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Primary microcephaly is a clinical diagnosis made when an individual has a head
circumference of greater than 3 standard deviations below the age and sex matched population
mean, mental retardation but without other associated malformations and no apparent
aetiology. The majority of cases of primary microcephaly exhibit an autosomal recessive mode
of inheritance. We now demonstrate the genetic heterogeneity of this condition with the
identification of a second primary microcephaly locus (MCPH2) on chromosome 19q13.1–13.2
in two multi-affected consanguineous families. The minimum critical region containing the
MCPH2 locus is defined by the polymorphic markers D19S416 and D19S420 spanning a region
of approximately 7.6 cM.
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Introduction
Microcephaly is defined as a disorder with a head
circumference of greater than 3 standard deviations
below the population mean for age and sex in the
absence of craniosynostosis.1 Primary microcephaly is a
non-syndromic, predominantly autosomal recessive
form of microcephaly defined by an absence of identifi-
able environmental causes and a lack of associated

malformations.2,3 Apart from mental retardation there
are no significant neurological deficits, with the small
head circumference explained by an apparently struc-
turally normal but small brain (micrencephaly).4 Given
a diagnosis of primary microcephaly, the recurrence
risk for a further affected child is approximately 1 in 6,
although if the parents are related, or symmetrical
micrencephaly is confirmed by neuroimaging, then a
recurrence risk approaching 1 in 4 is suggested.4,5 These
empirical data, along with segregation studies,6,7 sug-
gest that most cases of primary microcephaly are likely
to be autosomal recessive, with an incidence of approx-
imately 1 in 30 000 to 1 in 250 000.8,9

Primary microcephaly has been previously proposed
to be a genetically heterogeneous disorder,10 therefore
multiple separate autosomal recessive loci are likely to
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exist. Additionally, genetic heterogeneity of the condi-
tion was recently suggested by the identification of a
first locus (MCPH1) on chromosome 8p22.3–8pter in a
large consanguineous family, with the finding that seven
of eight other consanguineous families are unlikely to
be linked to this locus.11

The study of microcephaly may offer insights into
human brain evolution and development and further
our understanding as to how a substantial decrease in
brain volume seen in affected individuals results in only
a comparatively small reduction in intelligence. How-
ever, from a clinical stand point, the disorder remains
difficult to diagnose with certainty and whilst the
recurrence risk is substantial, prenatal diagnosis is not
feasible before 26 weeks of pregnancy.12

Materials and Methods
Clinical Studies
The diagnostic features of our patients with autosomal
recessive primary microcephaly were a head circumference
measurement of at least 3 standard deviations (SD) below the
mean with no craniosynostosis, mild to moderate mental
retardation (none could be educated in a normal school, but
all are able to clean, dress, feed themselves and partake in
limited conversation; all motor milestones were normal).
They had no significant dysmorphic features and no neuro-
logical or ophthalmic findings. Microcephaly was noted by the
parents at birth. None of the parents is microcephalic or
mentally retarded. From a cohort of consanguineous families
ascertained in Yorkshire, UK and the Punjab, Pakistan, two
large families (PM1 and PM2) with six and nine affected
individuals respectively were chosen for further genetic
analysis (Figure 1). Both kindreds were of Northern Pakistani
origin. For all affected individuals a history was taken, an
examination performed and syndrome diagnoses excluded.
For both families studied the inheritance pattern was compat-
ible with an autosomal recessive trait. A typical affected
individual is shown (Figure 2) who is not dysmorphic and is of
normal stature and in good health. He has a head circum-
ference of –6 SD and static mild mental retardation with no
progressive neurological defects and no fits. The head
circumferences of the affected individuals in families PM1
and PM2 varied between –4 and –7 SDs below the mean for
age and sex. The phenotype in the two families was clinically
indistinguishable. Peripheral blood samples were taken for
DNA extraction with informed consent. Chromosome analy-
sis was performed on two affected individuals in each family
and no anomalies were detected at the 550 band level.
Neuroimaging data is not currently available for affected
individuals from these two families.

Extraction of DNA and Genotyping
DNA was extracted from peripheral blood lymphocytes by a
standard non-organic extraction procedure. The two families
were analysed with markers on chromosome 8 and neither
family showed linkage to the MCPH1 locus at 8p22.3–8pter
(data not shown). The ABI Prism Linkage Mapping Set,

Version 1.0 (Applied Biosystems, Perkin Elmer, Kelvin Close,
Birchwood Science Park, Warrington WA3 7PB, UK), com-
prising 358 microsatellite markers at an average spacing of
10cM, was used to perform a genome-wide search in family
PM1. PCR amplification of the 343 autosomal markers was
carried out according to the manufacturer’s specifications.
Amplified markers were pooled, loaded on a 4.2% denaturing
polyacrylamide gel and electrophoresed at 3000V/52°C for
2.5h on an ABI 377 Sequencer. Fragment length analysis was
performed using the ABI Prism Genescan and Geno-
typer 1.1.1 software. Fine mapping of the region on chromo-
some 19 was carried out using the markers D19S416, D19S570
and D19S881 selected from the Genome Database (http:/
/gdbwww.gdb.org). For these markers, PCR reactions were
carried out in 10 µl reaction volumes containing 50 ng of
genomic DNA, 10 pmol of primers, 200 µM each of dGTP,
dATP, dTTP, dCTP, 5U of Taq DNA polymerase, and 1 3
reaction buffer (10 mM Tris-HCl pH 9.0, 50 mM KCl, 1%
Triton X-100). Amplification was as follows: 95°C for 5 min,
35 cycles of 95°C for 30 s, 50–55°C for 30 s, 72°C for 30 s, with
a final incubation step of 72°C for 10 min.

Linkage Analysis
Allele frequencies for the study markers on chromosome 19
were determined in 34 unrelated individuals of Northern
Pakistani origin. Two-point analysis was performed using the
LINKAGE analysis programs,13 assuming a full penetrance,
an autosomal recessive mode of inheritance and a disease
gene allele frequency of 0.003. GENEHUNTER 2.0 beta was
used for multipoint analysis,14 using the same parameters and
inter-marker distances derived from the Marshfield linkage
map (The Genome Database. http://gdbwww.gdb.org).

Results
All six affected individuals from family PM1 were
analysed with the autosomal markers from the ABI
Prism Linkage Mapping Set. A homozygous region of
approximately 60 cM on chromosome 19q13.1–13.2
between markers D19S226 and D19S418 was seen in all
six individuals (Figure 1A). Family PM2 (Figure 1B)
was then analysed for evidence of linkage to chromo-
some 19. Seventeen individuals were typed and a region
of homozygosity was found in all nine affected individ-
uals consistent with that for family PM1, and further
defining the minimal critical region. The Genome
Database was searched for polymorphic markers within
this region and both families analysed further using
three additional dinucleotide repeat markers, D19S416,
D19S570 and D19S881 situated between D19S226 and
D19S420. The minimum critical region (the smallest
homozygous region common to all affected individuals)
is an interval of about 7.6 cM between D19S416 and
D19S420. Two-point analysis of the markers in this
region (Table 1) gave a maximum lod score (Zmax), at a
recombination fraction (θ) of zero, of 5.28 for marker
D19S420 for family PM1 and 4.57 for marker D19S570
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for family PM2. Multipoint analysis for both the
families (Figure 3) derived a maximum lod score of 6.49

for family PM1 at D19S881 and 4.40 at D19S570 for
family PM2.

Figure 1 A Genotypes for six markers on 19q13 for family PM1 (unaffected siblings have been omitted for clarity). Marker order
and relative distances from the Marshfield linkage map (http://gdbwww.gdb.org):cen–D19S226–16cM–D19S416–3.3cM–
D19S570–1cM–D19S881–3cM–D19S420–26cM–D19S418–tel. B Genotypes for six markers on 19q13 for family PM2 (most
unaffected siblings have been omitted for clarity). Marker order and relative distances as for Figure 1A
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Discussion
Primary microcephaly was suspected to be genetically
heterogeneous because of the number of diseases
known to cause microcephaly with other clinical
features and the interfamilial variability in head cir-
cumference and intelligence. In this paper we describe
the identification of a second novel locus for autosomal
recessive primary microcephaly, MCPH2, located at
chromosome 19q13.1–13.2, confirming genetic hetero-
geneity for this condition. It has not been possible to
distinguish clinically between the MCPH1 and MCPH2
phenotypes, implying that more than one gene can

result in an apparently clinically identical primary
microcephaly phenotype. However, detailed neuroim-
aging or neuropathological examination has not yet
been performed on any affected individual’s brain from
our MCPH2 linked families. Such studies may reveal
differences which would allow distinction between
different genotypes and provide insights into the
primary pathological defects underlying primary
microcephaly.

It is assumed that the brain of an individual with
primary microcephaly has a reduced number of neu-
rones, and indeed in the mouse brain the number of
neurones is proportionate to weight and size.15 How-
ever, it is possible that a glial cell deficiency or a
reduction in dendritic connection complexity could also
give rise to a smaller brain. Candidate genes for
primary microcephaly can only be hypothesised at
present, but it seems likely that they may be involved in
generating the correct number of cortical neurones
from the ventricular germinal zones, or in controlling
mitotic division and/or the persistence of neurones
once they have reached their proper position in the
cerebral cortex. At present, 57 genes and 52 ESTs map
to the MCPH2 region on chromosome 19q13.1–13.2
(G3 map, Genemap98. http://www.ncbi.nlm.nih.gov/
genemap98/), the majority of which are expressed in
the central nervous system. The neurally expressed
gene CTG3a, a homologue of the mouse numb gene,
maps to this region.16 Mouse numb appears to be
involved in specifying cell fates during neurogenesis17

and therefore could be a strong candidate for MCPH2
primary microcephaly.

As yet no good animal models have emerged for
primary microcephaly. This may be due to the large
relative size of the human cerebral cortex so that
microcephaly may be difficult to detect or may not
occur in other species. Alternatively, the developmental
expression patterns for genes that cause primary
microcephaly may be different in humans compared to
other species or the genes may be human-specific.

Analysis of further families will refine the minimum
critical regions for the MCPH1 and MCPH2 loci,
generate relative incidence figures for these separate
primary microcephaly loci and may also give insights
into genotype/phenotype correlations. Identifying the
genes that cause human autosomal recessive primary
microcephaly will have two major areas of impact;
firstly, that families could be offered confirmatory
diagnosis for their child with primary microcephaly and
subsequent prenatal diagnosis; secondly, that genes

Figure 2 An individual with primary microcephaly at 14
years with a head circumference of –6SD

Table 1 Two-point lod scores for families PM1 and PM2

Lod score at recombination fraction of

Marker 0.0 0.01 0.05 0.1 0.2 0.3 0.4

D19S226
PM1 –7.30 –3.60 –1.40 –0.51 0.07 0.15 0.08
PM2 – ` –6.71 –3.59 –2.26 –1.10 –0.57 –0.25

D19S416
PM1 1.48 3.13 3.39 3.14 2.31 1.37 0.52
PM2 – ` –1.17 0.45 0.80 0.65 0.28 0.04

D19S570
PM1 4.12 4.02 3.62 3.12 2.12 1.19 0.44
PM2 4.57 4.44 3.96 3.34 2.15 1.09 0.34

D19S881
PM1 4.91 4.81 4.37 3.81 2.66 1.54 0.60
PM2 4.01 3.91 3.49 2.97 1.96 1.05 0.38

D19S420
PM1 5.28 5.17 4.71 4.13 2.93 1.72 0.67
PM2 –1.61 1.83 2.68 2.62 1.91 1.06 0.38

D19S418
PM1 – ` –6.30 –3.05 –1.67 –0.57 –0.18 –0.04
PM2 – ` –4.84 –1.99 –0.87 –0.11 0.05 0.04
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may be identified that are involved in the complex
developmental evolution of the human brain.
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