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The Second-Order Coding Rate of the MIMO

Quasi-Static Rayleigh Fading Channel
Jakob Hoydis, Member, IEEE, Romain Couillet, Member, IEEE, and Pablo Piantanida, Member, IEEE

Abstract—The second-order coding rate of the multiple-input
multiple-output (MIMO) quasi-static Rayleigh fading channel is
studied. We tackle this problem via an information-spectrum
approach and statistical bounds based on recent random matrix
theory techniques. We derive a central limit theorem (CLT) to
analyze the information density in the regime where the block-
length n and the number of transmit and receive antennas K
and N , respectively, grow simultaneously large. This result leads
to the characterization of closed-form upper and lower bounds
on the optimal average error probability when the coding rate

is within O(1/
√
nK) of the asymptotic capacity.

Index Terms—Finite block-length, second-order coding rate,
error probability, quasi-static fading channel, block-fading chan-
nel, MIMO, information spectrum, random matrix theory.

I. INTRODUCTION

In real-world wireless communications, the codeword (or

block) length of the transmission is naturally limited due to de-

lay and complexity constraints. It is thus unfortunate that only

few tractable performance limits of wireless communication

scenarios under the finite block-length regime are available.

In general, only bounds on the optimal error probability for

a given coding rate and block-length are derivable, e.g., [1],

[2], which are for most relevant cases difficult to analyze and

evaluate. This is in particular the case for non-ergodic chan-

nels (e.g., quasi-static or block-fading channels), for which

the error probability is fundamentally limited by the outage

probability [3]. The evaluation of these non-asymptotic bounds

becomes even more challenging in presence of multiple-input

multiple-output (MIMO) channels.

Feinstein [1] and Shannon [4] were among the first to

explore the tradeoff between coding rate, error probability, and

block-length and developed bounds on the optimal error prob-

ability in the finite block-length regime. Bounds on the limit

of the scaled logarithm of the error probability—known as the
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CNRS-CentraleSupélec-Université Paris-Sud, 3 rue Joliot-Curie, 91192 Gif-
sur-Yvette, France (pablo.piantanida@centralesupelec.fr). The work of Pi-
antanida was partially supported by the DIM COREPHY project and the FP7
Network of Excellence in Wireless COMmunications NEWCOM#.

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

exponential rate of decrease—were derived in [2]. A simpler

formula for the latter was then provided by Gallager [5], which

is still difficult to evaluate for wireless channel models. In [6],

an explicit expression of Gallager’s error exponent was found

for the block-fading MIMO channel, but the computation of

this result remains quite involved.

Since the aforementioned bounds are in general not

amenable to simple evaluation, asymptotic considerations were

made, in particular by Strassen [7] who derived a general

expression of the error probability for the discrete memoryless

channel with unconstrained inputs of code length n in the

regime where the coding rate is within O(1/
√
n) of the capac-

ity, which is referred to as the second-order coding rate. In his

work, the variance of the “mutual information density” appears

to be the fundamental quantity when focusing on Gaussian ap-

proximations of the error probability. Nevertheless, Strassen’s

approach could not be generalized to channels with input

constraints, such as the additive white Gaussian noise (AWGN)

channel. Hayashi [8] focused on the second-order coding rate

and provided an exact characterization of the optimal error

probability for different channel models and input constraints.

Further considerations were made by Polyanskiy-Poor-Verdú

in [9] where several novel results are provided for memoryless

channels, among which new upper and lower bounds on the

maximal achievable rate for a fixed error probability and

block-length. Along the same lines, the scalar AWGN block-

fading channel was addressed in the coherent and non-coherent

settings in [10] and [11], respectively.

Additional work on the asymptotic block-length regime via

information-spectrum methods comprises the general capacity

formula by Verdú-Han [12] proving the converse via a novel

lower bound on the error probability from [13], [14]. A

very comprehensive literature survey on related aspects can

also be found in [9]. During the revision of this article,

we became aware of the related works [15] and [16] which

study respectively the quasi-static fading single-input multiple-

output (SIMO) and MIMO channel at finite block-length in

great detail.

In this paper, we investigate closed-form bounds on the

average error probability of the N × K MIMO quasi-static

Rayleigh fading channel where the transmission takes place

over n channel uses during which the channel realization is

randomly drawn but remains constant, and where N , K , and

n are of similar order of magnitude.

A. Contribution and outline

We focus on the asymptotic behavior of the error probability

when the coding rate is a small perturbation of the ergodic

http://arxiv.org/abs/1303.3400v3
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capacity, and hence follow the line of work of [8] on the

second-order coding rate (see also [9, Section IV]). We take

the approach of inducing ergodicity in the inherently non-

ergodic quasi-static fading channel by growing the channel

matrix dimensions. Indeed, assuming an N × K channel

matrix with independent standard Gaussian entries, letting

K,N → ∞ at the same speed, the channel becomes ergodic

in the limit (even for a single channel use). This ensures that

communications at rates arbitrarily close to the asymptotic

capacity are possible in this regime and it becomes natural

to investigate the optimal average error probability for the

second-order coding rate when K , N , and the block-length n
grow simultaneously, i.e., the asymptotically achievable error

probability for rates within O(1/
√
nK) of the ergodic capacity

(nK being the total number of symbols in each codeword).

Our approach closely follows the information spectrum

methodology of [8]. We first start from some basic variations

of Feinstein’s and Verdú–Han’s lemma that provide, respec-

tively, lower and upper bounds on the optimal error probability.

These bounds are exploited to study the second-order statistics

of the information density, seen as a real functional of three

large-dimensional random matrices, i.e., the N ×K channel,

the K × n input, and the N × n noise matrices. The analysis

of such statistics naturally requires the use of random matrix

tools, and in particular here of Gaussian methods such as

developed by Pastur [17].

The main contribution of this paper is to derive a central

limit theorem (CLT) uniformly over the set of admissible chan-

nel inputs. From this result it entails that the optimal average

error probability Pe(r|β, c) for the second order coding rate

r < 0 (defined in (14) below) can be bounded as

Φ

(
r

θ−

)
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(1)

where β = n/K , c = N/K , Φ(·) is the Gaussian distribution

function, and θ+ > θ− are closed-form functions of β, c, and

the signal-to-noise ratio (SNR). Unlike [8], [9], we do not

obtain matching lower and upper bounds due to the presence

of the non-ergodic random channel matrix. Nonetheless, it ap-

pears that the gap between both bounds is quite tight for SNR

values of practical interest. Besides, numerical comparisons to

LDPC codes reveal good similarities with theory in the slope

of the error probability.

Notation and definitions

The set of nonnegative integers is denoted by N, the real

and complex fields by R and C, respectively. Boldface letters

x and upper-case letters X are used to denote vectors and

matrices, respectively. The transpose, complex conjugate, and

complex conjugate (Hermitian) transpose are denoted by (·)T,

(·)∗, and (·)H, respectively. The trace and determinant of a

square matrix X are written trX and det(X), respectively.

The spectral norm of a square matrix X, i.e., the absolute

largest eigenvalue, is denoted by ‖X‖. The Frobenius norm of

a matrix X is denoted by ‖X‖F . The (i, j)-element of X is

denoted by Xij or [X]ij . Random vectors and matrix variables

are denoted by lowercase letters x and uppercase letters X ,

respectively. The symbol Pr[·] denotes the probability of the

bracketed random argument. For a set S, we define by P(S)
the set of probability measures with support a subset of S. We

also denote by supp(P) the support of P.

For random matrices X,Y in CK×n and CN×n, let PX ∈
P(CK×n) and let X 7→ PY |X( · |X) be any Borel measur-

able mapping. We define the probability measure PXY by

PXY (A×B) =
∫
A PY |X(B|X)PX(dX) where A,B are Borel

sets of CK×n and CN×n, respectively. Similarly, we define the

distribution PY as PY (B) =
∫
PY |X(B|X)PX(dX) for any

Borel subset B ⊂ CN×n, where the integral is understood to

be taken over CK×n. We also define, for a PX -measurable

functional f , its mean E[f(X)] =
∫
f(X)PX(dX) and

variance Var[f(X)] = E[|f(X)− E[f(X)]|2].
Let P and Q be two measures on (the Borel σ-field of)

C
K×n. Then P is said to be absolutely continuous with respect

to Q if P(A) = 0 for every Borel set A for which Q(A) = 0.

This is written as P ≪ Q. For such measures P and Q, we

denote dP
dQ (X) = P(dX)

Q(dX) the Radon–Nykodym derivative [18,

Theorem 32.2] of P with respect to Q at position X, i.e.,

for any Borel set A, P(A) =
∫
A

dP
dQdQ =

∫
A

P(dX)
Q(dX)Q(dX).

The notation P(dX) ≤ Q(dX) will then be understood as
dP
dQ(X) = P(dX)

Q(dX) ≤ 1. If P is not absolutely continuous with

respect to Q, we set dP/dQ
△

= ∞ and P(dX) ≤ Q(dX) is

understood as an always false statement.

We denote CN (0, σ2) the complex circularly symmetric

normal distribution with zero mean and variance σ2. We

call Φ the distribution function of the real standard normal

distribution, given by Φ(x)
△

= 1√
2π

∫ x

−∞ exp
(
− t2

2

)
dt. The

weak convergence of the sequence of probability measures

{µn}∞n=1 to µ is denoted by µn ⇒ µ; “
a.s.−−→” stands for almost

sure convergence.

The notation fn(t) = O(tαn−β) means that there exists

C > 0 independent of t and n such that, for all t > 0 and

n ∈ N, |fn(t)| ≤ Ctαn−β .

II. CHANNEL MODEL AND PROBLEM STATEMENT

Consider the following MIMO memoryless Gaussian quasi-

static fading channel:

yt =
1√
K

Hnxt + σwt, t = {1, . . . , n} (2)

where yt ∈ CN is the channel output at time t, Hn ∈ CN×K

is a realization of the random channel matrix Hn ∈ CN×K

whose entries are independent and identically distributed

(i.i.d.) CN (0, 1) and the index n reminds that Hn is con-

stant for the duration of n channel uses, xt ∈ C
K×1 is the

realization of the random channel input xt ∈ CK×1 at time

t, and σwt is the realization of the random noise vector σwt

at time t whose entries are i.i.d. CN
(
0, σ2

)
. The transmitter

end has only statistical knowledge about Hn while the receiver

end knows Hn perfectly. In particular, we will assume Hn,

xt, and wt to be independent for each t. We define the

following matrices: Xn = (x1, . . . ,xn) ∈ CK×n, Wn =
(w1, . . .wn) ∈ C

N×n, and Yn = (y1, . . . ,yn) ∈ C
N×n.

Associated to these matrices, we define the random matrices
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Xn = (x1, . . . , xn) ∈ CK×n, Wn = (w1, . . . , wn) ∈ CN×n,

and Y n = (y1, . . . , yn) ∈ CN×n.

We denote the sets of admissible inputs Xn with unit

maximal and exact energy constraint, respectively, by

Sn △

=

{
Xn ∈ C

K×n
∣∣∣

1

nK
trXn(Xn)H ≤ 1

}
(3)

Sn
=

△

=

{
Xn ∈ C

K×n
∣∣∣

1

nK
trXn(Xn)H = 1

}
. (4)

The mutual information density of PY n|Xn,Hn , i.e., the

probability measure of Y n conditioned on Xn and Hn, is

defined by (see e.g. [19] for the AWGN definition):

I
(n)
N,K

△

=
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

PY n|Hn(dY n|Hn)
(5)

where the ratio PY n|Xn,Hn(·|Xn,Hn)/PY n|Hn(·|Hn), for

given Xn,Hn, denotes the Radon–Nykodym derivative of the

measure PY n|Xn,Hn(·|Xn,Hn) with respect to PY n|Hn(·|Hn)
whenever PY n|Xn,Hn(·|Xn,Hn) ≪ PY n|Hn(·|Hn) and is set

to ∞ otherwise.

Definition 1 (Code and average error probability): A

(P
(n)
e ,Mn)-code Cn for the channel model (2) with power

constraint (3) consists of the following mappings:

• An encoder mapping:

ϕ : Mn 7−→ C
K×n. (6)

The transmitted symbols are Xn
m = ϕ(m) ∈ Sn for

every message m uniformly distributed over the set

Mn = {1, . . . ,Mn} of messages.

• A set of decoder mappings {φHn}Hn∈CN×K with:

φHn : CN×n 7−→ Mn ∪ {e} (7)

which produces the decoder’s decision m̂ = φHn(Yn
m),

Yn
m = 1√

K
Hnϕ(m)+σWn, on the transmitted message

m, or the error event e.

For a code Cn with block-length n, codebook size Mn, encoder

ϕ, and decoder {φHn}Hn∈CN×K , the average error probability

is defined as

P (n)
e = P (n)

e (Cn) △

= Pr [m̂ 6= m] , (8)

where the probability is taken over the random variables Wn,

Hn and m.

Let supp(Cn) denote the codebook {ϕ(1), . . . , ϕ(Mn)}. The

optimal average error probability for the rate R is defined as

P(n)
e (R)

△

= inf
Cn:supp(Cn)⊆Sn

{
P (n)
e (Cn)

∣∣∣
1

nK
logMn ≥ R

}
.

(9)

The exact characterization of P
(n)
e (R) for fixed n, K ,

and N is generally intractable. As mentioned in the intro-

duction, a classical approach consists in considering rates

within O(1/
√
n) of the ergodic capacity with block-lengths n

growing to infinity (i.e., second-order coding rates). This leads

to tractable limiting error probabilities, referred to as optimal

average error probabilities for the second-order coding rates

[8], [9]. However, as the capacity of the quasi-static Rayleigh

fading channel is zero, we assume here that the system

dimensions K and N grow large. This induces ergodicity in

the channel and entails a new definition of the second-order

coding rate and the optimal average error probability for the

quasi-static fading MIMO channel. Precisely, we assume that

K , N , and n are large but of the same order of magnitude.

This is expressed mathematically via the relations

n → ∞ ,
n

K
= β ,

N

K
= c (10)

for some constants β, c > 0.1 These relations will be denoted

by n
(β,c)−−−→ ∞ in the remainder of the article. For an infinite

block-length, the per-antenna capacity of the channel con-

verges for almost every channel realization to an asymptotic

limit C [20]:

Theorem 1 ([20, Eq. (9)],[21, Thm. 1]): Let {Hn}∞n=1,

where Hn ∈ CN×K has i.i.d. entries Hn
ij ∼ CN (0, 1). Let

σ2 > 0 and define

CN,K
△

=
1

K
log det

(
IN +

1

σ2K
Hn(Hn)H

)
. (11)

Then, as n
(β,c)−−−→ ∞,

(i) CN,K
a.s.−−→ C

(
σ2
)

(ii) E [CN,K ] = C
(
σ2
)
+O

(
1
n2

)

where, for x > 0,

C (x) = log (1 + δ0 (x)) + c log

(
1 +

1

x (1 + δ0 (x))

)

− δ0 (x)

1 + δ0 (x)
(12)

and

δ0(x)
△

=
c− 1

2x
− 1

2
+

√
(1− c+ x)2 + 4cx

2x
> 0. (13)

Based on this observation, we can characterize the error

probability in the second-order coding rate, i.e., when the

coding rate is within O(1/
√
nK) of the limiting capacity

C = C(σ2), and estimate P
(n)
e (R) via the following limiting

error probability:

Definition 2: The optimal average error probability for the

second-order coding rate r is

Pe(r|β, c) △

= inf
{Cn:supp(Cn)⊆Sn}∞

n=1



 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − C

)
≥ r

}
. (14)

Remark 1 (Fluctuation around ergodic capacity): For the

channel model (2), the optimal average error probability may

1This assumption can be relaxed to n
K

= β + o(n−2) and N
K

= c +
o(n−2). However, it is easy to see that these constraints impose c and β to
be rational numbers and the sequences {N/K}∞n=1 and {n/K}∞n=1 to be
constant for all large n.
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be alternatively written as

Pe(r|β, c) = inf
{Cn}∞

n=1

supp(Cn)⊆Sn




 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞

√
nK

(
1

nK
logMn − E[CN,K ]

)
≥ r

}
(15)

since √
nK (E[CN,K ]− C) → 0 (16)

as n
(β,c)−−−→ ∞ by Theorem 1 (ii). In the finite N,K, n-regime,

we may therefore see the optimal average error probability as

an approximation of the optimal achievable error under the

rate constraint

1

nK
logMn ≥ E[CN,K ] +

r√
nK

. (17)

Note that the relation (16) is fundamentally dependent on

the Gaussianity of Hn. It was indeed shown in [22, Theo-

rem 4.4] that, whenever the entries of Hn have a non-zero

fourth order cumulant κ = E

[
|Hn

11|4
]
− 2, a bias term B

proportional to κ arises such that (16) must be modified to√
nK (E[CN,K ]− C) → B as n

(β,c)−−−→ ∞. In this case the

equivalence of (15) and (14) does not hold. For Gaussian

channels (since κ = 0 and then B = 0), however, the

asymptotic mutual information is reached at the sufficiently

fast rate of O(n−2) (as confirmed by Theorem 1 (ii)).
Instead of the optimal average error probability, we may

consider the second-order outage probability Pout(r|β, c) for

the rate r, which we define as follows:

Definition 3: The second-order outage probability for the

second-order coding rate r is

Pout(r|β, c) △

= inf
{Cn:supp(Cn)⊆Sn}∞

n=1



 lim sup

n
(β,c)−−−→∞

P (n)
e (Cn)

∣∣∣

lim inf
n

(β,c)−−−→∞
K

(
1

nK
logMn − C

)
≥ r

}
. (18)

The second-order outage probability and the optimal average

error probability are related by Pout(r|β, c) = Pe(r
√
β|β, c).

Definition 3 allows us to study the behavior of the second-

order outage probability for growing β. In the finite dimen-

sional setting, this corresponds to increasing the block-length

while maintaining N and K (and thus the capacity KC) fixed.

This cannot be performed on Pe(r|β, c) since, by growing n,√
nKC grows as well, therefore not maintaining the capacity

fixed as n grows alone.

The main objective of this article is to characterize

Pe(r|β, c) (which will in turn characterize Pout(r|β, c)).

III. MAIN RESULT

To determine the optimal average error probability, one

ideally needs to determine the asymptotic fluctuations of the

mutual information density I
(n)
N,K for all codes Cn. Since this is

intractable, we shall resort to upper and lower bounds, which

shall both rely on establishing the fluctuations of the random

quantity IX
n

N,K as defined, for PXn ∈ P(Sn), in (19) on the

top of the next page.

These fluctuations are provided in the following theorem.

Theorem 2: Let {Xn}∞n=1 be a sequence of random vari-

ables with probability PXn ∈ P(Sn
=) and, for An = IK −

1
nX

n(Xn)H, define θn > 0 the random variable given by

θ2n =− β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)
+ c+ σ4δ′0

(
σ2
)

− β
δ′0(σ

2)

(1 + δ0(σ2))4
1

K
tr
[
(An)2

]
(20)

where the function δ0(x) is defined in (13). Then, for any real

z, as n
(β,c)−−−→ ∞,

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ z

]
→ Φ(z). (21)

Proof: The proof is provided in Appendix D-B.

Based on this result, we can determine the following lower

and upper bounds on the optimal average error probability for

the second-order coding rate.

Theorem 3: The optimal average error probability

Pe(r|β, c) for the second-order coding rate r satisfies:

• If r ≤ 0,

Φ

(
r

θ−

)
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(22)

• If r > 0,

1

2
≤ Pe(r|β, c) ≤ Φ

(
r

θ+

)
(23)

where θ− > 0 and θ+ > 0 are defined by

θ2−
△

= − β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))2

)

+ c+ σ4δ′0
(
σ2
)

(24)

θ2+
△

= − β log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+ c+ σ4δ′0
(
σ2
)
− δ′0

(
σ2
)

(1 + δ0(σ2))4
(25)

and δ0(x) is defined in (13) with derivative, for x > 0,

δ′0(x) = − δ0(x) (1 + δ0(x))

1− c+ x+ 2xδ0(x)
< 0. (26)

Proof: The details of this proof are provided in Ap-

pendix B.

Theorem 3 shows that, for sufficiently large channel di-

mensions and block-length, the optimal error probability

for a coding rate close to the asymptotic capacity, i.e.,

(nK)−1 logMn = C + (nK)−1/2 r, is comprised between

two explicit bounds which depend only on c, β, and σ2.

This is to be compared with the AWGN scenario of [8], [9]

where the corresponding bounds were found to depend only on

σ2. However, as opposed to Theorem 3, the lower and upper

bounds in these works were shown to be equal. We discuss

in Remark 3 below the technical reasons for this important
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IX
n

N,K
△

=
1

K
log det

(
IN +

1

σ2

Hn(Hn)H

K

)

+
1

nK
tr

[(
Hn(Hn)H

K
+ σ2IN

)−1(
Hn

√
K

Xn + σWn

)(
Hn

√
K

Xn + σWn

)H

−Wn(Wn)H

]
(19)

difference. Note that, for rates above the capacity limit (i.e., for

r > 0), the lower bound is very loose and can be far from its

associated upper bound. In contrast, the more interesting case

r < 0 (corresponding to coding rates below the asymptotic

capacity) features two bounds which are numerically shown

to be quite close to one-another.

Remark 2 (On the quantity δ0
(
σ2
)
): The function

c−1δ0(σ
2) coincides with the Stieltjes transform mµc

(z)
of the Marc̆enko–Pastur measure µc with parameter c
[23] evaluated at position z = −σ2, which is defined by

mµc
(z) =

∫
(t − z)−1µc(dt) for all z ∈ C \ supp (µc).

This measure is the limiting distribution of the eigenvalues

of K−1Hn(Hn)H as N,K → ∞ and N/K → c. For this

reason, the quantities C, θ−, and θ+ of Theorem 3 naturally

appear as functionals of µc.

Remark 3 (Tightness of the bounds): The case r = 0 set

aside, the lower and upper bounds on the optimal average error

probability are never equal. This unfolds from the presence of

the random channel Hn which induces a dependence of the

second order statistics of I
(n)
N,K on the “fourth order moment”

E[K−1tr (n−1Xn(Xn)H)2] of PXn . The weak lower bound

1/2 for r > 0 is a consequence of the impossibility in the

proof to bound the fourth order moment of PXn from above

under the sole constraint (3); see Appendix B. By contrast, in

[8], [9], only (scalar) second order moments of PXn play a

role in the second order statistics of I
(n)
N,K . These are easily

controlled by (3).

Remark 4 (High SNR-regime): In the high-SNR regime, we

have the following result:

lim
σ2→0

θ2− =





−β log (1− c) + c , c < 1
∞ , c = 1
−β log

(
1− 1

c

)
+ 1 , c > 1 ,

(27)

lim
σ2→0

θ2+ =






−β log (1− c) + c(2− c) , c < 1
∞ , c = 1
−β log

(
1− 1

c

)
+ 1 , c > 1 .

(28)

This follows from the definition of δ0(x) and δ′0(x) in The-

orem 1 which brings, for c < 1, δ0(x) → c(1 − c)−1

and δ′0(σ
2) → −c(1 − c)3 as x ↓ 0, while, for c > 1,

xδ0(x) → c− 1 and x2δ′0(x) → 1− c as x ↓ 0.

Remark 5 (Low SNR-regime): Both θ2+ and θ2− converge to

0 as σ2 → ∞. Thus, for r < 0, the upper and lower bounds on

Pe(r|β, c) are equal to zero and, for r > 0, the upper bound

tends to one. However, also the asymptotic capacity C is zero.

First order approximations of C and θ2−, θ
2
+ for σ2 → ∞ are

thus meaningful and are given by

C =
c

σ2
+O(σ−4) (29)

θ2+ =
2c

σ2
+O(σ−4) (30)

θ2− =
2c

σ2
+O(σ−4). (31)

This shows in particular that (θ2+ − θ2−)/θ
2
+ = O(σ−2),

implying the asymptotic closeness of the upper and lower

bounds in the low SNR regime. Note additionally that, for

c = 1, the approximate standard deviation 2c
σ2 coincides with

the low-SNR channel dispersion reported in [9] for SISO

AWGN channels.

Figure 1 depicts the bounds on the optimal average error

probability for varying second-order coding rates r and for

different SNR values (defined as SNR = σ−2). We choose

c = 2 and β = 16. For fair comparison between the various

SNR regimes, r is taken to be proportional to C(σ2). For

finite but large N,K, n values, Figure 1 therefore provides

approximate error probability bounds when coding at rate R =
C(σ2)(1+r′/

√
nK) for various values of r′. We observe that,

for negative second-order coding rates, the gap between the

upper- and lower-bound is barely visible.

Remark 6 (Relation to second-order outage probability):

Recalling Definition 3, we have

min

{
Φ

(
r

θout−

)
,
1

2

}
≤ Pout(r|β, c) ≤ Φ

(
r

θout+

)
(32)

where θout− > 0 and θout+ > 0 are defined by

(
θout−

)2 △

= − log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+
1

β

(
c+ σ4δ′0

(
σ2
))

(33)

(
θout+

)2 △

= − log

(
1− 1

c

δ0
(
σ2
)2

(1 + δ0 (σ2))
2

)

+
2

β

(
c+ σ4δ′0

(
σ2
)
− δ′0

(
σ2
)

(1 + δ0(σ2))4

)
.

(34)

Interestingly, for r ≤ 0, as β → ∞, we recover the limiting

outage probability of MIMO Gaussian fading channels [24],

[22],

lim
β→∞

Pout(r|β, c) = Φ
( r

θout

)
(35)

with θout > 0 defined by

(
θout

)2 △

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (36)
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Fig. 1. Bounds on the optimal average error probability as a function of the second-order coding rate r = r′C(σ2) for different SNRs and the parameters
c = 2 and β = 16.

Although both results coincide, there is a fundamental differ-

ence in the way they are obtained. In [24], [22], the block-

length is assumed to be infinitely large from the start and then

the limit is taken in N and K . By contrast, we have obtained

(35) by changing the order of both limits. Note also that, while

Φ
(
r/θout

−
)

and Φ
(
r/θout

+

)
are decreasing functions of β for

r < 0, Φ
(
r/θout

+

)
is increasing in β for r > 0. Although no

tight lower bound was derived for r > 0, this strongly suggests

the existence of a crossing point for the optimal average error

probability for an error rate of 1/2. We will see a practical

example of this crossing point effect in Figure 3.

Figure 2 depicts the bounds on Pout(r|β, c) in (32) as a

function of β for different values of c, assuming SNR = 10 dB

and r = −C(σ2) (for fair comparison since C(σ2) is implic-

itly a function of c). For each value of c we also provide the

limiting outage probability as given in (35). The upper and

lower bounds are seen to approach the outage probability at a

rate O(β−1) as β grows, which is easily confirmed by direct

calculus.

We conclude this section by a comparison in Figure 3 of

the theoretical results against practical codes. We specifically

consider a scenario with K = 8 transmit and N = 16 receive

antennas employing QPSK modulation at each antenna. Cod-

ing and modulation are set up in a conventional bit-interleaved

coded modulation (BICM) scheme, with a random interleaver

separating the code and the modulation. At the receiver, we

employ a non-iterative demodulation scheme, with a MAP

MIMO demodulator based on a full code book enumeration.

We consider short LDPC codes and take as an example the rate

1/2 code used in the WiMAX standard [25], corresponding

to a coding rate in nats R = log(2). This code is a quasi-

cyclic irregular repeat-accumulate (IRA) LDPC code where

the accumulator is slightly modified to ease the encoding

circuit.

We consider code blocks of n′ = 576 bit and n′ = 2304
bit, corresponding to n = n′/(2K) ∈ {36, 144} channel

uses. The error probability of the code described above for

n ∈ {36, 144} is compared against the approximate upper and

lower bounds (Theorem 3) obtained when coding at second

order rate r = (R − C(σ2))
√
nK, for different SNR (i.e.,

σ−2) values (corresponding to a span from r ≃ 5.2 for −4 dB
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Fig. 2. Bounds on the second-order outage probability as a function of β for different values of c, r = −C(σ2), and SNR = 10 dB. The limiting outage

probability is Pout
△

= Pout(r|∞, c).

SNR to r ≃ −10 for 0 dB SNR, when n = 144). We can

make several interesting observations from this figure. For both

block-lengths, the SNR-gap between the simulation results and

the corresponding bounds by Theorem 3 is roughly constant

(to about 4 dB) for a large range of SNR values.

Also note that both theoretical and simulated curves exhibit

a crossing point close to 1/2 error probability, which goes in

line with Remark 6.

IV. SUMMARY AND DIRECTIONS FOR FUTURE WORK

We have studied the second-order coding rate of the MIMO

quasi-static Rayleigh fading channel using information-

spectrum methods and Gaussian tools from random matrix

theory. To this end, we derived a CLT for the asymptotic

analysis of the “information density” where the channel di-

mensions as well as the block-length grow infinitely large at

the same speed and the coding rate is a perturbation within

O(1/
√
nK) of the asymptotic capacity. The derived CLT

allowed us to characterize closed-form upper and lower bounds

on the optimal average error probability which depend only

on the main system and channel parameters. The proposed

approach to the study of the asymptotic statistics of the

“mutual information density” for MIMO channels is original

and can be further applied to other scenarios, such as the

block-fading regime where coding is performed over multiple

coherence blocks or, in a more practical context, the error

performance achieved under linear receive filters.

APPENDIX A

AUXILIARY RESULTS ON INFORMATION SPECTRUM

The objective of this section is to prove Proposition 1 below

which provides analytical bounds on the optimal average error

probability Pe(r|β, c) and constitutes the first step of the proof

of Theorem 3, developed in Appendix B.

We first state a variation of Verdú–Han’s lemma [12] which

appears to be more adequate to characterize the second-order

approximation of the error probability.

Lemma 1 (Variation on Verdú-Han’s lemma): For any in-

teger n ≥ 1, let Xn be an arbitrary random variable uniformly

distributed over the set of Mn messages issued from Mn
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Fig. 3. Approximate bounds on the error probability for finite n, as a function of the SNR = 1/σ2 , r = K(R − C) for K = 8, N = 16, R = log(2),
n ∈ {36, 144}, C being evaluated with c = N/K , β = n/K and for different SNR values. Theoretical curves are compared to a rate 1/2 LDPC QPSK
code (giving R = log(2)).

realizations of PXn ∈ P(Sn), and let Y n be the output

random variable of the channel PY n|Xn,Hn corresponding to

the input Xn and the random fading Hn. Then, the average

error probability of such a (P
(n)
e ,Mn)-code Cn must satisfy

P (n)
e (Cn) ≥ sup

γ>0
sup

{Qn}∞
n=1{

Pr

[
log

PY n|Xn,Hn(dY n|Xn, Hn)

Qn(dY n|Hn)
≤ log γ

]
− γ

Mn

}

(37)

where Qn(·|Hn) is an Hn-measurable random variable valued

in P(CN×n).
Proof: The proof follows straightforwardly from that

in [12] which itself is related to [13]. We remark that a similar

result was already used in [8] without an explicit proof and

also follows from the same steps used to prove the “meta-

converse” theorem in [9, Thm. 26, 27].

Lemma 2 (Variation of Feinstein’s lemma): Let n ≥ 1 be

an integer and denote by Y n the output from the channel

PY n|Xn,Hn corresponding to an input distribution PXn and

random fading Hn. We denote Pn(dY
n|Hn) the distribution

of such Y n given Hn. Then, there exists a block-length n
codebook of size Mn that, together with the maximum a

posteriori (MAP) decoder, forms a code Cn whose average

error probability P
(n)
e (Cn) satisfies:

P (n)
e (Cn) ≤

inf
γ>0

{
Pr

[
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
≤ log γκ

]
+

Mn

γ

}

+ Pr

(
Pn(dY

n|Hn)

P̃n(dY n|Hn)
> κ

)
(38)

for any probability measure P̃n(dY
n|Hn) ≫ Pn(dY

n|Hn)

and positive value κ, where
Pn(dY

n|Hn)

P̃n(dY n|Hn)
denotes the Radon-

Nikodym derivative.

Proof: The proof simply follows from Feinstein’s

lemma [1] and the introduction of the event

Bn =

{
Y n ∈ C

N×n :
Pn(Y

n|Hn)

P̃n(Y n|Hn)
> κ

}
. (39)
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In order to obtain Part-(ii) (Upper bound) of Proposition 1

below, we need the following technical result.

Lemma 3 (A divergence result): Let P̃n(dỸ
n|Hn) and

Pn(dY
n|Hn) be the output distributions of the channels

Ỹ n = 1√
K
HnX̃n + σWn and Y n = 1√

K
HnXn + σWn,

respectively, where X̃n is standard Gaussian (i.e., with

independent CN (0, 1) entries) and Xn =
√
nKX̃n/‖X̃n‖F .

Then, for any sequence κn satisfying κn → ∞,

αn , Pr

(
log

Pn(dY
n|Hn)

P̃n(dY n|Hn)
≥ log κn

)
→ 0 (40)

where Pr(·) is taken over Hn standard Gaussian and

Y n ∼ Pn.

Proof: For two distributions P and Q, let βα(P,Q) be

defined as in [9, Eq. (100)]. Then, we have the following

bounds on βα(P,Q) [9, Eqs. (154)-(157)]:

βα(P,Q) ≥ exp

(
−D (P‖Q) + h(α)

α

)
(41)

where D (P‖Q) is the Kullback-Leibler divergence and h(x)
the binary entropy function, and [9, Eq. (103)]

βα(P,Q) ≤ 1

γ0
(42)

for any γ0 satisfying

Pr

(
dP

dQ
≥ γ0

)
≥ α. (43)

Setting P = Pn(dY
n|Hn), Q = P̃n(dY

n|Hn), α = αn,

γ0 = κn and using the upper and lower bounds on βα, we

conclude that

exp



−
D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)
+ h(αn)

αn





≤ 1

κn
→ 0. (44)

To obtain (40), it is thus sufficient to prove

D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)
= O(1).

By the data-processing inequality for the Kullback-Leibler

divergence [26],

D
(
Pn(dY

n|Hn)‖P̃n(dY
n|Hn)

)

= D
(
PY n|Hn‖PỸ n|Hn

)
(45)

≤ D
(
PY nX̃n|Hn‖PỸ nX̃n|Hn

)
(46)

= D
(
PY n|HnX̃n‖PỸ n|HnX̃n

)
(47)

= EHn,X̃n

[
D
(
PY n|Hn=Hn,X̃n=X̃n‖PỸ n|Hn=Hn,X̃n=X̃n

)]
.

(48)

Note that, for given Hn, X̃n, the channel outputs Y n, Ỹ n are

Gaussian distributed, i.e.,

PY n|Hn,X̃n ∼ CN
(

vec

(
1√
K

Hn

√
nKX̃n

‖X̃n‖F

)
, σ2IN×n

)

(49)

PỸ n|Hn,X̃n ∼ CN
(

vec

(
1√
K

HnX̃n

)
, σ2IN×n

)
(50)

where the function vec (A) vectorizes the matrix A. Using

D
(
CN

(
m1, σ

2I
)
‖CN

(
m2, σ

2I
))

= ‖m1 − m2‖2/σ2 to-

gether with (49) and (50) in (48), we obtain from standard

computations

EHn,X̃n

[
D
(
PY n|Hn=Hn,X̃n=X̃n‖PỸ n|Hn=Hn,X̃n=X̃n

)]

= EHn,X̃n



 1

σ2K

∣∣∣∣∣

√
nK

‖X̃n‖F
− 1

∣∣∣∣∣

2

‖HnX̃n‖2F



 (51)

=
1

σ2

N

K
E

[∣∣∣
√
nK − ‖X̃n‖F

∣∣∣
2
]

(52)

=
1

σ2

N

K

(
2nK − 2

√
nKE

[
‖X̃n‖F

])
. (53)

Now, since X̃n is Gaussian,
√
2‖X̃n‖F is χ2nK-distributed,

so that

E

[
‖X̃n‖F

]
=

Γ(nK + 1/2)

Γ(nK)
. (54)

Using this result in (53) leads to

(53) =
2nN

σ2

(
1− Γ(nK + 1/2)√

nKΓ(nK)

)
(55)

≤ 2nN

σ2

(
1−

√
nK

nK + 1/2

)
(56)

=
2nN

σ2

(
1−

√
1− 1/2

nK + 1/2

)
(57)

=
2nN

σ2
(1− 1 +O(1/(nK))) = O(1) (58)

where we used in (56) that for a ∈ (0, 1) and x > 0 [27]

1 ≥ Γ(x+ a)

Γ(x)xa
≥
(

x

x+ a

)1−a

(59)

and (58) follows because
√
1 + x = 1 +O(x) as x → 0.

With this result at hand, we can prove the following result.

Proposition 1 (Bounds on the average error probability):

The following two statements hold:

(i) Lower bound: Let Y n
+ ∈ C

N×(n+1)
denote the random

variable associated to the output of the channel PY n
+ |Xn

+,Hn

corresponding to the input Xn
+ ∈ C

K×(n+1)
and fading

Hn ∈ C
K×N

. Then, (60) on the top of the next page holds,

where Qn,+(·|Hn) is an Hn-measurable random variable

taking values in P(CN×(n+1)) and

Sn,+
= =

{
Xn

+ ∈ C
K×(n+1)

∣∣∣
1

(n+ 1)K
trXn

+(X
n
+)

H = 1

}
.

(61)
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Pe(r|β, c) ≥ F(r|β, c)
△

= inf
{PXn

+
}∞

n=1

PXn
+
∈P(Sn+1

= )

sup
{Qn,+}∞

n=1

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

(
1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Qn,+(dY n
+ |Hn)

− C

)
≤ r − ξ

]
(60)

Pe(r|β, c) ≤ G(r|β, c) △

= lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

(
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]
(62)

(ii) Upper bound: There exists a codebook of size Mn

with codewords of block-length n that together with the ML

decoder form a (P
(n)
e ,Mn)-code Cn such that, for all real r,

(62) on the top of the next page holds, which is computed

from the probability measure induced by inputs uniformly

distributed over the power shell:

PXn(Xn) =
1

[
trXn(Xn)H = nK

]

S2nK(
√
nK)

(63)

which satisfy PXn(Sn
=) = 1, and where S2nK(r) =

2πnKΓ(nK)−1r2nK−1 is the surface area of a 2nK-

dimensional sphere of radius r, and P̃n is the output distribu-

tion of the channel PY n|Xn,Hn induced by a complex Gaussian

input distribution with zero mean and covariance IKn.

Proof: This proof is segmented in two parts. We first

derive error probability bounds for each N,K, n, based on the

established slight variations on the Verdú–Han’s Lemma 1 and

the modified Feinstein’s Lemma 2 and then bringing N,K, n
to infinity leads to Proposition 1.

We first start with the proof of the lower bound (60). Let

Cn be a (P
(n)
e ,Mn)-code whose probability measure satisfies

PXn ∈ P(Sn). From this code, following the approach

in [9], we define the code Cn,+ with codewords {Xn
i,+ =

[Xn
i ,xi], i = 1, . . . ,Mn}, where {Xn

i , i = 1, . . . ,Mn} =
Supp (Cn) and xi satisfies ‖xi‖2 = (n+ 1)K − trXn

i (X
n
i )

H,

and with the same decision region as for Cn discarding

the last channel output (corresponding to input xi). Note

that the probability measure PXn
+

of the code Cn,+ satisfies

PXn
+
∈ P(Sn,+

= ) and that P
(n)
e (Cn,+) = P

(n)
e (Cn).

From Lemma 1, the average error probability must satisfy

P (n)
e (Cn) = P (n)

e (C+,n)

≥ Pr

[
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Q+,n(dY n
+ |Hn)

≤ log γ

]
− γ

Mn

(64)

for each n = 1, 2, . . . , γ > 0, where Q+,n(·|Hn) is Hn-

measurable and takes values in P(CN×(n+1)), with Y n
+ =

1√
K
HnXn

+ + σWn
+ , Wn

+ ∈ CN×(n+1) with i.i.d. CN (0, 1)
entries. Let us choose γ as

1

nK
log γ =

1

nK
logMn − ξ√

nK
(65)

for some ξ > 0. We now set the coding rate

1

nK
logMn = C +

r√
nK

(66)

for some real r. Then, combining (64)–(66), we obtain

P (n)
e (Cn) ≥

Pr

[
√
nK

(
1

nK
log

PY n
+ |Xn

+,Hn(dY n|Xn
+, H

n)

Q+,n(dY n
+ |Hn)

− C

)

≤ r − ξ

]
− exp(−

√
nKξ). (67)

Taking the limit superior over n on the last equation, we obtain

lim sup

n
(β,c)−−−→∞

P (n)
e (Cn) ≥ lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Q+,n(dY n
+ |Hn)

− C

)
≤ r − ξ

]
.

(68)

As this is true for each ξ > 0 and Q+,n as defined above, we

can take ξ ↓ 0 followed by the supremum over Q+,n on the

RHS of (68). Taking then the infimum over the codes on the

RHS then LHS, we conclude that

Pe(r|β, c) ≥ F(r|β, c) (69)

which proves part (i) of the proposition.

We now prove part (ii) for the upper bound in (62). From

Lemma 2, we know that there exists a (P
(n)
e ,Mn)-code Cn

whose average error probability satisfies

P (n)
e (Cn) ≤ inf

γ>0

{
Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
log(γκn)

]
+

Mn

γ

}
+ αn (70)

for every n = 1, 2, . . . , where αn is defined as in Lemma 3.

Let us now set

1

nK
log γ =

1

nK
logMn +

ξ√
nK

(71)

for some ξ > 0. Then, we have the following chain of
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inequalities:

P (n)
e (Cn) ≤ Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
log γ +

1

nK
log κn

]
+

Mn

γ
+ αn

(72)

= Pr

[
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)

≤ 1

nK
logMn +

ξ√
nK

+
1

nK
log κn

]

+ exp(−
√
nKξ) + αn (73)

which simply follows by replacing (71) in (70). For some r
real, we choose the coding rate

1

nK
logMn = C +

r√
nK

. (74)

By combining (70) and (73), taking the superior limit on n,

then ξ ↓ 0 on the RHS, and the infimum over the codes on

the LHS, we obtain

Pe(r|β, c) ≤ lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]

(75)

where we used αn → 0 while κn → ∞, such that
1√
nK

log κn → 0. This concludes the proof.

APPENDIX B

PROOF OF THEOREM 3

The proof relies on information spectrum methods [19] and

is more exactly related to Hayashi’s proof-techniques used in

[8]. Our starting point is Proposition 1 in Appendix A which

relates the optimal average error probability Pe(r|β, c) to the

statistics of the mutual information density.

The main problem in studying the optimal average error

probability lies in the difficulty to perform any analytical

calculus on the information spectrum of PY n|Xn,Hn , unless

the underlying distributions (of Xn, Y n|Xn, Hn, or Y n|Hn)

are Gaussian. Proposition 1 precisely handles this difficulty.

Indeed, first note that the lower bound (60) can be further

bounded by the same expression with Qn,+ chosen to be

Gaussian with appropriate mean and variance. As for (62), it

already features an information spectrum of Gaussian distribu-

tions. Both lower and upper bounds will thus rely on exploiting

Theorem 2 with the major difference that, while the upper

bound from (62) provides a definite choice for PXn that allows

for an accurate control of the variance θn of Theorem 2, (60)

does not and will force us to consider the worst case scenario

where 1
K tr (An)2 = 0, with An = IN − 1

nX
n(Xn)H. As

briefly discussed in Section III, the term (An)2 appears due

to the randomness in the channel Hn, leaving the problem

of non-matching upper and lower bounds; this is unlike the

previously studied AWGN scenarios (e.g., [8], [9]) where

Hn = IN and only terms in An but not (An)2 account for

the second-order statistics.

A. Proof of the lower bound on the optimal average error

probability

From (60),

Pe(r|β, c) ≥ inf
{PXn

+
}∞

n=1

PXn
+
∈P(Sn+1

= )

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK

×
(

1

nK
log

PY n
+ |Xn

+,Hn(dY n
+ |Xn

+, H
n)

Qn,+(dY n
+ )

− C

)
≤ r − ξ

]

(76)

where, for fixed Hn, Qn,+ is taken to be complex Gaussian

with zero mean and covariance matrix 1
KHn(Hn)H + σ2IN .

Thus,

Pe(r|β, c) ≥ inf
{PXn

+
∈P(Sn,+

= )}∞
n=1

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]
(77)

where I
Xn

+

N,K is defined in (78) on the next page and where

Wn
+ ∈ CN×(n+1) is composed of i.i.d. CN (0, 1) elements.

To proceed, we now call Theorem 2 for the random variable

I
Xn

+

N,K . Let {Xn
+}∞n=1 be a sequence with Xn

+ random with sup-

port in Sn,+
= for each n. Denoting An

+ = IK− 1
n+1X

n
+(X

n
+)

H,

for any real z, as n
(β,c)−−−→ ∞, we then have

Pr

[√
nK

θ̃n,+

(
I
Xn

+

N,K − C
)
≤ z

]
→ Φ(z) (79)

where θ̃2n,+
△

= 1
1+n−1 (θ

2
− + ζ 1

K tr (An
+)

2 − 1
K log(1 −

c−1δ0(σ
2)(1 + δ0(σ

2))−2) − 1
K ζβ−1), in which the

terms in K−1 or n−1 arise from accounting for the fact

that Xn
+ ∈ CK×(n+1) and Wn

+ ∈ CN×(n+1). But since

− 1
K log(1 − c−1δ0(σ

2)(1 + δ0(σ
2))−2) − 1

K ζβ−1 → 0 as

n
(β,c)−−−→ ∞, we have more simply by Slutsky’s lemma

Pr

[√
nK

θn,+

(
I
Xn

+

N,K − C
)
≤ z

]
→ Φ(z) (80)

with θ2n,+
△

= θ2− + ζ 1
K tr (An

+)
2.

We can now write

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

= Pr

[√
nK

θn,+

(
I
Xn

+

N,K − C
)
≤ r − ξ

θn,+

]
(81)

(a)

≥





Pr
[√

nK
θn,+

(
I
X̄n

+

N,K − C
)
≤ r−ξ

θ−

]
, r ≤ 0

Pr
[√

nK
θn,+

(
I
X̄n

+

N,K − C
)
≤ 0
]

, r > 0
(82)

=

{
Φ
(

r−ξ
θ−

)
+ ℓn , r ≤ 0

1
2 + ℓn , r > 0

(83)
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I
Xn

+

N,K
△

=
1

K
log det

(
IN +

1

σ2

Hn(Hn)H

K

)

+
1

nK
tr

[(
Hn(Hn)H

K
+ σ2IN

)−1(
Hn

√
K

Xn
+ + σWn

+

)(
Hn

√
K

Xn
+ + σWn

+

)H

−Wn
+(W

n
+)

H

]
(78)

for some sequence ℓn ↓ 0, where (a) holds since θn,+ ≥ θ− >
0 and since we took r− ξ > 0 for r > 0. The term 1/2 arises

from Φ(0) = 1/2 which originates from θn not being bounded

from above since 1
K tr (An

+)
2 can grow like O(n).

Taking the limit superior as n
(β,c)−−−→ ∞ of the above

equation leads to

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

≥
{
Φ
(

r−ξ
θ−

)
, r ≤ 0

1
2 , r > 0.

(84)

By continuity of Φ, we can freely take the limit ξ ↓ 0 on the

right- then left-hand sides to obtain

lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
I
Xn

+

N,K − C
)
≤ r − ξ

]

≥
{
Φ
(

r
θ−

)
, r < 0

1
2 , r ≥ 0.

(85)

Equation (85) is valid regardless of the choice of the

sequence {PXn
+
∈ P(Sn,+

= )}∞n=1. This therefore implies

Pe(r|β, c) ≥
{
Φ
(

r
θ−

)
, r < 0

1
2 , r ≥ 0

(86)

which completes the proof.

B. Proof of the upper bound on the optimal average error

probability

From (62), we recall that

Pe(r|β, c) ≤ lim
ξ↓0

lim sup

n
(β,c)−−−→∞

Pr

[
√
nK×

(
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
− C

)
≤ r + ξ

]
(87)

where P̃n(·|Hn) is a Gaussian random variable with zero mean

and covariance Hn(Hn)H + σ2IN and the outer probability

is taken over Hn and over the random variable Xn having

uniform distribution PXn over the sphere Sn
=, as per (63).

Denoting, similar to above,

IX
n

N,K =
1

nK
log

PY n|Xn,Hn(dY n|Xn, Hn)

P̃n(dY n|Hn)
(88)

we get from the Gaussianity of both PY n|Xn,Hn and P̃n that

IX
n

N,K is given by (19) with Xn of law PXn , while Hn and

Wn are zero mean Gaussian with (properly normalized) unit

covariance.

Once again, we resort to Theorem 2 to determine the

limiting behavior of IX
n

N,K . As opposed to the lower bound,

where PXn ∈ P(Sn
=) was left undefined, PXn is now fixed

and will allow for a more accurate control of the limiting

variance of IX
n

N,K . We first obtain

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
IX

n

N,K − C
)
≤ r + ξ

]

= lim sup

n
(β,c)−−−→∞

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ r + ξ

θn

]
(89)

where θn is defined in (20) where we recall that An = IN −
1
nX

n(Xn)H. Now, it appears that

1

K
tr
[
(An)2

] (β,c)−−−→ 1

β
(90)

almost surely. To obtain this result, it suffices to realize

that Xn = X̄n( 1
NK tr X̄n(X̄n)H)−

1
2 for X̄n ∈ C

K×n
a

standard Gaussian random matrix with entries of zero mean

and unit variance; from classical random matrix results (that

may be obtained by means of the Gaussian tools defined

in Appendix C), we have that 1
NK tr X̄n(X̄n)H → 1 while

1
NK tr (X̄n(X̄n)H)2 → 1+β−1, almost surely; plugging these

results in the expression of 1
K tr (An)2 gives the expected

result. As such, we now have that θn
(β,c)−−−→ θ+ almost surely

(and so in probability), with θ+ defined in Theorem 3. By

Slutsky’s lemma and Theorem 2, we thus have

lim sup

n
(β,c)−−−→∞

Pr
[√

nK
(
IX

n

N,K − C
)
≤ r + ξ

]

= lim sup

n
(β,c)−−−→∞

Pr

[√
nK

θn

(
IX

n

N,K − C
)
≤ r + ξ

θ+

]
(91)

= Φ

(
r + ξ

θ+

)
(92)

which, along with the fact that

lim
ξ↓0

Φ

(
r + ξ

θ+

)
= Φ

(
r

θ+

)
(93)

concludes the proof.

APPENDIX C

GAUSSIAN TOOLS AND RELATED RESULTS

The CLT, Theorem 2, relies on advanced tools from random

matrix theory along with standard linear algebraic relations

which are constantly called for. This section introduces the

random matrix concepts and collects the aforementioned rela-

tions.
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Lemma 4 (Some matrix inequalities): For two N ×N ma-

trices A and B, the following holds

(i) |trAB| ≤
√

trAAHtrBBH. (94)

If A is Hermitian nonnegative definite, it further holds that

(ii) |trAB| ≤ ‖B‖ trA (95)

(iii)
1

N
trA ≤ ‖A‖ . (96)

Lemma 5 (Cauchy-Schwarz inequality): For two complex

random variables x and y,

|E [xy]| ≤
√
E [|x|2]

√
E [|y|2]. (97)

Remark 7 (Application of the Cauchy-Schwarz inequality):

Consider two random variables x and y. By the Cauchy-

Schwarz inequality,

|E [(x− E [x]) (y − E [y])]| ≤
√
Var[x]

√
Var[y]. (98)

Thus,

|E [xy]| = |E [x]E [y] + E [(x− E [x]) (y − E [y])]| (99)

≤ |E [x]E [y]|+
√
Var[x]

√
Var[y]. (100)

Moreover, it follows that

Var[x+ y]

= Var[x] + Var[y] + 2Re {E [(x− E [x]) (y − E [y])]}
(101)

≤ Var[x] + Var[y] + 2
√
Var[x]

√
Var[y] (102)

=
(√

Var[x] +
√
Var[y]

)2
. (103)

Lemma 6 (Integration by parts formula [17, Equation (2.1.42)]):

Let x = [x1, . . . , xN ]
T ∼ CN (0,R) and let

f(x) = f (x1, . . . xN , x∗
1, . . . x

∗
N ) be a C1 complex function,

polynomially bounded together with its derivatives. Then,

E [xif(x)] =

N∑

j=1

RijE

[
∂f(x)

∂x∗
j

]
. (104)

Remark 8 (Integration by parts formula for functionals of matrices with i.i.d. entries):

Let f (W ) be a C1 complex function of the elements of W
and W ∗, polynomially bounded together with its derivatives,

where W has i.i.d. entries Wij ∼ CN (0, 1). Then

E [Wijf (W )] = E

[
∂f (W )

∂W ∗
ij

]
. (105)

Lemma 7 (Poincaré-Nash Inequality [17, Propostion 2.1.6]):

Let x and f(x) be defined as in Lemma 6 and

let ∇xf(x) = [∂f(x)/∂x1, . . . , ∂f(x)/∂xN ]T and

∇x∗f(x) = [∂f(x)/∂x∗
1, . . . , ∂f(x)/∂x

∗
N ]

T
. Then,

Var [f(x)] ≤ E
[
∇xf(x)

TR∇xf(x)
∗]

+ E
[
∇x∗f(x)HR∇x∗f(x)

]
. (106)

Remark 9 (Poincaré-Nash Inequality for functionals of matrices with i.i.d. entries):

Let f (W ) be a function of the elements of W and W ∗

as in Remark 8, where W ∈ CN×n has i.i.d. entries

Wij ∼ CN (0, 1). Then,

Var [f (W )] ≤
N∑

i=1

n∑

j=1

E



∣∣∣∣
∂f (W )

∂Wij

∣∣∣∣
2

+

∣∣∣∣∣
∂f (W )

∂W ∗
ij

∣∣∣∣∣

2

 .

(107)

Lemma 8 (Identities for Complex Derivatives): Let H ∈
CN×K . Then,

∂Hpq

∂H∗
ij

= 0 (108)

∂Hpq

∂Hij
= δipδjq (109)

∂
[
HHH

]
pq

∂H∗
ij

= δiqHpj (110)

∂
[
HHH

]
pq

∂Hij
= δipH

∗
qj (111)

∂
[
HHH

]
pq

∂H∗
ij

= δjpHiq (112)

∂
[
HHH

]
pq

∂Hij
= δjqH

∗
ip. (113)

Moreover, denote Q =
(

1
KHHH + xIN

)−1
and Q̃ =(

1
KHHH+ xIK

)−1
for some x > 0. Then,

∂Qpq

∂H∗
ij

= − 1

K
[QH]pjQiq (114)

∂Qpq

∂Hij
= − 1

K
[HHQ]jqQpi (115)

∂Q̃pq

∂H∗
ij

= − 1

K
Q̃pj [HQ̃]iq (116)

∂Q̃pq

∂Hij
= − 1

K
Q̃jq[Q̃HH]pi. (117)

Corollary 1: Let H ∈ CN×K and C ∈ CN×N . Denote

Q =
(

1
KHHH + xIN

)−1
for some x > 0. Then,

(i) tr
∂Q

∂H∗
ij

C = − 1

K
[QCQH]ij (118)

(ii) tr
∂
(
HHH

)

∂H∗
ij

C = [CH]ij . (119)

Proof: The proof follows directly from Lemma 8 and

some straightforward calculus.

Theorem 4: Let {Hn}∞n=1, where Hn ∈ CN×K has

i.i.d. entries Hn
ij ∼ CN (0, 1). For u > 0, let

Qn(u) =
(

1
KHn (Hn)

H
+ uIN

)−1

and Q̃n(u) =
(

1
K (Hn)

H
Hn + uIK

)−1

. Then, as n
(β,c)−−−→ ∞,

E

[
1

K
trQn(u)

]
= δ0 (u) +O

(
1

u4n2

)
(120)

E

[
1

K
tr Q̃n(u)

]
= δ̃0 (u) +O

(
1

u4n2

)
(121)
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where

δ0(u) =
c− 1

2u
− 1

2
+

√
(1− c+ u)2 + 4cu

2u
(122)

δ̃0(u) = δ0(u)−
c− 1

u
. (123)

Proof: The proof follows from a direct adaption of [17,

Theorem 7.2.2] (see also [21, Theorem 3 and Proposition 5]

for a more complex matrix model) along with a careful control

of the dependence on u in the bounds.

Remark 10: The function s(z) = δ0(−z)
c for z ∈ C \ R+

corresponds to the Stieltjes transform of the Marc̆enko-Pastur

law, see e.g., [28, Chapter 3.2].

Property 1 (Some properties of δ0(u)): The function

δ0(u), u > 0, as defined in Theorem 4 satisfies

(i) δ0(u) >
c

(1 +
√
c)2 + u

> 0 (124)

(ii) δ0(u) <
c

u
(125)

(iii) δ0(u) =
c

1− c+ u (1 + δ0(u))
(126)

(iv)
δ0(u)

1 + δ0(u)
= c− uδ0(u) (127)

(v)
1

1 + δ0(u)
= 1− c+ uδ0(u) (128)

(vi) δ′0(x) = − δ0(x)(1 + δ0(x))

1− c+ x(1 + 2δ0(x))
. (129)

Proof: Properties (i)–(iii) are due to δ0(u) = cm(−u),
where m(z) is the Stieltjes transform of the Marc̆enko-Pastur

law with support in [(1−√
c)2, (1+

√
c)2]∪{0} (see Remark 10

in Appendix C). Property (iv) follows from (iii) since

δ0(u) =
c

1− c+ u (1 + δ0(u))
(130)

⇐⇒ δ0(u) = (1 + δ0(u)) c− uδ0(u) (1 + δ0(u)) (131)

⇐⇒ δ0(u)

1 + δ0(u)
= c− uδ0(u). (132)

Property (v) follows from (iii) and (iv). Property (vi) is

obtained from the differentiation of

c = δ0(x)(1 − c+ x) + xδ0(x)
2 (133)

which follows from Property (iii).

Lemma 9: Let σ2, c > 0 and δm(x),m ≥ 0, be as defined

in Proposition 4 in Appendix E-A. Then,

(i)

∫ ∞

σ2

c
1− c+ 2uδ0(u)− u2

c δ0(u)
2

u(1− c+ u(1 + 2δ0(u)))
du = log(1 + δ0(σ

2))

− δ0(σ
2)

1 + δ0(σ2)
+ c log

(
1 +

1

σ2

1

1 + δ0(σ2)

)
(134)

(ii)

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (135)

Proof: For the proof of part (i), simply note that

c
1− c+ 2uδ0(u)− u2

c δ0(u)
2

u(1− c+ u(1 + 2δ0(u)))

=
c

u
− uδ0(u)

2 + c

1− c+ u(1 + 2δ0(u))
(136)

=
c

u
− uδ0(u)

2 + c

uδ0(u) +
c

δ0(u)

(137)

=
c

u
− δ0(u) (138)

where we used Property 1 (iii) in the second equality. The

result then unfolds from Theorem 1.

For part (ii), we start with the following calculus:

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

=

∫ ∞

σ2

[
δ0(u)

1− c+ u(1 + 2δ0(u))
+

σ2δ0(u)(1 + δ0(σ
2))

(1− c+ σ2(1 + σ2) + uδ0(u))(1− c+ u(1 + 2δ0(u)))

]
du

(139)

=

∫ ∞

σ2

[
− δ0(u)δ

′
0(u)

δ0(u)(1 + δ0(u))

+
σ2δ′0(u)(1 + δ0(σ

2))

1 + σ2(1 + δ0(σ2)) + δ0(u)σ2(1 + δ0(σ2))

]
du

(140)

where in the first equality we developed the expression of

δ1(u) and in the second equality we introduced δ′0(u) in

both numerators and used the relation by iterating the relation

xδ0(x)
2 = c − δ0(x)(1 − c + x) (from Property 1 (iii)) in

the second denominator in order to maintain a degree one

polynomial in δ0(u). Writing δ0(u)δ
′
0(u) = [2δ0(u)δ

′
0(u) +

δ′0(u)] − δ′0(u)(1 + δ0(u)) in the numerator of the first term,

we then find

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

=

∫ ∞

σ2

[
− 2δ0(u)δ

′
0(u) + δ′0(u)

δ0(u)(1 + δ0(u))
+

δ′0(u)

δ0(u)

+
σ2δ′0(u)(1 + δ0(σ

2))

1 + σ2(1 + δ0(σ2)) + δ0(u)σ2(1 + δ0(σ2))

]
du (141)

=
[
− log(1 + δ0(u))

+ log(1 + σ2(1 + δ0(σ
2))(1 + δ0(u)))

]∞
u=σ2

(142)

= log(1 + δ0(σ
2)) + log(1 + σ2(1 + δ0(σ

2)))

− log(1 + σ2(1 + δ0(σ
2))2) (143)

= log

(
(1 + δ0(σ

2))(1 + σ2(1 + δ0(σ
2)))

1 + σ2(1 + δ0(σ2))2

)
. (144)
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At this point, remark that

(1 + δ0(σ
2))(1 + σ2(1 + δ0(σ

2)))

1 + σ2(1 + δ0(σ2))2

= 1− δ0(σ
2)

1 + σ2(1 + δ0(σ2))2
(145)

and that

1 + σ2(1 + δ0(σ
2))2 = 1 + σ2 + σ2δ0(σ

2) + c+ cδ0(σ
2)

(146)

=
c

δ0(σ2)
+ 2c+ cδ0(σ

2) (147)

= c
(1 + δ0(σ

2))2

δ0(σ2)
(148)

using Property 1 (iii) in the second equality.

This allows us to finally conclude that

∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u(1 + 2δ0(u))
du

= − log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
. (149)

APPENDIX D

PROOFS OF THE MAIN RANDOM MATRIX RESULTS

In the proof of Theorem 2, we fundamentally rely on the

fact that the random matrices Wn and Hn are Gaussian by

assumption. This allows us to use the powerful integration-by-

parts and Poincaré–Nash inequalities (Lemma 6 and Lemma 7

in Appendix C) to compute the expectation and bound the vari-

ance of functionals of Gaussian variables. The derivation of

Theorem 2 is specifically based on the characteristic function

approach as explained in great detail in [21], [17].

This appendix is structured as follows: In Appendix D-A,

we introduce some additional notations and useful identities.

We then prove Theorem 2 in Appendix D-B.

A. Preliminaries

For readability, we often drop the index n in matrix nota-

tions when there is no confusion, e.g., we write H instead of

Hn.

We start with the definition of two matrices, the so-called

“resolvents” of K−1HHH and K−1HHH , respectively, which

will be of repeated use:

Q(x) =

(
1

K
HHH + xIN

)−1

∈ C
N×N (150)

Q̃(x) =

(
1

K
HHH + xIK

)−1

∈ C
K×K (151)

for x > 0. One can easily verify that:

Q(x)
HHH

K
= IN − xQ(x), Q̃(x)

HHH

K
= IK − xQ̃(x).

(152)

We will also rely several times on the following identities:

Q(x)H = HQ̃(x), Q̃(x)HH = HHQ(x) (153)

Q(x)
HHH

K
=

HHH

K
Q(x), Q̃(x)

HHH

K
=

HHH

K
Q̃(x)

(154)

Q(x)Q(y) = Q(y)Q(x), Q̃(x)Q̃(y) = Q̃(y)Q̃(x). (155)

Using the above relations, it is easy to prove the following

bounds on the spectral norm:

‖Q(x)‖ =
∥∥∥Q̃(x)

∥∥∥ ≤ 1

x
(156)

∥∥∥∥Q(x)
HHH

K

∥∥∥∥ =

∥∥∥∥Q̃(x)
HHH

K

∥∥∥∥ ≤ 1. (157)

B. Proof of Theorem 2

Outline of the proof:

The central object of Theorem 2 is the real quantity

Γn ,
√
nKI

Xn
+

N,K (158)

=

√
n

K
log det

(
IN +

1

σ2

1

K
HHH

)

+
1√
nK

trQ(σ2)

(
1√
K

HX + σW

)(
1√
K

HX + σW

)H

− 1√
nK

trWWH (159)

where I
Xn

+

N,K was defined in (78). We also recall the dimensions

H ∈ CN×K , X ∈ CK×n, and W ∈ CN×n. Moreover, X ∈
Sn
=, where Sn

= was defined in (4).

It is our goal to prove that, under the hypotheses of the

theorem,

φ̃n(t)
△

= E

[
e

it
θn

(Γn−µn)
]
→ e−

t2

2 (160)

for t ∈ R as n
(β,c)−−−→ ∞, where µn

△

=
√
nKC. This will

imply, by Lévy’s continuity theorem [18, Theorem 16.3], that

θ−1
n (Γn − µn) ⇒ N (0, 1) (161)

which is equivalent to the statement of the theorem. The main

difficulty arises from the evaluation of the expectation in (160)

which must be taken with respect to the three random matrices

W , H , and X . Since the direct computation of φ̃n(t) is

intractable, we calculate its derivative with respect to t, leading

to a differential equation which must be integrated. In order

to further simplify the analysis, we split the computation of

the expectation in three steps by successively considering the

conditional expectations with respect to each of the matrices.

These expectations are developed by the integration by parts

formula (Lemma 6 in Appendix C) which yields terms that

are either further developed or shown to be asymptotically

negligible by bounding their variance with the help of the

Poincaré-Nash inequality (Lemma 7 in Appendix C). The

analysis makes use of several auxiliary results summarized in

Appendix C. In more detail, the proof consists of the following

three main steps:
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1) We first take the expectation over W by fixing

X ∈ Sn
= and H ∈ CN×K : we define the function

φX
n,Hn

n (t)
△

= E

[
eitΓ

X
n,Hn

n

]
, where ΓX

n,Hn

n is the ran-

dom variable Γn taken for fixed H = Hn and X = Xn,

and show that

∂φX
n,Hn

n (t)

∂t
=

(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
φX

n,Hn

n (t)

+ ε̄X
n,Hn

n (t) (162)

for some µX
n,Hn

n = O(n), θX
n,Hn

n = O(1), κX
n,Hn

n =
O(n−1), and ε̄X

n,Hn

n (t) = O(n−2) which must be care-

fully controlled. This establishes a differential equation

for φX
n,Hn

n (t) the solution of which allows us to obtain

an estimate of φX
n,Hn

n (t) under the form ef(t,X,H) (i.e.,

with no expectation over W ).2

2) We then compute the expectation over H : we introduce

the function φX
n

n (t)
△

= E
[
φX

n,Hn

n (t)
]
. Working mainly

with the tractable estimator ef(t,X,H) of φX
n,Hn

n (t) as

developed in step 1), instead of φX
n,Hn

n (t) itself, we

prove in a similar fashion that

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t) + εX
n

n (t)

(163)

for some µX
n

n = O(n), θX
n

n , and εX
n

n (t) = O(n−1).
This establishes a second differential equation.

3) We finally integrate (163) and show that

φ̃X
n

n
△

= E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]
= e−

t2

2 +O
(
n− 1

2

)

(164)

(as n
(β,c)−−−→ ∞). Since (164) holds almost surely for any

random matrix Xn with law PXn ∈ P(Sn
=) for all n,

it holds also for the function φ̃n(t) = E

[
φ̃Xn

n (t)
]
=

E

[
e

it
θn

(Γn−µn)
]

which finally proves (160).

We now detail all these steps rigorously.

Step 1:

In a first step, we consider the expectation over W by

treating H ∈ CN×K and X ∈ Sn
= fixed. We define the

function φX
n,Hn

n (t)
△

= E

[
eitΓ

X
n,Hn

n

]
which we would like to

express as a differential equation of the form
∂φX

n,Hn

n (t)
∂t =

f (X,H, t)φX
n,Hn

n (t) + ε̄X
n,Hn

n (t) for some functional f
and quantity ε̄X

n,Hn

n (t) which vanishes asymptotically. Since

ΓX
n,Hn

n is real, φX
n,Hn

n (−t) = φX
n,Hn

n (t)∗, so that it is

sufficient to consider t ≥ 0 for the rest of the proof.

2Note importantly that, although the term κX
n,Hn

n is of order O(n−1) and
will not play a role at the end of the calculus, it needs to be isolated and not

contained into ε̄X
n,Hn

n (t) as the estimation error φX
n,Hn

n (t)− ef(t,X,H),

which is of the same order of magnitude as ε̄X
n,Hn

n (t), will increase by a

factor n when we take its expectation over H (this is due to µX
n,Hn

n being
of order O(n)).

With the help of (152), we can decompose Γn in the

following way:

Γn = Γn,1 + Γn,2 + Γn,3 + Γn,4 (165)

where

Γn,1 =

√
n

K
log det

(
IN +

1

σ2

1

K
HHH

)

+
1√
nK

trQ
HXXHHH

K
(166)

Γn,2 = − 1√
nK

trQ
HHH

K
WWH (167)

Γn,3 =
σ√
nK

trQ
HXWH

√
K

(168)

Γn,4 =
σ√
nK

trQ
WXHHH

√
K

(169)

and where we have defined Q , Q(σ2) to simplify the

notations.

By (165),

∂φX
n,Hn

n (t)

∂t
=

4∑

k=1

iE
[
ΓX

n,Hn

n,k eitΓ
X

n,Hn

n

]
. (170)

Since ΓX
n,Hn

n,1 is independent of W ,

E
[
ΓX

n,Hn

n,1 eitΓ
X

n,Hn

n

]
= ΓX

n,Hn

n,1 φX
n,Hn

n (t). (171)

The term in ΓX
n,Hn

n,2 is studied as follows:

E

[
ΓX

n,Hn

n,2

]

= − 1√
nK

E

[
trQ

HHH

K
WWHeitΓ

X
n,Hn

n

]
(172)

= − 1√
nK

N∑

k=1

N∑

i=1

[
Q
HHH

K

]

ki

E

[[
WWH

]
ik
eitΓ

X
n,Hn

n

]

(173)

= − 1√
nK

N∑

k=1

N∑

i=1

[
Q
HHH

K

]

ki

n∑

j=1

E

[
WijW

∗
kje

itΓX
n,Hn

n

]
.

(174)

We now use the integration by parts formula (Lemma 6

in Appendix D) to develop the individual terms

E
[
WijW

∗
kje

itΓX
n,Hn

n

]
as follows:

E
[
WijW

∗
kje

itΓX
n,Hn

n

]

= δikE
[
eitΓ

X
n,Hn

n

]
+ itE

[
W ∗

kj

∂ΓX
n,Hn

n

∂W ∗
ij

eitΓ
X

n,Hn

n

]
.

(175)

The derivatives
∂ΓX

n,Hn

n,k

∂W∗
ij

and
∂ΓX

n,Hn

n,k

∂Wij
can be computed by

straightforward application of the derivation rules provided in
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Lemma 8 in Appendix C:

∂Γn,1

∂W ∗
ij

=
∂Γn,1

∂Wij
=

∂Γn,3

∂Wij
=

∂Γn,4

∂W ∗
ij

= 0 (176)

∂Γn,2

∂W ∗
ij

= − 1√
nK

[
Q
HHH

K
W

]

ij

(177)

∂Γn,2

∂Wij
= − 1√

nK

[
WH

HHH

K
Q

]

ji

(178)

∂Γn,3

∂W ∗
ij

=
σ√
nK

[
Q

H√
K

X

]

ij

(179)

∂Γn,4

∂Wij
=

σ√
nK

[
XH

HH

√
K

Q

]

ji

. (180)

Using (165) together with the derivatives (176), (177), (179)

in (175), we obtain

E
[
[WWH]ike

itΓX
n,Hn

n

]

= nδikφ
X

n,Hn

n (t)

+ it

n∑

j=1

E

[
W ∗

kj

(
∂ΓX

n,Hn

n,2

∂W ∗
ij

+
∂ΓX

n,Hn

n,3

∂W ∗
ij

)
eitΓ

X
n,Hn

n

]

(181)

= nδikφ
X

n,Hn

n (t)− it
1√
nK

E

[([
Q
HHH

K
WWH

]

ik

− σ

[
Q

H√
K

XWH

]

ik

)
eitΓ

X
n,Hn

n

]
. (182)

Replacing the last result in (173) yields

E

[
ΓX

n,Hn

n,2 eitΓ
X

n,Hn

n

]

= − n√
nK

trQ
HHH

K
φX

n,Hn

n (t)

+ itE

[(
1

nK
tr

(
Q
HHH

K

)2

WWH

− σ

nK
trQ

HHH

K
Q

H√
K

XWH

)
eitΓ

X
n,Hn

n

]
. (183)

We will now individually treat the second and third terms

on the RHS of the last equation. For the second term, using

the same steps as above, we arrive at

E

[
1

nK
tr

(
Q
HHH

K

)2

WWHeitΓ
X

n,Hn

n

]

=
1

nK

N∑

k=1

N∑

i=1

[(
Q
HHH

K

)2
]

ki

E
[[
WWH

]
ik
eitΓ

X
n,Hn

n

]

(184)

=
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

− it

(nK)
3
2

E

[(
tr

(
Q
HHH

K

)3

WWH

− σtr

(
Q
HHH

K

)2

Q
H√
K

XWH

)
eitΓ

X
n,Hn

n

]
(185)

=
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

− it
n√
n3K3

tr

(
Q
HHH

K

)3

φX
n,Hn

n (t) + εX
n,Hn

n,1 (t)

(186)

where

εX
n,Hn

n,1 (t) =

− itE

[
n√
n3K3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)
eitΓ

X
n,Hn

n

]

+ itE

[
σ

(nK)
3
2

trQ

(
Q
HHH

K

)2
H√
K

XWHeitΓ
X

n,Hn

n

]
.

(187)

Consider now the third term on the RHS of (183) and define

T = QHH
H

K Q H√
K
X. Then,

σ

nK
E
[
trTWHeitΓ

X
n,Hn

n

]

= it
σ

nK

N∑

i=1

n∑

j=1

TijE

[
∂ΓX

n,Hn

n

∂Wij
eitΓ

X
n,Hn

n

]
(188)

= it
σ2

√
n3K3

trQ2HHH

K
Q
HXXHHH

K
φX

n,Hn

n (t)

+ εX
n,Hn

n,2 (t) (189)

where

εX
n,Hn

n,2 (t) =

− it
σ

(nK)
3
2

E

[
trQ

(
Q
HHH

√
K

)2
H√
K

XWHeitΓ
X

n,Hn

n

]
.

(190)
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Combining the last results, we arrive at

E
[
ΓX

n,Hn

n,2 eitΓ
X

n,Hn

n

]
=

− n√
nK

trQ
HHH

K
φX

n,Hn

n (t)

+ it
n

nK
tr

(
Q
HHH

K

)2

φX
n,Hn

n (t)

+ t2

{
n√
n3K3

tr

(
Q
HHH

K

)3

+
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK

}
φX

n,Hn

n (t)

+ it
{
εX

n,Hn

n,1 (t)− εX
n,Hn

n,2 (t)
}
. (191)

We now consider the terms in ΓX
n,Hn

n,4 and ΓX
n,Hn

n,3 . Using

similar calculus as above,

E
[
ΓX

n,Hn

n,4 eitΓ
X

n,Hn

n

]

= E

[
σ√
nK

trQWXH
HH

√
K

eitΓ
X

n,Hn

n

]
(192)

=
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E
[
Wije

itΓX
n,Hn

n

]
(193)

= it
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E

[
∂ΓX

n,Hn

n

∂W ∗
ij

eitΓ
X

n,Hn

n

]

(194)

= it
σ√
nK

N∑

i=1

n∑

j=1

[
XH

HH

√
K

Q

]

ji

E

[(
σ√
nK

[
Q

H√
K

X

]

ij

− 1√
nK

[
Q
HHH

K
W

]

ij

)
eitΓ

X
n,Hn

n

]
(195)

= it
σ2n

nK
trQ2HXXHHH

(n+ 1)K
φX

n,Hn

n (t)

− itE

[
σ

nK
trQ

HHH

K
WXH

HH

√
K

QeitΓ
X

n,Hn

n

]
. (196)

Doing the same calculus for the second term on the RHS

of the last equation, one arrives at

E

[
σ

nK
trQ

HHH

K
WXH

HH

√
K

QeitΓ
X

n,Hn

n

]

= it
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
φX

n,Hn

n (t)

+ εX
n,Hn

n,4 (t) (197)

where

εX
n,Hn

n,4 (t) =

− it
σ

(nK)
3
2

E

[
trQ

(
Q
HHH

K

)2

WXH
HH

√
K

eitΓ
X

n,Hn

n

]
.

(198)

Thus,

E
[
ΓX

n,Hn

n,4 eitΓ
X

n,Hn

n

]

= it
σ2n

nK
trQ2HXXHHH

nK
φX

n,Hn

n (t)

+ t2
σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
φX

n,Hn

n (t)

− itεX
n,Hn

n,4 (t). (199)

Since ΓX
n,Hn

n,3 =
(
ΓX

n,Hn

n,4

)∗
, it follows that

E
[
ΓX

n,Hn

n,3 eitΓ
X

n,Hn

n

]
= E

[
ΓX

n,Hn

n,4 e−itΓX
n,Hn

n

]∗
. (200)

Gathering all pieces together as a polynomial in t, we obtain

a first differential equation of φX
n,Hn

n (t) as given in (202)–

(206) on the top of the next page, where

A
△

= IK − 1

n
XXH. (201)

Let us now have a closer look at the quantities θX
n,Hn

n ,

κX
n,Hn

n , and ε̄X
n,Hn

n (t) individually. Using the identities and

bounds presented at the beginning of this proof, one can verify

that

0 ≤
(
θX

n,Hn

n

)2
≤ N

K
+

2

nK
trXXH =

(
N

K
+ 2

)
(207)

0 ≤ κX
n,Hn

n ≤ N√
nK3

+
3√

n3K3
trXXH

=
1√
nK

(
N

K
+ 3

)
. (208)

Based on Remark 7 in Appendix C, we can bound the absolute

value of ε̄X
n,Hn

n (t) as

∣∣∣ε̄X
n,Hn

n (t)
∣∣∣ ≤

t3




√√√√Var

[
1√
nK3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)]

+4

√√√√Var

[
σ√
n3K3

trQ

(
Q
HHH

K

)2
HXWH

√
K

]

 .

(209)

By Lemma 10 (ii) in Appendix E-A, it follows that

Var

[
1√
nK3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)]

= Var

[
n√
n3K3

tr

(
Q
HHH

K

)3
WWH

n

]
(210)

≤ 2

nK3
tr

(
Q
HHH

K

)6

(211)

≤ 2N

nK3
. (212)
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∂φX
n,Hn

n (t)

∂t
= (iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n )φX
n,Hn

n (t) + ε̄X
n,Hn

n (t) (202)

µX
n,Hn

n =

√
n

K
log det

(
IN +

1

σ2

HHH

K

)
− n√

nK
trQ

HAHH

K
(203)

(
θX

n,Hn

n

)2
=

n

nK
tr

(
Q
HHH

K

)2

+
2σ2n

nK
trQ2HXXHHH

nK
(204)

κX
n,Hn

n =
n√
n3K3

tr

(
Q
HHH

K

)3

+
3σ2n√
n3K3

trQ2HHH

K
Q
HXXHHH

nK
(205)

ε̄X
n,Hn

n (t) = it2E

[{
n√
n3K3

tr

(
Q
HHH

K

)3(
WWH

n
− IN

)
− 3σ√

n3K3
trQ

(
Q
HHH

K

)2
HXWH

√
K

− σ√
n3K3

trQ

(
Q
HHH

K

)2
WXHHH

√
K

}
eitΓ

]
. (206)

Similarly, by Lemma 10 (i) in Appendix E-A, it follows that

Var

[
σ√
n3K3

trQ

(
Q
HHH

K

)2
HXWH

√
K

]

=
σ2

n3K3
tr

(
Q
HHH

K

)4

Q
HXXHHH

K
Q (213)

≤ σ2

n3K3
tr Q̃2H

HH

K
XXH (214)

≤ 1

n3K3
trXXH (215)

=
1

n2K2
. (216)

Replacing (212) and (216) in (209), we then obtain

ε̄X
n,Hn

n (t) = O
(
t3n−2

)
. (217)

Similarly, from (207) and (208),

(
θX

n,Hn

n

)2
= O(1) (218)

κX
n,Hn

n = O
(
n−1

)
. (219)

Two remarks are important at this point. First observe that

the introduction of κX
n,Hn

n allows one to gain at each step

one order of precision on the estimation of φX
n,Hn

n (through

refinements of the coefficients of its differential equation).

The choice of the order to be used is mainly ruled by the

subsequent averaging steps. For the present proof, we need

the error (given by ε̄X
n,Hn

n (t)) to be within O(n−2).

Second, it is very important to keep the terms in t in the

various bounds derived here and below. The reason for this

is twofold: (i) to solve the differential equations in φX
n,Hn

n ,

then φX
n

n , it will be necessary to integrate these bounds and

their integrability must be controlled, (ii) at the end of the

calculus, the normalization of Γn by (the estimate for) its

standard deviation θX
n

n , used to ensure a limiting unit variance,

will be performed via a change of variable t 7→ t/θX
n

n which

requires a close inspection of the polynomials in t and n−1 in

the bounds.

Step 2:

In this step, we first solve (202) to express φX
n,Hn

n (t) as a

function of X and H. We then proceed similar to Step 1 and

express the function φX
n

n (t) = E[φX
n,Hn

n (t)] as the solution

of a differential equation.

The solution of (202) reads

φX
n,Hn

n (t) = eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

(
1+

∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)
.

(220)

Define the function φX
n

n (t) = E[φX
n,Hn

n (t)]. The equation

(222) on the top of the next page follows then from (220).

We will now show that only the first term on the RHS of

(222) is asymptotically non-negligible. Let us first define

Θ =
(∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n . (223)

Since

|Θ| ≤ e−
t2

2 (θ
X

n,Hn

n )
2
∫ t

0

e
x2

2 (θ
X

n,Hn

n )
2
∣∣∣ε̄X

n,Hn

n (x)
∣∣∣ dx

(224)

= O
(
t4n−2

)
(225)

it follows that E[Θ] = O(t4n−2) and Var[Θ] = O(t8n−4).
Thus, by Remark 7 in Appendix C,
∣∣∣E
[
µX

n,Hn

n Θ
]∣∣∣

≤
∣∣∣E
[
µX

n,Hn

n

]∣∣∣ |E [Θ]|+
√
Var

[
µXn,Hn

n

]√
Var [Θ]

(226)

≤
∣∣∣E
[
µX

n,Hn

n

]∣∣∣O
(
t4n−2

)
+

√
Var

[
µXn,Hn

n

]
O
(
t4n−2

)
.

(227)
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∂φX
n

n (t)

∂t
= E

[
∂φX

n,Hn

n (t)

∂t

]
(221)

= E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
eitµ

X
n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]

+ E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)(∫ t

0

e−ixµX
n,Hn

n + x2

2 (θ
X

n,Hn

n )
2−i

x3

3 κX
n,Hn

n ε̄X
n,Hn

n (x)dx

)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]
+ E

[
ε̄X

n,Hn

n (t)
]
. (222)

Again, from Remark 7 in Appendix C,

Var
[
µX

n,Hn

n

]
≤
(√

n

K
Var

[
log det

(
IN +

1

σ2

HHH

K

)]

+

√
n

K
Var

[
trQ

HAHH

K

])2

. (228)

From Proposition 3 (iii) in Appendix E-A, we know that

Var
[
trQHAHH

K

]
= O

(
1
K trA2

)
. It remains to find a bound

for the variance of the first term in (228). By Lemma 7 in

Appendix C,

Var

[
log det

(
IN +

1

σ2

HHH

K

)]

≤ 2

σ4

∑

i,j

E




∣∣∣∣∣
1

K
trQ

∂
(
HHH

)

∂Hn
ij

∣∣∣∣∣

2


 (229)

=
2

σ4

∑

i,j

E




∣∣∣∣∣
1

K

∑

p,q

δip (Hqj)
∗
Qqp

∣∣∣∣∣

2


 (230)

=
2

σ4

∑

i,j

E

[∣∣∣∣
1

K

[
HHQ

]
ji

∣∣∣∣
2
]

(231)

=
2

σ4

1

K
trQ2HHH

K
(232)

= O(1). (233)

Using the fact that trA2 = O(n2), we conclude that

Var
[
µX

n,Hn

n

]
= O (n).

Similarly, we have from Proposition 4 (i) in Appendix E

∣∣∣E
[
µX

n,Hn

n

]∣∣∣ =
∣∣∣∣∣

√
n

K
E

[
log det

(
IN +

1

σ2

HHH

K

)

−
√

n

K
trQ

HAHH

K

]∣∣∣∣∣ (234)

= O
(
n+

√
1

n3
trA2

)
(235)

= O (n) . (236)

Combining the last results, we have shown that
∣∣∣E
[
µX

n,Hn

n Θ
]∣∣∣ = O

(
t4n−1

)
. (237)

Similarly, one can show that
∣∣∣∣E
[(

θX
n,Hn

n

)2
Θ

]∣∣∣∣ = O
(
t4n−2

)
(238)

∣∣∣E
[
κX

n,Hn

n Θ
]∣∣∣ = O

(
t4n−3

)
. (239)

Using (237), (238), and (239), we can finally conclude that

E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2
+ it2κX

n,Hn

n

)
Θ

]

= O
(
t4n−1 + t5n−2 + t6n−3

)
. (240)

Since all bounds are clearly integrable over t, this now means

that eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n is an estimator of φX
n

n

within O(n−1). Note that this bound would be O(1) if we

had only used an estimation of φX
n,Hn

n within O(n−1) in the

previous step. Hence the fundamental importance of the term

κX
n,Hn

n .

We can therefore proceed to study φX
n

n via the estimator

eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n .

Starting back from (222), we first verify that
∣∣∣E
[
it2κX

n,Hn

n eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]∣∣∣

= O(t2n−1)E
[
e−

t2

2 (θ
X

n,Hn

n )
2]

= O(t2n−1). (241)

Thus, we have

∂φX
n

n (t)

∂t
= E

[(
iµX

n,Hn

n − t
(
θX

n,Hn

n

)2)

× eitµ
X

n,Hn

n − t2

2 (θ
X

n,Hn

n )
2
+i

t3

3 κX
n,Hn

n

]

+O
(
t2 + t4

n
+

t3 + t5

n2
+

t6

n3

)
. (242)

We now develop the term in the expectation and express it

under the form of f (X)φX
n

n (t)+ εX
n

n (t) for some functional

f and asymptotically negligible quantity εX
n

n (t). For better

readability, we define the shorthand notation

γX
n,Hn

n = itµX
n,Hn

n − t2

2

(
θX

n,Hn

n

)2
+ i

t3

3
κX

n,Hn

n (243)

and consider individually the terms

A: E
[
µX

n,Hn

n eγ
X

n,Hn

n

]
, B: E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]
.
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Term A: The term A cannot be evaluated in a straightfor-

ward manner as the integration by parts formula (Lemma 6 in

Appendix C) cannot be applied to the log-term in µX
n,Hn

n (as

defined in (203)). To avert this difficulty, we use the identity

log det

(
IN +

1

σ2

HHH

K

)
=

∫ ∞

σ2

1

u
trQ(u)

HHH

K
du (244)

which, together with the Fubini theorem (using

trQ(u)HHH ≤ u−1trHHH), gives for A:

E
[
µX

n,Hn

n eγ
X

n,Hn

n

]

=

√
n

K

∫ ∞

σ2

1

u
E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]
du

−
√

n

K
E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]
. (245)

Before we continue, we need the following result which is

the cornerstone of the subsequent analysis:

Proposition 2: Let u ≥ σ2 > 0 and γX
n,Hn

n be defined as

in (243). Then,

(i) E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]

= N

(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

1− c+ u (1 + 2δ0(u))
E
[
eγ

X
n,Hn

n

]

+ it

√
n

K
u

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
E
[
eγ

X
n,Hn

n

]

+O
(

P (t)

u
√
K

)
(246)

(ii) E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]

= −it

√
n

K

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))2
E

[
eγ

X
n,Hn

n

]

+O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(247)

for some non-zero polynomials P (t), P1(t), P2(t) in t with

nonnegative coefficients and with δm(x) and γm(x) given by

Proposition 4 in Appendix E.

Proof: The proof is provided in Appendix E-B.

Applying Proposition 2 (i) and (ii) to the first and second

terms of (245), respectively, we obtain the result in (248) on

the top of the next page, where for the last RHS term, we

used
∫∞
σ2 u−2du < ∞ and P1, P2 are non-zero polynomials

with nonnegative coefficients, possibly different from those of

Proposition 2. Note in passing the fundamental importance

of maintaining 1/u in the big-O term of Proposition 2 (i).
The existence of the two integrals in (248) can be proved

via bounds on the δt(u) and γt(u), essentially relying on

their definitions in Proposition 4 and on controls similar to

Property 1 (i) and (ii) in Appendix C. Nonetheless, a more

immediate argument consists in remarking that, since the LHS

of (248) is finite, and so are all terms aside from the integrals

on the RHS, so is the sum of the integrals. Taking t = 0 then

justifies with the same argument that the first integral is finite

which, taking then t 6= 0, ensures the finiteness of the second

integral.

Also note that the last RHS term of (248) is not necessarily

negligible in the large n limit. Indeed, for X ∈ Sn, trA2 can

grow as O(K2), so that the whole term may grow as O(
√
K).

It is therefore essential to keep track of the terms in A. The

pre-factor t in front of 1
K trA2 will play a significant role in

controlling these terms at the end of the proof, which explains

why we also need to keep track of t in the various bounds.

Term B: For the term B, we have from the identities in

(152)

E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]

= E

[(
1

K
tr

(
Q
HHH

K

)2

+
2σ2

K
tr

(
Q
HXXHHH

nK
Q

))

× eγ
X

n,Hn

n

]
(249)

= E

[(
1

K
trQ

HHH

K
+

σ2

K
trQ2HHH

K

− 2σ2

K
trQ2H

(
IK − 1

nXXH
)
HH

K

)
eγ

X
n,Hn

n

]
+O

(
1

K

)

(250)

= E

[(
c− σ4

K
trQ2 − 2σ2

K
trQ2HAHH

K

)
eγ

X
n,Hn

n

]

+O
(

1

K

)
. (251)

To proceed with this term, which is essentially equal to

the product of the expectations of the two arguments, we

rely on Remark 7 in Appendix C. Using Proposition 3 in

Appendix E-A and Proposition 4 in Appendix E-A to bound

the variances of each term, we have

E

[(
θX

n,Hn

n

)2
eγ

X
n,Hn

n

]
=
(
c− σ4δ1(σ

2)
)
E

[
eγ

X
n,Hn

n

]

+O
(

1√
K

)
(252)

where we used in particular
√
K−3trA2 ≤ 1/

√
K .

Combining (242), (248), and (252) we finally obtain the

differential equation (253) on the next page, where µX
n

n ,(
θX

n

n

)2
, and ε̄X

n

n (t) are defined in (254)–(256) for some

non-zero polynomials with nonnegative coefficients P1(t) and

P2(t).
Using Lemma 9 in Appendix C and the definition of γ1, δ1

in Proposition 4, the expressions of µX
n

n and θX
n

n can be

simplified as:

µX
n

n =
√
nKC (257)

θX
n

n =

[
θ2− + ζ

1

K
trA2

] 1
2

(258)

where θ− is defined in the statement of Theorem 3 and ζ =
−δ′0(σ

2)(1 + δ0(σ
2))−1. Note that we have used the relation

δ0(σ
2) = −δ1(σ

2). Before we continue with the main proof,

we will show that θ2− > 0 and ζ > 0.

For the former, first note that the logarithm term of θ−
in (24) is well defined. Indeed, for c ≥ 1, the argument is
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E
[
µX

n,Hn

n eγ
X

n,Hn

n

]
=

√
nK






∫ ∞

σ2

c
(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

u (1− c+ u (1 + 2δ0(u)))
du




E
[
eγ

X
n,Hn

n

]

+ it
n

K

{∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
du+

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))
2

}
E
[
eγ

X
n,Hn

n

]

+O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(248)

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
E

[
eγ

X
n,Hn

n

]
+ ε̄X

n

n (t) (253)

µX
n

n =
√
nK






∫ ∞

σ2

c
(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

u (1− c+ u (1 + 2δ0(u)))
du




 (254)

(
θX

n

n

)2
=

n

K

{∫ ∞

σ2

δ0(u)− σ2δ1(u)

1− c+ u (1 + 2δ0(u))
du+

γ1
(
σ2
)

1
K trA2

(1 + δ0(σ2))
2 +

K

n

(
c− σ4δ1(σ

2)
)
}

(255)

ε̄X
n

n (t) = O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
(256)

clearly positive. For c < 1, by Property 1 (iv) in Appendix C,

δ0(σ
2)2(1 + δ0(σ

2))−2 = (c − σ2δ0(σ
2))2 < c2, with the

inequality arising from Property 1 (i) and (ii) in Appendix C;

this then implies that the argument is greater than 1− c > 0.

Obviously, in both cases, as the argument of the logarithm is

less than one, the logarithm itself is negative. This implies that

θ2− = −β log

(
1− 1

c

δ0(σ
2)2

(1 + δ0(σ2))2

)
+
(
c+ σ4δ′0(σ

2)
)

(259)

(a)
> c− σ4δ0

(
σ2
) (

1 + δ0
(
σ2
))

1− c+ σ2 (1 + δ0 (σ2)) + σ2δ0 (σ2)
(260)

(b)
= c− cσ2

(
1 + δ0

(
σ2
))

c
δ0(σ2) + σ2δ0 (σ2)

(261)

(c)
> c

(
1− σ2

(
1 + δ0

(
σ2
))

σ2 + σ2δ0 (σ2)

)
(262)

= 0 (263)

where (a) follows from the definition of δ′0(x) established

in Property 1 (vi) in Appendix C, (b) follows from Prop-

erty 1 (iii) in Appendix C, and (c) is due to Property 1 (ii)
in Appendix C which implies that c

δ0(σ2) > σ2.

Concerning ζ, we first show that δ1(σ
2) = −δ′0(σ

2) > 0
(where this identity follows from Property 1 (vi) in Ap-

pendix C). Since c−1δ0(σ
2) is the Stieltjes transform of the

Marc̆enko-Pastur law µc taken in −σ2 (see, e.g., [28, Chapter

3.2]), we can conclude that

δ1(σ
2) = −δ′0(σ

2) =
1

c

∫
1

(t+ σ2)2
µc(dt) > 0. (264)

Since also δ0(σ
2) > 0, it follows that ζ = −βδ′0(σ

2)(1 +
δ0(σ

2)) > 0.

We now relate φX
n

n (t) = E
[
φX

n,Hn

n (t)
]

and E

[
eγ

X
n,Hn

n

]

with the help of the previously established results. Starting

from (220), one can easily show that
∣∣∣φX

n,Hn

n (t)− eγ
X

n,Hn

n

∣∣∣ ≤ Mt4n−2 (265)

for some constant M independent of H, t, and n, from which

φX
n

n (t) = E

[
φX

n,Hn

n (t)
]
= E

[
eγ

X
n,Hn

n

]
+O

(
t4n−2

)

(266)

or, equivalently,

E

[
eγ

X
n,Hn

n

]
= φX

n

n (t) +O
(
t4n−2

)
. (267)

Replacing the last equation in (253) leads to

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t)

+

(
iµX

n

n − t
(
θX

n

n

)2)
O
(
t4n−2

)
+ ε̄X

n

n (t).

(268)

One can verify from (254) and (255) that

µX
n

n = O(n) (269)
(
θX

n

n

)2
= O

(
1 +

1

K
trA2

)
. (270)

Hence

∂φX
n

n (t)

∂t
=

(
iµX

n

n − t
(
θX

n

n

)2)
φX

n

n (t) + εX
n

n (t) (271)

where εX
n

n (t) satisfies

εX
n

n (t) = O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)
. (272)
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Step 3:

Solving the differential equation (271), we arrive at

φX
n

n (t) = eitµ
X

n

n − t2

2 (θ
X

n

n )
2

(
1+

∫ t

0

e−ixµX
n

n + x2

2 (θ
X

n

n )
2

εX
n

n (x)dx

)
(273)

= eitµ
X

n

n − t2

2 (θ
X

n

n )
2

+ ε̃X
n

n (t) (274)

with ε̃X
n

n (t) = O
(
tεX

n

n (t)
)
.

Denote φ̃X
n

n (t) = E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]

. Then, from (274),

φ̃X
n

n (t) = E

[
e
i

t

θX
n

n
(ΓX

n

n −µX
n

n )
]

(275)

= φX
n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n (276)

= e−
t2

2 + ε̃X
n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n . (277)

To conclude, we need to control the term ε̃X
n

n

(
t(θX

n

n )−1
)
.

This is where the precision on εXn
n (t) from (272) is used. Take

t ≥ 0 fixed. First, observe from (263) that θX
n

n ≥ θ− > 0.

We then have

ε̃X
n

n

(
t

θXn

n

)

= O
(

t

θXn

n

εX
n

n

(
t

θXn

n

))
(278)

= O
(
P1

(
t(θX

n

n )−1
)

√
KθXn

n

+
P2

(
t(θX

n

n )−1
)

√
K (θXn

n )
2

1

K
trA2

)
(279)

= O
(

1√
K

)
(280)

where, in the last equality, we used P1

(
t(θX

n

n )−1
)
(θX

n

n )−1 ≤
P1(tθ

−1
− )θ−1

− , P2

(
t(θX

n

n )−1
)
≤ P2(tθ

−1
− ), both bounded for

t fixed, and

1
K trA2

(θXn

n )
2 =

1
K trA2

θ2− + ζ 1
K trA2

≤ 1

ζ
< ∞. (281)

We conclude that∣∣∣∣∣ε̃
X

n

n

(
t

θXn

n

)
e
−it

µX
n

n

θX
n

n

∣∣∣∣∣ = O
(

1√
K

)
. (282)

Take now PXn ∈ P (Sn
=) for all n and let

φ̃n(t)
△

= E

[
φ̃Xn

n (t)
]
. Then, from (277) and (282),

φ̃n(t) = e−
t2

2 +O
(

1√
K

)
. (283)

Taking t < 0, and using φ̃n(−t) = φ̃n(t)
∗, the result above

generalizes to t ∈ R.

This implies by Lévy’s continuity theorem that

Γn − µn

θn
⇒ N (0, 1) (284)

where we have defined µn = µXn

n and θn = θX
n

n . This

terminates the proof.

APPENDIX E

ADDITIONAL RANDOM MATRIX RESULTS

A. Auxiliary results

Lemma 10: Let G ∈ CM×L have i.i.d. entries Gij ∼
CN (0, 1) and let S ∈ CL×M and T ∈ CM×M . Then,

(i) Var [trSG] = trSSH (285)

(ii) Var
[
trTGGH

]
≤ 2LtrTTH. (286)

Proof: The proof of part (i) is obvious. Part (ii) is

proved by a mere application of Lemma 7 and Lemma 8 in

Appendix C.

Lemma 11: Let G ∈ CM×L have i.i.d. entries Gij ∼
CN (0, 1). Let T ∈ CM×M be a deterministic matrix and ω
be a function of G. Then,

E
[
trTGGHeω

]
= LtrTE [eω]

+ E




∑

i,j

∂ω

∂G∗
ij

[
GHT

]
ji
eω



 . (287)

Proof: This follows immediately from Lemma 6 in Ap-

pendix C.

Proposition 3: Let H ∈ CN×K have i.i.d. elements

Hij ∼ CN (0, 1) and define the functionals Q(x) =(
1
KHHH + xIN

)−1
and Q̃(x) =

(
1
KHHH + xIK

)−1
for

x > 0. Further, let C,D ∈ CN×N and C̃, D̃ ∈ CK×K . Then,

for u, v > 0 and any nonnegative integer m, the following

holds:

(i) Var

[
1

K
trCQ(u)DQ(v)m

]

≤ 2

(√
v
u +m

)2

u2v2m+1

‖D‖2
K3

trCCH (288)

(ii) Var

[
1

K
tr C̃Q̃(u)D̃Q̃(v)m

]

≤ 2

(√
v
u +m

)2

u2v2m+1

‖D̃‖2
K3

tr C̃C̃H (289)

(iii) Var

[
1

K
trQ(u)Q(v)m

HC̃HH

K

]

≤ 2

(√
v
u + 2m

)2

v2m+1

1

K3
tr C̃C̃H (290)

(iv) Var

[
1

K
trQ(u)Q(v)m

HC̃HH

K

]

≤ 2

(
2
√

v
u + 2m− 1

)2

u2v2m−1

1

K3
tr C̃C̃H, m ≥ 1.

(291)

Moreover, for C and C̃ Hermitian,

(v) Var

[
1

K
trCQ(u)CQ(v)m

]
≤ 2

(√
v
u +m

)2

u2v2m+1

1

K3
trC4

(292)

(vi) Var

[
1

K
tr C̃Q̃(u)C̃Q̃(v)m

]
≤ 2

(√
v
u +m

)2

u2v2m+1

1

K3
tr C̃4.

(293)
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Proof: The results follow from the successive applications

of Lemma 7 and Lemma 4 in Appendix C.

Proposition 4: Let {Hn}∞n=1, where Hn ∈ CN×K has

i.i.d. elements Hn
ij ∼ CN (0, 1), and define Qn(x) =(

1
KHn (Hn)

H
+ xIN

)−1

for x > 0. Let {Cn}∞n=1, where

Cn ∈ CN×N . Then, for u ≥ σ2 > 0 and any nonnegative

integer m, the following holds as n
(β,c)−−−→ ∞:

(i) E

[
1

K
trQn(u)Qn(σ2)m

HnCn (Hn)
H

K

]

= γm (u)
1

K
trCn +O

(√
1

u2K5
trCn (Cn)H

)
(294)

(ii) E

[
1

K
trQn(u)Qn(σ2)m

]
= δm (u) +O

(
1

un2

)
(295)

where, for m ≥ 1,

γm(u) = δm−1(u)− σ2δm(u) (296)

δm(u) =
δm−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δk−1(u)− σ2δk(u)

]
δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
(297)

and

γ0 (u) = c− uδ0(u) (298)

with δ0(u) as defined in Theorem 4 in Appendix C.

Proof: In order to simplify the notations, we drop the

dependence of n, e.g., we write H instead of Hn. We begin

by standard Gaussian calculus based on the integration by parts

formula (Lemma 6 in Appendix C):

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K2

∑

i,j,k,r,s

E
[
HijCjkH

∗
rkQ(u)rs

[
Q(σ2)m

]
si

]
(299)

=
1

K2

∑

i,j,k,r,s

CjkE

[
∂
(
H∗

rkQ(u)rs
[
Q(σ2)m

]
si

)

∂H∗
ij

]
(300)

=
1

K2

∑

i,j,k,r,s

CjkE

[
δirδjkQ(u)ls

[
Q(σ2)m

]
si

− 1

K
H∗

rk [Q(u)H ]rj Q(u)is
[
Q(σ2)m

]
si

+H∗
rkQ(u)rs

∂
[
Q(σ2)m

]
si

∂H∗
ij

]
(301)

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

+
1

K2

∑

i,j,s

E

[
[
CHHQ(u)

]
js

∂
[
Q(σ2)m

]
si

∂H∗
ij

]
. (302)

To continue, we will develop the term
∂[Q(σ2)m]

si

∂H∗
ij

as

follows:

∂
[
Q(σ2)m

]
si

∂H∗
ij

=
m∑

k=1

∑

p,q

[
Q(σ2)k−1

]
sp

∂Q(σ2)pq
∂H∗

ij

[
Q(σ2)m−k

]
qi

(303)

= − 1

K

m∑

k=1

∑

p,q

[
Q(σ2)k−1

]
sp

[
Q(σ2)H

]
pj

×Q(σ2)iq
[
Q(σ2)m−k

]
qi

(304)

= − 1

K

m∑

k=1

[
Q(σ2)kH

]
sj

[
Q(σ2)m−k+1

]
ii
. (305)

Replacing (305) in (302), we arrive at

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

−
m∑

k=1

E

[
1

K
trQ(u)Q(σ2)k

HCHH

K

1

K
trQ(σ2)m−k+1

]
.

(306)

By Proposition 3 in Appendix E-A and Remark 7 in

Appendix C, we have

E

[
1

K
trQ(u)

HCHH

K

1

K
trQ(u)Q(σ2)m

]

= E

[
1

K
trQ(u)

HCHH

K

]
E

[
1

K
trQ(u)Q(σ2)m

]

+O
(√

1

u3K5
trCCH

)
(307)

E

[
1

K
trQ(u)QkHCHH

K

1

K
trQm−k+1

]

= E

[
1

K
trQ(u)QkHCHH

K

]
E

[
1

K
trQm−k+1

]

+O
(√

1

u2K5
trCCH

)
(308)

and, thus,

E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]

=
1

K
trCE

[
1

K
trQ(u)Q(σ2)m

]

− E

[
1

K
trQ(u)

HCHH

K

]
E

[
1

K
trQ(u)Q(σ2)m

]

−
m∑

k=1

E

[
1

K
trQ(u)Q(σ2)k

HCHH

K

]
E

[
1

K
trQ(σ2)m−k+1

]

+O
(√

1

u2K5
trCCH

)
. (309)
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Define the following quantities

γ◦
m (u,C) = E

[
1

K
trQ(u)Q(σ2)m

HCHH

K

]
, m = 0, 1, . . .

(310)

δ◦m (u) = E

[
1

K
trQ(u)Q(σ2)m

]
, m = −1, 0, 1, . . .

(311)

which satisfy the relations

δ◦−1(σ
2) = c (312)

γ◦
m (u, IK) = E

[
1

K
trQ(u)Q(σ2)m

HHH

K

]
(313)

= E

[
1

K
trQ(σ2)m

]
− uE

[
1

K
trQ(u)Q(σ2)m

]

(314)

= δ◦m−1(σ
2)− uδ◦m(u) , ∀m. (315)

For m ≥ 1, we also have from the relations in (152)

γ◦
m (u, IK) = δ◦m−1(u)− σ2δ◦m(u). (316)

Using these definitions, we can express (309) as

γ◦
m (u,C) =

1

K
trCδ◦m(u)− γ◦

0 (u,C) δ◦m(u)

−
m∑

k=1

γ◦
k (u,C) δ◦m−k(σ

2) +O
(√

1

u2K5
trCCH

)
.

(317)

Evaluating the last equation for m = 0 and collecting the

terms in γ◦
0 (u,C) on one side, leads to

γ◦
0 (u,C) =

δ◦0(u)

1 + δ◦0(u)

1

K
trC+O

(√
1

u2K5
trCCH

)
.

(318)

By Theorem 4 in Appendix C,

δ◦0(u) = δ0(u) +O
(

1

u4K2

)
. (319)

Thus, we can define

γ0 (u) ,
δ0(u)

1 + δ0(u)
(320)

such that

γ◦
0 (u,C) = γ0 (u)

1

K
trC+O

(√
1

u2K5
trCCH

)
(321)

where we use the fact that
∣∣ 1
K trC

∣∣ ≤
√

1
K5 trCCH and u−4 ≤

u−1σ6 (since u ≥ σ2) to discard the term O(u−4K−3trC).
For m ≥ 1, we can gather the terms involving γ◦

m (u,C)
in (317) on one side, replace γ◦

0 (u,C) by γ0 (u)
1
K trC and

δ◦0(u) by δ0(u), to obtain, iteratively on m,

γ◦
m (u,C) =

1
K trCδ◦m(u)− γ0 (u)

1
K trCδ◦m(u)

1 + δ0 (σ2)

−
∑m−1

k=1 γ◦
k (u,C) δ◦m−k(σ

2)

1 + δ0 (σ2)

+O
(√

1

u2K5
trCCH

)
. (322)

From the last equation, we can obtain a recursive expression

of δm(u)◦ by letting C = IK and using the relations (315)

and (316):

δ◦m(u) =
δ◦m−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δ◦k−1(u)− σ2δ◦k(u)

]
δ◦m−k(σ

2)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+O
(

1

uK2

)
. (323)

Note that the denominator of the RHS of the last equation is

strictly positive (see Property 1 (i) − (iii) in Appendix C).

For m = 1, we obtain with the help of (319)

δ◦1(u) =
δ◦0(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
+O

(
1

uK2

)

(324)

=
δ0
[
1 + δ0(u)

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
+O

(
1

uK2

)
.

(325)

Due to the recursive definition of δ◦m(u), we can now

conclude that

δ◦m(u) = δm(u) +O
(

1

uK2

)
(326)

where

δm(u) =
δm−1(u)

[
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1

[
δk−1(u)− σ2δk(u)

]
δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
, m ≥ 1.

(327)

Using (326) in (322), we have so far proved that, for m ≥ 1,

γ◦
m (u,C) =

1
K trCδm(u)− γ0 (u)

1
K trCδm(u)

1 + δ0 (σ2)

−
∑m−1

k=1 γ◦
k (u,C) δm−k

(
σ2
)

1 + δ0 (σ2)

+O
(√

1

u2K5
trCCH

)
(328)

where we have relied on the fact that γ◦
k (u,C) 1

uK2 ≤
1

u2K3 trC = O
(√

1
u2K5 trCCH

)
. In particular, for m = 1,

we obtain

γ◦
1 (u,C) =

δ1(u)− γ0 (u) δ1(u)

1 + δ0 (σ2)

1

K
trC

+O
(√

1

u2K5
trCCH

)
. (329)

Iterating the recursion m− 1 times, we have proved that

γ◦
m (u,C) = γm (u)

1

K
trC+O

(√
1

u2K5
trCCH

)
(330)
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where, for m ≥ 1,

γt (u) =
δm(u) (1− γ0 (u))−

∑m−1
k=1 γk (u) δm−k

(
σ2
)

1 + δ0 (σ2)
.

(331)

Using now the relation γ0(u) = c−uδ0(u) (see Property 1 (iv)
in Appendix C), we write the last equation as

γm (u)
(
1 + δ0

(
σ2
))

= δm(u) (1− c+ uδ0(u))

−
m−1∑

k=1

γk (u) δm−k

(
σ2
)
. (332)

Adding δm(u)σ2
[
1 + δ0

(
σ2
)]

to both sides, we can express

δm(u) as

δm (u) =

[
γm(u) + σ2δm(u)

] [
1 + δ0

(
σ2
)]

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)

+

∑m−1
k=1 γk (u) δm−k

(
σ2
)

1− c+ σ2 [1 + δ0 (σ2)] + uδ0(u)
. (333)

Equating (333) and (327), we can see that γm(u) must satisfy

the following relation

γm(u) = δm−1(u)− σ2δm(u) , m ≥ 1. (334)

This terminates the proof.

B. Proof of Proposition 2 in Appendix D-B

We want to derive asymptotically exact approx-

imations of E

[
trQ(u)HHH

K eγ
X

n,Hn

n

]
(part (i)) and

E

[
trQ(σ2)HAHH

K eγ
X

n,Hn

n

]
(part (ii)).

In the proofs below, we will often use the notation P (t)
or Pi(t) to refer to some non-zero polynomials in t with

nonnegative coefficients. These polynomials may take different

values from one equation to the next.

Proof of part (i): By the product rule of differentiation,

Lemma 6 and Lemma 8 in Appendix C, we obtain the chain

of equations (335)–(338) on the top of the next page.

Gathering the terms involving trQ(u)HHH

K on the LHS

yields

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=
N

u
E

[
eγ

X
n,Hn

n

]

+
1

K

∑

i,j

E

[
∂γX

n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji
eγ

X
n,Hn

n

]
. (339)

Recall that γX
n,Hn

n = itµX
n,Hn

n − t2

2

(
θX

n,Hn

n

)2
+

i t
3

3 κ
X

n,Hn

n (243). From the standard derivation rules as pro-

vided in Lemma 8 and Corollary 1 in Appendix C, denoting

Q = Q(σ2) for brevity,

∂µX
n,Hn

n

∂H∗
ij

=

√
n

K3
[QH ]ij −

n+ 1√
nK3

[QHA]ij

+
n+ 1√
nK5

[
QHAHHQH

]
ij

(340)

= − 1√
nK3

[QH ]ij +
1√
nK3

[
QHXXH

]
ij

+
n+ 1√
nK5

[
QHAHHQH

]
ij
. (341)

Similarly,

∂
(
θX

n,Hn

n

)2

∂H∗
ij
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nK

[(
Q

1

K
HHH

)2

Q
1

K
H

]

ij

+
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nK

[
Q

1

K
HHHQ

1

K
H

]

ij

− 2σ2

nK

[
Q

1

K
HXXHHHQ2 1

K
H

]

ij

+
2σ2

nK

[
Q2 1

K
HXXH

]

ij

− 2σ2

nK

[
Q2 1

K
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1

K
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]

ij

(342)

=
2σ2(n+ 1)

nK

[
Q

1

K
HHHQ2 1

K
H

]

ij

+
2σ4

nK

[
Q2 1

K
HXXHQ̃

]

ij

− 2σ2

K

[
Q

1

Kn
HXXHHHQ2 1

K
H

]

ij

(343)

where, in the last equality, we used IN − 1
KQHHH = σ2Q,

IK − 1
KHHQH = σ2Q̃, and QH = HQ̃. Following the same

derivation, we also have

∂κX
n,Hn

n

∂H∗
ij

=

3σ2(n+ 1)√
n3K3

[(
Q

1

K
HHH

)2

Q2 1

K
H

]

ij

+
3σ4

√
n3K3

[
Q

1

K
HXXHHHQ3 1

K
H

]

ij

+
3σ4

√
n3K3

[
1

K
HHHQ3 1

K
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]

ij

− 3σ2

√
n3K3

[
1

K
HHHQ2 1

K
HXXHHHQ2 1

K
H

]

ij

. (344)

Using these results, the second term on the RHS of (339)
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E

[
trQ(u)

HHH

K
eγ

X
n,Hn

n

]

= E



 1

K

∑

i,j,k

∂
(
H∗

kjQ(u)kieγ
X

n,Hn

n

)

∂H∗
ij



 (335)

= E


 1

K

∑

i,j,k

(
δikQ(u)kie

γX
n,Hn

n −
H∗

kj [Q(u)H ]kj Q(u)ii

K
eγ

X
n,Hn

n +H∗
kjQ(u)ki

∂γX
n,Hn

n

∂H∗
ij

eγ
X
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)
 (336)

= E




trQ(u)− 1

K
trQ(u)

HHH

K
trQ(u) +

1

K
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∂γX
n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji


 eγ

X
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n


 (337)

= E




N

u
− 1

u
trQ(u)

HHH

K
− 1

K
trQ(u)

HHH

K
trQ(u) +

1

K

∑

i,j

∂γX
n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji


 eγ

X
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 (338)

can be developed as follows:

1

K

∑

i,j

E

[
∂γX

n,Hn

n

∂H∗
ij

[
HHQ(u)

]
ji
eγ

X
n,Hn

n

]

(a)
= it

n+ 1√
nK

(
E

[
1

K
trQ

HXXHHH

(n+ 1)K
Q(u)eγ

X
n,Hn

n

]

+ E

[
1

K
trQ

HAHH

K
Q
HHH

K
Q(u)eγ

X
n,Hn

n

])

+O
(
P (t)

uK

)
(345)

(b)
= it

n+ 1√
nK

(
E

[
1

K
trQ

HHH

K
Q(u)eγ

X
n,Hn

n

]

− E

[
σ2

K
trQ

HAHH

K
QQ(u)eγ

X
n,Hn

n

])
+O

(
P (t)

uK

)

(346)

for some polynomial P (t), where (a) follows from the

derivative of γX
n,Hn

n as developed in (341)–(344) and the

observations that all terms resulting from
(
θX

n,Hn

n

)2
and

κX
n,Hn

n are O((uK)−1) and O(u−1K−2), respectively, and

(b) follows from QHHH

K = IN − σ2Q (see (152)) and the

definition of A = IK − 1
n+1XXH.

Based on Proposition 3 in Appendix E-A and Lemma 5 in

Appendix C, we find the following estimations:

E

[
1

K
trQ

HHH

K
Q(u)eγ

X
n,Hn

n

]

= E

[
1

K
trQ(u)Q

HHH

K

]
E

[
eγ

X
n,Hn

n

]
+O

(
1

uK

)
(347)

E

[
σ2

K
trQ

HAHH

K
QQ(u)eγ

X
n,Hn

n

]

= E

[
σ2

K
trQ(u)Q2HAHH

K

]
E

[
eγ

X
n,Hn

n

]

+O
(√

1

u2K3
trA2

)
. (348)

By Proposition 4 in Appendix E-A,

E

[
1

K
trQ(u)Q

HHH

K

]
= δ0(u)− σ2δ1(u) +O

(
1

uK2

)

(349)

E

[
σ2

K
trQ(u)Q2HAHH

K

]

= σ2γ2 (u)
1

K
trA+O

(√
1

u2K5
trA2

)
(350)

= O
(√

1

u2K5
trA2

)
. (351)

Combining (339), (346), (347), (348), (349), and (351), we

obtain

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=
N

u
E

[
eγ

X
n,Hn

n

]
+O

(
1

u
√
K
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)

+ it
n+ 1√
nK

(
δ0(u)− σ2δ1(u)

)
E
[
eγ

X
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n

]
(352)

=
N

u
E

[
eγ

X
n,Hn

n

]
+ it

√
n

K

(
δ0(u)− σ2δ1(u)

)
E
[
eγ

X
n,Hn

n

]

+O
(

1

u
√
K

P (t)

)
(353)

for some other polynomial P (t), where we used in partic-

ular
√
K−3trA2 ≤ 1/

√
K and 1√

nK

(
δ0(u)− σ2δ1(u)

)
=

O((uK)−1) by Property 1 in Appendix C.

Next, we consider the LHS of (339). Let us first define the

following quantities:

Ψ =
1

K
trQ(u), Φ = trQ(u)

HHH

K
. (354)

Using these definitions, we can express the LHS of (339) as

E

[
trQ(u)

HHH

K

(
1 +

1

u
+

1

K
trQ(u)

)
eγ

X
n,Hn

n

]

=

(
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1

u

)
E

[
Φeγ

X
n,Hn

n

]
+ E

[
ΦΨeγ

X
n,Hn

n

]
. (355)
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We can now develop the second term on the RHS of the

last equation as follows:

E

[
ΦΨeγ

X
n,Hn

n

]

= E [Ψ]E
[
Φeγ

X
n,Hn

n

]
+ E

[
Φ (Ψ − E [Ψ]) eγ

X
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n

]
(356)

(a)
= E [Ψ]E

[
Φeγ

X
n,Hn

n

]
− E [Φ]E [Ψ]E

[
eγ

X
n,Hn

n

]

+ E [Φ]E

[(
1

u

N

K
− 1

u

1

K
trQ(u)

HHH

K

)
eγ

X
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n

]

+O
(
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)
(357)

= E [Ψ]E
[
Φeγ

X
n,Hn

n

]
− E [Φ]E [Ψ]E

[
eγ

X
n,Hn

n

]

+
1

u

N

K
E [Φ]E

[
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X
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n

]
− 1
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[
1

K
Φ

]
E

[
Φeγ

X
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]

+O
(

1
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)
(358)

= E

[
Φeγ

X
n,Hn

n

](
E [Ψ]− 1

u
E

[
1

K
Φ

])

− E [Φ]E [Ψ]E
[
eγ

X
n,Hn

n

]
+

1

u

N

K
E [Φ]E

[
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X
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n

]

+O
(

1

u2K
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(359)

(b)
= E

[
Φeγ

X
n,Hn

n

](
δ0(u)−

1

u
γ0(u)

)

−Kγ0 (u) δ0(u)E
[
eγ

X
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n

]
+

1

u
cKγ0 (u)E

[
eγ

X
n,Hn

n

]

+O
(

1

uK

)
(360)

(c)
=
(
2δ0(u)−

c

u

)
E

[
Φeγ

X
n,Hn

n

]

+N
( c
u
− 2δ0(u) +

u

c
δ0(u)

2
)
E

[
eγ

X
n,Hn

n

]

+O
(

1

uK

)
(361)

where (a) follows from Remark 7 and Proposition 3 in

Appendix E-A, and Ψ is expanded using (152), (b) follows by

Proposition 4 in Appendix E-A and the fact that

∣∣∣eγX
n,Hn

n

∣∣∣ ≤
1, and in (c) we used γ0(u) = c−uδ0(u) (see Proposition 4).

Thus, (355) can be expressed as

E

[
Φ

(
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1

u
+Ψ

)
eγ

X
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n

]

=

(
1 +

1− c

u
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)
E
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X
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( c
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u
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2
)
E

[
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X
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]

+O
(

1

uK

)
. (362)

Equating the RHS of (362) and the RHS of (353) and

solving for E
[
Φeγ

X
n,Hn

n

]
leads to

E

[
Φeγ

X
n,Hn

n

]

= N

(
1− c+ 2uδ0(u)− u2

c δ0(u)
2
)

1− c+ u (1 + 2δ0(u))
E

[
eγ

X
n,Hn

n

]
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√
n

K
u
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1− c+ u (1 + 2δ0(u))
E

[
eγ

X
n,Hn

n

]

+O
(

1

u
√
K

P (t)

)
(363)

for some polynomial P (t).

This concludes the proof of part (i).

Proof of part (ii): We begin as in the proof of part (i).
From the derivative of γX

n,Hn

n in (341)–(344) and standard

Gaussian calculus, we have

E

[
trQ

HAHH

K
eγ

X
n,Hn

n

]

=
1

K

∑

i,j,k,l

E
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HijAjkH
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]
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=
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AjkE
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 (365)

=
1

K
trAE

[
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X
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n

]
− E
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= −E

[
1

K
trQtrQ

HAHH

K
eγ

X
n,Hn

n

]

+ it

√
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K
E

[(
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K
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+
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K
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n

]

+O
(
P1(t)

K

(
1 +

1

K
trA2

))
(367)

for some polynomial P1(t), where the last line follows from

the observation that trA = 0 and that the terms in the

derivative of γX
n,Hn

n resulting from
(
θX

n,Hn

n

)2
and κX

n,Hn

n

are of order O( t
2

K (1 + 1
K trA2)) and O( t3

K2 (1 +
1
K trA2)),

respectively.

Rearranging the terms, one arrives at

E

[
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K

(
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K
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)
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X
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n

]
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√
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+
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(
Q
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K
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]
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(
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K
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Using the identity A−A2 = XX
H

n+1 A, we obtain

it

√
n

K
E
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K
trQ2HXXHAHH

K(n+ 1)

+
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K
trQ

(
Q
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K

)2
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X
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n

]
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√
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X
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]
. (369)

Note now that
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[
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trQ

(
Q
HAHH

K
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]
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K
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HH

K
AQ̃
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]
(370)
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K
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IK − σ2Q̃

)
A
(
IK − σ2Q̃

)
A
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(371)

≤
(√
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[
1

K
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]
+

√
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[
σ2

K
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]

+

√
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K
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(
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)2]
+

√
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[
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K
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(372)

= O
(

1

K3
trA4

)
= O

(
1

K

(
1

K
trA2

)2
)

(373)

where the inequality follows from Remark 7 in Appendix C

and the last line follows from a direct application of Proposi-

tion 3 in Appendix E-A to each of the individual terms, along

with trA4 ≤ (trA2)2. By Proposition 3,

Var

[
1

K
trQ2HAHH

K

]
= O

(
1

K3
trA2

)
= O

(
1
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(374)
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]
= O

(
1

K3
trA4

)
(375)

= O
(

1

K

(
1

K
trA2

)2
)
. (376)

Thus, by Lemma 5 in Appendix C, the RHS of (369) can

be written as in (377) on the top of the next page. By

Proposition 4 in Appendix E-A, we can approximate the first

two terms in (377) by

E

[
1

K
trQ2HAHH

K

]

= γ1
(
σ2
) 1

K
trA+O

(√
1
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trA2

)
(378)

= O
(

1√
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)
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]
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(
σ2
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K
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)
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K
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(
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1

K
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)
. (381)

It remains to find an approximation of the term

E

[
1
K trQ

(
QHAHH

K

)2]
. By Lemma 6 in Appendix C,
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]
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]
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=
1
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∑
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E
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=
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]
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]
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The derivative further develops as

∂
[
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]
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∂H∗
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=
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[
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]
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K
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Replacing (385) in (384) and rearranging the resulting

terms, we arrive at

E

[
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Q
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+ E

[
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K

]
. (386)

Applying Proposition 4 in Appendix E-A together with

Proposition 3 in Appendix E-A and Lemma 5 in Appendix C
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to the individual terms leads to

E
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K
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Q
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= δ0
(
σ2
)
γ1
(
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K
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(
1√
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)
. (387)

Similarly, by Lemma 5, Proposition 3, the variance bound

in (373), and Proposition 4,
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K
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= E

[
1

K
trQ

(
Q
HAHH

K

)2
]
E

[
1 +

1

K
trQ

]

+O
(√

1

K5
trA4

)
(388)
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Q
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Equating the RHSs of (387) and (389) and solving for

E

[
1
K trQ

(
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K

)2]
yields
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Similar to the proof of Part (i), let us define

Ψ =
1

K
trQ (391)

Φ = trQ
HAHH

K
. (392)

Putting the results from (368), (369), (377), (379), (381), and

(390) together, we conclude that

E

[
Φ (1 + Ψ) eγ

X
n,Hn

n

]
= −it

√
n

K

γ1(σ
2)

1 + δ0(σ2)

1

K
trA2

+O
(
P1(t)√

K
+

tP2(t)√
K

1

K
trA2

)

(393)

for two polynomials P1(t) and P2(t), where the term t in front

of P2(t) arises from the pre-multiplication by at least it of the

various estimators involved.

We now need to find an alternative representation of the

term E

[
ΦΨeγ

X
n,Hn

n

]
in the LHS of the last equation. Fol-

lowing the same arguments as in (356)–(361), and using√
K−3trA2 ≤ 1/

√
K , we can write
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. (399)

From the last result and (393), we have
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(401)

for some polynomials P1(t) and P2(t).

Solving (400) and (401) for E
[
Φeγ
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n

]
yields
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. (402)
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This concludes the proof of part (ii).
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.
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