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Summary 

The adjoint method application in variational data assimila- 

tion provides a way of obtaining the exact gradient of the cost 
function J with respect to the control variables. Additional 
information may be obtained by using second order informa- 
tion. This paper presents a second order adjoint model (SOA) 
for a shallow-water equation model on a limited-area 
domain. One integration of such a model yields a value of 
the Hessian (the matrix of second partial derivatives, VzJ) 
multiplied by a vector or a column of the Hessian of the cost 
function with respect to the initial conditions. The SOA 
model was then used to conduct a sensitivity analysis of the 
cost function with respect to distributed observations and to 
study the evolution of the condition number (the ratio of 
the largest to smallest eigenvalues) of the Hessian during the 
course of the minimization. The condition number is strongly 
related to the convergence rate of the minimization. It is 
proved that the Hessian is positive definite during the process 
of the minimization, which in turn proves the uniqueness of 
the optimal solution for the test problem. 

Numerical results show that the sensitivity of the response 
increases with time and that the sensitivity to the geopoten- 
tial field is larger by an order of magnitude than that to the 
u and v components of the velocity field. Experiments using 
data from an ECMWF analysis of the First Global Geo- 
physical Experiment (FGGE) show that the cost function J 
is more sensitive to observations at points where meteorologi- 
cally intensive events occur. Using the second order adjoint 
shows that most changes in the value of the condition 
number of the Hessian occur during the first few iterations 
of the minimization and are strongly correlated to major 

large-scale changes in the reconstructed initial conditions 
fields. 

1. Introduction 

The comple te  descr ipt ion of the initial a tmospher i c  

s tate  in a numer ica l  wea the r  p red ic t ion  m e t h o d  

cons t i tu tes  an i m p o r t a n t  issue. The  fou r -d imen-  

sional var ia t ional  da ta  assimilat ion (VDA) m e t h o d  

offers a p romis ing  way  to achieve such a descr ip-  

t ion of  the a tmosphe re .  I t  consists  of  finding the 

ass imi la t ing  mode l  so lu t ion  which minimizes  a 

p rope r ly  chosen  object ive  funct ion  m e a s u r i n g  the 

dis tance be tween  mode l  so lu t ion  and  avai lab le  

obse rva t ions  d is t r ibuted  in space  and  time. The  

con t ro l  var iab les  are ei ther  the initial condi t ions  

or  the initial condi t ions  plus the b o u n d a r y  condi-  

tions. The  bounda ry  conditions have to be specified 

so tha t  the p r o b l e m  is well posed  in the sense of  

H a d a m a r d .  In  m o s t  of  the uncons t r a ined  mini-  

m iza t i on  a lgor i thms  assoc ia ted  with the V D A  

a p p r o a c h ,  the g rad ien t  of  the object ive  funct ion 

with respect  to the con t ro l  var iab les  plays  an 

essential  role. This  grad ien t  is ob t a ined  t h r o u g h  

one direct  in t eg ra t ion  of the mode l  equa t ions  

fol lowed by  a b a c k w a r d s  in tegra t ion  in t ime of the 

l inear  ad jo in t  sys tem of the direct  model .  
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VDA was first applied in meteorology by 

Marchuk (1974) and by Penenko and Obrazstov 

(1976). Kontarev (1980) further described how to 

apply the adjoint method to meteorological prob- 

lems, while Le Dimet (1982) formulated the 

method in a general mathematical framework 

related to optimal control of partial differential 

equations. In the following years, a considerable 

number of experiments has been carried out on 

different two-dimensional (2-D) barotropic models 

by several authors, such as Courtier (1985); Lewis 

and Derber (1985); Derber (1985); Hoffmann 

(1986); Le Dimet and Talagrand (1986); Le Dimet 

and Nouailler (1986); Courtier and Talagrand 

(1987, 1990); Derber (1987); Talagrand and Courtier 

(1987); Lorenc (1988a and 1988b); Thacker and 

Long (1988); Zou et al. (1991). Th6paut and 

Courtier (1991); Navon et al. (1990, 1992) as well 

as Chao and Chang (1992) applied the method 

to 3-D operational NWP models. While major 

advances have been achieved in the application of 

the adjoint method, this field of research remains 

both theoretically and computationally active. 

Additional research to be carried out includes 

applications to complicated models such as multi- 

level primitive equation models related to distri- 

buted real data and the inclusion of physical 

processes in the VDA process. 

The SOA model serves to study the evolution 

of the condition number of the Hessian during 
the course of the minimization. Two forward 

integrations of the nonlinear model and the 

tangent linear model and two backwards integra- 

tions in time of the first order adjoint (FOA) 

model and the SOA system are required to 

provide the value of Hessian/vector product. This 

Hessian/vector product is required in truncated 

Newton-type methods and may be used with the 

Rayleigh quotient power method to obtain the 

largest and smallest eigenvalues of the Hessian 

whose dimension is 1083 x 1083 for the test 
problem. The dimension of the Hessian will be 
more than l0 s x l0 s for 3-D primitive equations 

models. If the smallest eigenvalues of the Hessian 

of the cost function with respect to the control 
variables are positive at each iteration of the VDA 

minimization process, then the optimal solution 
of the VDA is unique. This statement is proven to 
be true for the shallow water equation model 
(Section 4.2). The variation of the condition 
number of the Hessian of the cost function with 

respect to number of iterations during the mini- 

mization process reflects the convergence rate of 

the minimization. It has been observed (Navon 

et al., 1992) that large scale changes occur in the 

process of minimization during the first 30 itera- 

tions, while during the ensuing iterations only 

small scale features are assimilated. This entails 

that the condition number of the Hessian of the 

cost function with respect to the initial conditions 

changes faster at the beginning of the minimiza- 

tion and then remains almost unchanged during 

the latter iterations. The condition number can 

also provide information about the error co- 

variance matrix. The rate at which algorithms for 

computing the best fit to data converge depends 

on the size of the condition number and the 

distribution of eigenvalues of the Hessian. The 

inverse of the Hessian can be identified as the 

covariance matrix that establishes the accuracy to 

which the model state is determined by the data; 

the reciprocals of the Hessian's eigenvalues repre- 

sent the variance of linear combinations of vari- 

ables determined by the eigenvectors (Thacker, 
1989). 

The structure of the paper is as follows: the 

theory of the SOA is introduced in section 2. In 

section 3, a detailed derivation of the SOA model 

of the two-dimensional shallow water equations 

model is presented. A brief description of the 

FOA model is provided in Appendix A. Quality 

control methods for the verification of the correct- 

ness of the SOA model are then discussed in 

Appendix B. Issues concerning uniqueness of 

the solution and the evolution of the condition 

number of the Hessian during the course of the 

minimization as well as related issues of the 
structure of the reconstructed initial conditions 

are addressed in section 4. Section 5 is devoted to 

a sensitivity study of the solution with respect 

to distributed inaccurate observations. Finally 

a summary and conclusions are presented in 

section 6. 

2. The SOA Model 

2.1 Theory of the SOA Model* 

The forwards and backwards integrations of the 
nonlinear model and the adjoint model, respec- 

* A brief description of the FOA model is provided in 
Appendix A. 
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tively, provide the value of the cost function J and 

its gradient. The following question may then be 

posed: can we obtain any information about the 

Hessian (second order derivative matrix) of the 

cost function with respect to the initial conditions 

by integrating the adjoint model equations? The 

calculation of the matrix of the second order 

derivatives is useful in many instances. For 

example, a Hessian/vector product is required in 

the truncated Newton large-scale nonlinear un- 

constrained optimization algorithm (Nash, 1985). 

Once the Hessian/vector product is available, the 

condition number of the Hessian may be obtained. 

This condition number may then be used to study 

the convergence rate of VDA. Analysis of the 

spectrum of the Hessian can provide an in-depth 

insight into the behavior of the large-scale mini- 

mization algorithms (Luenberger, 1984). We will 

show in this section that one integration of the 

SOA model yields a Hessian/vector product or a 

column of the Hessian of the cost function with 

respect to the initial conditions. Therefore, the 

SOA model provides an efficient way to compute 

the Hessian of the cost function by performing N 

integrations of the SOA model where N is the 

number of the components of the control variables 

vector. For a large dimensioned model, obtaining 

the full Hessian matrix proves to be a computa- 

tionally prohibitive task beyond the capability of 

present day computers. The SOA approach will 

be used to conduct a sensitivity analysis of the 

observations in section 5 of this paper. We will 
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Fig. 1. Verifications of the correctness of the gradient calcu- 
lation (dash line) and Hessian/vector product calculation 
(solid line) by FOA and SOA models, respectively 

also study the relative importance of observations 

distributed at different space and time locations. 

Assume that the model equations can be 

written as 

OX 
- F ( X )  ( 2 . 1 )  

& 

X(to) = U (2.2) 

where X is the state vector (a three-component 

vector of (u, v, 4~) t in the shallow-water equations) 

in a Hilbert space ;~ whose inner product is 

denoted by < ,  > ,  t is the time, t o is the initial time, 

U is the initial condition of X and F is a function 

of X. For any initial condition (2.2), (2.1) has a 

unique solution, X(t). 

Let us define the cost function as 

J (v )  =-2 < w ( c x -  xo), c x -  x ~ > dt (2.3) 
o 

where W is a weighting matrix often taken to be 

the inverse of the estimate of the covariance matrix 

of the observation errors, T is the final time of the 

assimilation window, the objective function J(U) 

is the weighted sum of squares of the distance 

between model solution and available observa- 

tions distributed in space and time, X ~ is an 

observation vector and the operator C represents 

the process of interpolating the model solution X 

to space and time locations where observations 

are available. The purpose is to find the initial 

conditions such that the solution of Eq. (2.1) 

minimizes the cost function J(U) in a least- 

squares sense. The FOA model as defined by 

Eqs. (A.11), (A.12) may then be rewritten as 

O P - ( O F ~ * p + c * w ( c x - x ~  (2.4) 
~t \ O x /  

P(T) = 0. (2.5) 

where P represents the FOA variables vector. The 

gradient of the cost function with respect to the 

initial conditions is given by 

17vJ = n(to). (2.6) 

Let us now consider a perturbation, U', on the 

initial condition U. The resulting perturbations 

for the variables X, P, X and P may be obtained 

from Eqs. (2.1), (2.2), (2.4) and (2.5) as 

- X ( 2 . 7 )  

& 0X 
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)((0) = U' (2.8) 

]* 
+ .~ P + C * W C X ( 2 . 9 )  

\ L 

/~(T) = 0 (2.10) 

Eqs. (2.7), (2.8) and Eqs. (2.9), (2.10) are called the 

tangent linear and SOA models, respectively. 

Let us denote the FOA variable after a per- 

turbation U' on the initial condition U by Pv + v,, 

then according to definition 

Pv +v,(to) = P(to) + -5(to). (2.11) 

Expanding Vv+v,J at U in a Taylor series and 
only retaining the first order term, results in 

Vu+v,J = VvJ + VzJ 'U'  +O(II U'llS). (2.12) 

From Eq. (2.6), we know that 

Vv+v,J = Pv+v,(to). (2.13) 

Combining Eqs. (2.6), (2.11)-(2.13), one obtains 

P(to) = v z J  �9 U' = HU'  (2.14) 

where H = v z J  is the second derivative of the cost 
function with respect to initial conditions. 

If we set U' = ej, where ej is the unit vector with 

thej-th element equal to 1, thej-th column of the 

Hessian may be obtained by 

Hej =/~(t0). (2.15) 

Therefore, theoretically speaking, the full Hessian 
H can be obtained by M integrations of Eqs. (2.9), 

(2.10) with U'=ei ,  i=  1 , . . . , N  where N is the 

number of the components of the control variables 

vector (the initial conditions U(to), V(to) and ~b(t0) 

in our case). 
In summary, the j-th column of the Hessian of 

the cost function can be obtained by the following 

procedure: 

(a) Integrate the model (2.1), (2.2) and the tangent 

linear model (2.7), (2.8) forward and store in 
memory the corresponding sequences of the 

states Xi and X~ (i = 0 . . . . .  M); 
(b) Integrate the FOA Eqs. (2.4), (2.5) backwards 

in time and store in memory the sequence of 

Pi (i = 0,... ,  M); 
(c) Integrate the SOA model (2.9), (2.10) back- 

wards in time. The final value P(to), yields the 
j-th column of the Hessian of the cost function. 

The verification of the correctness of FOA and 
SOA models is provided in Appendix B. 

2.2 The Estimate of the Condition Number 

of the Hessian 

Let us denote the largest and the smallest eigen- 
values of the Hessian matrix H and their corre- 

sponding eigenvectors by 2ma x, 2mi n, Via x and 
Vmi n, respectively. Then the condition number of 
the Hessian is given by 

K(H) - 2max. (2.16) 

2rain  

Considering the eigenvalue problem H U  = 2U 

and assuming that the eigenvalues are ordered in 

decreasing order with 121l/> 12zl/> "" ~> 12,[, an 
arbitrary initial vector X0 may be expressed as a 

linear combination of the eigenvectors { Ui} 

Xo = ~ ciUi. (2.17) 
i = 1  

If 2~ is an eigenvalue corresponding to the i-th 
eigenvector U, the product of m multiplications 

of the Hessian H with Eq. (2.17) result in, 

X,, = ~ c~2~' U~ (2.18) 
i = l  

where 

X m :  HmXo . 

Factoring 2]' out, we obtain 

Xm = 2'~ i Ui. (2.19) 
i = 1  2 1  

Since 21 is the largest eigenvalue, the ratio (2i '1 m 
\ 2 1 /  

approaches zero as m increases (suppose 21 # 22). 
Therefore we may write 

Xm = 21Cl U1. (2.20) 

From (2.20) observe that the largest eigenvalue 

may then be calculated by 

/th component of X,,+ 1 
21 =~ (2.21) 

j th  component of Xm 

This technique is called the power method (Strang, 
1986). We can normalize the vector X m by its 
largest component in absolute value. If we denote 
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the new scaled iterate to be X' then m '  

X,,+ 1 = H X '  m (2.22) 

and the method is called the power method with 

scaling. It gives us an eigenvector whose largest 

component  is 1. 

The main steps in the power method with 

scaling algorithm are: 

(a) Generate a starting vector Xo. 

(b) Form a matrix power sequence Xm = HXm_ 1. 

(c) Normalize X,, so that its largest component  

is unity. 

(d) Return to step (b) until convergence 

[ X m - -  X m _  l [ ~_~ 10 -6 

is satisfied or a prescribed upper limit of the 

number of iterations has been attained. 

The smallest eigenvalue of H may also be 

computed by applying the shifted iterated power 

method to the matrix Z = z" I - H, where z is the 

majorant  of the spectral radius of H and I the 

identity matrix. 

Since the Hessian H is symmetric, we will 

employ here the Rayleigh quotient power method 

which has a better convergence rate. 

3. The Derivation of the SOA 

for the Shallow Water Equations Model 

In this section, we consider the application of the 

SOA model to a two-dimensional limited-area 

shallow water equations model. Our purpose is to 

illustrate how to derive the SOA model explicitly. 

The shallow water equations model may be 

written as 

Ou Ou Ou 04 
- u - - - v - - + f v - - -  (3.1) 

& 9x Oy 9x 

Ou 9v 0v 94 
- u - - - v - - - f u - - -  (3.2) 

& Ox 9y 9y 

9 4 _  9(u4) 9(v4) 

& 9x 9y 
(3.3) 

where u, v, 4 and f are the two components of the 

horizontal velocity, geopotential field and the 

Coriolis factor, respectively. 

We shall use initial conditions due to Gram- 

meltvedt (1969) 

h = H o + H 1 tanh 9(y - Yo) 
2D 

+ H2 sech 9(y - Yo) sin x2rc_ (3.4) 
D L 

where 4 = gh, Ho = 2000m, H1 = - 2 2 0 m ,  H2 = 

133 m, g = 10 m sec- 2 L = 6000 km, D = 4400 km, 

f =  10-4sec -1, f l=  1.5 x 10 - lxsec  - l m  -1. Here 

L is the length of the channel on the fl plane, D is 

D .  
the width of the channel and Yo = -- is the middle 

2 

of the channel. The initial velocity fields were 

derived from the initial height field via the 

geostrophic relationship, and are given by 

g Oh 
u - ( 3 . 5 )  

f 0 y  

g 9h 
v = - - -  (3.6) 

f 9x" 

The time and space increments used in the model 

were 

A x  = 300kin, Ay = 220km, At = 600s. (3.7) 

which means that there are 21 x 21 grid point 

locations in the channel and the number of the 

components  of initial condition vector (u, v, 4) t 

is 1083. Therefore the Hessian of the cost function 

in our test problem has a dimension of 1083 x 

1083. 

The southern and north boundaries are rigid 

walls where the normal velocity components  

vanish, and it is assumed that the flow is periodic 

in the west-east  direction with a wavelength equal 

to the length of the channel. 

Let us define 

X = (u, v, 

/u + + 
e ,  

cTx cTy cTx 

0v 0v 04 
- - +  v - - +  f u  + F = - Ugx Oy ~y 

O(u4) o(v4) 
- -  -Jr- - -  

Ox Oy 

(3.8) 

(3.9) 

Then Eqs. (3.1)-(3.3) assume the form of Eq. (2.1). 

It is easy to verify that 
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OF 

0X 

_ ; a(.) 
O(u('))+ vO(") (.) _ f ( . )  

Ox Oy Ox 

(.)av + f(.)  ua(') + a(v(')) a(') 
~3x Ox Oy Oy 

a(~(.)) a(q~(.)) a(u(.)) + a(v(.)) 

(3.10) 

The adjoint of an operator L, L*, is defined by the 
relationship 

(LX, Y )  = (X ,L*Y)  (3.11) 

where ( ' ,  "} denotes the inner product 

( . , . }  = f f  ...dD (3.12) 

where D is the spatial domain. Using the defini- 
tion (3.12), the adjoint of (3.11) can be derived as 

with final conditions 

u(T) = O, v(T) = 0, ~b(T) = 0 (3.17) 

where P = (u*,v*, ~b*) ~ is the first order adjoint 
variable. Wu, Wv, W e are weighting factors which 
are taken to be the inverse of estimates of the 
statistical root-mean-square observational errors 
on geopotential and wind components, respec- 
tively. In our test problem, values of We= 
10- 4 m-  4 s* and W, = Wv = 10- 2 m-  2 S 2 are used. 

0 x l  

0(.) a@(.)) (.)o~ 
- u  + f ( ' )  

Ox Oy Ox 

( . )~  0(.) O(u(.)) 
@ - f ( ' )  - v  - -  

c3y Ox 

0(') a(') 

\ 0x Oy 

0(.) 
Ox 

~(-) 
- - 4 - -  Oy 

0(.) 0(-) 
- -hi  - - IJ  

Ox Oy 

(3.13) 

Therefore the first order adjoint model with the 
forcing terms may be written as 

Ou*___ ( _ u  &*_ ~(vu*) ~ v* & 

& Ox c?y Ox 

+fv* - d? Ox ) + W,(u - u ~ (3.14) 

Or* / Ou Or* 
- t u * - - - f u * - v - -  & Oy Oy 

3(uv*) 4)~ w~(~-~~ (3.15) 
0x 0y / 

~e*_ ( 0u* ~v* 0q~* 0q5.'\ 

+ W~(~b - 4~ ~ (3.16) 

Now let us consider a perturbation, U', on the 
initial condition for X, X(to). The resulting cor- 
respondin~ perturbations for variables X and P, 

= (fi,/), ~b) t and/5 = (/i, ~, q~)t, are obtained from 
Eqs. (3.1)-(3.3) and (3.14)-(3.17) as 

(0(ua) da dU_s/) + 0q ) 
& -  \ 0x + 0y + 0y ~ _  (3.18) 

01) /i ov 
0/) 3(v/~) 0v_yq~ ) - ( + f / i  + u - -  + + (3.19) 

c~t \ Ox Ox Oy 

Oq~ 
_ -(0(qSa) + 0(q5/)3 + 0(u(qS) + (3.20) 

& \ 0x 0y 0x 0y / 

with zero initial conditions, and 

0, ( u C~, O( vO) Ov ~x - - - - + ~ - - + 4  
fff ~x Oy Ox 
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u - -  -1- 
c?x ~3y 8x ~x / 

(  (ue) 
& 0y ~3y 0x 

+ w3  

(3.21) 

+ Oy ~y Ox ~y J 

(3.22) 

( 
8t ~x 8y ~x ~y 

- t~0qS* - t384'*~ + W+~ (3.23) 
c3x 0y / 

condition 

tS(T) = 0, $(T) = 0. (3.24) 

with final 

O(T) = 0, 

Therefore 

/3(to) = (if(to), 17(to), q~(to)) 1 = HU' (3.25) 

where H is the Hessian of the cost function with 

respect to the initial conditions. Equation (3.25) 

gives the Hessian/vector product. If we choose U' 

to be the unit vector ej where the j-th component 

is unity and all its other components are zeros, 

then the corresponding column Hj of the Hessian 

H will be obtained after one integration of the 
SOA backwards in time. 

4. Second Order Adjoint Information 

4.1 Calculation of the Hessian~Vector Product 

There are two practical ways to calculate the 

Hessian/vector product at a point X associated 

with VDA. One way consists in using a finite- 

difference method while the other way is by using 

the SOA method. The finite-difference approach 
assumes the following form 

f(~) = VJ(X + ~ Y ) -  VJ(X)= ~HY + O(~ 2) (4.1) 

where Y is a random perturbation vector and H 

is the Hessian of the cost function. A second way 

to obtain Hessian/vector product is to integrate 
the SOA equations model backwards in time. 

According to Eq. (2.14), we also have 

f(a) = ~H Y. (4.2) 

The computational cost required to obtain the 
Hessian/vector product is approximately the same 

for both methods. The SOA approach requires us 

to integrate the original nonlinear model and its 

tangent linear model forward in time once and 

integrate the FOA model and the SOA model 

backwards in time once. The finite difference 

approach requires the integration of the original 

nonlinear model forward in time twice and the 

FOA model backwards in time twice. The computa- 

tional costs for integrating the tangent linear 

model forward in time, the FOA model back- 

wards in time or the SOA model backwards in 

time once are comparable. However, the SOA 

model method gives an accurate value of the 

Hessian/vector product while the finite-difference 

method yields only an approximated value, which 

can be a very poor estimate when the value ~ is 

not properly chosen. Figures 2-4 present a com- 

parison between the first 50 components of 

Hessian/vector products at the optimal point 

obtained by using both the SOA and finite- 

difference approaches for various scalars ~ vary- 

ing from 10, 3 to 0.01. It is clearly seen that the 

Hessian/vector product obtained by using finite- 

difference approach converges to that obtained by 

SOA as the scalar c~ decreases. With the SOA 

approach an accurate result can be obtained with 
a relatively large perturbation (~ = 10), while the 

finite-difference approach is very sensitive to the 

magnitude of perturbations. When the perturba- 

tions are large, say for ~ = 10, the finite-differencing 

yields no meaningful results (Fig. 2). When the 

perturbations are small, the finite-difference 

1 0 0 0 0  

5000 

o 

- 5 0 0 0  

- 1 0 0 0 0  

--15000 

0 

. . . .  I . . . .  [ '  ' ! '  ' I . . . .  I ' t '  ' ' I '- 
- t i I 

/ ]  'i' 

- , , , , I  . . . .  I , , ,  I . . . .  I . . . .  I ,  
10 20 30 4 0  50 

V e c t o r  Ludex 

Fig. 2. The  first 50 c o m p o n e n t s  of  the  Hess i an /vec to r  p ro-  

ducts  at the op t imal  so lu t ion  ob ta ined  by the finite-difference 

a p p r o a c h  (dash line), and  S O A  m e t h o d  (solid line) when  

:~= 10 
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Vector index  

an inaccurate estimate of the Hessian/vector 

product. This is the case when the Hessian/vector 

product is estimated at the initial guess point with 

e=0.01  (Fig. 5). Therefore it is much more 

advantageous to use the SOA approach than to 

use the finite-difference approach. 

The calculation of a Hessian/vector product 

is required in many occurrences. For instance, 

Nash's (1984) Truncated Newton method requires 

the values of Hessian/vector products. It may also 

be used to carry out eigenvalue calculations and 

sensitivity analysis. 
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approach might involve a subtraction of nearly 
equal numbers which results in the cancellation of 

significant digits and the results thus obtained are 

4.2 The Uniqueness of the Solution 

An important issue in VDA is to determine 

whether the solution is unique. If more than one 

local minimum exists, then the solution of the 

minimization process may possibly change depend- 

ing on different initial guesses. 

There are two different but complementary 

ways to characterize the solution to unconstrained 

optimization problems. In the local approach, one 

examines the relation of a given point to that of 

its neighbors. The conclusion is that at an un- 

constrained relative minimum point of a smooth 

cost function, the gradient of the cost function 

vanishes and the Hessian is positive semidefinite; 

and conversely, if at a point the gradient vanishes 

and the Hessian is positive definite, that point is 

a relative minimum point. This characterization 

has a natural extension to the global approach 

where convexity ensures that if the gradient 

vanishes at a point, that point is a global mini- 

mum point. 

The Hessian (the matrix of second order deri- 

vatives of the cost function with respect to the 

control variables) is the generalization to E" of the 

concept of the curvature of the function, and cor- 

respondingly, positive definiteness of the Hessian 

is the generalization of positive curvature. We 

sometimes refer to a function as being locally 
strictly convex if its Hessian is positive definite in 

the region. In these terms we see that the second 

order sufficiency result requires that the function 

be locally strictly convex at the point X*. 

A simple experiment was conducted to find out 
about the uniqueness of the cost function with 
respect to the initial conditions using the shallow- 

water equation model. The experiment is devised 

as follows: the model-generated values starting 
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values implies the positive definiteness of the 

Hessian, which in turn proves the uniqueness of 

the optimal solution. 

4.3 Convergence Analysis 

The largest and smallest eigenvalues and the 

condition numbers are considered here. The 

purpose of this study is to provide an in-depth 

diagnosis of the convergence of the VDA applied 

to a meteorological problem. The various scale 

changes of different field reconstructions with the 

number of minimization iterations of VDA has 

attracted the attention of several researchers 

(Navon et al., 1992). In this research work we will 

attempt to provide an explanation of this phenom- 

enon based on the  evolution of the condition 

number of the Hessian of the cost function with 

respect to control variables (Thacker, 1989). It has 

been observed that in VDA, large scale changes 

occur in the first few iterations and small scale 

changes occur during the latter iterations in the 

process of the minimization of the cost function. 

The same experiment as described in section 

4.2 was conducted again this time to follow 

the quality of the reconstructed initial conditions 

at different stages of the minimization process. 

Figures 8-10 show the perturbed geopotential 

Fig. 7. Variation of the largest eigenvalue of the Hessian of 
the cost function with the number of iterations 

from the initial condition of Grammeltvedt  (Eq. 

(3.4)) are used as observations, the initial guess 

is a randomly perturbed Grammeltvedt  initial 

condition, and the length of the assimilation is 

10 hours. We know exactly what the solution is, 

and the-value of the cost function at the minimum 

must be zero. All the random perturbations used 

in this paper are from a uniform distribution. The 

limited memory  quasi-Newton large-scale uncon- 

strained minimization method of Liu and Nocedal 

(1989) is used for all experiments in this paper. 

The symmetric versions of the power and 

shifted power methods are used to obtain the 

largest and smallest eigenvalues of the Hessian at 

each iteration. The results are shown in Figs. 6 

and 7. The smallest eigenvalues at each iteration 

of the minimization process are small positive 

numbers. The positiveness of the smallest eigen- 

~0NT0UR ~ROM ~6e~. T0 2~ee~. CONTOUR INTERWL 0V S ~ e  ~Xn.3~= ~3~7~ 

Fig. 8. Distribution of the randomly perturbed geopotential 
field 
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Fig. 9. Reconstructed geopotential field after 6 iterations of 
minimization 
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Fig. 10. Reconstructed geopotential field after 25 iterations 
of minimization 

field and the reconstructed geopotential fields 
after 6 and 25 iterations, respectively. It can be 

clearly seen that most of the large scale recon- 
structions oceur within the first 25 iterations of 
the minimization process. The geopotential field 
reconstructed after 25 iterations is very similar to 

the one reconstructed after 54 iterations at which 

stage the prescribed convergence criteria 

II VJ(Xk)II <~ 10 -14 • max{l,  IIXkll } 

is satisfied. This clearly indicates that the VDA 

achieves most of the large scale reconstructions 

during the first 25 iterations and that in the latter 

part of the minimization process only small scale 

features are being assimilated. In this case by 

stopping the minimization process prior to the 

cost function satisfying the preset convergence 

criteria, the expensive computational cost of the 

VDA process could be cut by more than a half, 

while satisfactory results may still be obtained. 

This in turn is related to the evolution of the 

largest and smallest eigenvalues and thus to the 

change in the condition number of the Hessian 

with iterations (Figs. 6, 7 and 11). From these 

figures we observe: 

(a) The smallest eigenvalues are positive at each 

iteration and remain approximately the same 

except for rather small changes during the first 

few iterations (Fig. 6). 
(b) The largest eigenvalues decrease quickly dur- 

ing the first few iterations of the minimization 

process, then change only slightly for the 

next 15 iterations and remain approximately 

the same during the latter minimization 

stages until the convergence criteria is attained 

(Fig. 7). 
(c) The condition numbers of the Hessian/vector 

product at different steps of the minimization 

vary in a way similar to that of the evolution 

of the largest eigenvalues during the minimi- 

zation process and their magnitude is about 

83,000 which is very large (Fig. 11). 

We conclude that most changes in the condi- 

tion numbers occur during the early stage of the 

VDA minimization process. This explains why 

large scale reconstructions occur during the first 

30 iterations of the minimization process. 
The large condition numbers in the initial stage 

of the minimization imply that the contour lines 

of the cost function J ( =  constant) are strongly 

elongated in the parameter space (Lions, 1971; 

Fletcher, 1987; Gill et al., 1981; Luenberger et al., 
1984), which explains the slow convergence rate 
of the VDA process. The above experiment was 

carried out without adding either a penalty or a 
smoothing term. The addition of such a penalty 
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Fig. 1 1. Variation of the condition numbers of the Hessian 

of the cost function with respect to the number  of iterations 

term, which is positive definite and quadratic with 

respect to the initial conditions, will definitely 
increase the convexity of the cost function. Thus 

the addition of an adequate quadratic penalty 
term adding additional information to the cost 

function changes the condition number of the 

Hessian and speeds up the convergence of the 
VDA process. 

5. Sensitivity Analysis for Observations 

5.1 Sensitivity Theory  for  Observation 

The cost function is also a function of the 

observations. Different observations will result in 
different solutions. Due to the errors inherent in 
the heterogeneous observations, it is important to 

obtain the sensitivities of the cost function to the 
changes in the observations which quantify the 

extent to which the perturbations in the observa- 
tions correspond to the perturbation in the 

solution. If the sensitivities are large, then the 
model will possess a large uncertainty with respect 
to changes in the observations. 

Conventional evaluation of the sensitivities 
with respect to model parameters is carried out by 

changing the values of model parameters and 
recalculating each model solution for every pa- 
rameter. Such a calculation is prohibitive for 
models with a large number of parameters since it 
requires an exceedingly large amount of comput- 

ing time. The adjoint sensitivity method (Cacuci, 
1981; Hall and Cacuci, 1982, 1983; Sykes et al., 
1985) proved to be an efficient method for 
carrying out sensitivity analysis. The objective of 
the sensitivity analysis considered here is to 

estimate changes in the cost function, J, arising 

from changes in observations which are distributed 

in space and time. This will illustrate the relative 

importance of observations at different time and 
space locations. 

Due to the equivalent position of the state 
vector and the observation vector in Eq. (A.1), the 
cost function can be viewed as depending on both 
of them, namely 

J = J ( X -  X~ (5.1) 

As such, the following identities can be proved 
using the chain rule: 

c3J ~ J  
- (5.2) 

~ X  OX o 

632j O 2 j  

( ~ X 2  - (~XO z �9 (5.3) 

These two equations are used in the following 
sensitivity analysis. 

Let us denote a change in the observations by 
5 X  ~ If this change is small, then we may expand 
the cost function J around X ~ as 

J(X~ + (~X~ 

= J(X~ + ~J(X~ ) 6XO(t,) 
 xo(t.) 

+ 

2 # X ~  

+ o( II ,sx~ 3). (5.4) 

According to the identities given by Eqs. (5.2) and 
(5.3), Eq. (5.4) can be written as 

J(X~ + (~X~ 

•J(X~ , o  
= J(X~ 6 A  

cgx(t.) 

1 ~2J(X~ 
-]- - (~ X ~ ( t n ) t (~ X ~ 

2 cgX(t.) 2 

+ O( k] 6X~ 3) (5.5) 

where t, denotes the time, t, = t o + nAt  and At is 
given by Eq. (3.7). Since the first order term in 
Eq. (5.5) dominates, we obtain from Eq. (5.5) 

j '  = J(X~ + (~X~ - J(X~ 

_ ~ o 

J ( X  ( t , ) )SX o + O( II 6X~ 2). (5.6) 
0x(t.) 
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This equation describes changes in the cost func- 

tion resulting from changes in the observation at 

time t,. 

If the gradient of the cost function with respect 

to the state vector X(t,) is zero, then we obtain 

J '=  J(X~ + 6X~ - J(X~ 

= 1_ 6NO(t,), c~sJ(X~ + O( N 6X~ 3) 
2 c?X(t,) 2 

(5.7) 

where the second derivative of J with respect to 

the observations is the Hessian of J with respect 

to the state variable at time t,. Equation (5.7) 

describes the changes in the cost function result- 

ing from a change in the observation at time t,. 

Let us now calculate the first derivative of the 

cost function J with respect to X(t,). The variation 

of the cost function J in Eq. (A.6) can be written as 

M 
6J = ~ ( W(Xi - X~ X~) 

i=0 

n-1 
_ _  - -  X 0 - F~ <w(x, xo ) ,~ i>+<w(x .  - . ) , 2 . >  

i=O 

M 
X ~ + ~, < w ( x , -  ,) .xi> 

i=n+ l 

=(~Jl +(W(Xn-X~ (5.8) 

where J(~ is the resulting perturbation on X~ and 

is defined by the tangent linear Eqs. (2.7), (2.8). It 

can be shown from Appendix A that 

i - 1 1  Xi = lJ  i +  At(C~F~ ~ X ,  (5.9) 

for i > n, and 

\ o x / / A  

for n > i .  Using the definition of the adjoint 

operators, Eq. (5.10) yields 

~/:~ \OX//IJ 

for n being larger than i. Now we can write J1, J2 

corresponding to Eqs. (5.9) and (5.11) respectively 

as 

~J~ Z w ( x , - x ~  ~+ 
, : o  . ~ = ,  \~x/AJ "1 

6J2-- ~ W(Xi -X~  I + A t  2 ,  
i : . + ,  ~= \OX/jA / 

Substituting J1, J2 into Eq. (5.8) and using basic 

concepts of adjoint operators, we obtain the 

following expression 

i=o j=i t_ \OXJ jA  

+ < w ( x .  - xo) ,  ~?.> 

+ ~ I + A t  
i~ .+1 . . ~ =  ._ \ c ~ x / j J l  

• w ( x ~ -  i),2~~ . (5.12) 

We know however that 

6J = ( Vx(to>J, J?,>, (5.13/ 

Equating Eqs. (5.12) and (5.13), we obtain the 

gradient of the cost function with respect to X(t,) 

as 

= Z 11 I + 
i=0 

+ w ( x .  - x o) 

+ Z I+ t- ~ 

x W(X, - X~ (5.14) 

In summary, the perturbation in the cost 

function resulting from a perturbation in the 

observation at the time t, may be obtained by 

performing the following operations 

(a) Generate a perturbation on the observation 
at time t,; 

(b) Calculate the gradient of the cost function 
with respect to state variable X(t,), which is the 

sum of the results of integrating Eq. (5.15) and 

Eq. (5.16) plus the middle term in Eq. (5.14), 
(1) Starting from PM = W(XM-X~ inte- 

grate the "forced" adjoint equation 

OF * 

(5.15) 

backwards in time from t M to t,. The final 
result P, is the sum of the last two terms 
in Eq. (5.14), 
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(2) Starting from ){0 = W(Xo - X~ integrate 

the "forced" equation 

\ ~ X J i _  1 1 

+ W(X, - X ~ (5.16) 

forward in time from to to t,. The final 

result Jr, is the sum of the first two terms 

in Eq. (5.14). 

(c) Use Eq. (5.6) to obtain the corresponding 

perturbation in the cost function resulting 

from the perturbation in the observations at 

time t,. 

It is worthwhile noting that we do not need to 

integrate the FOA equations repeatedly to obtain 

the gradient of the cost function with respect to 

X~. We only need to integrate the FOA equations 

backwards in time starting from tM to t, and store 

the FOA variable at each iteration in memory, 

then integrate the forced linear equation forward 

in time from to to t, and store the results at each 

iteration in memory. The sum is the gradient of 

the cost function with respect to the state variables 

at time t, plus W ( X , -  X ~ for n = 0, 1 . . . .  ,M. 

Once these gradients are calculated, they need not 

be recalculated. They can be used repeatedly to 

calculate the perturbations in the cost function for 

different perturbations in the observations. 

5.2 Numerical Results from Model 

Generated Data 

A sensitivity study was conducted by using the 

same model as that described in section 3. First 

we choose a point (xls ,Ylo)  in the assimilation 

window where x~5 = Xo + 15Ax and Ylo = Y0 + 

lOAy. Suppose a 1% perturbation in the observa- 

tions occurs only at this point for the two 

components of the wind velocity field and the 

geopotential field. The variation of the resulting 

perturbations in the cost function as a function of 

the number of time steps is displayed in Fig. 12 

(solid line). The results indicate that the changes 

in the cost function with respect to the changes in 

the observations at a fixed point are different for 

different times in the assimilation window. If per- 

turbations are imposed firstly only on the u-wind 

component,  then only on the v-wind component  

and then only on the geopotential field qS, the 

corresponding perturbations in the cost function 

- ' ' ' ' I . . . .  I . . . .  t ' 

3O 

'~0 

10 

-10 

. . . .  I . . . .  I . . . .  I , i  
~0 40 60 

Fig. 12. Time variation of the sensitivities of cost function J 
to 1% observational error in the v-wind component (dashed 
line), the u-wind component (dotted line which coincides with 
the dashed line), the geopotential field q5 (dashed-dotted line 
which coincides with the solid line) and in all the three fields 
(solid line) at point (xl 5, Ylo) 

exhibit different variations with time as shown in 

Fig. 12 by the dotted line, dashed line and 

dash-dot line, respectively. This figure indicates 

also that perturbations in the observed geopoten- 

tial field have more impact on the cost function 

than those in the observed velocity field. The 

changes in the cost function arising from changes 

in the u-wind component  and v-wind component  

observations are close to zero at all times. Similar 

experiments conducted at different grid points 

yield similar results. 

To study the importance of observations at 

different space locations, three different points are 

chosen. They are located at (xs,yxs), (Xlo, Y~o), 

(xls,Y5), respectively, representing low, middle 

and high points in the isoline values of the 

geopotential field. From Fig. 13 we observe that 

the changes in the observations occurring at the 

end of the assimilation period result in larger 

changes in the magnitudes of the cost function 

than corresponding changes in the observations 

occurring at the beginning of the assimilation 

window. This means that recent events have more 

impact on the cost function that older events. 

Finally, we study the impact of the perturba- 

tions on all the observational data. The results are 

displayed in Fig. 14. This figure clearly indicates 

that perturbations of the observations at the end 

of the assimilation window have a larger impact 

on the sensitivity of the cost function with respect 

to the observations. 
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Fig. 13. Time variation of the sensitivities of cost function J 
to 1~o observational error at points (Xlo,Ylo) (solid line) 
(xs, Y15) (dotted line), and (x15, Ys) (dash line) in the wind and 
the geopotential fields 
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Fig. 14. Time variation of the sensitivities of cost function J 
to 1~o observational error on all grid points in the wind and 
the geopotential fields 

5.3 Numerical Results Using Real Analysis 

of FGGE Data 

To  examine the sensitivity of  the cost funct ion 

with respect to real analyses, we employed  a set 

of F G G E  da ta  of height and hor izon ta l  wind 

fields at 5 0 0 m b  level at 0 and 18UTC,  M a y  26, 

1979. The  da ta  are equal ly spaced with A2 = Aq~ = 

1.875 ~ . Using the formula  

~b(J) y + 4) o - 2 2 0 0  + ( J -  1 ) ,220  
= -  = + 0 o  

X 

2(1) - )- 20 (5.8) 
c o s  4~( J )  

we obta in  a co r re spondence  between points  on 

the sphere and grid points  located on a l imited 

area on a / ? -p l ane  ap p ro x im a t io n  at (32 ~ 130~ 

which approx ima te ly  represents  the center  of the 

zonal  jet. Using a cubic in te rpo la t ion  we obta ined  

the height  and hor izonta l  wind da ta  on  the grid 

points.  Then  we carr ied out  ano the r  cubic inter- 

po la t ion  near  the left b o u n d a r y  in order  to impose 

a per iodic  b o u n d a r y  condi t ion  in the x-direction.  

N ea r  the top  and b o t t o m  boundar ies  we used a 

l inear in te rpola t ion  to impose solid b o u n d a r y  

condit ions.  The  fields thus ob ta ined  are shown in 

Fig. 15. 

The  geopotent ia l  and  wind fields at t ime 0 U T C  

were used to p roduce  the mode l -genera ted  obser- 

vations.  The  min imiza t ion  s tar ted f rom geopoten-  

tial and  wind fields d is t r ibut ion at t ime 18 UTC.  

The  difference between these two fields is shown 

in Fig. 16. Having  the model -genera ted  observa-  

I ~.~ 
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Fig. 15. Distribution of(a) the geopotential and (b) the wind 
fields for the FGGE data at 0 UTC 05/26, 1979 on the 500 mb. 
The contour intervals are 200m2/s 2 and the magnitude of 
maximum velocity vector is 0.311E + 02 m/s 
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Fig. 16. Distribution of the difference fields of the geo- 
potential (a) and the wind (b) fields at 18 UTC and 0UTC on 
500mb between 18UTC and 0UTC times. The contour 
intervals are  100mZ/s  2 and the magnitude of maximum 
velocity vector is 0.210E + 02 m/s 
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Fig. 17. Time variation of the sensitivities of the cost 

function J to 1% observational error in the wind and the 

geopotential fields at grid points (x 1 o, Y lo) (solid line) and 

(xT, Ys) (dotted line) 

tions, the minimization should be able to reduce 

the value of the cost function as well as the norm 

of its gradient, and the reconstructed differences 

should be zero. This turns out to be the case. 

From Fig. 15, we note that meteorologically- 

intensive events occur at the center area of the 

limited-area domain while fewer events occur at 

the corners of the limited-area domain. We chose 

two points (Xlo, Ylo ) and (xT,Ys), which are 

located in the center and in the bot tom left corner 

of the limited area domain, respectively. We then 

introduced a 1% perturbation in the geopotential 

and wind fields at these two points. The variations 

of sensitivities of the cost function with the 

number of time steps in the assimilation window 

are displayed in Fig. 17, the solid line correspond- 

ing to sensitivity at the point (Xlo,Ylo) and the 

dotted line to sensitivity at the point (xv,ys). 
Clearly the sensitivity of the cost function with 

respect to observations at point (X~o, Y~o) is larger 

than that at the point (xv, Ys)- This confirms that 

the cost function is more sensitive to observations 

at points where intensive events occur. It also 

means that the accuracy of observations at loca- 

tions where intensive events occur has more 

impact on the quality of the VDA retrieval. 

6. Summary and Conclusions 

In this paper, a SOA model was developed, 

providing second order information. The coding 

work involving in obtaining the SOA model was 

rather modest once the FOA model has been 

developed. 

One integration of the SOA model yields an 

accurate value of a column of the Hessian of the 

cost function provided the perturbation vector is 

a unit vector with one component being unity and 

the remainder being zeros. Numerical results show 

that the use of the SOA approach to obtain the 

Hessian/vector product is much more advan- 

tageous than the corresponding finite-difference 

approach, since the latter yields only an approxi- 

mated value of the Hessian/vector product which 

may be a very poor estimate. The numerical cost 

of using the SOA approach is roughly the same 

as that of using the finite-difference approach. 

This application of the SOA model is crucial in 

the implementation of the large-scale truncated 

Newton method, which was proved to be a very 

efficient for large-scale unconstrained minimiza- 

tion (Zou et al., 1991). 

Another application of the SOA model is in the 

calculation of eigenvalues and eigenvectors of the 

Hessian. There are several iterative methods such 

as the power method, Rayleigh quotient or the 

Lanczos method (Strang, 1986), which require 

only the information of the Hessian-vector pro- 

duct to calculate several eigenvalues and eigen- 

vectors. Such a calculation using the power 

method is presented in this paper and reveals that 

most changes of the largest eigenvalue occur 

during the first few iterations of the minimization 

procedure, which might explain why most of 

large-scale features are reconstructed earlier than 

the small scale features in the VDA retrieval 

solution during minimization (Navon et al., 1992) 

and the positivity of the smallest eigenvalues of 

the Hessians of the cost function during the 

minimization process indicates the uniqueness of 

the optimal solution. 

We also examined the sensitivity of the cost 

function to observational errors using a two 

dimensional limited-area shallow water equation 

model. We found that the sensitivity depends on 

the time when the errors occur, the specific field 

containing the errors, and the spatial location 

where the errors occur. The cost function is more 

sensitive to the observational errors occurring 

at the end of the assimilation window, to errors 

in the geopotential field, and to errors at these 

grid point locations where intensive events 

o c c u r .  
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Sensitivity analysis using balanced perturba- 

tions will be reported in a future paper where we 

will pay special attention to the spatial scale of the 

perturbations. Further research on the issue of 

calculating the inverse Hessian multiplied by a 

vector is currently under consideration, the latter 

being of crucial importance for developing a new 

efficient large-scale minimization algorithm. 

Appendix A 

Brief Description of  the FOA 

The theory and application of the FOA model is discussed 

by several authors, e.g. Talagrand and Courtier (1987) and 

Navon et al. (1990). In order to provide a comprehensive 

description of the SOA model, we briefly summarize the 

theory of the FOA model. 

The distance function, which measures the distance be- 

tween the model solution and the available observations 

distributed in time and space, is defined in discrete form as 

1 M 
J = 2~-o (W(X~ - X~ - X~  (A.1) 

where Xi and X~ are the model solution and observation at 

i-th time level, respectively, and W is the weighting function 

which can be taken as the inverse of the estimate of the 

statistical root-mean-square observation errors (see remarks 

in body of text). 

Now consider a perturbation, U', on the initial condition 

U, Eqs. (2.1), (2.2) become 

a(X + 2 )  _ F ( X  + X)  (n.2) 
Ot 

X(to) + 2(to) = U + U' (A.3) 

where .~ is the resulting perturbation of the variable X. 

Expanding (A.2) at Xand retaining only the first order term, 

one obtains 

a s  a v  ^ 
- X ,  ( A . 4 )  

& OX 

2(to) = u ' .  (A.5) 

Equations (A.4), (A.5) are defined as the tangent linear 

equations of Eqs. (2.1), (2.2). 

The variation of the distance function J due to the 

perturbation U' is 

M 

6J = ~ ( W ( X ,  - XT), X,). (A.6) 
i = 0  

Using the Euler time differencing scheme for example one 

obtains from (A.4) 

1 LaXJ, 

j=OL \ o x J j J  

where At is the constant time step, I is the unit matrix 

operator, OX j represents thej-th row of the matrix ~ ,  and 

i 

1-[ denotes the product of i + 1 factors. 
j=o 

Substituting (A.7) into (A.6) and using basic concepts of 

adjoint operators, we obtain the following expression 

i - 1  

,=, \ a x / j j  j 

+ ( W ( X o  - Xo), 2 o )  (A.8) 

where ( )* denotes the adjoint of (). On the other hand, we 

have 

6J = ( VuJ, Xo). (A.9) 

Equating Eqs. (A.8) and (A.9), one obtains the gradient of the 

cost function with respect to the initial conditions as 

i=okj=o I4- \ a X , / j J )  

The i-th term in (A.IO) can be obtained by a backwards 

integration of the following adjoint equation 

& = \DX]  P (A.11) 

from the i-th time step to the initial step, starting from 

Pi = W(Xi - XT) (A.12) 

where P represents the adjoint variables corresponding to )(. 

It appears that M integrations of the adjoint model, starting 

from different time steps tu,  tM-1 , . . . , t l ,  are required to 

obtain the gradient VvJ. However, since the adjoint model 

(A.11) is linear, only one integration from t M to t o of the 

adjoint equation is required to calculate the gradient of the 

cost function with respect to the initial conditions. 

In summary, the gradient of the cost function with respect 

to the initial condition U can be obtained by the following 

procedure: 

(a) Integrate the model from t o to t M from initial condition 

(2.2) and store in memory the corresponding sequence of 

the model states Xg (i = 0, 1 . . . . .  M); 

Starting from PM = W(XM - X~ integrate the "forced" 

adjoint equation (A.11) backwards in time from tM to to 

with a forcing term W(X,.- X ~ being added to the 

right-hand-side of (A.11) at the i-th time step when an 

observation is encountered. The final result P0 is the 

value of gradient of the cost function with respect to the 

initial condition. 

It is worth noting that 
(i) When the observations do not coincide with the 

model grid points, the model solution should be 

interpolated to the observations, i.e., C X -  X ~ should 

be used instead of X - X  ~ in the cost function 

definition, where the operator C represents the 

(b) 
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process of interpolating the model solution to space 

and time locations where observations are available. 

(ii) We note that the numerical cost of the adjoint model 

computation is about the same as the cost of one 

integration of the tangent linear model, the latter 

involving a computational cost of between 1 and 2 

integrations of the nonlinear model. 

Appendix B 

The Verification of the Correctness of FOA and SOA 

It is very important to verify the correctness of the FOA and 

SOA codes. A Taylor expansion in the direction of Yleads to 

J(X + ~Y) = J(X) + 7_J(X) Y+ Y+ 0(~3 ) 
OX 2 ~X 2 

(B.1) 

where ~ is a small scalar, Y is a random perturbation vector 

which can be generated by using the randomizer on the 

Cray-YMP computer and Y~ denotes the transpose of the 

vector Y. Equation (B.1) can be used to define two functions 

of~ 

J (X+ ~Y) - J(X) 
~b(c~) = (B.2) 

~j(x) 
Y 

0X 

and 

~j(x) 
J(X + ~ Y) - J(X) - ~ Y 

OX 
4~(~) (8.3) 

lcd-,~2J(x)- 
2 r o ~ r  

then for small 7 we have 

~b(c~) = 1 + O(~) (B.4) 

q~(~) = 1 + o(~) .  (B.5) 

For values of c~ which are small but not very close to the 

machine zero, one should except a value of ~,(c 0 or ~b(~) 

approaching 1 linearly for a wide range of magnitudes of ~. 

The experiment was performed using a limited area 2-D 

shallow water equation model. The results are shown in 

Fig. 1. It is clearly seen that for values of c~ between 

10~ -11, unit values for O(c~) and q~(~) are obtained. The 

correctness of the gradient of the cost function and the 

correctness of the Hessian/vector product have therefore 

been verified. 
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