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ABSTRACT

Aims. We improve the second-order asymptotic theory of higher-order non-radial p-modes in spherically symmetric stars that was developed
by Smeyers et al. (1996) as an alternative for Tassoul’s approach (1990).
Methods. Like the previous authors, we use asymptotic methods appropriate for singular perturbation problems, i.e. expansion procedures in
terms of two variables and boundary-layer theory. However, in contrast with them, we no longer adopt boundary-layer coordinates near the
singular boundary points that are identical to the fast variable used in the asymptotic expansions at larger distances.
Results. By our definitions of the boundary-layer coordinates, the matchings of the boundary-layer expansions to the asymptotic expansions
valid at larger distances from the boundary points, and the constructions of the uniformly valid asymptotic expansions are more transparent.
Conclusions. The present asymptotic theory confirms that the application of expansions in terms of two variables and boundary-layer theory
to the fourth-order system of differential equations established by Pekeris (1938, ApJ, 88, 189) is particularly appropriate for the construction
of the asymptotic representation of higher-order p-modes in spherically symmetric stars. For these modes, the divergence of the Lagrangian
displacement is the basic function, and the radial component of the Lagrangian displacement is of one order higher in the small expansion
parameter. In the lowest-order asymptotic approximation, the divergence of the Lagrangian displacement obeys a second-order differential
equation of the Sturm-Liouville type. This property explains that the eigenfunction that is associated with the nth eigenfrequency displays n− 1
nodes, with n = 1, 2, 3, . . .
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1. Introduction

The second-order asymptotic theory for higher-order non-
radial p-modes in spherically symmetric stars was first devel-
oped by Tassoul (1990). For this purpose, the author went back
to a fourth-order system of differential equations composed of
two second-order differential equations in the divergence and
the radial component of the Lagrangian displacement that was
derived many years before by Pekeris (1938). These equations
appear to be very convenient for the asymptotic representation
of higher-order p-modes without the neglect of the Eulerian
perturbation of the gravitational potential. For the construction
of this representation, Tassoul used basically a method of Olver
(1974) that applies to homogeneous second-order differential
equations and extended the application of this method to the
adopted fourth-order system of differential equations. The pro-
cedure requires the preliminary introduction of formal series
expansions in terms of Bessel functions for the two dependent
variables.

Smeyers et al. (1996) reconsidered the second-order
asymptotic theory by using asymptotic methods that apply to
singular perturbation problems: expansion procedures in terms

of two variables at larger distances from the singular boundary
points, and boundary-layer theory near the singular boundary
points (Kevorkian & Cole 1981, 1996). These authors too ex-
tended the application of methods described for second-order
differential equations to the fourth-order system of differen-
tial equations stemming from Pekeris. Smeyers et al. recov-
ered Tassoul’s results apart from a minor difference, which did
not affect the final results. However, their asymptotic approach
matches closer the physical reality that p-modes originate from
acoustic waves propagating to-and-fro in a resonant cavity in-
side the star.

The asymptotic treatment of Smeyers et al. has however
been obscured by the fact the authors adopted boundary-layer
coordinates identical to the fast independent variables that are
used in the two-variable expansions at larger distances from the
boundary points. Our aim is to improve the asymptotic treat-
ment of Smeyers et al.

The plan of the paper is as follows. In Sect. 2, we recall
the basic equations. In Sect. 3, we construct asymptotic expan-
sions at larger distances from the boundary points. We con-
struct boundary-layer expansions near the boundary point at
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r = 0 and match them to the asymptotic expansions valid
at larger distances in Sects. 4 and 5. Similarly, we construct
boundary-layer expansions near the boundary point at r = R
and match them to the asymptotic expansions valid at larger
distances in Sects. 6 and 7.

As a result of the matchings, we derive the eigenfrequency
equation in Sect. 8. In Sect. 9, we impose the boundary con-
dition relative to the Eulerian perturbation of the gravitational
potential at r = R. In Sect. 10, asymptotic expansions that are
uniformly valid from the boundary points at r = 0 and r = R
are constructed in their final forms. In Sect. 11, attention is paid
to the identification of the radial order of a mode, radial or non-
radial, that is associated with a given eigenfrequency. The final
section is devoted to concluding remarks.

2. Basic equations

Consider a non-rotating spherically symmetric star in hydro-
static equilibrium with mass M and radius R that is subject to
a linear, isentropic oscillation depending on time by a factor
exp (iσ t). The normal modes p, g, and f belong to a single
spherical harmonic Ym

�
(θ, φ). With respect to a system of spher-

ical coordinates r, θ, φ whose origin coincides with the star’s
mass centre, the Lagrangian displacement can be represented
as

ξ(r, θ, φ) =

⎡⎢⎢⎢⎢⎢⎣ξ�(r) 1r

+
η�(r)

r

(
1θ
∂

∂θ
+ 1φ

1
sin θ

∂

∂φ

)⎤⎥⎥⎥⎥⎥⎦Ym
� (θ, φ). (1)

Correspondingly, the divergence of the Lagrangian displace-
ment can be expressed as

α(r, θ, φ) = α�(r) Ym
� (θ, φ)

≡
[

1
r2

d
dr

(
r2 ξ�(r)

)
− �(� + 1)

r2
η�(r)

]
Ym
� (θ, φ). (2)

We construct a second-order asymptotic theory for higher-
order p-modes of a low degree � by starting from the fourth-
order system of two differential equations for the diver-
gence α(r) and the radial component ξ(r) of the Lagrangian
displacement that was established by Pekeris (1938). The sys-
tem can be written in the form

d2α

dr2
+ K2(r)

dα
dr
+

[
σ2

c2
+ K3(r) +

K1(r)
σ2

]
α =

−K4(r)
dξ
dr
, (3)

d2ξ

dr2
+

4
r

dξ
dr
− �(� + 1) − 2

r2
ξ =

dα
dr
+

[
2
r
− 1
σ2

c2

g
K1(r)

]
α. (4)

The variables have their usual meaning, and the coefficients
K1(r), K2(r), K3(r), K4(r) are defined as

K1(r) = �(� + 1)
N2

r2
, (5)

K2(r) =
2
r
+

2
ρ c2

d
(
ρ c2

)
dr

− 1
ρ

dρ
dr
, (6)

K3(r) = −�(� + 1)
r2

+
2 g
c2

(
1
g

dg
dr
+

1
r

)

+
1
ρ c2

d
(
ρ c2

)
dr

(
2
r
− 1
ρ

dρ
dr

)
+

1
ρ c2

d2
(
ρ c2

)
dr2

, (7)

K4(r) = −2 g
c2

(
1
g

dg
dr
− 1

r

)
· (8)

The divergence α(r) and the radial component ξ(r) of the
Lagrangian displacement must remain finite both at r = 0 and
at r = R. Moreover, at r = R, the Eulerian perturbation of the
gravitational potential,Φ′(r), and its first derivative, dΦ′(r)/dr,
must satisfy the condition

(
dΦ′

dr

)
R

+
� + 1

R
Φ′R = −(4 πG ρ ξ)R. (9)

We make the differential equations and the boundary con-
dition dimensionless by expressing the time t, the radial co-
ordinate r, the pressure P(r), the mass density ρ(r), the grav-
ity g(r), the isentropic sound velocity c(r), the gravitational
potential Φ(r), and both the radial component ξ(r) and
the transverse component η(r) of the Lagrangian displace-

ment respectively in the units
[
R3/(GM)

]1/2
, R, GM2/

(
4πR4

)
,

M/
(
4πR3

)
, GM/R2, (GM/R)1/2, GM/R, R. We suppose that the

angular frequencyσ expressed in the unit
(
GM/R3

)1/2
is a large

quantity and denote it as 1/ε. With this definition, ε is a small
dimensionless quantity that corresponds to the ratio of the os-
cillation period to 2π times the star’s dynamic time scale.

In our procedure, we divide the interval [0,R] into three
subintervals: the subinterval at larger distances from the sin-
gular boundary points at r = 0 and r = R, a boundary layer
near the singular boundary point at r = 0, and a boundary layer
near the singular boundary point at r = R. The basic principle
of the construction of the asymptotic expansions is the same in
the three subintervals. From Eq. (3), a homogeneous second-
order differential equation is derived for the lowest-order
approximation of the divergence α(r) of the Lagrangian dis-
placement, and from Eq. (4), an inhomogeneous second-order
differential equation for the radial component ξ(r) of the
Lagrangian displacement. Next, inhomogeneous second-order
differential equations are derived successively for the higher-
order approximations of α(r) and ξ(r).

3. Asymptotic expansions at larger distances
from the boundary points

At larger distances from the singular boundary points, Eq. (3)
is comparable with a second-order differential equation for a
linear oscillator of constant frequency and small damping that
is considered by Kevorkian & Cole (1981, Sect. 3.3.3; 1996,
Sect. 4.3.3). Therefore, the asymptotic expansions are con-
structed by means of the two-variable method.

We introduce the fast independent variable τ(r) on the
ground of the assumption that the asymptotic solutions for α(r)
oscillate so rapidly that their second derivatives d2α/dr2 are of
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the same order of magnitude as the term α/
(
ε2 c2

)
, which con-

tains the large parameter. By setting
(

dτ
dr

)2

=
1

ε2 c2(r)
(10)

and imposing that τ(0) = 0, one obtains the positive variable

τ(r) =
1
ε

∫ r

0

dr′

c (r′)
· (11)

The integral was first introduced by Ledoux (1962) in his
asymptotic representation of higher-order radial oscillation
modes and corresponds to the time an acoustic wave needs to
propagate from the star’s centre to the radial distance r. As slow
independent variable, we use the radial coordinate r.

The differential operators in Eqs. (3) and (4) are trans-
formed according to the chain rule, and asymptotic expansions
in terms of the two independent variables are introduced for the
functions α(r) and ξ(r) as

α(o)(r; ε) = α(o)
0 (τ, r) + ε α(o)

1 (τ, r)

+ε2 α(o)
2 (τ, r)ε3 α(o)

3 (τ, r) + O
(
ε4

)
,

ξ(o)(r; ε) = ν(ε)
[
ξ(o)

0 (τ, r) + ε ξ(o)
1 (τ, r)

+ε2 ξ(o)
2 (τ, r)ε3 ξ(o)

3 (τ, r) + O
(
ε4

)]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)

The function ν(ε) allows to take into account that the order
in ε of the oscillatory part in ξ(o)(r; ε) may differ from that of
α(o)(r; ε).

Equation (3) then takes the form

1
ε2

1
c2

⎛⎜⎜⎜⎜⎜⎝∂
2α(o)

0

∂τ2
+ α(o)

0

⎞⎟⎟⎟⎟⎟⎠ + O
(
ε−1

)
=

ν(ε)

⎡⎢⎢⎢⎢⎢⎣−1
ε

K4

c

∂ξ(o)
0

∂τ
+ O

(
ε0

)⎤⎥⎥⎥⎥⎥⎦ . (13)

When ν(ε) is at least of order ε0, the first lowest-order equation
is given by the homogeneous differential equation

∂2α(o)
0

∂τ2
+ α(o)

0 = 0. (14)

Its general solution

α(o)
0 (τ, r) = A(o)

0 (r) cos τ + B(o)
0 (r) sin (τ) (15)

involves the yet undetermined functions A(o)
0 (r) and B(o)

0 (r).
Next, Eq. (4) takes the form

ν(ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε2

1
c2

∂2ξ(o)
0

∂τ2
+ O

(
ε−1

)⎤⎥⎥⎥⎥⎥⎦ = 1
ε

1
c

∂α(o)
0

∂τ
+ O

(
ε0

)
. (16)

When ν(ε) = ε, the second lowest-order equation is given by
the inhomogeneous differential equation

∂2ξ(o)
0

∂τ2
= c
∂α(o)

0

∂τ
· (17)

Integration yields

ξ(o)
0 (τ, r) = −c(r)

[
B(o)

0 (r) cos τ − A(o)
0 (r) sin τ

]
+C(o)

0 (r) τ + D(o)
0 (r), (18)

where C(o)
0 (r) en D(o)

0 (r) are yet undetermined functions. The

term C(o)
0 (r) τ must be dropped: its order in ε is inconsistent,

since it can be relabeled as C′0(r).
At order ε−1, it follows from Eq. (3) that

∂2α(o)
1

∂τ2
+ α(o)

1 =

−c

⎡⎢⎢⎢⎢⎢⎣2 ∂
2α(o)

0

∂τ ∂r
−

(
1
2

1
c2

dc2

dr
− K2

)
∂α(o)

0

∂τ

⎤⎥⎥⎥⎥⎥⎦ · (19)

Substitution of the solution for α(o)
0 (τ, r) and removal of the

resonant terms from the inhomogeneous part of the equation
lead to

A(o)
0 (r) = A∗0 h(r), B(o)

0 (r) = B∗0 h(r), (20)

where A∗0 and B∗0 are general constants, and

h(r) =
(
ρ r2 c3

)−1/2
. (21)

The function h(r) corresponds to Tassoul’s function h(r).
Hence, the solutions for α(o)

0 (τ, r) and ξ(o)
0 (τ, r) can be

rewritten as

α(o)
0 (τ, r) = h(r)

(
A∗0 cos τ + B∗0 sin τ

)
,

ξ(o)
0 (τ, r) = −h(r) c(r)

(
B∗0 cos τ − A∗0 sin τ

)
+D(o)

0 (r),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(22)

and Eq. (19) reduces to a homogeneous differential equation
with general solution

α(o)
1 (τ, r) = A(o)

1 (r) cos τ + B(o)
1 (r) sin τ, (23)

where A(o)
1 (r) and B(o)

1 (r) are yet undetermined functions.
At order ε0, it follows from Eq. (4) that

∂2ξ(o)
1

∂τ2
= c2

⎛⎜⎜⎜⎜⎜⎝∂α
(o)
0

∂r
+

2
r
α(o)

0

⎞⎟⎟⎟⎟⎟⎠
+c

⎡⎢⎢⎢⎢⎢⎣∂α
(o)
1

∂τ
− 2
∂2ξ(o)

0

∂τ ∂r
+

(
1
2

1
c2

dc2

dr
− 4

r

)
∂ξ(o)

0

∂τ

⎤⎥⎥⎥⎥⎥⎦ · (24)

After substitution of the appropriate solutions and integration,
one obtains

ξ(o)
1 (τ, r) ={

A∗0 h(r) c(r)
d
dr

ln
[
h(r) c(r) r2

]
− B(o)

1 (r)

}

c(r) cos τ

+

{
B∗0 h(r) c(r)

d
dr

ln
[
h(r) c(r) r2

]
+ A(o)

1 (r)

}

c(r) sin τ + D(o)
1 (r), (25)

where D(o)
1 (r) is a yet undetermined function.

Still at order ε0, it follows from Eq. (3) that

∂2α(o)
2

∂τ2
+ α(o)

2 = −c

⎡⎢⎢⎢⎢⎢⎣2 ∂
2α(o)

1

∂τ∂r

−
(
1
2

1
c2

dc2

dr
− K2

)
∂α(o)

1

∂τ
+ K4

∂ξ(o)
0

∂τ

⎤⎥⎥⎥⎥⎥⎦
−c2

⎛⎜⎜⎜⎜⎜⎝∂
2α(o)

0

∂r2
+ K2

∂α(o)
0

∂r
+ K3 α

(o)
0

⎞⎟⎟⎟⎟⎟⎠ . (26)
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After substitution of the appropriate solutions and introduction
of the function

W(r) =
1
h

d2h
dr2
+ K2

1
h

dh
dr
+ (K3 + K4) , (27)

the differential equation becomes

∂2α(o)
2

∂τ2
+ α(o)

2 = −
⎡⎢⎢⎢⎢⎢⎣2 dB(o)

1

dr
+

(
K2 − 1

c
dc
dr

)
B(o)

1

+A∗0 W(r) h(r) c(r)

⎤⎥⎥⎥⎥⎥⎦ c cos τ

+

⎡⎢⎢⎢⎢⎢⎣2 dA(o)
1

dr
+

(
K2 − 1

c
dc
dr

)
A(o)

1

−B∗0 W(r) h(r) c(r)

⎤⎥⎥⎥⎥⎥⎦ c sin τ. (28)

Removal of the resonant terms from the inhomogeneous part of
the differential equation leads to

A(o)
1 (r) = h(r)

[
B∗0 F(r) + A∗1

]
,

B(o)
1 (r) = −h(r)

[
A∗0 F(r) − B∗1

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (29)

Here A∗1 and B∗1 are general constants, and F(r) is a function
determined as

F(r) =
1
2

∫ r

r0

c
(
r′

)
W

(
r′

)
dr′, (30)

where r0 is the radial coordinate of a point arbitrarily chosen in
the interval (0,1).

The function W(r) has the explicit form

W(r) = −�(� + 1)
r2

+
4
r
g

c2
+

1
2

1
ρ

d2ρ

dr2

−3
4

1
ρ2

(
dρ
dr

)2

+
1

r ρ
dρ
dr
− 1

4
1
c2

(
dc
dr

)2

+
1
2

1
c

d2c
dr2

(31)

and corresponds to Tassoul’s function W1(r). For r → 0,

c(r) W(r) = −cc
�(� + 1)

r2
+ O

(
r0

)
, (32)

and, for r → R,

c(r) W(r) = −cs
(2ne + 1) (2ne + 3)

16 (R − r)3/2

+O
(
(R − r)−1/2

)
. (33)

Hence, the integrand c(r) W(r) in the definition of the function
F(r) becomes infinitely large as r → 0 and as r → R.

The solutions for the functions α(o)
1 (τ, r) and ξ(o)

1 (τ, r)
are now

α(o)
1 (τ, r) = h(r)

{[
B∗0 F(r) + A∗1

]
cos τ

−
[
A∗0 F(r) − B∗1

]
sin τ

}
,

ξ(o)
1 (τ, r) = c(r) h(r)

{[
A∗0 G(r) − B∗1

]
cos τ

+
[
B∗0 G(r) + A∗1

]
sin τ

}
+ D(o)

1 (r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(34)

with

G(r) = c(r)
d
dr

ln
(
r2 c(r) h(r)

)
+ F(r). (35)

The functions D(o)
0 (r) and D(o)

1 (r) in the solutons for

ξ(o)
0 (τ, r) and ξ(o)

1 (τ, r) are still undetermined. In order to deter-
mine them, one has to turn to higher-order parts in Eqs. (3)
and (4).

As Eq. (28) has become a homogeneous differential equa-
tion, its general solution can be written as

α(o)
2 (τ, r) = A(o)

2 (r) cos τ + B(o)
2 (r) sin τ, (36)

where A(o)
2 (r) en B(o)

2 (r) are yet undetermined functions of the
slow variable.

At order ε, Eq. (4) leads to a differential equation for
ξ(o)

2 (τ, r) of the form

∂2ξ(o)
2

∂τ2
= H1(r) cos τ + H2(r) sin τ

−c2

⎡⎢⎢⎢⎢⎢⎣d2D(o)
0

dr2
+

4
r

dD(o)
0

dr
− �(� + 1) − 2

r2
D(o)

0

⎤⎥⎥⎥⎥⎥⎦ . (37)

In order to avoid that the solution for ξ(o)
2 (τ, r) contains a mixed

secular term, one must set that

d2D(o)
0

dr2
+

4
r

dD(o)
0

dr
− �(� + 1) − 2

r2
D(o)

0 = 0. (38)

Hence, a general solution for the function D(o)
0 (r) is given by

D(o)
0 (r) = C∗0 r�−1 + D∗0 r−(�+2), (39)

where C∗0 en D∗0 are general constants. The solution for ξ(o)
2 (τ, r)

then takes the form

ξ(o)
2 (τ, r) = −H1(r) cos τ − H2(r) sin τ + D(o)

2 (r), (40)

where D(o)
2 (r) is a yet undetermined function.

Still at order ε, Eq. (3) leads to a differential equation for
α(o)

3 (τ, r) of the form

d2α(o)
3

dτ2
+ α(o)

3 = H3(r) cos τ + H4(r) sin τ − c2 K4
dD0

dr
· (41)

In order to remove the resonant terms from the inhomogeneous
part, one must set

H3(r) = 0, H4(r) = 0. (42)

A general solution for α(o)
3 (τ, r) is then given by

α3(τ, r) = A(o)
3 (r) cos τ + B(o)

3 (r) sin τ − c2 K4
dD0

dr
, (43)

where A3(r) and B3(r) are yet undetermined functions.
Finally, at order ε2, Eq. (4) leads to a differential equation

for ξ(o)
3 (τ, r) of the form

∂2ξ(o)
3

∂τ2
= H5(r) cos τ + H6(r) sin τ

−c2

⎡⎢⎢⎢⎢⎢⎣d2D(o)
1

dr2
+

4
r

dD(o)
1

dr
− �(� + 1) − 2

r2
D(o)

1

⎤⎥⎥⎥⎥⎥⎦ . (44)



P. Smeyers: Asymptotic representation of higher-order p-modes in stars 241

Proceeding as for Eq. (37), one obtains a general solution for
D(o)

1 (r) as

D(o)
1 (r) = C∗1 r�−1 + D∗1 r−(�+2), (45)

where C∗1 and D∗1 are general constants.

The second-order asymptotic expansions that are valid at
larger distances from the singular boundary points at r = 0 and
r = R, can now be written down. When the sums of constants
A∗0 + ε A∗1, B∗0 + ε B∗1, C∗0 + εC∗1, D∗0 + εD∗1 are renamed respec-
tively as A∗0, B∗0, C∗0, D∗0, these expansions take the form

α(o)(r; ε) = h(r)
[
A∗0 cos τ + B∗0 sin τ

+ε F(r)
(
B∗0 cos τ − A∗0 sin τ

)]
+ O

(
ε2

)
,

ξ(o)(r; ε) = −ε c(r) h(r)
[
B∗0 cos τ − A∗0 sin τ

−εG(r)
(
A∗0 cos τ + B∗0 sin τ

)]

+ξ(o) (n.o.)(r; ε) + O
(
ε3

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

where ξ(o)(n.o.)(r; ε) is the non-oscillatory function of the slow
variable

ξ(o)(n.o.)(r; ε) = ε
[
C∗0 r�−1 + D∗0 r−(�+2)

]
. (47)

The asymptotic expansion α(o)(r; ε) is purely oscillatory, while
the asymptotic expansion ξ(o)(r; ε) consists of both an oscilla-
tory part and a non-oscillatory part. In the asymptotic expan-
sions, the four general constants A∗0, B∗0, C∗0, D∗0 and the arbi-
trarily chosen radial coordinate r0 appear. The four constants
are fixed subsequently by the matchings with the asymptotic
expansions valid from the singular boundary points, and the
boundary conditions. Furthermore, it will be shown that the
choice of the radial coordinate r0 has no bearing on the final
results.

4. Boundary-layer expansions near r = 0

Some coefficients of the terms in Eqs. (3) and (4) display a pole
at the boundary point at r = 0 or/and at the boundary-point
at r = R. These terms must be incorporated in the dominant
asymptotic equations. Boundary-layer theory is then appro-
priate for the construction of asymptotic expansions near the
singular boundary points. In deriving the dominant boundary-
layer equations, we suppose that the term that contains the
large parameter 1/ε2 is sufficiently large for becoming of the
same order of magnitude as the singular terms somewhere in
the boundary layer.

In this section, we concentrate on the construction of
boundary-layer expansions near the singular boundary point at
r = 0.

It is convenient to pass on from the function ξ(r) to the
function w(r) by means of the transformation

ξ(r) = c(r)w(r), (48)

so that Eqs. (3) and (4) become

d2α

dr2
+ K2(r)

dα
dr
+

(
1
ε2

1
c2
+ K3(r) + ε2 K1(r)

)
α =

−K4(r) c

(
dw
dr
+

1
c

dc
dr
w

)
, (49)

d2w

dr2
+

(
4
r
+

2
c

dc
dr

)
dw
dr

+

(
−�(� + 1) − 2

r2
+

4
r

1
c

dc
dr
+

1
c

d2c
dr2

)
w =

1
c

dα
dr
+

1
c

(
2
r
− ε2 c2

g
K1(r)

)
α. (50)

Near r = 0, the Taylor series hold

c(r) = cc

[
1 + O

(
r2

)]
,

g(r) = gc r
[
1 + O

(
r2

)]
,

K1(r) = �(� + 1) N2
c

[
1 + O

(
r2

)]
,

K2(r) =
2
r

[
1 + O

(
r2

)]
,

K3(r) = −�(� + 1)
r2

[
1 + O

(
r2

)]
,

K4(r) = O
(
r2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51)

In the left-hand member of Eq. (49), the second derivative
d2α/dr2 is of the same order in ε as the singular terms and
the term with the large parameter α/(ε2 c2) when one intro-
duces a boundary-layer coordinate r∗(r) which is solution of
the equation

(
dr∗

dr

)2

=
1
ε2

1
c2

c
· (52)

When r∗(0) = 0, a positive boundary-layer coordinate is ob-
tained as

r∗(r) =
1
ε

r
cc
· (53)

For the functions α(r) and w(r), we introduce boundary-layer
expansions of the form

α(c)(r; ε) = µ(c)
0 (ε)α(c)

0 (r∗) + µ(c)
1 (ε)α(c)

1 (r∗)

+ . . . ,

w(c)(r; ε) = ν(c)
0 (ε)w(c)

0 (r∗) + ν(c)
1 (ε)w(c)

1 (r∗)

+ . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(54)

where µ(c)
0 (ε), µ(c)

1 (ε), . . . and ν(c)
0 (ε), ν(c)

1 (ε), . . . are asymptotic
series to be determined.
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After transformation, Eq. (49) takes the form

µ(c)
0 (ε)

⎧⎪⎪⎨⎪⎪⎩
1
ε2

⎡⎢⎢⎢⎢⎢⎣d2α(c)
0

dr∗2
+

2
r∗

dα(c)
0

dr∗
+

(
1 − �(� + 1)

r∗2

)
α(c)

0

⎤⎥⎥⎥⎥⎥⎦

+O
(
ε0

)⎫⎪⎪⎬⎪⎪⎭ + µ(c)
1 (ε)

⎧⎪⎪⎨⎪⎪⎩
1
ε2

⎡⎢⎢⎢⎢⎢⎣d2α(c)
1

dr∗2
+

2
r∗

dα(c)
1

dr∗
+

(
1 − �(� + 1)

r∗2

)
α(c)

1

⎤⎥⎥⎥⎥⎥⎦

+O
(
ε0

)⎫⎪⎪⎬⎪⎪⎭ + . . . = ν(c)
0 (ε) O(ε) + . . . (55)

As ν(c)
0 (ε) is of a higher order in ε than ε−3 µ(c)

0 (ε), the
first dominant boundary-layer equation is homogeneous and is
given by

d2α(c)
0

dr∗2
+

2
r∗

dα(c)
0

dr∗
+

[
1 − �(� + 1)

r∗2

]
α(c)

0 = 0. (56)

The solution satisfying the requirement that the divergence of
the Lagrangian displacement behaves as r� as r → 0, is

α(c)
0 (r∗) = A0,c r∗−1/2 J�+1/2 (r∗) , (57)

where J�+1/2 (r∗) is the Bessel function of the first kind of order
� + 1/2, and A0,c a general constant.

Next, Eq. (50) takes the form

ν0(ε)

⎧⎪⎪⎨⎪⎪⎩
1
ε2

⎡⎢⎢⎢⎢⎢⎣d2w(c)
0

dr∗2
+

4
r∗

dw(c)
0

dr∗
− �(� + 1) − 2

r∗2
w(c)

0

⎤⎥⎥⎥⎥⎥⎦

+O
(
ε0

)⎫⎪⎪⎬⎪⎪⎭
+ν1(ε)

⎧⎪⎪⎨⎪⎪⎩
1
ε2

⎡⎢⎢⎢⎢⎢⎣d2w(c)
1

dr∗2
+

4
r∗

dw(c)
1

dr∗
− �(� + 1) − 2

r∗2
w(c)

1

⎤⎥⎥⎥⎥⎥⎦

+O
(
ε0

)⎫⎪⎪⎬⎪⎪⎭ + . . . =

µ0(ε)

⎡⎢⎢⎢⎢⎢⎣1
ε

⎛⎜⎜⎜⎜⎜⎝dα(c)
0

dr∗
+

2
r∗
α(c)

0

⎞⎟⎟⎟⎟⎟⎠ + O(ε)

⎤⎥⎥⎥⎥⎥⎦
+µ1(ε)

⎡⎢⎢⎢⎢⎢⎣1
ε

⎛⎜⎜⎜⎜⎜⎝dα(c)
1

dr∗
+

2
r∗
α(c)

1

⎞⎟⎟⎟⎟⎟⎠ + O(ε)

⎤⎥⎥⎥⎥⎥⎦ + . . . (58)

As ν(c)
0 (ε) = ε µ(c)

0 (ε), the second dominant boundary-layer
equation is inhomogeneous and is given by

d2w(c)
0

dr∗2
+

4
r∗

dw(c)
0

dr∗
− �(� + 1) − 2

r∗2
w(c)

0 =
dα(c)

0

dr∗
+

2
r∗
α(c)

0 . (59)

The solution satisfying the requirement that the radial compo-
nent of the Lagrangian displacement behaves as r�−1 as r →
0, is

w(c)
0 (r∗) = C0,c r∗(�−1)

+
1

2� + 1

⎡⎢⎢⎢⎢⎢⎣r∗(�−1)
∫ r∗

0
r′−(�−2)

⎛⎜⎜⎜⎜⎜⎝dα(c)
0

dr′
+

2
r′
α(c)

0

⎞⎟⎟⎟⎟⎟⎠ dr′

−r∗−(�+2)
∫ r∗

0
r′(�+3)

⎛⎜⎜⎜⎜⎜⎝dα(c)
0

dr′
+

2
r′
α(c)

0

⎞⎟⎟⎟⎟⎟⎠ dr′
⎤⎥⎥⎥⎥⎥⎦. (60)

Here C0,c is a general constant, which has to be set equal to
zero as � = 0. The particular solution of the inhomogeneous
differential equation can be transformed by a partial integration
of the terms that involve the first derivative dα(c)

0 (r′) /dr′ and by
use of the recurrence relations between Bessel functions

z−(ν−1) Jν(z) = − d
dz

(
z−(ν−1) Jν−1(z)

)
,

zν+1 Jν(z) =
d
dz

(
zν+1 Jν+1(z)

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(61)

(Abramowitz & Stegun 1965), so that

w(c)
0 (r∗) = C0,c r∗(�−1) − A0,c

2� + 1
×r∗−1/2 [

� J�−1/2 (r∗) − (� + 1) J�+3/2 (r∗)
]
. (62)

For the determination of the next terms in the boundary-
layer expansions, we set µ(c)

1 (ε) = ε µ(c)
0 (ε) and ν(c)

1 (ε) =

ε ν(c)
0 (ε).
From Eq. (55), it then follows that

d2α(c)
1

dr∗2
+

2
r∗

dα(c)
1

dr∗
+

[
1 − �(� + 1)

r∗2

]
α(c)

1 = 0, (63)

so that

α(c)
1 (r∗) = A1,c r∗−1/2 J�+1/2 (r∗) , (64)

where A1,c is a general constant.
Next, it follows from Eq. (58) that

d2w(c)
1

dr∗2
+

4
r∗

dw(c)
1

dr∗
− �(� + 1) − 2

r∗2
w(c)

1 =

dα(c)
1

dr∗
+

2
r∗
α(c)

1 , (65)

so that

w(c)
1 (r∗) = C1,c r∗(�−1) − A1,c

2� + 1
×r∗−1/2 [

� J�−1/2 (r∗) − (� + 1) J�+3/2 (r∗)
]
, (66)

where C1,c is a general constant.
When one renames the sums of constants A0,c + ε A1,c and

C0,c + εC1,c respectively as A0,c and C0,c, the boundary-layer
expansions from the singular boundary point at r = 0 take the
form

α(c)(r; ε) = µ(c)
0 (ε) A0,c r∗−1/2 J�+1/2 (r∗) ,

w(c)(r; ε) = ε µ(c)
0 (ε)

⎧⎪⎪⎨⎪⎪⎩C0,c r∗(�−1) − A0,c

2� + 1
r∗−1/2

[
� J�−1/2 (r∗) − (� + 1) J�+3/2 (r∗)

]⎫⎪⎪⎬⎪⎪⎭.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(67)

The boundary-layer expansions contain the yet undetermined
function µ(c)

0 (ε) and the two general constants A0,c and C0,c,
which are connected with two independent particular solu-
tions of the fourth-order system of equations. With these par-
ticular solutions, different functions µ(c)

0 (ε) can be associated.

The introduction of distinct functions µ(c)
0 (ε) is suitable for the
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matching of the boundary-layer expansions to the asymptotic
expansions that are valid at larger distances from the singular
boundary points. The boundary-layer expansions are therefore
written in the more general form

α(c)(r; ε) = µ(c,1)
0 (ε) A0,c r∗−1/2 J�+1/2 (r∗) ,

w(c)(r; ε) = ε µ(c,2)
0 (ε) C0,c r∗(�−1) − ε µ(c,1)

0 (ε)

A0,c

2� + 1
r∗−1/2 [

� J�−1/2 (r∗) − (� + 1) J�+3/2 (r∗)
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(68)

The boundary-layer expansions now involve the two yet
undetermined functions µ(c,1)

0 (ε) and µ(c,2)
0 (ε), and the two ad-

ditional general constants A0,c and C0,c. Boundary-layer ex-
pansion α(c)(r; ε) is purely oscillatory, while boundary-layer
expansion w(c)(r; ε) contains a non-oscillatory part besides its
oscillatory part.

5. Matching of the boundary-layer expansions
valid from r = 0

The boundary-layer expansions α(c)(r; ε) and ξ(c)(r; ε) are
matched to the asymptotic expansions α(o)(r; ε) and ξ(o)(r; ε)
valid at larger distances from the singular boundary points.

Relative to the divergence of the Lagrangian displacement,
the matching condition is

lim
r→∞α

(c)(r; ε) = lim
r→0
α(o)(r; ε). (69)

This condition requires an inspection of asymptotic expansion
α(o)(r; ε) for small values of r, and of boundary-layer expansion
α(c)(r; ε) for large values of r.

For small values of r, the fast variable τ(r) tends towards
the boundary-layer coordinate r∗(r).

The function F(r), which appears in asymptotic expansion
α(o)(r; ε), can be expressed as

F(r) =
1
2

∫ r

r0

[
c
(
r′

)
W

(
r′

)
+ cc
�(� + 1)

r′2

]
dr′

+cc
�(� + 1)

2 r
− cc
�(� + 1)

2 r0
(70)

and decomposed as

F(r) = F(c)(r) − F(c) (r0) (71)

with

F(c)(r) = cc
�(� + 1)

2 r

+
1
2

∫ r

0

[
c
(
r′

)
W

(
r′

)
+ cc
�(� + 1)

r′2

]
dr′. (72)

For small values of r, it follows that

F(r) = cc
�(� + 1)

2 r
− F(c) (r0) + O(r). (73)

Considering that, for small values of r, as well

h(r) =
hc

r
[1 + O(r)], (74)

one obtains

lim
r→0
α(o)(r; ε) =

hc

r

⎧⎪⎪⎨⎪⎪⎩A∗0 cos r∗ + B∗0 sin r∗

+ε

[
cc
�(� + 1)

2 r
− F(c) (r0)

] (
B∗0 cos r∗ − A∗0 sin r∗

)⎫⎪⎪⎬⎪⎪⎭. (75)

On the other hand, one has

lim
r→∞α

(c)(r; ε) = µ(c,1)
0 (ε) ε A0,c

(
2
π

)1/2 cc

r

×
⎡⎢⎢⎢⎢⎢⎣ sin

(
r∗ − � π

2

)
+ ε cc

�(� + 1)
2 r

cos

(
r∗ − � π

2

)⎤⎥⎥⎥⎥⎥⎦· (76)

A matching of the boundary-layer expansion α(c)(r; ε) to
the asymptotic expansion α(o)(r; ε) is possible, when

µ(c,1)
0 (ε) = ε−1, (77)

and the coefficients of cos r∗ and sin r∗ are identically zero, so
that

A∗0 + ε
[
cc
�(� + 1)

2 r
− F(c) (r0)

]
B∗0 = −A0,c(

2
π

)1/2 cc

hc

(
sin
� π

2
− ε cc

�(� + 1)
2 r

cos
� π

2

)
,

B∗0 − ε
[
cc
�(� + 1)

2 r
− F(c) (r0)

]
A∗0 = A0,c(

2
π

)1/2 cc

hc

(
cos
� π

2
+ ε cc

�(� + 1)
2 r

sin
� π

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(78)

As, at order ε0,

A∗0 = −A0,c

(
2
π

)1/2 cc

hc
sin
� π

2
,

B∗0 = A0,c

(
2
π

)1/2 cc

hc
cos
� π

2
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(79)

Eqs. (78) reduce to

A∗0 = −A0,c(
2
π

)1/2 cc

hc

(
sin
� π

2
− ε F(c) (r0) cos

� π

2

)
,

B∗0 = A0,c(
2
π

)1/2 cc

hc

(
cos
� π

2
+ ε F(c) (r0) sin

� π

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(80)

By the matching of the boundary-layer expansion α(c)(r; ε)
to the asymptotic expansion α(o)(r; ε), the oscillatory parts
of the boundary-layer expansion ξ(c)(r; ε) and the asymptotic
expansion ξ(o)(r; ε) are matched at the same time. The non-
oscillatory part of the asymptotic expansion ξ(o)(r; ε) tends to
that of the boundary-layer expansion ξ(c)(r; ε) as r → 0, when

D∗0 = 0 (81)

and

µ(c,2)
0 (ε) = ε�−1, C∗0 = c−(�−2)

c C0,c. (82)
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From the matching, it results that the functions µ(c,1)
0 (ε) and

µ(c,2)
0 (ε) are determined, the constants A∗0 and B∗0 are related to

the constant A0,c, the constant C∗0 is related to the constant C0,c,
and the constant D∗0 is equal to zero. The constants A0,c and C0,c

remain undetermined.

6. Boundary-layer expansions near r = R

In the boundary layer near r = R, it is appropriate to use z =
R − r as the independent variable. In the supposition that the
mass density is analytic at the boundary point at r = R, one can
use a Taylor series of the form

ρ(r) = ρs zne [1 + O(z)], (83)

where ne is a constant. In the approximation in which m(r) �
M, the Taylor series of the form hold

c(r) = cs z1/2 [1 + O(z)],

g(r) = gs [1 + O(z)],

K1(r) =
K1,s

z
[1 + O(z)],

K2(r) = − (ne + 2)
1
z

[1 + O(z)],

K3(r) =
K3,s

z
[1 + O(z)],

K4(r) =
K4,s

z
[1 + O(z)],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(84)

where cs is positive.
The boundary-layer coordinate z∗(z) is determined by the

differential equation

(
dz∗

dz

)2

=
1
ε2

1
c2

s z
· (85)

When z∗(0) = 0, the positive boundary-layer coordinate is
given by

z∗(z) =
1
ε

2
cs

z1/2. (86)

For the functions α(r) and w(r), we introduce boundary-layer
expansions of the form

α(s)(r; ε) = µ(s)
0 (ε)α(s)

0 (z∗) + µ(s)
1 (ε)α(s)

1 (z∗)

+ . . . ,

w(s)(r; ε) = ν(s)
0 (ε)w(s)

0 (z∗) + ν(s)
1 (ε)w(s)

1 (z∗)

+ . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(87)

where µ(s)
0 (ε), µ(s)

1 (ε), . . . and ν(s)
0 (ε), ν(s)

1 (ε), . . . are asymptotic
series to be determined.

Equation (49) now takes the form

µ(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2α(s)
0

dz∗2
+

2 ne + 3
z∗

dα(s)
0

dz∗
+ α(s)

0

⎞⎟⎟⎟⎟⎟⎠
+O

(
ε−2

)⎤⎥⎥⎥⎥⎥⎦
+µ(s)

1 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2α(s)
1

dz∗2
+

2 ne + 3
z∗

dα(s)
1

dz∗
+ α(s)

1

⎞⎟⎟⎟⎟⎟⎠
+O

(
ε−2

)⎤⎥⎥⎥⎥⎥⎦ + . . . = ν(s)
0 (ε) O

(
ε−3

)
+ . . . (88)

As ν(s)
0 (ε) is at least of the same order in ε as µ(s)

0 (ε), the
first dominant boundary-layer equation is homogeneous and is
given by

d2α(s)
0

dz∗2
+

2 ne + 3
z∗

dα(s)
0

dz∗
+ α(s)

0 = 0. (89)

The solution satisfying the requirement that the divergence of
the Lagrangian displacement remains finite at r = R, is

α(s)
0 (z∗) = A0,s z∗−(ne+1) Jne+1 (z∗) , (90)

where A0,s is a general constant.
Next, Eq. (50) takes the form

ν(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2w(s)
0

dz∗2
+

1
z∗

dw(s)
0

dz∗
− 1

z∗2
w(s)

0

⎞⎟⎟⎟⎟⎟⎠
+O

(
ε−2

)⎤⎥⎥⎥⎥⎥⎦
+ν(s)

1 (ε)

⎡⎢⎢⎢⎢⎢⎣ 1
ε4

⎛⎜⎜⎜⎜⎜⎝d2w(s)
1

dz∗2
+

1
z∗

dw(s)
1

dz∗
− 1

z∗2
w(s)

1

⎞⎟⎟⎟⎟⎟⎠
+O

(
ε−2

)⎤⎥⎥⎥⎥⎥⎦ + . . . =

µ(s)
0 (ε)

⎡⎢⎢⎢⎢⎢⎣− 1
ε3

dα(s)
0

dz∗
+ O

(
ε−1

)⎤⎥⎥⎥⎥⎥⎦
+µ(s)

1 (ε)

⎡⎢⎢⎢⎢⎢⎣− 1
ε3

dα(s)
1

dz∗
+ O

(
ε−1

)⎤⎥⎥⎥⎥⎥⎦ + . . . (91)

As ν(s)
0 (ε) = ε µ(s)

0 (ε), the second dominant boundary-layer
equation is inhomogeneous and is given by

d2w(s)
0

dz∗2
+

1
z∗

dw(s)
0

dz∗
− 1

z∗2
w(s)

0 = −
dα(s)

0

dz∗
· (92)

The solution satisfying the requirement that the radial compo-
nent of the Lagrangian displacement remains finite at r = R,
is

w(s)
0 (z∗) = C0,s z∗ + D0,s z∗−1

−1
2

z∗ α(s)
0 (z∗) +

1
2

1
z∗

∫ z∗

0
z′ 2

dα(s)
0

dz′
dz′, (93)

where C0,s en D0,s are general constants. The particular solution
of the inhomogeneous equation can be transformed by partial
integration and use of the first recurrence Relation (61), so that

w(s)
0 (z∗) = A0,s z∗−(ne+1) Jne (z∗) +C0,s z∗ + D0,s z∗−1. (94)
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By setting µ(s)
1 (ε) = ε µ(s)

0 (ε) and ν(s)
1 (ε) = ε ν(s)

0 (ε), one
obtains the equations

d2α(s)
1

dz∗2
+

2 ne + 3
z∗

dα(s)
1

dz∗
+ α(s)

1 = 0,

d2w(s)
1

dz∗2
+

1
z∗

dw(s)
1

dz∗
− 1

z∗2
w(s)

1 = −
dα(s)

1

dz∗
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(95)

whose solutions can be written as

α(s)
1 (z∗) = A1,s z∗−(ne+1) Jne+1 (z∗) ,

w(s)
1 (z∗) = A1,s z∗−(ne+1) Jne (z∗)

+C1,s z∗ + D1,s z∗−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(96)

After renaming the sums of constants A0,s + ε A1,s, C0,s +

εC1,s, D0,s + εD1,s respectively as A0,s, C0,s, D0,s and associ-
ating distinct functions µ(s)

0 (ε) with the three independent par-
ticular solutions, one obtains boundary-layer expansions valid
from r = R in the form

α(s)(r; ε) = µ(s,1)
0 (ε) A0,s z∗−(ne+1) Jne+1 (z∗) ,

w(s)(r; ε) = ε µ(s,1)
0 (ε) A0,s z∗−(ne+1) Jne (z∗)

+ε µ(s,2)
0 (ε) C0,s z∗ + ε µ(s,3)

0 (ε) D0,s z∗−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(97)

These boundary-layer expansions involve the two yet undeter-
mined functions µ(s,1)

0 (ε) and µ(s,2)
0 (ε), and the three additional

general constants A0,s, C0,s, and D0,s. As for the boundary-layer
expansions α(c)(r; ε) and w(c)(r; ε), boundary-layer expansion
α(s)(r; ε) is purely oscillatory, while boundary-layer expansion
w(s)(r; ε) contains a non-oscillatory part besides its oscillatory
part.

7. Matching of the boundary-layer expansions
valid from r = R

The boundary-layer expansions α(s)(r; ε) and ξ(s)(r; ε) are also
matched to the asymptotic expansions α(o)(r; ε) and ξ(o)(r; ε)
valid at larger distances from the singular boundary points.

The matching condition relative to the divergence of the
Lagrangian displacement is similar to Condition (69). In this
context, it is convenient to decompose the fast independent
variable τ(r) as

τ(r) = τR − τs(r), (98)

where τR = τ(R) and

τs(r) =
1
ε

∫ z

0

dz′

c (r′)
· (99)

For small values of z, the fast independent variable τs(r) tends
to the boundary-layer coordinate z∗(z).

The function F(r) in asymptotic expansion α(o)(r; ε) is now
decomposed as

F(r) = F(s)(z) − F(s) (z0) (100)

with

F(s)(z) = −cs
(2 ne + 1) (2 ne + 3)

16 z1/2
− 1

2

∫ z

0

⎡⎢⎢⎢⎢⎢⎣c (
r′

)
W

(
r′

)

+cs
(2ne + 1) (2ne + 3)

16 z′3/2

⎤⎥⎥⎥⎥⎥⎦ dz′, (101)

so that, for small values of z,

F(r) = −cs
(2 ne + 1) (2 ne + 3)

16 z1/2
− F(s) (z0)

+O
(
z1/2

)
. (102)

Considering also that, for small values of z,

h(r) = hs z−(ne+3/2)/2, (103)

one has that

lim
z→0
α(o)(r; ε) = hs z−(ne+3/2)/2

⎧⎪⎪⎨⎪⎪⎩A∗0 cos (τR − z∗) + B∗0 sin (τR − z∗)

−ε
[
cs

(2 ne + 1) (2 ne + 3)

16 z1/2
+ F(s) (z0)

]

[
B∗0 cos (τR − z∗) − A∗0 sin (τR − z∗)

]⎫⎪⎪⎬⎪⎪⎭. (104)

On the other hand, one has that

lim
z→∞α

(s)(r; ε) = µ(s,1)
0 (ε) εne+3/2 A0,s Es z−(ne+3/2)/2

⎡⎢⎢⎢⎢⎢⎣sin (z∗ − χ)

+ε cs
(2 ne + 1) (2 ne + 3)

16 z1/2
cos (z∗ − χ)

⎤⎥⎥⎥⎥⎥⎦ (105)

with χ = (2 ne + 1) π/4, Es = (2/π)1/2 (2/cs)−(ne+3/2).
A matching of the boundary-layer expansion α(s)(r; ε) to

the asymptotic expansion α(o)(r; ε) is possible when

µ(s,1)
0 (ε) = ε−(ne+3/2), (106)

and the coefficients of cos z∗ and sin z∗ are identically zero,
so that

A∗0 cos τR + B∗0 sin τR

−ε
[
cs

(2 ne + 1) (2 ne + 3)

16 z1/2
+ F(s) (z0)

]

(
B∗0 cos τR − A∗0 sin τR

)
= −A0,s

Es

hs[
sin χ − ε cs

(2 ne + 1) (2 ne + 3)
16 z1/2

cosχ

]
,

A∗0 sin τR − B∗0 cos τR

−ε
[
cs

(2 ne + 1) (2 ne + 3)
16 z1/2

+ F(s) (z0)

]

(
B∗0 sin τR + A∗0 cos τR

)
= A0,s

Es

hs[
cosχ + ε cs

(2 ne + 1) (2 ne + 3)

16 z1/2
sin χ

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(107)
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As, at order ε0,

A∗0 = A0,s
Es

hs
sin (τR − χ) ,

B∗0 = −A0,s
Es

hs
cos (τR − χ) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (108)

Eqs. (107) reduce to

A∗0 = A0,s
Es

hs[
sin (τR − χ) − ε F(s) (z0) cos (τR − χ)

]
,

B∗0 = −A0,s
Es

hs[
cos (τR − χ) + ε F(s) (z0) sin (τR − χ)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(109)

The non-oscillatory part of the asymptotic expansion
ξ(o)(r; ε) tends to that of the boundary-layer expansion ξ(s)(r; ε)
as z→ 0, when

C0,s = 0 (110)

and

µ(s,3)
0 (ε) = ε−1, C∗0 = D0,s R−(�−1) c2

s

2
· (111)

Because of the second Eq. (82), it follows that

C0,c =
1
2

D0,s R−(�−1) c�−2
c c2

s . (112)

By the matching, the functions µ(s,1)
0 (ε) and µ(s,3)

0 (ε) are de-
termined, the constants A∗0 and B∗0 are related to the constant
A0,s, and the constant C0,c is related to the constant D0,s.

At this point, three constants remain undetermined: A0,c,
A0,s, and D0,s. They are determined in the next two sections.

8. The eigenfrequency equation

Elimination of the constants A∗0 and B∗0 from Eqs. (80) and
(109) leads to a homogeneous system of two equations for the
constants A0,c and A0,s. A necessary and sufficient condition for
the system to admit of a non-trivial solution is

tan

(
� π

2
+ χ − τR

)
= −ε T�, (113)

where T� is a constant defined as

T� = F(s) (z0) − F(c) (r0) . (114)

It follows that

τR ≡ |σ|
∫ R

0

dr
c(r)
=

(
2 n + � + ne +

1
2

)
π

2
+

T�
|σ| (115)

with n = 1, 2, 3, . . . This equation corresponds to the eigenfre-
quency equation derived by Tassoul (1990). The relation be-
tween n and the radial order of the mode considered is deter-
mined in Sect. 11.

The value of the constant T� is independent of the choice of
the point with coordinates r0 and z0, since, on the grounds of
Definitions (73) and (101), the constant can be expressed as

T� = −1
2

⎧⎪⎪⎨⎪⎪⎩
∫ R

0
I(r) dr

+cc
�(� + 1)

R
+ cs

(2ne + 1) (2ne + 3)

8 R1/2

⎫⎪⎪⎬⎪⎪⎭ (116)

with

I(r) = c(r) W(r)

+cc
�(� + 1)

r2
+ cs

(2ne + 1) (2ne + 3)

16 (R − r)3/2
· (117)

9. The condition on the Eulerian perturbation
of the gravitational potential at r = R

The last undetermined constant, D0,s, is fixed by boundary
Condition (9) on the Eulerian perturbation of the gravitational
potential at r = R. In order to impose the condition, we use the
following two equations, which express the Eulerian perturba-
tion of the gravitational perturbation and its first derivative in
terms of the divergence α(r) and the radial component ξ(r) of
the Lagrangian displacement:

Φ′ =
(
c2 α − g ξ

)

+ε2 r2

�(� + 1)

[
1
r2

d
dr

(
r2 ξ

)
− α

]
, (118)

dΦ′

dr
=

d
(
c2 α

)
dr

− N2

g
c2 α − g dξ

dr

+

(
2
g

r
− 4 πG ρ

)
ξ + ε2 ξ (119)

(Smeyers et al. 1995). The boundary condition then takes the
form

1
ε2

R
�

[(
dξ
dr

)
R

+
� + 2

R
ξR − αR

]
+ O

(
ε0

)
= 0. (120)

The coefficient of the term of the order ε−2 is identically zero
for the dominant oscillatory parts in the boundary-layer ex-
pansions α(s)(r; ε) and ξ(s)(r; ε). It also becomes equal to zero
for the non-oscillatory part in the boundary-layer expansion
ξ(s)(r; ε), when one sets

D0,s = 0. (121)

Because of the second Eq. (111), it follows that

C∗0 = 0, C0,c = 0. (122)

Consequently, the asymptotic representation of the radial com-
ponent of the Lagrangian displacement is purely oscillatory
in the interval [0, 1] as well as that of the divergence of the
Lagrangian displacement.
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10. Uniformly valid asymptotic expansions

Since all constants are now fixed, it is possible to construct
the uniformly valid asymptotic expansions for the divergence
and the radial component of the Lagrangian displacement in
a final form. One obtains them by adding the boundary-layer
expansion and the expansion valid at larger distances from the
boundary point considered, and subtracting the part common to
both expansions. In the uniformly valid asymptotic expansions
presented here, we have expressed the constants A∗0 and B∗0 re-
spectively in terms of the constants A0,c and A0,s by means of
Eqs. (80) and (109).

The asymptotic expansions that are uniformly valid from
r = 0 to a sufficiently large distance from r = R can be ex-
pressed as

α(c,u)(r; ε) = A0,c

⎧⎪⎪⎨⎪⎪⎩ε−1 r∗−1/2 J�+1/2 (r∗)

+

(
2
π

)1/2 cc

hc
h(r)

[
sin

(
τ − � π

2

)
+ ε

(
F(r) + F(c) (r0)

)
cos

(
τ − � π

2

)]

−
(

2
π

)1/2 cc

r

⎡⎢⎢⎢⎢⎢⎣ sin

(
r∗ − � π

2

)

+ε cc
�(� + 1)

2 r
cos

(
r∗ − � π

2

)⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭, (123)

ξ(c,u)(r; ε) = A0,c⎧⎪⎪⎨⎪⎪⎩ −
cc

2 � + 1
r∗−1/2 [

� J�−1/2 (r∗) − (� + 1) J�+3/2 (r∗)
]

−ε
(

2
π

)1/2 cc

hc
c(r) h(r)

[
cos

(
τ − � π

2

)
− ε

(
G(r) + F(c) (r0)

)
sin

(
τ − � π

2

)]

+ε

(
2
π

)1/2 c2
c

r

⎧⎪⎪⎨⎪⎪⎩cos

(
r∗ − � π

2

)

−ε
[
cc

r
+ cc
�(� + 1)

2 r

]
sin

(
r∗ − � π

2

)⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭. (124)

Furthermore, the asymptotic expansions that are uniformly
valid from r = R to a sufficiently large distance from r = 0,
can be expressed as

α(s,u)(r; ε) = A0,s

⎧⎪⎪⎨⎪⎪⎩ε−(ne+3/2) z∗−(ne+1) Jne+1 (z∗)

+
Es

hs
h(r)

[
sin (τs − χ)

−ε
(
F(r) + F(s) (z0)

)
cos (τs − χ)

]

−Es z−(ne+3/2)/2

⎡⎢⎢⎢⎢⎢⎣sin (z∗ − χ)

+ε cs
(2 ne + 1) (2 ne + 3)

16 z1/2
cos (z∗ − χ)

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭, (125)

ξ(s,u)(r; ε) = A0,s

⎧⎪⎪⎨⎪⎪⎩ε−(ne−1/2) c2
s

2
z∗−ne Jne (z∗)

+ε
Es

hs
c(r) h(r)

[
cos (τs − χ) + ε

(
G(r) + F(s) (z0)

)
sin (τs − χ)

]

−ε Es cs z−(ne+1/2)/2

⎡⎢⎢⎢⎢⎢⎣cos (z∗ − χ)

−ε cs
(2 ne − 1) (2 ne + 1)

16 z1/2
sin (z∗ − χ)

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭. (126)

11. Identification of the radial order of a mode
associated with a given eigenfrequency

The radial order of a mode, radial or non-radial, associated with
a given eigenfrequency is determined by the number of nodes
displayed by the eigenfunction ξ(r). For the determination of
this number, it suffices to consider the lowest-order uniformly
valid solutions for ξ(r). For convenience, we express them in
the compact forms

ξ(c,u)(r; ε) = −ε A0,c

2 � + 1
cc

hc
c(r) h(r)

τ1/2 [
� J�−1/2(τ) − (� + 1) J�+3/2(τ)

]
, (127)

ξ(s,u)(r; ε) = ε A0,s

(
2
cs

)−(ne+3/2)

c(r) h(r)

τ1/2
s Jne (τs) . (128)

For a radial mode, the number of nodes in the eigenfunc-
tion ξ(r) can be determined with the procedure of Ledoux
(1962). In the case of radial modes, only the Bessel function
J3/2(τ) appears in the asymptotic solution ξ(c,u)(r; ε). According
to McMahon’s expansions for the zeros of Bessel functions, it
has zeros approximatively at

τ0 = (2 j + 1)
π

2
, j = 1, 2, 3, . . . (129)

The largest admissible value of j is fixed by the condition that
τ0 ≤ τR, so that

2 j + 1 ≤ 2 n + ne +
1
2
· (130)

When ne < 1/2, it follows that j < n, so that n− 1 is the largest
admissible value of j. When ne ≥ 1/2, one must consider the
position of the first zero of the Bessel function Jne (τs), which
appears in the asymptotic solution ξ(s,u)(r; ε) and has zeros ap-
proximatively at

τ0
s =

(
2 r + ne − 1

2

)
π

2
, r = 1, 2, 3, . . . (131)

With the first node counted from τs = 0 coincides the last node
counted from τ = 0. Therefore, the position of this last node is
given by

τ0 = τR − τ0
s = (2 n − 1)

π

2
· (132)
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Fig. 1. The function H(τ) (thick line) and its asymptotic form
Hasymp(τ) for large values of τ (thin line).

Again, n− 1 is the largest admissible value of j. Hence, in both
cases, the asymptotic eigenfunction ξ(r) displays n − 1 nodes.
For conclusion, the radial mode associated with a number n in
eigenfrequency Eq. (115) is the (n − 1)th overtone.

For the determination of the number of nodes in the asymp-
totic eigenfunction ξ(r) of a non-radial mode p, we consider the
case of � = 2 as an example.

With regard to the asymptotic solution ξ(c,u)(r; ε), it is ap-
propriate to consider the function

H(τ) ≡ τ1/2

2 � + 1
[
2 J3/2(τ) − 3 J7/2(τ)

]
and to compare the positions of its zeros with those of its
asymptotic form that is valid for large values of τ

Hasymp(τ) ≡ −
(

2
π

)1/2

cos τ.

The latter function has zeros at

τ0 = (2 j + 1)
π

2
, j = 0, 1, 2, . . . (133)

The variations of the functions H(τ) and Hasymp(τ) are repre-
sented in Fig. 1. It appears that the zero of the asymptotic func-
tion Hasymp(τ) associated with j = 0 does not correspond to a
zero of the function H(τ), so that the zeros of the function H(τ)
must be counted from j = 1.

In the asymptotic solution ξ(s,u)(r; ε), the Bessel function
Jne (τs) has zeros approximatively at

τ0
s =

(
2 k + ne − 1

2

)
π

2
, k = 1, 2, 3, . . . (134)

The position τ0
s of the first zero yields for the position of the

last zero counted from τ = 0

τ0 = τR − τ0
s = (2 n + 1)

π

2
· (135)

Hence, for a non-radial mode p associated with a number n
in eigenfrequency Eq. (115), the eigenfunction ξ(r) displays
n nodes, and the mode is of radial order n according to
Cowling’s classification.

The number of nodes of the asymptotic eigenfunction α(r)
can be determined in a similar way. The compact forms of the
uniformly valid asymptotic solutions are

α(c,u)(r; ε) = A0,c cc
h(r)
hc
τ1/2 J�+1/2(τ), (136)

α(s,u)(r; ε) = A0,s

(
2
cs

)−(ne+3/2) h(r)
hs

×τ1/2
s Jne+1 (τs) . (137)

One verifies that, for any mode, radial or non-radial, the asymp-
totic eigenfunctionα(r) displays n−1 nodes, i.e. the same num-
ber of nodes as the eigenfunction ξ(r) in case of a radial mode,
and one node less than the eigenfunction ξ(r) in case of a non-
radial p-mode.

12. Concluding remarks

The present asymptotic analysis confirms that the application
of a two-variable expansion procedure and boundary-layer the-
ory to the system of Eqs. (3) and (4) is particularly appropriate
for the construction of the asymptotic representation of higher-
order p-modes in a spherically symmetric star.

The dependent variable α(r) appears to be the basic func-
tion. In each region, the lowest-order asymptotic approxima-
tion of α(r) is determined by a homogeneous second-order
differential equation.

We have improved the asymptotic theory of Smeyers et al.
(1996) in two ways.

First, we have incorporated the function ν(ε) in the asymp-
totic expansion ξ(o)(r; ε) for the radial component of the
Lagrangian displacement valid at larger distances from the sin-
gular boundary points. This function is determined in such a
way that already the lowest-order approximation in expansion
ξ(o)(r; ε), ξ(o)(τ, r), is solution of an inhomogeneous differential
equation, so that it contains an oscillatory part besides the non-
oscillatory part. From the determination of the function ν(ε),
it is manifest that the expansion ξ(o)(r; ε) for the radial com-
ponent of the Lagrangian displacement is of one order higher
in the small expansion parameter ε than expansion α(o)(r; ε)
for the divergence of the Lagrangian displacement. The further
analysis shows that ξ(r) is even everywhere of one order higher
than α(r).

Secondly, in the boundary layers, we have no longer
adopted a coordinate that is identical to the fast variable used
in the two-variable expansion procedure at larger distances, but
we have followed the usual prescriptions. The boundary-layer
coordinate then corresponds to the first term in the Taylor ex-
pansion of the fast variable from the singular boundary point
considered. With this procedure, the matching conditions for
the boundary-layer expansions and the asymptotic expansions
valid at larger distances have the simple form of Eq. 69), and
the constructions of the uniformly valid asymptotic expansions
are more transparent.

The validity of the present asymptotic theory, as well as
that of Tassoul’s asymptotic theory, is restricted by the condi-
tion that ε 
 1, i.e. that the oscillation period is much smaller

than 2π times the star’s dynamic time scale
[
R3/(GM)

]1/2
. For
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example, in the case of the Sun, the oscillation period must be
much shorter than nearly 104 s or 2 h 47 min.

A second restriction on the validity of the asymptotic the-
ory is related to the dominant boundary-layer Eq. (56). This
equation is derived from Eq. (3) in the supposition that the
term σ2/c2(r) becomes of the same order of magnitude as
the term −�(� + 1)/r2 somewhere in the boundary layer near
r = 0. Physically, the supposition implies that, for the angu-
lar frequency considered, the inner boundary of the acoustic
resonant cavity is sufficiently close to the star’s centre. This
condition is violated for smaller values of σ and for larger val-
ues of the degree � of the spherical harmonic. In these cases,
the term σ2/c2(r) must no longer be incorporated in the dom-
inant boundary-layer equation. An asymptotic theory applying
to them was developed by Smeyers (2003).

In the lowest-order asymptotic approximation, it follows
from the uniformly valid asymptotic Solutions (127) and (128)
that

dξ(r)
dr
= α(r) (138)

everywhere in a star. Equation (3) can then be written as

d
dr

(
r2 ρ c4 dα

dr

)

+

[
1
ε2

1
c2
+ K3(r) + K4(r)

]
r2 ρ c4 α = 0, (139)

so that it strictly reduces to a homogeneous second-order dif-
ferential equation of the Sturm-Liouville type. This property
explains that the eigenfunction for α(r) that is associated with
the nth eigenfrequency displays n−1 nodes, with n = 1, 2, 3, . . .
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