. If 2/

√
7 < α ≤ 1, then

13α2 + 8 + (4 − 7α2)u2 = 13α2 + 8 − (7α2 − 4)u2 ≥ 6α2 + 12 > 0

for ζ ′ < u < 1. Further

α2u4 − 2u2 + 4 ≥ α2u4 + 2 > 0, ζ ′ < u < 1. (40)

Thus from (39) and (40) it follows that ψ ′(u) < 0 for ζ ′ < u < 1, so ψ decreases and hence

ψ(u) ≤ ψ(ζ ′), ζ ′ ≤ u ≤ 1. (41)

Simple but tedious computations show that

ϕ(ζ ′) = ψ(ζ ′),

and so from (41), (35) and (37) we deduce that for α ∈ (0, 1/3],

ψ(u) ≤ α2

36
, ζ ′ ≤ u ≤ 1,

and for α ∈ (1/3, 1],
ψ(u) ≤ ϕ(u0), ζ ′ ≤ u ≤ 1.

D. It remains to compare the bounds in (29), (30), (35) and (37). The inequality

α2(2 + α2)

144
≤ α2

36
, α ∈ (0, 1],

is trivial, and the inequality

α2(2 + α2)

144
≤ α2(17 + 18α + 13α2)

144(4 + 6α + α2)
, α ∈ (1/3, 1],
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is equivalent to

−α4 − 6α3 + 7α2 + 6α + 9 ≤ 0, α ∈ (1/3, 1],
which is clearly true, and the inequality

α2

36
≤ α2(17 + 18α + 13α2)

144(4 + 6α + α2)
, α ∈ (1/3, 1],

is equivalent to the evidently true inequality (3α − 1)2 ≥ 0.
Thus summarizing the results in parts A-C we see that (25) is established.
We finally show that the inequalities in (25) are sharp. When α ∈ (0, 1/3], equality holds

for the function f ∈ A given by (26) with p given by (24). In this case c1 = c3 = 0 and
c2 = 2, so by (27), a2 = a4 = 0 and a3 = α/3 and therefore γ1 = γ3 = 0 and γ2 = α/6.

When α ∈ (1/3, 1], equality holds for the function f ∈ A given by (26), where p is given
by (12) with ζ1 = u0 =: τ, and u0 given by (36), ζ2 = −1 and ζ3 = 1, i.e.,

p(z) := 1 − z2

1 − 2τ z + z2
, z ∈ D,

which completes the proof of the theorem. ��
For α = 1 we obtain the sharp inequality for the class Sc of convex functions [10].

Corollary 2 If f ∈ Sc, then

|γ1γ3 − γ 2
2 | ≤ 1

33
.

The inequality is sharp.
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