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Abstract—The resilience of block fading wireless orthogonal
frequency division multiple access (OFDMA) networks to passive
eavesdroppers is investigated. The network secrecy capacity is
evaluated in scenarios involving a base station and several termi-
nals, some of which constitute passive eavesdroppers. Assuming a
block fading Rayleigh channel, the probability of a secrecy outage
during a transmission frame is evaluated with respect to a target
secrecy rate τ in the following cases: (i) in the absence of any
cooperation between the network nodes, and, (ii) when the full
multi-user diversity is exploited both by the legitimate users as
well as by the eavesdroppers. Remarkably, it is demonstrated
that in a network of as few as 12 legitimate users and a
single eavesdropper it is possible to transmit 1 bit/sec/Hz with
a probability of secrecy outage less than 1%. Furthermore, the
delay constrained secrecy capacity of this network is evaluated
when the full channel state information (CSI) is available both at
the base station and at all receiving nodes. A secure waterfilling
scheme is discussed, satisfying a short-term power constraint.

Index Terms—OFDMA networks, probability of secrecy out-
age, block fading Gaussian channel, delay constrained secrecy
capacity, secure waterfilling

I. INTRODUCTION

Security in the exchange of information in terms of data

confidentiality in the presence of adversaries has commonly

been treated as an inherently applied subject, despite the

theoretical formulation of perfect secrecy early on [1]. Nev-

ertheless, despite the incontestable success and importance

of common cryptographic measures, the foreseen increasing

deployment of wireless networks introduces new challenges. In

more detail, in future communication networks the following

matters need to be addressed:

• the generation, the management and the storage of secret

keys need to be re-examined in large-scale, dynamic and

decentralized networks (e.g. the Cloud),

• simple devices, such as sensors, cannot handle the over-

heads associated with public key encryption schemes,

• both symmetric and public key encryption approaches

assume ideal transmission and reception and do not take

into account the characteristics of the communication

medium; specifically for wireless applications, there ex-

ists an experimentally established fundamental trade-off

between common encryption techniques and throughput

[2], [3].

In order to address these important issues in wireless com-

munication networks, physical layer (information theoretic)

approaches on security have been gaining renewed interest.

The breakthrough concept of physical layer security (PLS)

[4] is to exploit the characteristics of the transmission medium

such as fading or noise to achieve secrecy in wireless transmis-

sions. PLS was pioneered by Wyner, who introduced the wire-

tap channel and established the possibility of creating perfectly

secure communication links without relying on private (secret)

keys [5]. Wyner showed that when an eavesdropper’s channel

is a degraded version of the main source-destination channel,

the source and the destination can exchange information

reliably (with asymptotically zero error rates) and with perfect

secrecy (with asymptotically zero rate of information leakage).

A rate at which information can be transmitted secretly from

the source to its intended destination is termed an achievable

secrecy rate, and the maximal achievable secrecy rate is termed

the secrecy capacity (SC).

In [6], the SC of the scalar Gaussian wiretap channel was

analyzed. In [7] Wyner’s approach was generalized to the

transmission of confidential messages over broadcast channels.

Recently, there have been considerable efforts devoted to

generalizing this result to the wireless fading channel and to

multi-user scenarios [8], [9], [10], [11], [12].

In the present work we investigate block fading wireless

orthogonal frequency division multiple access (OFDMA) net-

works with secrecy and delay constraints. Our study extends

the results of [13] to networks with secrecy restrictions by

providing closed form expressions for the probability of a

secrecy outage with and without cooperation between the

network nodes. Furthermore, we investigate the OFDMA

network delay constrained secrecy capacity, assuming that the

channel state information (CSI) over one frame of M -block

channel realizations is available at the transmitter and at all the

receiving nodes. Under this assumption, we derive the optimal

secure waterfilling power allocation that maximizes the multi-

user network secrecy capacity.

II. PROBLEM FORMULATION

A multi-user setting is assumed in which each of M
orthogonal OFDMA subchannels is allocated to one of K
legitimate users according to a maximum signal to noise ratio

(max-SNR) criterion; each of the OFDMA subchannels is

allocated to the legitimate user with the largest SNR in the

specific subchannel. All communications take place in the

presence of E eavesdroppers that intercept the M OFDMA

subchannels. To each legitimate user k ∈ {1, . . . ,K}, the base
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station wishes to broadcast corresponding secret messages by

employing PLS techniques. Accordingly, a stochastic encoder

is used that maps the confidential messages of user k to

codewords of length n(k) = M (k)N . A codeword intended

for the k-th user spans M (k) blocks of N symbols that

undergo the same Rayleigh fading, i.e., each of the M (k)

block fading realizations remain constant over N channel

uses. Our investigations focus on block-fading Gaussian (BF-

Gaussian) channels under delay and power constraints assum-

ing that all available OFDMA subchannels are allocated, i.e.,∑K
k=1 M

(k) =M .
The group of M (k) transmission blocks is referred to as the

k-th user transmission frame. For random coding arguments

to hold, we assume for simplicity that M (k) is strictly finite

(in essence corresponding to a finite depth interleaver) and let

N → ∞ so that n(k) → ∞. A similar line of work has been

employed in [13]. An alternative line of work was suggested

in [14] by jointly employing queues of secret keys allowing

for the avoidance of secrecy outage events; however this

option is not considered at present. The case of M (k) → ∞
corresponding to the ergodic case has been investigated in [8]

and [9]. Finally, the finite MN codelength regime remains

to be investigated; a viable framework can be provided by

exploiting the results in [15].

III. SYSTEM MODEL

We assume a Rayleigh BF-Gaussian channel and denote

by h
(m)
k , k ∈ {1, . . . ,K}, m ∈ {1, . . . ,M} the channel

coefficients for the set of legitimate users and by h̃
(m)
j ,

j ∈ {1, . . . , E}, m ∈ {1, . . . ,M} the channel coefficients for

the set of eavesdroppers. The channel coefficients are assumed

to be i.i.d., following a zero-mean unit variance complex

Gaussian distribution. Thus, all channel gains g
(m)
k = |h(m)

k |2
and g̃

(m)
j = |h̃(m)

j |2 are random variables drawn from an

exponential distribution with underlying probability density

function (pdf)

f(x) = e−x (1)

and a corresponding cumulative distribution function (cdf)

F (x) = 1− e−x. (2)

The m-th OFDMA subchannel is allocated to the legitimate

user with the highest channel gain αm; the respective user is

denoted by the index k∗m, i.e.,

k∗m = arg max
k∈{1,...,K}

g
(m)
k , (3)

αm = g
(m)
k∗m

, for m ∈ {1, . . . ,M}. (4)

The random variable αm corresponds to the K-th order

statistic in a set of K channel gain realizations and its pdf

is given by

f
(K)
K (x) = KF (x)K−1f(x). (5)

By analogy, we designate the index j∗m to the eavesdropper

with the highest channel gain βm in the m-th OFDMA

subchannel, i.e.,

j∗m = arg max
j∈{1,...,E}

g̃
(m)
j , (6)

βm = g̃
(m)
j∗m

, for m ∈ {1, . . . ,M}. (7)

The random variable βm corresponds to the E-th order statistic

of E channel gain realizations, with pdf given by,

f
(E)
E (x) = EF (x)E−1f(x). (8)

During each transmission interval, the base station broad-

casts codeword vectors xα ∈ RMN . Correspondingly, we

denote by y
(k)
α the observation vector at the k-th legitimate

user and by y
(j)
β the observation vector at the j-th eaves-

dropper. Furthermore, we denote by u(k) ∈ RMN and by

w(j) ∈ RMN complex Gaussian circularly symmetric noise

vectors with zero mean and unit variance, i.e.,

y(k)
α = H(k)

α xα + u(k), (9)

y
(j)
β = H

(j)
β xα +w(j), (10)

with

H(k)
α = diag

�
h
(1)
k ,h

(2)
k , . . . ,h

(M)
k

�
, (11)

H
(j)
β = diag

�
h̃
(1)
j , h̃

(2)
j , . . . , h̃

(M)
j

�
, (12)

h
(m)
k = h

(m)
k IN ,m ∈ {1, . . . ,M} (13)

h̃
(m)
j = h̃

(m)
j IN ,m ∈ {1, . . . ,M}, (14)

u(k) ∼ CN (0, IN ), (15)

w(j) ∼ CN (0, IN ), (16)

with IN denoting the N ×N identity matrix.

IV. PROBABILITY OF A SECRECY OUTAGE IN THE HIGH

SNR REGIME

Extending the results of [13] to networks with secrecy

constraints, we define the secrecy capacity density (i.e., the

instantaneous secrecy capacity) as the difference of the in-

formation density that is achievable at the set of legitimate

users and the information density that is achievable at the

set of eavesdropper on each of the OFDMA subchannels.

The achievable information density depends on the degree of

cooperation amongst the nodes in the two sets, as described

in the following.

Definition: In the absence of cooperation, the secrecy capac-

ity density (non-cooperative instantaneous secrecy capacity)

of the M -block BF-Gaussian channel for a vector of input

powers γ = (γ1, . . . , γM ) is given by

C(nc)
s (γ)

.
=

1

M

M∑
m=1

[
log

1 + αmγm
1 + βmγm

]+

. (17)

On the other hand, assuming the full diversity is exploited by

the employment of an MRC receiver by the sets of legitimate

users and eavesdroppers, the secrecy capacity density (coop-
erative instantaneous secrecy capacity) is given by

C(co)
s (γ)

.
=

1

M

M∑
m=1

[
log

1 +
∑K

k=1 g
(m)
k γm

1 +
∑E

j=1 g̃
(m)
j γm

]+

. (18)

In the high SNR regime, i.e., for γm → ∞ for m =
1, . . . ,M , the above expressions reach their maximum values,
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expressed respectively as

Ĉ(nc)
s =

1

M

M∑
m=1

[
log

αm

βm

]+

, (19)

Ĉ(co)
s =

1

M

M∑
m=1

[
log

∑K
k=1 g

(m)
k∑E

j=1 g̃
(m)
j

]+

. (20)

Based on the above, we can obtain asymptotic results for the

probability of a secrecy outage in the high SNR regime. We in-

vestigate (i) the case in which there is no cooperation between

any of the network nodes and (ii) the case in which the set of

legitimate users and the set of eavesdroppers respectively form

virtual multiple input multiple output (MIMO) networks. We

note that in the absence of cooperation, the pdfs of αm and

βm are given in (5) and (8) respectively. On the other hand,

when the full multi-user diversity is exploited, the pdfs of the

random variables at the output of the MRC combiners can be

expressed as [16]

f (K)(x) =
KxK−1e−x

(K − 1)!
, (21)

f (E)(x) =
ExE−1e−x

(E − 1)!
(22)

for the sets of legitimate users and eavesdroppers, respectively.

The probability of a secrecy outage in a transmission frame

w.r.t. to a target transmission rate τ in the non-cooperative

case can be expressed as

P
(nc)
out (K,E, τ) = Pr(Ĉ(nc)

s < τ)

= 1−
∫ ∞

0

K(1− e−x)K−1e−x

∫ x2−τ

0

E(1− e−y)E−1e−ydydx

= KΓ(K)
E∑

n=1

(−1)n+1

�
E

n

�
Γ(n2−τ + 1)

Γ(K + n2−τ + 1)
.(23)

The secrecy outage probability in the cooperative case (virtual

MIMO) can on the other hand be expressed as

P
(co)
out (K,E, τ) = Pr(Ĉ(co)

s < τ)

= 1−
∫ ∞

0

KxK−1e−x

(K − 1)!

∫ x2−τ

0

EyE−1e−y

(E − 1)!
dydx

= 1−
∑K−1

n=0

(
K+E−1

n

)
2nτ

(1 + 2τ )K+E−1
. (24)

We compare the secrecy outage probabilities w.r.t. a target

rate τ = 1 bit/sec/Hz in Figs. 1 and 2. The effect of coop-

eration proves a decisive factor towards obtaining a region in

which a secrecy outage occurs with very high probability and

a region in which the secrecy outage probability is negligible;

exploiting the full multi-user diversity the network exhibits a

phase transition property in terms of secrecy.

Furthermore, in Fig. 3 we plot the minimum required num-

ber of legitimate users K versus the number of eavesdroppers

E that is required in order to ensure the perfectly secret

transmission of 1 bit/sec/Hz with a 99% certainty, i.e., for

P
(co)
out (K,E, 1) < 0.01. Notably, in the presence of a single
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Fig. 1. Probability of a secrecy outage in the non-cooperative case for τ = 1
bit/sec/Hz.

0
5

10
15

20

0
10

20
30

40
50
0

0.2

0.4

0.6

0.8

1

E eavesdroppersK legitimate users

P
ou

t w
ith

 c
oo

pe
ra

tio
n 

fo
r τ

=1
bi

t/c
ha

nn
el

Fig. 2. Probability of a secrecy outage in the cooperative case for τ = 1
bit/sec/Hz.

eavesdropper (E = 1), this can be achieved with the full

cooperation of as few as K = 12 legitimate users.

V. BLOCK FADING SECRECY CAPACITY DENSITY WITH

SHORT-TERM POWER CONSTRAINTS

In the following we examine the BF-Gaussian secrecy

capacity density in the non-cooperative and in the cooperative

case with a short-term power constraint.

A. Secure Waterfilling in the Non-cooperative Case

Without loss of generality, we assume that the pairs of

channel gains (αm, βm) have already been permuted so that

the differences

δm =
1

βm
− 1

αm
(25)

appear in non-increasing order.
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Fig. 3. Minimum number of legitimate users required to transmit 1 bit/sec/Hz

with P
(co)
out < 0.01 as a function of the number of eavesdroppers.

Proposition 1: The power allocation γ∗ = (γ∗1 , . . . , γ
∗
M ) that

maximizes the secrecy capacity density of the non-cooperative

M BF-Gaussian OFDMA network expressed as in (17) under

a short-term power constraint in the form

1

M

M∑
m=1

γ∗m ≤ P, (26)

is the waterfilling solution

γ∗m

�
1

λ

�
=

⎧⎨
⎩

1
2

[�
δ2m + 4

λδm −
�

2
αm

+ δm

�]
, m ∈ Q

0, otherwise
(27)

where Q = {i : 1
λ ≥ 1

αi−βi
}.

The functions γ∗m(
1
λ ) are monotonically increasing and

continuous in 1
λ . As a result, there exists a unique integer

μ in {1, . . . ,M} such that 1
λ ≥ 1

αm−βm
for m ≤ μ and

1
λ < 1

αm−βm
for m > μ. The waterlevel 1

λ can be derived by

sequentially pouring water to the functions γ∗m(
1
λ ) until the

power constraint is met with equality, i.e.,

μ∑
m=1

γ∗m
( 1
λ

)
=MP. (28)

B. Secure Waterfilling in the Cooperative Case

Similarly to the non-cooperative case, we assume that the

pairs of MRC channel gains (
∑K

k=1 g
(m)
k ,

∑E
j=1 g̃

(m)
j ) have

already been permuted so that the differences

Δm =
1∑E

j=1 g̃
(m)
j

− 1∑K
k=1 g

(m)
k

(29)

appear in non-increasing order.

Proposition 2: The power allocation γ̂∗ = (γ̂∗1 , . . . , γ̂
∗
M ) that

maximizes the secrecy capacity density of the cooperative M
BF-Gaussian OFDMA network expressed as in (18) under a

short-term power constraint in the form

1

M

M∑
m=1

γ̂∗m ≤ P, (30)

is the waterfilling solution

γ̂∗m

�
1

λ̂

�
=

�
cm, m ∈ Q̂

0, otherwise
(31)

where cm = 1
2

[�
Δ2

m + 4
λ̂
Δm −

�
2∑K

k=1
g
(m)

k

+ Δm

�]
and

Q̂ =

�
i : 1

λ̂
≥ 1∑K

k=1
g
(m)

k
−
∑E

j=1
g̃
(m)
j

�
.

The functions γ̂∗m(
1
λ̂
) are monotonically increasing and

continuous in 1

λ̂
. As a result, there exists a unique integer

μ̂ in {1, . . . ,M} such that 1
λ̂
≥ 1∑K

k=1
g
(m)

k
−
∑E

j=1
g̃
(m)
j

for

m ≤ μ̂ and 1

λ̂
<

∑K
k=1 g

(m)
k −∑E

j=1 g̃
(m)
j for m > μ̂. The

waterlevel 1
λ̂

can be derived by sequentially pouring water to

the functions γ̂∗m(
1
λ̂
) until the power constraint is met with

equality.

VI. CONCLUSIONS

In this paper, we have presented novel closed form ex-

pressions for the probability of a secrecy outage in M -BF

Gaussian OFDMA networks in the non-cooperative and in the

cooperative cases. Remarkably, it has been demonstrated that

in a fully cooperative network in which the legitimate users

and the eavesdroppers form virtual MIMOs it is possible to

identify a simple criterion regarding the number of legitimate

users as a function of the number of eavesdroppers in order to

ensure the transmission of secret messages with a very high

probability. As an example, in a fully cooperative network of

12 legitimate users in the presence of a single eavesdropper

it is possible to transmit 1 bit/sec/Hz with perfect secrecy

in 99% of the transmission frames. Furthermore, we have

outlined the secure waterfilling approaches that correspond

to non-cooperative and fully cooperative networks with short-

term power constraints.
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