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We report on the design and results of the second reactive synthesis competition (SYNTCOMP 2015).

We describe our extended benchmark library, with 6 completely new sets of benchmarks, and addi-

tional challenging instances for 4 of the benchmark sets that were already used in SYNTCOMP 2014.

To enhance the analysis of experimental results, we introduce an extension of our benchmark format

with meta-information, including a difficulty rating and a reference size for solutions. Tools are

evaluated on a set of 250 benchmarks, selected to provide a good coverage of benchmarks from all

classes and difficulties. We report on changes of the evaluation scheme and the experimental setup.

Finally, we describe the entrants into SYNTCOMP 2015, as well as the results of our experimental

evaluation. In our analysis, we emphasize progress over the tools that participated last year.

1 Introduction

The automatic synthesis of reactive systems from formal specifications is one of the major challenges

of computer science. While there has been lively research on the topic for more than 50 years and a

number of fundamental approaches to solve the problem have been proposed [23, 25, 40, 41], the impact

of theoretical results on the practice of system design has been rather limited. This is in spite of the

obvious advantages of the automatic construction of provably correct systems and an increased interest

in possible applications of reactive synthesis techniques, e.g., in robotics and cyber-physical systems.

[21, 22, 34] The goal of the reactive synthesis competition (SYNTCOMP) is to increase the impact of

theoretical advancements in synthesis by fostering research in scalable and user-friendly implementations

of synthesis techniques.

In particular, SYNTCOMP aims at

i) making synthesis tools comparable by establishing a standard benchmark format,

ii) facilitating the exchange of benchmarks by providing a public benchmark repository and encourag-

ing researchers to contribute their benchmarks,

iii) enabling a comprehensive and fair evaluation of synthesis tools by providing a dedicated and inde-

pendent platform for the comparison of tools under consistent experimental conditions,
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iv) encouraging the implementation of synthesis tools that can be used as black-box solvers in ap-

plications by enforcing that competition entrants have to run on the complete benchmark set of

SYNTCOMP with a fixed configuration, and

v) fostering the efficient implementation of synthesis algorithms by regularly providing new and chal-

lenging benchmark problems, and comparing the performance of tools on these.

The first SYNTCOMP was held during June and July of 2014, and its results were first presented

at the 26th International Conference on Computer Aided Verification (CAV) and the 3rd Workshop on

Synthesis (SYNT) in July 2014. [30] A design choice of the first competition was to focus on safety

properties specified as monitor circuits in an extension of the AIGER format (known from the hard-

ware model checking competition [7]). We keep this restriction for the second competition, and plan to

consider extensions of the format in the future.

The organization team of SYNTCOMP 2015 consisted of Roderick Bloem and Swen Jacobs. Based

on results and experiences from the first competition, the specific goals for the second competition were:

• to expand the benchmark library with new and challenging problems,

• to improve the selection of benchmarks to ensure an even distribution over benchmarks from dif-

ferent classes and difficulties,

• to improve the ranking scheme, focusing on the most important properties of synthesis tools, and

• to determine the progress of the state of the art by comparing the performance of new entrants to

those from last year.

The rest of this paper describes the design, benchmarks, participants, and results of SYNTCOMP

2015. We describe the synthesis problem as considered in SYNTCOMP in Section 2, followed by a

presentation of the benchmark set for SYNTCOMP 2015 in Section 3. Section 4 introduces the rules and

setup of the competition, including classification and selection of benchmarks. In Section 5 we give an

overview of the entrants of SYNTCOMP 2015, focusing on changes with respect to last year’s entrants.

Finally, we present and analyze the experimental results in Section 6.

Note that Sections 3 and 5 are in part based on descriptions supplied by the respective authors of

benchmarks and tools. The remainder of this article is original work of the SYNTCOMP organizers.

2 Synthesis Problem

We briefly summarize the reactive synthesis problem as it is considered in SYNTCOMP. A more detailed

introduction into the problem, as well as into the different approaches for solving it, can be found in [30].

In SYNTCOMP, we consider the automatic synthesis of finite-state reactive systems that satisfy a

safety specification, given as a monitor circuit that raises a special output err when an unsafe state is

visited. The specification is encoded in the SYNTCOMP format, an extension of the well-known AIGER

format [6] that allows inputs of the circuit to be defined as either controllable or uncontrollable. In the

traditional game-based approach to the synthesis of reactive systems [20, 41, 47], such a specification

gives rise to a game between two players: states of the game are given by the valuation of latches in the

monitor circuit, the environment player decides on the uncontrollable inputs of the specification circuit,

and the system player decides on the controllable inputs. The goal of the system player is to satisfy the

specification, i.e., to visit only safe states, independent of the environment behavior.

Algorithms that solve this game usually take an approach that consists of two steps. In the first step,

a so-called winning region is computed. The winning region W is the set of all states from which the

system player can enforce to satisfy the specification, i.e., to visit only safe states in the subsequent
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computation. In the classical algorithm, this is done by computing the fixpoint of the uncontrollable

predecessor operation upre on the error states, i.e., inductively computing all states from which the

environment can force the game into the unsafe states. Since two-player safety games are determined,

the complement of this set is the winning region W of the system player. In a second step, a winning

strategy is derived from the winning region. For every (current) state and uncontrollable input, the

winning strategy defines a set of controllable inputs that are okay for satisfying the specification. In

order to obtain an implementation of this strategy as a circuit, a concrete choice for the controllable

inputs has to be made for every state and uncontrollable input.

In order to achieve acceptable scalability, it is important to implement synthesis algorithms sym-

bolically, i.e., by manipulating formulas instead of enumerating states. In synthesis, these symbolic

algorithms are usually implemented with Binary Decision Diagrams (BDDs) [4, 19, 46]. One reason

for this is that solving games inherently involves dealing with quantifier alternations, and BDDs offer

techniques for handling both kinds of quantification. However, BDDs also have their scalability issues.

On the other hand, there have been enormous performance improvements in decision procedures for the

satisfiability of (boolean) formulas over the last years and decades. This has lead to efficient tools like

SAT- and QBF (Quantified Boolean Formulas) solvers, which can also be leveraged to obtain efficient

symbolic synthesis algorithms.

All of the tools that compete in SYNTCOMP 2015 implement symbolic game-based synthesis in

some form. A description of the tools will be given in Section 5.

3 Benchmarks

In this section, we describe the benchmark library for SYNTCOMP 2015. We start by describing in

detail 6 new classes of benchmarks. This is followed by short descriptions of the classes of benchmarks

that have already been used in SYNTCOMP 2014 — for some of these, additional problem instances

have been added, and two of them are split into multiple classes for SYNTCOMP 2015.

3.1 Scheduling of Washing Cycles (new class)

This class of benchmarks specifies a washing system, with cycles that can be launched in parallel. The

system is composed of several tanks that may depend on shared water pipes, and can be controlled by

the user pushing buttons. It is parameterized in the number of tanks n, the maximum allowed reaction

delay d, as well as the number t of tanks that share a water pipe. The correct behavior of the system

is described by rational expressions that impose safety constraints. These safety constraints are first

translated to non-deterministic automata, and then into the SYNTCOMP format. The benchmark set is

described in more detail in [18].

Problem description. We consider the design of a centralized controller for a washing system, com-

posed of n tanks running in parallel. The user can request the delivery of water to a given tank i by

pressing a button, modeled as uncontrollable input pushi. The release of water into the tank is modeled

by controllable input filli. After a determined time k, the controller should open the valve to remove the

water from inside the tank, modeled by controllable input emptyi. Finally, there is a controllable input

light that models an activation light that should be on whenever one of the tanks contain water. This is

illustrated in Fig. 1.
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Water tank i

filli

emptyi

pushi

Figure 1: A water tank. Input filli controls the arrival of water into the tank. Input emptyi controls the

departure of water out of the tank. Input pushi initiates the washing cycle when the button is pushed.

Encoding of the problem by safety specification. We encode the specification for the controllers into

rational expressions that denote the occurrence of an error in the execution:

• An error occurs if a button was pressed but the tank is not filled after delay d ∈ N:

Ai = true∗ · {pushi} · {¬filli}
d .

• The tank should not be filled unless the button was pushed:

Bi = true∗ · {¬pushi}
d · {filli}.

• The tank should be emptied after a delay of exactly k steps:

Ci = true∗ · {filli} · truek · {¬emptyi}

C′
i = true∗ · {filli} · (true | ε)k−1{emptyi}

• The light should be on if, and only if, one of the n tanks is being filled:

D = true∗ ·







light 6=
∨

i∈[1,n]

filli







.

• If tanks i and j are connected to the same pipe, as illustrated in Fig. 2, then the system should not

activate filli and fill j at the same time. We write P for the set of pipes, and for a pipe p ∈ P, we

write i ∈ p to denote that tank i is fed by pipe p. We encode the mutual exclusion constraint by

raising an error for the following expression:

E = true∗ ·

{

∨

p∈P

∧

i, j∈p

filli

}

Overall, we consider the safety specification given by the language:

L =
⋃

i∈[1,n]

(

L(Ai)∪L(Bi)∪L(Ci)∪L(C′
i)
)

∪L(D)∪L(E)

Where L(A) denotes the languages associated to expresssion A.
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Tank 1 Tank 2 Tank 3 Tank 4

Figure 2: A system with 4 water tanks. Tanks 1 and 2 connect to the same pipe, and so do tanks 3 and 4.

Translation to AIGER. To produce benchmarks in AIGER format, the conjunction of rational expres-

sions is first translated to a non-deterministic automaton A . Each state of A is encoded by a latch in the

AIGER file. In an execution of the circuit, a latch l is on if, and only if, there is an execution of A —

on the prefix of the word that has been read so far — that leads to the state corresponding to latch l. The

error latch is put to true if, and only if, one of the latches corresponding to accepting states is on. The

error output will be set to true whenever the current prefix belongs to the language L .

In the benchmark package, the AIGER files are named cycle_sched_n_d_t.aag, where n is the

number of tanks, d is the maximum delay between pushi and filli, and t is the number of tanks that are

alimented by the same pipes. The delay k between filli and emptyi is always chosen to be equal to d.

This benchmark set contains 321 instances, and has been supplied by Romain Brenguier. The OCaml

program that has been used to generate AIGER files from rationnal expressions can be downloaded from

the following address: https://github.com/romainbrenguier/Speculoos.

3.2 Driver Synthesis (new class)

This class of benchmarks is based on a driver synthesis benchmark for the Termite synthesis tool [1,44].

In Termite, the driver synthesis problem is encoded as a game played by the driver (or controller) against

its environment, consisting of an operating system and the device to be controlled. The given benchmark

considers the synthesis of a driver for an IDE (or PATA) hard disk controller. The driver must perform

three basic functions: read sectors, write sectors and device configuration.

Problem description. The benchmark consists of two interacting state machines:

• an operating system (OS), and

• an IDE hard disk controller.

The OS acts as a workload generator for generating possible OS-driver interactions. In this bench-

mark, the specification requires

• that the driver both read and write hard disk sectors,

• that these sectors are eventually read/written, and

• that the driver does not perform erroneous actions such as reading/writing hard disk sectors when

not requested.

The requirements that the OS specification imposes are expressed as reachability goals, e.g., any out-

standing hard disk write is eventually performed.

https://github.com/romainbrenguier/Speculoos
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The IDE hard disk controller state machine models the external register-mapped control interface of

this device as well as an internal state machine that performs the disk sector reads and writes. By writing

the correct values to these registers in the correct order, the driver can initiate read and write transactions

in order to satisfy the requirements imposed by the OS workload generator. Most registers contain data

such as the sector offset to start writing, number of sectors to write, and a pointer to the data’s location

in memory. Others contain control bits, which, when written, trigger various operations in the hardware

such as a disk write.

The goal is to synthesize a driver that provides values for the control bits such that the specification

is satisfied. Conceptually, the driver has full information of the system state and when it detects that

there is an outstanding request, it performs the necessary device register reads and writes to force the

IDE controller state machine to perform a read or write, thus resolving the request.

Parameterization and encoding into AIGER. The control bits of the hard disk controller are modeled

as controllable inputs. The uncontrollable inputs model non-determinism in the OS and device state

machines. This ensures that the driver can respond correctly to all possible generated workloads.

Benchmarks from this class are named driver_XYZ.aag, where X, Y and Z stand for the three di-

mensions in which the benchmark is parameterized:

• the specification contains a number of state variables that represent data that is inconsequential to

the property to be synthesized. One dimension of parameterization is an abstraction of such state

variables, by either removing them completely, or reducing the bit-width of certain signals. X=a

stands for the variant of the benchmark without data abstraction, and X=b,c,d are three variants

that abstract increasingly more of the data.

• the original specification contains a liveness constraint, which is reduced to a safety property by

requiring the desired property to hold at least once within every execution fragment of some fixed

length, given by Y. Y ranges between 2 and 10, where small values result in unrealizability of the

benchmark, while large values increase the size of the state space and potentially make it more

difficult to find a solution.

• finally, Z can take two values, where Z=n means that the benchmark has not been further modified,

and Z=y means that ABC [16] has been used to simplify the circuit.

This benchmark was supplied by Adam Walker, and translated from Verilog into AIGER by Robert

Könighofer, using the VL2MV routine of the VIS system [15], followed by a translation to AIGER

format (and possibly optimization) by ABC. The source code and exact sequence of commands are

replicated in the comments section of each benchmark file. Overall, this class contains 72 problem

instances.

3.3 Huffman Encoder (new class)

This class of benchmarks is taken from recent work of Khalimov [33] on a framework for specifying

synthesis problems. The idea is: given a Huffman decoder [29], synthesize the encoder.

The specification includes a given Huffman decoder, which reads the outputs of the encoder that is to

be synthesized, and a monitor circuit that compares environment inputs to the encoder with the outputs of

the decoder — they should match. Furthermore, the encoder is required to eventually supply the encoded

signals that correspond to its input. The benchmark is parameterized in the safety parameter k that is used

to approximate this liveness condition, i.e., we require the encoder to supply the encoded signals within

k steps. For the given decoder, the specification is unrealizable if k ≤ 9, and realizable otherwise.
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This benchmark was written in an extended version of the SMV format [36, 37], and converted

to AIGER by first translating it into standard, flattened SMV format, and then using smvtoaig and a

liveness-to-safety approximation to obtain a file in the SYNTCOMP format. For more details on the

benchmark, the original specification language and its translation into SYNTCOMP format, we refer to

Khalimov [33].

3.4 HWMCC (new class)

This class of benchmarks is based on a subset of the benchmarks from HWMCC 2014 [7]. The idea is to

consider verification benchmarks consisting of a system and a safety specification that is not satisfied by

the system, and ask the question whether we can synthesize a controller for a given subset of the inputs

such that the specification is satisfied.

To obtain the benchmarks in this set, we consider the unsafe instances from the single safety property

track of HWMCC. Depending on the overall number of inputs of the original benchmark, we consider

variants where between 1 and 512 are defined to be controllable. The files retain their original file-

names, with _c0tocx appended to the filename if inputs 0 to x are declared as controllable. E.g., the

benchmark based on 6s210b037.aag, where 32 inputs have been declared as controllable, is named

6s210b037_c0to31.aag.

This benchmark set contains 110 benchmarks, including some of the largest AIGER files that have

been considered in the competition so far, with file size of up to 6MB, corresponding to more than 20000

inputs, 40000 latches, and 200000 AND-gates. The original verification benchmarks have been taken

from the HWMCC website [7] and modified by Swen Jacobs.

3.5 HyperLTL (new class)

This class of benchmarks is based on a number of benchmark problems from HyperLTL model checking,

as introduced in recent work by Finkbeiner et al. [28]. HyperLTL allows to express properties of multiple

executions of the same system, e.g., information-flow properties or symmetry properties. In this case, we

consider given implementations of several mutual exclusion protocols inspired by the bakery protocol

and the AMBA specification, and symmetry properties like

∀π,π ′. (select(0)π ∧ select(1)π ′)→ G(pc(0)π = pc(1)π ′ ∧ pc(1)π = pc(0)π ′ ,

stating that if in an execution π the scheduler has initially selected process 0, and in execution π ′ it

has selected process 1, then over the whole execution the program counters of these processes will be

swapped.

The set of benchmarks contains different implementations of bakery protocols and the AMBA pro-

tocol, with different symmetry properties.

Encoding. The HyperLTL model checking problems are translated to QBF queries, which are in turn

encoded in AIGER format. The idea is that the synthesizer checks the HyperLTL property, and constructs

a witness formula (represented as a controller circuit) if this is the case.

The benchmark set contains 21 benchmarks, and has been supplied by Markus Rabe. For more

details on HyperLTL model checking and the benchmarks, we refer to Finkbeiner et al. [28].
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3.6 Matrix Multiplication (new class)

These benchmarks describe the synthesis of a matrix multiplication circuit. That is, the inputs represent

two boolean matrices, and the controller needs to give outputs that represent the product matrix of the

inputs (in every step of the system). Matrix multiplication is a basic operation that has many applications

in mathematics, physics, and engineering. Implementing this operation with a logical circuit of small

size is important to produce hardware at small cost. Furthermore, this is an example of a compositional

benchmark, as every entry of the output matrix only depends on one column of one input matrix and one

row of the other, but not on the rest of the input matrices.

In addition to the basic matrix multiplication benchmarks, the benchmark set includes problems with

repeated matrix multiplication, where a boolean matrix is stored in the circuit, and multiplied repeatedly

with matrices defined by the current inputs. Half of the inputs are controllable, and the goal is to never

obtain a matrix that has a line composed only of 0s or only of 1s.

Encoding. We consider the set of Booleans B = {0,1} and multiplication of matrices in the Boolean

ring 〈B,∨,∧,0,1〉. The inputs of the specification circuit encode matrices A ∈ B
m×n, B ∈ B

n×o, and

C ∈ B
m×o, with the inputs for matrix C defined as controllable. The error output is set to true if, in any

step, A ·B 6= C. In the benchmark package, the AIGER file mult_bool_matrix_m_n_o.aag encodes

the mutiplication of a matrix A of dimension m×n and a matrix B of dimension n×o.

For the variant with repeated matrix multiplication, the inputs of the circuit encode a matrix A ∈B
n×n

with n∈N, where inputs corresponding to the first n/2 columns are controllable. Furthermore, the circuit

stores a matrix B ∈ B
m×n with m ∈N, initialized to a matrix that alternates between 0 and 1 (i.e., Bi j = 1

iff i+ j is even), and updated in each step to the result of A ·B. The error output is raised if at any

point B is such that either ∃ j. ∀i. Bi j = 0, or ∃ j. ∀i. Bi j = 1. In the benchmark package, the AIGER

file mult_bool_matrix_dyn_m_n.aag encodes the repeated mutiplication of a matrix B of dimension

m×n with an input matrix A of dimension n×n.

This benchmark set was supplied by Romain Brenguier and contains 354 problem instances — 273

for basic matrix multiplication, and 81 for the repeated matrix multiplication variant. The AIGER files

for these benchmarks have been generated from an OCaml program that can be downloaded from the

following address: https://github.com/romainbrenguier/Speculoos.

3.7 AMBA (extended class)

The synthesis of a bus controller for the AMBA specification (see [9]) was already considered as a

benchmark last year [30]. The benchmarks have been encoded in Verilog and then translated into AIGER,

and are parameterized in three dimensions:

• The number of masters n that want to access the bus.

• The type of liveness-to-safety approximation (three different types).

• A parameter k for the liveness-to-safety approximation, requesting for example that a liveness

property has to be satisfied after every k steps of the whole system.

This year, this benchmark set has been extended by considering larger values for n (up to 16) and k (up

to 60). Overall, the set now contains 952 instances. This benchmark set has been supplied by Robert

Könighofer and is described in more detail in [30].

https://github.com/romainbrenguier/Speculoos
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3.8 Genbuf (extended class)

This benchmark set considers the synthesis of a generalized buffer (as described in [9]), and is parame-

terized in the same way as the AMBA benchmarks above. This year, we consider values of up to 64 for

n, and 120 for k. This benchmark set now contains 866 instances, supplied by Robert Könighofer, and is

described in more detail in [30].

3.9 LTL2AIG (extended class)

This set of benchmarks is based on the benchmark set of the Acacia synthesis tool [12, 26], translated

from specifications in LTL using the LTL2AIG tool [30]. In 2014, only a part of the original benchmark

set was translated, as the LTL2AIG tool did not support all features of the original specifications. This

year, the complete benchmark set was entered into the competition. It now contains:

• 50 instances of demo problems that are based on the test suite of LTL synthesis tool LILY [31],

with specifications of traffic lights and arbiters in different complexity,

• 41 instances of ltl2dba and ltl2dpa problems that use the synthesis tool to obtain a deterministic

Büchi automaton (dba) or a deterministic parity automaton (dpa) that corresponds to a given LTL

formula,

• 42 instances of the gb benchmark, based on the same generalized buffer case study as the bench-

mark above, but in this case as a direct translation of an LTL specification into SYNTCOMP

format, and

• 64 instances of a load balancer benchmark, originally presented with LTL synthesis tool UN-

BEAST [24].

This benchmark set has been supplied by Guillermo A. Pérez. The first two sets have already been

present last year, the other two have been newly generated based on the new version of the LTL2AIG

tool (and replace a small set of instances for the gb and load balancer benchmarks that have been present

last year). Instead of a single benchmark class, we now consider this set as 4 different benchmark classes

in our selection of benchmarks shown in Table 2.

3.10 Toy Examples (extended class)

This benchmark set considers a number of basic building blocks of circuits, such as an adder (add), a

bitshifter (bs), a counter (count), or a multiplier (mult). All of the benchmarks are parameterized in the

bitwidth of the input. This year, the benchmark set includes

• 50 instances of benchmark add,

• 18 instances of benchmark bs,

• 28 instances of benchmark cnt,

• 14 instances of benchmark mult,

• 42 instances of benchmarks mv and mvs, and

• 24 instances of benchmark stay.

For benchmarks add and bs, instances with larger bit-width have been added this year. This benchmark

set has been supplied by Robert Könighofer and is described in more detail in [30].
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3.11 Factory Assembly Line and Moving Obstacle (unchanged)

These two benchmark sets describe a controller for two robot arms on an assembly line, and a moving

robot that should avoid a moving obstacle in two-dimensional space, respectively. The factory assembly

line benchmark consists of 15 problem instances, and the moving obstacle benchmark of 16. Both

sets of benchmarks have been supplied by Rüdiger Ehlers and have already been used in SYNTCOMP

2014 [30].

4 Setup, Rules and Execution

4.1 Classification and Selection of Benchmarks

To facilitate the selection of suitable benchmarks and the evaluation of experimental results, we collected

additional information on realizability and difficulty of benchmark problems. For realizable specifica-

tions, we additionally determined the smallest known solution, to be stored as a reference size. For

benchmarks that were already used in SYNTCOMP 2014, this information was obtained from the exper-

imental results of the previous year. For the new benchmarks, we conducted classification experiments

by running the three most successful solvers from SYNTCOMP 2014 in sequential realizability mode on

a representative subset of the new benchmarks.

Extension of the Benchmark Format. The data obtained in the classification is included directly in

each benchmark file, as a special paragraph of the comments section. This paragraph starts with a line

containing only the SYNTCOMP tag “#!SYNTCOMP”, and ends with a line containing only “#.”. Be-

tween these lines, properties of the benchmark can be defined. The properties defined for SYNTCOMP

2015 are listed in Table 1.

Both SOLVED_IN and REF_SIZE may be set to 0 if the problem has not been solved before. An

example of a classification paragraph is given in Listing 1.

Selection of Competition Benchmarks. To ensure a fair and meaningful evaluation of the participants,

we want to ensure that benchmarks from different classes of problems have approximately equal weight,

and that the competition benchmarks represent a good distribution across different difficulties for each

class. To this end, benchmarks are divided into categories that can be either small or large. From each

Table 1: Properties defined for classification of benchmarks in SYNTCOMP 2015

Property Value

STATUS realizable, unrealizable or unknown

SOLVED_BY the fraction of participants that solved the benchmark in a previous experi-

ment, e.g., 8/8, followed by a description of the experiment in brackets, e.g.,

[SYNTCOMP2014-RealSeq]

SOLVED_IN the minimal time (in seconds) needed to solve the problem in a previous experiment,

followed by a description of the experiment in brackets

REF_SIZE the minimal size of a solution (in number of AND gates) produced in a previous

experiment
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Listing 1: Classification paragraph of benchmark file add8y.aag

#!SYNTCOMP

STATUS : r e a l i z a b l e

SOLVED_BY : 8 / 8 [SYNTCOMP2014−RealSeq ]

SOLVED_IN : 0 . 0 0 8 [SYNTCOMP2014−RealSeq ]

REF_SIZE : 203

# .

category, we selected a number of problems (usually 16 for large categories, and 8 for small) with an

even distribution over difficulties, in terms of the ratio of solvers that were able to solve the benchmark

previously, given in the SOLVED_BY tag of the benchmarks. In particular, the selected benchmarks from

every set include a fraction of about 20% of benchmarks that have not been solved before. The number

of selected problems from each category (cp. Section 3) is given in Table 2.

Table 2: Number of selected Benchmarks per Category

Category Benchmarks Category Benchmarks

AMBA 16 Add (Toy Examples) 8

(Washing) Cycle Scheduling 15 Bitshift (Toy Examples) 8

Demo (LTL2AIG) 16 Count (Toy Examples) 8

Driver Synthesis 16 Genbuf (LTL2AIG) 8

Factory Assembly Line 15 Huffman Encoder 5

Genbuf 16 Mult (Toy Examples) 8

HWMCC 16 Mv/Mvs (Toy Examples) 8

HyperLTL 15 Stay (Toy Examples) 8

Load Balancer (LTL2AIG) 16

LTL2DBA/LTL2DPA (LTL2AIG) 16

Moving Obstacle 16

Matrix Multiplication 16 Total: 250

4.2 General Rules

Like in the previous year, SYNTCOMP is divided into two main tracks: realizability checking and

synthesis, as well as into two execution modes: sequential and parallel. We explain the rules of the

competition, including evaluation of tools in the different tracks.

Input and Output Format. Participants have to accept input in the SYNTCOMP format, without fur-

ther user intervention except for a fixed sequence of command-line parameters. In the synthesis track,

solutions for realizable specifications also have to be provided in the SYNTCOMP format. Syntactic con-

formance to the format is automatically checked by a script provided by the organizers. For a description

of input and output format, we refer to the report of the first competition [30].
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Timeout. In the sequential execution mode, the timeout for each problem is 3600s of CPU time. In the

parallel mode, the timeout is 3600s of wall time.

Basic Ranking Scheme. In both tracks, a correct answer is rewarded with one point for the solver, and

a wrong answer is punished by subtracting 4 points. Since most of the benchmarks were available to the

participants before the competition and we allowed re-submission in case of implementation bugs that

were detected in the testing phase of the competition, such a punishment was not necessary. The tracks

differ in how a solution is determined to be correct, as explained below.

Realizability Track. In this track, tools read the problem description and have to return unrealizable

in case of an unrealizable specification, and realizable in case of a realizable specification. Correctness

is determined based on the STATUS information in the classification paragraph of the benchmark, unless

STATUS is unknown. In the latter case, correctness is determined by a majority vote of all solvers that

provide a solution to the benchmark, and the execution platform for the experiments (see Section 4.3)

generates a notification that a previously unsolved problem has been solved.

Synthesis Track. In this track, tools read the problem description and have to return unrealizable

in case of an unrealizable specification, and a solution that satisfies the specification and confirms to the

SYNTCOMP format in case of a realizable specification. In addition to the information in the STATUS

tag of the file, correctness of a solution is checked by running a model checker on the output file, with a

separate timeout of 3600s. Only solutions that can be verified by the model checker are accepted. In case

of problems that have status unknown and are solved for the first time, in this track there is no majority

vote on the correctness of the solution: if at least one solver produces a correct solution, it is assumed to

be realizable. Similarly, if a problem is tagged with unrealizable and a solver produces a solution that

is accepted by the model checker, we assume that the tag was wrong and the solution is correct.

Quality Ranking. In addition to the basic ranking scheme, we define a quality ranking for the synthesis

track, in which solutions of realizable problems are awarded a different number of points, depending on

the size of the solution sizenew and a reference size sizere f . The number of points for a solution is

2− log10

sizenew

sizere f

.

That is, a solution that is of size sizere f gets 2 points; a solution that is bigger by a factor of 10 gets 1

point; a solution that is bigger by a factor of 100 (or more) gets 0 points; and similarly for solutions that

are smaller than sizere f , e.g., a solution that is smaller by a factor of 10 gets 3 points.

For benchmark problems that have a REF_SIZE tag (that is not equal to 0), the value given there is

taken as sizere f . For benchmark problems that do not have such a tag because they are new or have not

been solved in the last competition, we use the smallest size of any of the solutions of this year as the

reference size.

4.3 Execution

SYNTCOMP 2015 used a set of identical machines with a single quad-core intel Xeon processor (E3-

1271 v3, 3.6GHz) and 32 GB RAM (PC1600, ECC), running a GNU/Linux system. Each node has a

local 480 GB SSD that can be used as temporary storage.
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As in 2014, the competition was organized on the EDACC platform [5], with a very similar setup. To

ensure a high comparability and reproducability of our results, a complete machine was reserved for each

job, i.e., one synthesis tool (configuration) running one benchmark. Olivier Roussel’s runsolver [42]

was used to run each job and to measure CPU time and wall time, as well as enforcing timeouts. As all

nodes are identical and no other tasks were run in parallel, no other limits than a timeout of 3600 seconds

(CPU time in sequential mode, wall time in parallel mode) per benchmark was set. Like last year, we

used wrapper scripts to execute solvers that did not conform completely with the output format specified

by the competition, e.g., to filter extra information that was displayed in addition to the specified output.

The model checker used for checking correctness of solutions is IIMC [13] in version 2.0.

5 Participants

Four participants were entered into SYNTCOMP 2015. All of them follow the traditional game-based

approach to the synthesis of reactive systems from safety specifications, as described in Section 2. In

this section, we briefly describe the methods implemented in each tool. Since all entrants have already

participated in the competition in 2014, we focus on the changes when compared to last year’s versions.

For the BDD-based tools, we give an overview of the implemented methods in Table 3. For detailed

explanations of the different optimizations, we refer to last year’s report [30].

Table 3: Optimizations implemented in BDD-based Tools.

Technique AbsSynthe Realizer Simple BDD Solver

automatic reordering x x x

eager dereferencing of BDDs x

direct substitution x x x

partitioned transition relation x x x

simultaneous conjunction and abstraction x

compositional synthesis x

abstraction-refinement (x) x

co-factor based extraction of winning strategies x N/A N/A

forward reachability analysis x N/A N/A

ABC minimization N/A N/A

additional optimizations (see tool descriptions) x x x

5.1 AbsSynthe 2.0: compositional algorithms for synthesis

AbsSynthe was submitted by R. Brenguier, G. A. Pérez, J.-F. Raskin, and O. Sankur from Université

Libre de Bruxelles. AbsSynthe implements different BDD-based synthesis approaches, and competed in

both the realizability and the synthesis track.

Overview

The new version of AbsSynthe implements different BDD-based synthesis algorithms, with and without

decomposition into independent sub-games, described in more detail in [18]. All algorithms use the BDD
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package CUDD, with automatic BDD reordering using the sifting heuristic. In sequential mode, three

different algorithms were entered into the competition: configuration seq1 uses a standard BDD-based

fixpoint computation, with partitioned transition relation and several other optimizations (see Table 3),

but without compositionality. The other two configurations seq2 and seq3 use different forms of compo-

sitional reasoning, explained below. An algorithm that uses abstraction refinement is also implemented

in AbsSynthe since its first version. However, this abstraction-based algorithm did not compete this year.

In addition, two parallel configurations par1 and par2 entered the competition, also explained below.

Decomposing the Specification

Let us demonstrate how we decompose the error function ferr of a given symbolic game into a disjunction,

i.e., ferr =
∨

i ei. Notice that if a strategy (i.e. a controller) ensures that the error signal is never true then

it also ensures that ei is never true. The rationale behind this approach is that the functions ei do not

depend on all latches in general, so solving the game for ei is often efficient.

Consider an AIG representing the formula

x1 ∧¬(x2 ∧ (¬x3 ∧ x4)) ,

where x1,x2,x3,x4 are all input variables. We can rewrite the formula as follows ϕ1 ≡ x1 ∧¬ϕ2 where

ϕ2 is ϕ2 ≡ x2 ∧¬x3 ∧ x4. If we distribute the disjunction from ¬ϕ2 we get that ϕ1 ≡ (x1 ∧¬x2)∨ (x1 ∧
x3)∨ (x1∧¬x4). Thus, one possible decomposition of ϕ1 would be to take e1 = x∧¬x2, e2 = x1∧x3, and

e3 = x1 ∧¬x4.

These general steps can be generalized into an algorithm which outputs a decomposition of the error

function whenever one exists. Intuitively, the algorithm consists in exploring all non-inverted edges of

the AIG graph from the vertex which defines the error function. If there are no inverted edges which

stopped the exploration, or if all of them lead to leaves, the error function is in fact a conjunction of

Boolean variables and can clearly not be decomposed. Otherwise, there is at least one inverted edge

leading to a node representing an AND gate. In this case, we can push the negation one level down and

obtain a disjunction which can be distributed to obtain our decomposition.

Given the set of ei (i) we first simplify the transition relation using the classical generalized co-factor

BDD operation and keep it precise only in for latch transition functions which affect ei. (ii) Next, we

solve each sub-game and obtain the set of states from which a winning strategy exists for the controller.

(iii) When combining solved sub-games, we further modify the transition relation by making every

transition not allowed by winning strategies of the controller in sub-game go to an error state.

Compositional Algorithms

We provide three different algorithms that first solve the sub-games corresponding to the sub-circuits

obtained by our decomposition procedure, and then aggregate, following three different heuristics, the

results obtained on the sub-games. Namely, once we have the solutions of all the sub-games we aggregate

them by using one of the three heuristics described below.

Global aggregation. We start by computing the intersection of the winning valuations of all sub-

games: Λ =
∧

1≤i≤n wi(L,Xu,Xc), where each wi(L,Xu,Xc) is a winning valuation of the latches L, un-

controllable inputs Xu, and controllable inputs Xc, for subgame i. In fact, any valuation that is not in Λ is

losing in one of the sub-games; thus in the global game. Conversely, a strategy that stays in Λ is winning

for each sub-game. Therefore, we solve the global game with the new safety objective of avoiding ¬Λ.
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Before solving the global game, the algorithm attempts to reduce the size of the transition relations using

restrict. This algorithm entered SYNTCOMP 2015 as configuration seq2.

Incremental aggregation. In this algorithm, we aggregate the results of the sub-games incrementally:

given the list of winning valuations wi for the sub-games, at each iteration, we choose and remove two

sub-games i and j, solve their conjunction (as with global aggregation, with error function ¬(wi ∧w j)),
and add the newly obtained winning valuations back in the list. The choice of the pair i, j is done

heuristically. This algorithm entered SYNTCOMP 2015 as configuration seq3.

Back-and-forth. For this last algorithm, we interleave the analysis of the global game (with objective

Λ) and the analysis of the sub-games. Let u(L) be the set of “bad” states (initially containing all states

where err is true). At each iteration, we extend the losing states u(L) by one step, by applying once the

upre operator in the global space. We then consider each sub-game, and check whether the new set u′(L)
of losing states (projected on the sub-game), changes the local winning states. For those games in which

it does grow, we recompute the local fixed point. We update the strategies λi of the sub-games when

necessary, and restart until stabilization. Because analyzing the sub-games is often more efficient than

analyzing the global game, this algorithm improves over the global aggregation algorithm in some cases

(see the experiments’ section). A similar idea was used in [27] for the problem of synthesis from LTL

specifications. This algorithm did not enter SYNTCOMP 2015 as a separate configuration in sequential

mode, but was used as one thread in one of the parallel modes, see below.

Parallel Algorithms. Two parallel versions of AbsSynthe entered the competition. Configuration par1

launches four threads in parallel, which execute the algorithms of sequential configurations seq1, seq2

and seq3, plus another thread with back-and-forth compositional reasoning. Configuration par2 also

launches four threads in parallel, but in this case with four instances of strategy seq1 that only differ in

the reordering strategy for BDDs.

Strategy Extraction

Strategy extraction in AbsSynthe uses the co-factor-based approach described in [11], with some addi-

tional optimizations as described in [30].

Experiments

Amongst the 674 benchmarks considered in [18] (which include those used in SYNTCOMP 2014), 351

are decomposable by our static analysis into at least 2 smaller sub-games. More specifically, the average

number of sub-games our decomposition algorithm outputs is 29; the median is 21.

In general, the performances of the three compositional algorithms can differ, but they are comple-

mentary. Even if AIG synthesis problems are monolithic, the experiments show that our compositional

approach was able to solve problems that can not be handled by the monolithic backward algorithm;

our compositional algorithms are sometimes much more efficient. There are also examples that can be

decomposed but which are not solved more efficiently by the compositional algorithms. So, it is often a

good idea to apply all the algorithms in parallel.
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Figure 3: The architecture of Demiurge.

Implementation, Availability

AbsSynthe is implemented in C++, and depends only on a simple AIG library (fetched from [6]) and the

CUDD binary decision diagram package [46]. The source code is available at https://github.com/

gaperez64/AbsSynthe/tree/native-dev-par. More details on AbsSynthe can be found in [17,18].

5.2 Demiurge 1.2.0: A SAT-Based Synthesis Tool

Demiurge was submitted by R. Könighofer from Graz University of Technology and M. Seidl from

Johannes-Kepler-University Linz. Demiurge implements several symbolic synthesis algorithms based

on SAT and QBF solvers. Demiurge competed in both the realizability and the synthesis track.

Overview

The architecture of Demiurge is outlined in Fig. 3. The input is a safety specification in AIGER format.

The AIG2CNF module parses it into CNF formulas representing the transition relation and the set of safe

states. Next, the back-end selected by the user is executed. The back-ends mostly differ in their method

for computing the winning region, and can be parameterized with a method for computing a circuit from

the winning region. Both the computation of the winning region and the extraction of circuits rely on

external solvers like SAT- and QBF solvers. The resulting circuits are optimized with ABC [16] and

dumped in AIGER format again.

Back-Ends

Learning-Based Back-End. The learning-based back-end computes a CNF representation of the win-

ning region W in an iterative manner. It starts with the set of all safe states. In each iteration, it computes

a state within the current version F of the winning region from which the environment can enforce to

leave F . Obviously, such a state cannot be part of the final winning region W . Hence, the algorithm

refines F by removing this state. The state is represented as a cube over the state variables, so removing

it from F amounts to adding a clause. By dropping literals from the cube as long as it only contains states

that must be excluded from the winning region, the algorithm generalizes the state into a larger region

before removing it from the winning region. The detailed algorithm can be found in [10].

For SYNTCOMP 2015, we use the following configuration, called D1synt if it is called with circuit

extraction, and D1real otherwise. Instead of a QBF solver, we use two competing SAT solvers to compute

and generalize states to be removed from the winning region (algorithm LEARNSAT from [10] with

optimization RG enabled, but optimization RC disabled). As a difference to the SYNTCOMP 2014

https://github.com/gaperez64/AbsSynthe/tree/native-dev-par
https://github.com/gaperez64/AbsSynthe/tree/native-dev-par
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submission (version 1.1.0), we also apply partial universal quantifier expansion to reduce the number of

iterations. Minisat version 2.2.0 is the underlying SAT solver.

Template-Based Back-End. In order to obtain a winning region, this back-end constructs a param-

eterized CNF formula over the state variables: different concrete values for the (Boolean) parameters

induce a different concrete CNF formula over the state variables. This way, the search for a formula

over the state variables (the winning region) is reduced to a search for Boolean constants (the template

parameter values) [10]. While Demiurge 1.1.0 could only use a QBF solver for finding a template in-

stantiation, version 1.2.0 can also use a SAT solver in a Counterexample-Guided Inductive Synthesis

(CEGIS) approach. For SYNTCOMP 2015, this back-end is not run separately, but only as one thread in

our parallelization.

Incremental Induction Back-End. The incremental induction back-end is a re-implementation of [38],

generalizing IC3-based reachability checking [14] to the synthesis case. For SYNTCOMP 2015, this

back-end is not run separately, but only as one thread in our parallelization.

Parallel Back-End. The parallel back-end is a playground for combining different methods that refine

a CNF representation of the winning region iteratively with additional clauses. Several threads compute

and add additional clauses in parallel.

For SYNTCOMP 2015, we use configurations with 3 threads, called P3synt or P3real for the syn-

thesis and realizability tracks, respectively: One thread executes the learning-based back-end, one the

template-based back-end (alternating between QBF- and SAT solving in 20 second turns), and one our

incremental induction back-end. Minisat 2.2.0 is used as SAT solver. DepQBF 3.04 with our extension of

the QBF preprocessor Bloqqer [45] is used for QBF solving in the template-based thread. Note that our

parallelization is not just a portfolio approach. The different threads share clauses of the winning region

as soon as they are discovered such that other threads can immediately benefit from this information.

Circuit Extraction

Demiurge provides several methods for computing circuits from the winning region [8]. One uses

QBFCert to compute Skolem functions for the output signals in a QBF that asserts completeness of

the strategy relation. The second one uses computational learning to compute circuits for one output

after the other. A third method is based on interpolation.

For SYNTCOMP 2015, we use the learning approach (method SL from [8]) with Lingeling ayv as

SAT solver. In our parallelization, we use 3 threads. The first two execute the learning approach in two

variants (SL and SLN from [8]) . The third thread executes the learning approach using incremental QBF

solving (method QL from [8]) with DepQBF 3.04.

Implementation, Availability

Demiurge is implemented in C++, and depends on a number of underlying reasoning engines. Currently,

Demiurge contains uniform interfaces to the APIs of Minisat, Lingeling, PicoSat, and DepQBF (with

and without the QBF preprocessor Bloqqer [45]). The interface to DepQBF also supports incremental

QBF solving [35]. Interfaces to SAT and QBF solvers supporting the (Q)DIMACS format are available
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as well. Furthermore, Demiurge interfaces ABC [16] for circuit minimization. The source code is avail-

able at http://www.iaik.tugraz.at/content/research/design_verification/demiurge/ un-

der the GNU Lesser General Public License version 3. The downloadable archive also contains extensive

experimental results on the SYNTCOMP 2014 benchmarks and scripts to reproduce them.

5.3 Realizer

Realizer was submitted by L. Tentrup from Saarland University, Saarbrücken. Realizer implements

BDD-based realizability checking, and competed in the realizability track. It does not support extraction

of strategies. We only give a very brief description of Realizer, since there are only minor changes to the

version that competed in SYNTCOMP 2014 [30].

Synthesis algorithms

Realizer implements the standard BDD-based fixpoint algorithm for safety games. It is based on BDD

package CUDD, and uses automatic reordering of BDDs with the lazy sift reordering scheme. The

fix-point algorithm is implemented in two variants, differing only in the way they handle the transition

relation of the circuit: one variant uses a monolithic transition relation, while the other uses a partitioned

transition relation. Only the variant with partitioned transition relation competed in sequential execu-

tion mode, as the other one is not competitive in general. A number of additional optimizations are

implemented in Realizer, compare Table 3.

The main difference (besides bug fixes) to the version that competed in 2014 is the parallel mode,

which uses both variants of the algorithm running (independently) in parallel.

Implementation

Realizer is written in Python and uses the BDD library CUDD in version 2.4.2 with the corresponding

Python bindings PyCUDD in version 2.0.2.

5.4 Simple BDD Solver 2

Simple BDD Solver was submitted by L. Ryzhyk from NICTA, Sydney and the Carnegie Mellon Uni-

versity, Pittsburgh, and A. Walker from NICTA, Sydney. Simple BDD Solver implements BDD-based

realizability checking, and only competed in the realizability subtrack. It does not support extraction of

strategies.

Overview

Simple BDD Solver is a substantial simplification of the solver that was developed for the Termite project

(http://termite2.org), adapted to safety games given in the AIGER format. It uses the BDD package

CUDD, with dynamic variable reordering using the sifting algorithm [43], and a number of additional

optimizations (again, cp. Table 3 and [30]). The basic algorithm entered the competition as configuration

1, and is almost identical to the version that competed last year.

Furthermore, the tool implements a variant of the fixpoint algorithm with an abstraction-refinement

loop inspired by de Alfaro and Roy [3]. This variant did not compete last year, but entered the competi-

tion this year. This algorithm entered the competition as configuration 2.

http://www.iaik.tugraz.at/content/research/design_verification/demiurge/
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Abstraction Refinement for Synthesis

The idea of the abstraction-refinement algorithm is that, given an abstraction, we classify states into one

of three categories: winning, losing, and unknown. If we discover that the entire initial set is winning,

we know that the original game is winning and we can terminate. Dually, if we discover any initial state

that is losing, we know that the entire initial set can never be winning, hence the game is losing and we

can terminate.

The algorithm iteratively refines the abstraction to reduce the number of states in the unknown clas-

sification until either:

• all of the initial states are classified as winning (and the other states need not be classified, since

this means that we can win from all initial states), or

• one of the initial states is classified as losing (again, no other states need to be classified)

The solver creates an abstraction by dropping a subset of state variables from the transition relation

and instead allows them to be non-deterministically updated on each round of the game. The initial

abstraction consists of only the variables that are mentioned in the safety specification, i.e., those that the

error output err directly depends on.

Abstract Game Solving. The abstract game is based on two different interpretations of the transition

relation, that compute the controllable predecessors of a set of states with different assumptions: Cpre-

must (CpreM
1 ) resolves the non-determinism of the abstraction in favor of the environment player, i.e.,

we assume that the system player can only force the game from an abstract state s into an abstract state

s′ if this is possible for any valuation of the state variables that have been abstracted away. On the other

hand, Cpre-may (Cprem
1 ) resolves the abstraction in favor of the system player, i.e., we assume that the

system player can force the game from s into s′ if there exists a valuation of the abstracted variables such

that this is possible.

Based on these functions, one can compute may-winning and must-winning regions, denoted W m

and W M respectively, by iterating the functions above to a fixpoint.

Abstraction Refinement. Following de Alfaro and Roy [3], we refine the abstraction at the may-must

boundary, i.e. the boundary between states classified as winning and unknown. We split an abstract state

into two such that from one of the new states x is is possible for the environment player to force execution

into the losing region. We find a candidate state to split by using an efficient symbolic calculation that

determines the sub-states that are not must-winning but have a transition to the must-winning set W M.

These are the sub-states on the may-must boundary that are winning and are thus are part of a candidate

state for splitting.

In order to extract a single sub-state on the may-must boundary that is winning, we extract a large

prime implicant from this characteristic formula. This is an efficient operation with BDDs. We also

extract the variables that occur in this prime that and are currently abstracted away.

Notice that if we include these variables in our abstraction, the abstraction is now precise enough

to exactly represent the states in the implicant. These states are winning. This means that if we iterate

the controllable predecessor one more time, we will at least discover that this implicant is winning,

in addition to W M. Thus, our refinement has grown the must winning set. In practice, refining the

abstraction in this way usually discovers many more winning states than just the implicant.
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Implementation, Availability

Simple BDD solver is written in the Haskell functional programming language. It uses the CUDD

package for BDD manipulation and the Attoparsec [39] Haskell package for fast parsing. Altogether, the

solver, AIGER parser, compiler and command line argument parser are just over 300 lines of code. The

code is available online at: https://github.com/adamwalker/syntcomp.

6 Experimental Results

We present the results of SYNTCOMP 2015, separated into realizability and synthesis track. Detailed

results of the competition are also directly accessible via the web-frontend of the EDACC platform at

syntcomp.cs.uni-saarland.de.

6.1 Realizability Track

In the realizability track, tools competed on 250 benchmark instances, selected from the different bench-

mark categories as explained in Section 4.1. All 4 tools that entered SYNTCOMP 2015 competed in the

realizability track in at least one configuration. Overall, 10 different configurations entered this track,

with 7 using sequential execution mode and 3 using parallel mode. We first restrict the evaluation of

results to purely sequential tools, then extend it to include also the parallel versions, and finally give a

brief analysis of the results.

Sequential Mode. In sequential mode, all participants compete with at least one configuration: Abs-

Synthe with three configurations (seq1, seq2 and seq3), Demiurge with one configuration (D1real), Re-

alizer with one configuration (sequential), and Simple BDD Solver with two configurations (1 and 2).

The number of solved instances per configuration, as well as the number of uniquely solved instances,

are given in Table 4. No tool could solve more than 200 out of the 250 instances, and 30 instances could

not be solved by any tool within the timeout.

Table 4: Results: Realizability (sequential mode only)

Tool (configuration) Solved Unique

Simple BDD Solver (2) 195 9

AbsSynthe (seq2) 187 2

Simple BDD Solver (1) 185 0

AbsSynthe (seq3) 179 0

Realizer (sequential) 179 0

AbsSynthe (seq1) 173 1

Demiurge (D1real) 139 5

The following benchmarks were solved uniquely by one tool configuration:

• AbsSynthe (seq1): moving_obstacle_128x128_59glitches

• AbsSynthe (seq2): mult_bool_matrix_6_6_6, mult12

https://github.com/adamwalker/syntcomp
syntcomp.cs.uni-saarland.de
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• Demiurge (D1real): beemldelec4b1_c0to511, gb_s2_r2_comp4_REAL,

load_full_4_comp1_REAL, mult_bool_matrix_dyn_6_6, very_good_bakery2.sym

• Simple BDD Solver (2): amba9match5, cycle_sched_12_6_3, cycle_sched_8_7_2,

driver_a7n, driver_b7y, driver_c8n, factory_assembly_5x5_2_10errors,

factory_assembly_5x5_2_11errors, good_bakery.false

For comparison, we also ran a number of additional tools on the benchmark set: last year’s ver-

sions of AbsSynthe, Simple BDD Solver, the learning-based sequential version of Demiurge, as well as

Aisy [32], our BDD-based, unoptimized reference implementation.1 The results for these tools can be

found in Table 5. Furthermore, Figure 4 gives a cactus plot for runtimes of sequential algorithms in the

realizability track, including the reference implementation Aisy.

Table 5: Results: Realizability (sequential, reference solvers)

Tool (configuration) Solved

Simple BDD Solver (2014) 182

AbsSynthe (2014) 169

Demiurge (learn,2014) 102

Aisy 98
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Figure 4: Sequential Realizability Track, Runtime Cactus Plot

Parallel Mode. Three of the tools that entered the competition had at least one parallel configuration

for the realizability track: two configurations of AbsSynthe (par1 and par2), and one configuration each

of Demiurge (P3real) and Realizer (parallel). The difference to sequential mode is that the tools can

use all four cores of the CPU, and the timeout is now measured in Wall Time instead of CPU Time.

In particular, the parallel configurations had to solve the same set of benchmark instances as in the

sequential mode. The results are given in Table 6. Again, no tool could solve more than 200 instances,

but a number of additional instances could be solved: only 11 could not be solved by any tool in either

sequential or parallel mode.

1We don’t consider last year’s version of Realizer, since the improvements in the new version are limited to bug-fixes and

the new parallel mode.
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Table 6: Results: Realizability (parallel mode only)

Tool (configuration) Solved Unique

AbsSynthe (par1) 193 0

Realizer (parallel) 185 3

Demiurge (P3real) 183 17

AbsSynthe (par2) 173 0

For an analysis of benchmark instances by category, Figures 5, 6 and 7 give an overview of the

number of solved instances per configuration and category.
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Note also that in Table 6 we only count a benchmark instance as uniquely solved if it is not solved

by any other configuration, including the sequential configurations. Considering both sequential and

parallel configurations, the following benchmarks were solved uniquely by one tool configuration:

• Demiurge (P3real): 6s216rb0_c0to31.aag, cnt30n.aag, cnt30y.aag, driver_a10n.aag,

driver_a8n.aag, driver_b10y.aag, driver_b8y.aag, driver_c10n.aag, mult14.aag,

mult16.aag, oski2ub1i_c0to7.aag, oski3ub1i_c0to255.aag, stay18y.aag,

stay20n.aag, stay20y.aag, stay22n.aag, stay22y.aag,

• Realizer (parallel): factory_assembly_7x5_2_10errors.aag,

factory_assembly_7x5_2_11errors.aag, genbuf64c2unrealy.aag,

• Simple BDD Solver (2): cycle_sched_12_6_3.aag, cycle_sched_8_7_2.aag.
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Considering again last year’s versions, only Demiurge ran in a proper parallel mode in 2014.2 Out

of the 250 benchmark instances, Demiurge (parallel, 2014) could solve 99 instances. This is slightly less

than the sequential configuration from 2014, as is to be expected based on last year’s results [30].

Finally, to further investigate the improvement of AbsSynthe, Demiurge, and Simple BDD Solver

compared to last year’s versions, we give additional cactus plots that compare the best-performing con-

figurations from each tool from 2014 and 2015 in Figures 8, 9, and 10.
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Figure 8: Realizability Track, Improvement of AbsSynthe over Last Year

Analysis. We note that on this year’s benchmark set, the sequential configuration AbsSynthe (seq2)

solve slightly more problems than last year’s winner, represented by configuration Simple BDD Solver

(1). However, the new abstraction-based configuration Simple BDD Solver (2) can solve 10 additional

problems, which is slightly more than the best parallel version of AbsSynthe, configuration (par1).

Comparing the participants to the unoptimized reference implementation Aisy, we see in Figure 4

that the BDD-based participants can be considered to be two orders of magnitude faster than Aisy, and

in Figure 9 that Demiurge (P3real) is faster by three orders of magnitude on a lot of problems.

Considering the different configurations of AbsSynthe, we note that the best-performing sequential

configuration is (seq2), which uses the compositional algorithm with global aggregation. Configuration

2AbsSynthe and Realizer had parallel modes, but due to bugs and faulty call parameters did not produce interesting results.
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(seq1), which is essentially the same as last year’s version, solves the least number of problems. The

best configuration overall is the parallel configuration (par1), which runs the different compositional

algorithms as well as the non-compositional algorithm (seq1) in parallel. Running multiple threads of

(seq1) in parallel, only with different BDD reordering strategies, did not pay off: configuration (par2)

even solves less problems than (seq1).

Finally, Demiurge shows an impressive improvement over last year’s version: the sequential con-

figuration Demiurge (D1real) can solve 37 additional instances when compared to last year’s sequential

(learn) configuration, and the new parallel mode solves 44 more problems than the sequential configu-

ration, or 86 more problems than last year’s parallel configuration. Comparing it to the other tools on

different benchmark classes (see Figures 5, 6 and 7), we note that it still cannot compete with the other

tools on benchmark classes such as AMBA, Factory Assembly, Genbuf, and Moving Obstacle, but it out-

performs all other tools on benchmark classes Cnt, Mult, Stay, Driver, HyperLTL, HWMCC, and Mult

Bool Matrix, most of which are new benchmarks that have been added this year.
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6.2 Synthesis Track

In the synthesis track, tools competed on the same benchmarks as in the realizability track, except that

those instances that could not be solved by any configuration (sequential or parallel) in the realizability

track have been removed from the benchmark set. Thus, the benchmark set for the synthesis track

contains 239 instances. Two tools entered the synthesis track: AbsSynthe with three sequential and two

parallel configurations, and Demiurge with one configuration for each mode.

In the synthesis track, we have two different ranking schemes: the basic ranking is by number of

problem instances that can be solved within the timeout, and the separate quality ranking gives more

points to small solutions of realizable specifications, as explained in Section 4.2. In both cases, a solution

for a realizable specification is only considered as correct if it can be model-checked within a separate

timeout of one hour (cf. Sections 4.2 and 4.3). Like in the realizability track, in the following we start

by presenting the results for the sequential configurations, followed by parallel configurations, and end

with an analysis of the results.

Sequential Mode. In this mode, AbsSynthe competed with three configurations (seq1, seq2, seq3),

and Demiurge with one configuration (D1synt). In addition, we ran last year’s versions of AbsSynthe

and the learning-based configuration of Demiurge, as well as our reference implementation Aisy, on this

year’s competition benchmarks.

Table 7 summarizes the experimental results, including the number of solved benchmarks, the num-

ber of points in the quality ranking, the uniquely solved instances, and the number of solutions that could

not be model-checked within the timeout. Note that in the table a (realizable) problem instance is only

considered as solved if the tool presents a solution that can be model-checked. With this requirement, no

tool could solve more than 161 or about 67% of the benchmarks, and 60 instances could not be solved by

any tool. In particular, for all configurations of AbsSynthe there is a rather high number of benchmarks

for which the tool can provide a solution, but this solution cannot be model-checked.

Table 7: Results: Synthesis (sequential mode only)

Tool (configuration) Solved Quality Unique MC Timeout

AbsSynthe (seq2) 161 254 4 16

AbsSynthe (seq3) 152 241 1 16

AbsSynthe (seq1) 148 234 6 18

AbsSynthe (2014) 145 231 % 16

Demiurge (D1synt) 127 214 8 4

Demiurge (2014,learn) 83 138 % 1

Aisy 75 105 % 3

Parallel Mode. In this mode, AbsSynthe competed with two configurations (par1, par2), and Demiurge
with one configuration (P3synt). In addition, we ran last year’s parallel configuration of Demiurge on the

new competition benchmarks.

Table 8 summarizes the experimental results, again including the number of solved benchmarks, the

number of points in the quality ranking, the uniquely solved instances, and the number of solutions that

could not be model-checked within the timeout. No tool could solve more than 180 problem instances,
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or about 75% of the benchmark set. The number of (potential) solutions that cannot be model checked

within the timeout is again rather high for AbsSynthe, while Demiurge only produces a single solution

that cannot be checked. Like in the parallel realizability track, we only consider instances as uniquely

solved if they are not solved by any other configuration, including sequential ones.

Table 8: Results: Synthesis (parallel mode only)

Tool (configuration) Solved Quality Unique MC Timeout

Demiurge (P3Synt) 180 317 28 1

AbsSynthe (par1) 167 263 2 20

AbsSynthe (par2) 148 235 0 17

Demiurge (2014,parallel) 88 144 0 1

Analysis. Consider the fact that all configurations of AbsSynthe produce a high number of (potential)

solutions that cannot be model checked. In contrast, Demiurge only produces very few such solutions.

We assume that this is in part due to the fact that Demiurge in most cases produces smaller solutions than

AbsSynthe. We compare solution sizes for some problem instances in Figures 11, 12 and 13.
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Figure 11: Comparison of Solution Size for AMBA and Cycle Scheduling Benchmarks
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Figure 12: Comparison of Solution Size for AMBA and Cycle Scheduling Benchmarks

Apart from the issue of non-verifiable solutions, the performance of the different algorithms is exactly

what is to be expected, based on the results of the realizability track. In particular, note that without

the requirement of verifiable solutions, the parallel configuration AbsSynthe (par1) would have ranked

higher than Demiurge (P3synt).3

Also note that, although our quality metric does not change the ranking of tools, it does increase

the relative difference in some cases. E.g., the difference between Demiurge (P3synt) and AbsSynthe

(par1) is only 8% in number of solved instances, but 20% in the quality score. An analysis of the size

of the potential solutions that could not be model checked shows that none of them is smaller than the

reference size, which implies that AbsSynthe (par1) would be ranked below Demiurge (P3synt) in the

quality ranking, even if all of its solutions could be model checked.

Considering uniquely solved instances, we note that the differences are rather small when we only

compare the sequential configurations — each configuration produces some unique solutions, and Abs-

Synthe (seq1) produces almost as many as Demiurge (D1synt). This picture changes when we look at

the parallel configurations: Demiurge (P3synt) has a high number of uniquely solved instances, i.e., in-

stances that can neither be solved by any sequential configuration, nor by the parallel configurations of

3We tried to resolve the problem of model checking timeouts by running other model checkers on a number of the solutions

that cannot be verified. In particular, we tried the other two highest-ranking tools for single safety properties in HWMCC 2014,

ABC [16] and V3 [2, 48] However, neither of the tools was successful on the solutions that we tried to verify.
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Figure 13: Comparison of Solution Size for AMBA and Cycle Scheduling Benchmarks

AbsSynthe. In contrast, almost all instances that are solved by AbsSynthe (par1) and AbsSynthe (par2)

are also solved by the sequential configurations, or by Demiurge (P3synt).

7 Conclusions

SYNTCOMP 2015 was another big step towards establishing the competition in the synthesis community

and extending the benchmark format and library. We have collected thousands of additional benchmark

instances, and refined our ranking and evaluation for a fairer comparison of participants. In addition, our

experimental results show that some of the tools have made impressive improvements when compared

to last year’s versions.

For 2016, we will consider an extension of the problem from pure safety specifications to a specifi-

cation format that includes liveness, possibly in the form of LTL formulas.
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