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Abstract— Results in compressed sensing describe the
feasibility of reconstructing sparse signals using a small
number of linear measurements. In addition to compress-
ing the signal, do these measurements provide secrecy?
This paper considers secrecy in the context of an adversary
that does not know the measurement matrix used to en-
crypt the signal. We demonstrate that compressed sensing-
based encryption does not achieve Shannon’s definition of
perfect secrecy, but can provide a computational guarantee
of secrecy.

I. INTRODUCTION

The theory of compressed sensing, described in [1–
3] and surveyed in [4, 5], demonstrates the feasibility of
recovering sparse signals using a small number of linear
measurements. In this work we investigate whether the
measurement matrices used in compressed sensing can
also be used to encrypt signals. Several papers allude to
this possibility. Duarte et al. [6] refer to the compressed
sensing measurements as “weakly encrypted” for an
attacker without knowledge of the measurement matrix.
Drori [7] states that “the encryption matrix can be
viewed as a one-time pad that is completely secure.”
In this paper we investigate the secrecy properties of
compressed sensing measurements.

Joint compression and encryption could be useful
in a number of applications where implementing an
additional software layer for cryptography could be
costly. For example, Akyildiz et al. [8] state that power
consumption in sensor network nodes is a critical per-
formance issue in many sensor network applications.
Elimination of an additional protocol for encryption
could be useful in this power-constrained scenario. To
prevent privacy loss when databases are compromised,
Draper et al. [9] propose lossy compression of bio-
metric signals. Compressed sensing-based encryption
could provide both signal compression and encryption
guarantees, without the additional computational cost
of a separate encryption protocol. Such computational
savings could be significant when looking for biometric
matches in a large database. Finally, high bandwidth
sensors, such as video cameras, could jointly encrypt
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and compress their measurements to reduce computa-
tional overhead in demanding applications such as video
surveillance.

We now describe the organization of the paper. Sec-
tion II provides an overview of compressed sensing, and
introduces the secrecy definitions and model used in this
paper. Section III discusses compressed sensing in the
context of information-theoretic and computational def-
initions of secrecy. We will argue that compressed sens-
ing measurements do not achieve information-theoretic
secrecy. In Section IV, we present a theoretical result
that demonstrates that compressed sensing measure-
ments can achieve a computational notion of secrecy.
This result provides a setting in which compressed sens-
ing can be used to encrypt signals. Section V contains
simulations that demonstrate the empirical performance
of compressed sensing-based encryption. We conclude
and discuss future work in Section VI.

II. BACKGROUND

A. Compressed Sensing

The work of Candes, Romberg, and Tao [1] and
Donoho [3] showed that if a signal has a sparse rep-
resentation in one basis then it can be recovered from a
small number of projections onto a second basis that is
incoherent with the first. We define sparsity and discuss
incoherence below.

To define sparsity precisely, we introduce the follow-
ing notation. Let Ψ be a matrix whose columns form an
orthonormal basis. Define a K-sparse vector x ∈ Rn as
x = Ψθ, where θ ∈ RN has K non-zero entries (i.e.,
it is K-sparse). We define ΩK as the set of K indices
over which the vector θ is non-zero.

A vector of measurements y = Φx, where Φ is an
M × N matrix, is obtained by projecting the vector x
onto a basis that is incoherent with Ψ. Roughly speaking,
incoherence means that no basis vector in Ψ has a sparse
representation in the basis specified by Φ. This notion
is formalized in the compressed sensing literature [1–3].
We assume throughout that Φ is obtained by sampling
independent and identically distributed (i.i.d.) Gaussian
random variables with zero mean and variance 1

M ; Can-
des and Tao [2] showed that such a matrix is incoherent
with high probability relative to any fixed basis Ψ. We



define ΦΩK
as the M×K measurement matrix obtained

by selecting the K columns of Φ corresponding to the
indices ΩK .

For a K-sparse signal x, only K + 1 projections
of the signal onto the incoherent basis are required
to reconstruct the signal with high probability [10,
Theorem 2]. Unfortunately, this requires a combinatorial
search, which is prohibitively complex. Candes et al.
[1] and Donoho [3] proposed tractable recovery proce-
dures based on linear programming, demonstrating the
remarkable property that such procedures provide the
same result as the combinatorial search as long as cK
projections are used to reconstruct the signal (typically
c ≈ 3 or 4) [11, 12]. Conditions on the Φ matrix that
enable tractable recovery methods can be stated in terms
of the following property, introduced by Candes and Tao
[11]. A Φ matrix is said to satisfy a restricted isometry
property (RIP) of order K if there exists a δK ∈ (0, 1)
such that,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22 (1)

holds for all x with sparsity K.

B. Secrecy Definitions and Model

To discuss the secrecy properties of compressed sens-
ing measurements, we introduce the following conven-
tions. A K-sparse message x ∈ RN is chosen by nature,
possibly by sampling from some probability distribution.
A key i ∈ {1, . . . , S} corresponds to an M × N
matrix Φi. In the model we consider in this paper, Alice
wants to send a secret message to Bob. Alice chooses
a key i (with uniform probability among the keys) and
encrypts the message x using the Φi matrix via matrix
multiplication y = Φix. Only the cryptogram y is
transmitted to Bob, who knows what key that was used
to encrypt the message. Given Φi and y, the compressed
sensing literature (discussed in Section II-A) provides
conditions on x and Φi to enable the recovery of the
message x. We assume that given knowledge of the
sparsity of x, all Φ matrices obey these conditions, and
therefore knowledge of the key enables Bob to recover
the message.

Is the message that Alice sent to Bob secure? We
assume that an eavesdropper, Eve, intercepts Alice’s
encrypted message y, but does not know which key was
used to encrypt the message. In this paper we study how
difficult it is for Eve to recover x using only knowledge
of y, the sparsity of the message, and the set of keys
and their corresponding Φ matrices.

An encryption system where both sender and receiver
use the same key to respectively encrypt and decrypt
the message is known as a secret key system [13]. In

compressed sensing, measurement matrices Φ can be
generated randomly [2]. For such matrices, the secret
key could therefore correspond to the seed of a pseudo-
random number generator. Among other work, Diffie
and Hellman [14] and Maurer and Wolf [15] address the
secure exchange of secret keys. The attack we consider
in this paper, where the eavesdropper observes only y,
is referred to as a ciphertext-only attack [13].

C. Related Work

McEliece [16] introduced a cryptographic system
based on the difficulty of decoding linear codes with
an unbounded number of errors. While both this work
and our work consider linear encoders, in the McEliece
system the error vector is the secret, while in our
work the measurement matrix is the shared secret.
In addition, our work considers the sparsity of the
underlying signal being encrypted. Dwork et al. [17]
apply ideas from compressed sensing to the problem of
privacy in databases. Their paper demonstrates bounds
on the fraction of errors a database query mechanism
must introduce in order to prevent an adversary from
reconstructing the database. The adversary chooses to
design the measurement matrix by constructing queries.
In our work, the measurement matrix is hidden from the
adversary and no errors are artificially introduced.

III. NOTIONS OF SECRECY

How difficult is it for an eavesdropper to recover
x without knowledge of the key used to encrypt the
message? Discussion of the difficulty of breaking an
encryption method can be broadly divided into compu-
tational and information theoretic approaches [18].

A. Perfect Secrecy

Information theoretic secrecy relies on the statistical
properties of a system, and provides protection even
in the face of a computationally unbounded adversary
[18]. Shannon’s work [19] pioneered this approach by
introducing the idea of perfect secrecy. An encryption
scheme achieves perfect secrecy if the probability of a
message conditioned on the cryptogram is equal to the a
priori probability of the message, P (X = x|Y = y) =
P (X = x). Alternatively, this condition can be stated
as I(X; Y ) = 0. The following lemma demonstrates by
contradiction that compressed sensing-based encryption
does not achieve perfect secrecy.

Lemma 1: Let X be a message, PX(x) > 0 ∀x ∈
Rn, and Φ be an M×N measurement matrix. For Y =
ΦX ,

I(Y ; X) > 0,

and therefore perfect secrecy is not achieved.



Proof: I(X; Y ) = 0 if and only if X and Y
are independent [20, Theorem 8.6.1]. Since Φ is linear,
x = 0 implies that y = 0. Therefore, PY |X(Y =
0|X = 0) = 1. However, only x in the nullspace of
Φ are mapped to y = 0; by assumption, PX(x) > 0
for all x ∈ Rn, and we conclude that PY (Y = 0) < 1.
Therefore PY |X(Y = 0|X = 0) 6= PY (Y = 0), and
X and Y are statistically dependent.

While the proof above depends on the fact that Φ is
linear, other properties of the measurement matrix that
are frequently used in compressed sensing can be used
to prove that perfect secrecy is not achieved even when
X 6= 0. For example, assume Φ satisfies the restricted
isometry property (1), and let y = Φx. Then,

‖y‖22
(1 + δK)

≤ ‖x‖22. (2)

For a fixed y, choose x′ such that ‖x′‖22 <
‖y‖22

(1+δK) . Us-
ing (2), we can state PX|Y (x′|y) = 0. However, if we
assume PX(x) > 0 (e.g., a Gaussian distribution), then
PX|Y (x′|y) 6= PX(x′), and X and Y are statistically
dependent. The argument above relies on the fact that Φ
that satisfy RIP roughly preserve norms, and therefore y
provides information about the norm of the message x.
The arguments above do not preclude the possibility that
I(X; Y ) could be small; we leave the precise derivation
of I(X; Y ) for future research.

B. Computational Secrecy

Computation-based approaches such as public key
cryptography are practical and widely used, but rely
on open questions in complexity theory such as the
difficulty of factoring [13]. In contrast to an information-
theoretic notion of secrecy, the ciphertext in compu-
tational secrecy contains complete information about
the message. However, extracting this information for
an adversary without the appropriate key is equivalent
to solving a computational problem that is assumed
to be difficult (e.g., NP-hard). Thus, the statement of
secrecy relies on assumptions about the difficulty of the
computational problem and the computational resources
available to the adversary. We will discuss the compu-
tational secrecy of compressed sensing in Section IV.

IV. SECRECY RESULT FOR COMPRESSED SENSING

How difficult is it for Eve to recover the message x
using only y, knowledge that x is K-sparse, and the
set of keys and their corresponding Φ matrices? One
possible approach is for Eve to methodically try all
keys, and attempt to recover the signal x, stopping when
she thinks she has succeeded. Assume that Eve guesses

the measurement matrix Φ′. Then, she could attempt to
recover using either `0 optimization,

min
θ′
‖θ′‖0 subject to y = Φ′Ψθ′, (3)

or using `1 optimization,

min
θ′
‖θ′‖1 subject to y = Φ′Ψθ′. (4)

These two approaches and approximations to these
optimization problems correspond to the majority of
signal recovery methods for the setting of compressed
sensing (i.e., strictly sparse signals and noiseless mea-
surements) we consider in this paper. We emphasize
that Eve may use other signal recovery methods than
the ones described above. We will present results about
Eve’s ability to recover the secret message using (3) and
(4) in Section IV-A. The implications of this analysis
for the notions of secrecy introduced in Section III are
discussed in Section IV-B.

A. Signal Recovery Using the Wrong Key

What can we state about the solution of either (3)
or (4) when Eve guesses the wrong key k′? We will
show in Corollary 1 that when k′ is different from
the true key k (i.e., matrix Φ′ is different than Φ),
with probability one the attacker will recover an M -
sparse solution instead of the original K-sparse signal.
To establish the corollary, we will use Theorem 1, which
proves that for a randomly generated Φ′ matrix, all
explanations of the measurements y are M -sparse.

Theorem 1: Let Φ and Φ′ be two M × N matrices,
randomly generated by sampling i.i.d. Gaussian random
variables. For a K-sparse vector x = Ψθ, let y = Φx.
If M ≥ K + 1, then all x′ = Ψθ′ such that y = Φ′x′

satisfy ‖θ′‖0 = M with probability one over the set of
Φ and Φ′ matrices.

Proof: We begin by proving that there exists a
unique solution for each M -set. Since Ψ is orthonormal,
and the entries of Φ and Φ′ are generated by sampling
i.i.d. Gaussian random variables, the entries of the M ×
N matrices ΦΨ and Φ′Ψ will also be Gaussian. Without
loss of generality, we assume Ψ is the identity matrix,
so y = Φθ.

A set of M columns of Φ′, indexed by ΩM , are
linearly independent with probability one over Φ′. Thus
Φ′ΩM

will have rank M , and matrix inversion can be
used to uniquely determine M entries of θ that satisfy
y = Φ′θ. Therefore, with probability one, each set of
M columns of Φ can be used to determine an x′ that
satisfies y = Φ′x′.



Next, we prove lack of a T -sparse solution, where
T < M . Let ΩT denote the indices of the non-zero
entries of a T -sparse vector θ′. The matrix Φ′ΩT

has
rank T with probability one over Φ′. The indices of the
K non-zero entries of the vector θ are ΩK , and we note
that ΦΩK

has rank K with probability one. Denote by
colspan(A) the vector space spanned by columns of A.

We will show that if M ≥ K + 1 then y 6∈
colspan(Φ′ΩT

) with probability one over Φ and Φ′.
To show this, we analyze the concatenated matrix
[ΦΩK

Φ′ΩT
] in two different cases. First, consider K +

T > M . In this case the concatenated matrix has
rank M with probability one over Φ and Φ′, because
the rows consist of i.i.d. Gaussian random variables.
Therefore, colspan(ΦΩK

)∩colspan(Φ′ΩT
) has dimension

K+T−M . Since by definition T < M , the intersection
has dimension less than K. The measurements can only
be expressed as a sum of the columns of Φ′ΩT

if they
lie in this intersection. However, with probability one
over the Φ matrices, these measurements lie in a K-
dimensional space. Since there are a finite number of
subsets of T indices, the probability that a T -sparse
vector x′ will satisfy y = Φ′x′ is zero over Φ.1

We now consider K + T ≤ M . In this case,
the concatenated matrix [ΦΩK

Φ′ΩT
] has rank K +

T with probability one since the columns are gen-
erated as i.i.d. Gaussian random variables. Therefore
colspan(ΦΩK

)
⋂

colspan(Φ′ΩT
) has dimension 0. In this

case y will not be in the column span of Φ′ΩT
.

Corollary 1 below is a simple consequence of Theo-
rem 1. This corollary demonstrates that with probability
one, when Eve uses the wrong key, then the recovered
solution will be an M -sparse signal, instead of the true
K-sparse signal. While our corollary only holds for the
recovery methods (3) and (4), the idea that recovery
using the wrong key is difficult should be intuitively
clear, and will be strengthened in future work.

Corollary 1: Let Φ and Φ′ be M ×N matrices with
entries generated by sampling i.i.d. Gaussian random
variables. Let x be K-sparse and y = Φx. When M ≥
K + 1, the `0 optimization (3) and the `1 optimization
(4) will yield an M -sparse solution with probability one.

Proof: Both (3) and (4) describe optimization prob-
lems over the set of θ′ that satisfy y = Φ′Ψθ′. According
to Theorem 1, with probability one all vectors θ′ that
satisfy this constraint are M -sparse. Consequently, the
`0 optimization problem (3) and the `1 optimization
problem (4) can only yield M -sparse solutions.

1Our statements that a set occurs with probability zero mean that
a set has Lebesgue measure zero. Since the distributions we consider
are continuous, the two statements are equivalent.

B. Secrecy Implications

How do our results address the different notions of
secrecy introduced in Section III? Assume that Eve
attacks using either (3) or (4). Then with regard to the
computational notion of secrecy, she needs to method-
ically evaluate keys to find the Φ that recovers a K-
sparse solution instead of an M -sparse solution. The
amount of computation required to find the correct key
is proportional to the number of keys S. In practice, S =
264 could be accomplished by sharing a sufficiently large
random seed, making a methodical evaluation of all keys
difficult. Once Eve recovers a K-sparse vector using the
correct key, she knows with probability one that it is the
correct key. The encryption is computationally hard to
crack for a large number of keys, but a computationally
unbounded adversary can easily infer that the correct K-
sparse signal has been recovered. The ability to identify
the correct solution is a result of the dependence between
x and y, and demonstrates the lack of perfect secrecy in
compressed sensing-based encryption. Thus in the case
of noiseless measurements and strictly sparse signals,
and an attacker attempting to recover the signal using
either (3) or (4), compressed sensing measurements
provide computational secrecy.

To demonstrate computational secrecy in the face of
all feasible attacks, it is insufficient to show that a
particular set of attacks will be computationally difficult.
Would Eve be more successful if she employed different
attacks than the ones analyzed in this paper? While
this is a topic for future work, we present an argument
which shows that any attack that precisely recovers x
reduces to solving an NP-hard problem. Let M > K,
and consider an algorithm that implements the following
function,

x = A(y, Φ1, . . . , ΦS ,K). (5)

For example, such an algorithm could methodically try
to reconstruct using all Φ matrices until a K-sparse
reconstruction is found, and then outputs the correspond-
ing x. Could such an algorithm run in polynomial time?
If it would, then its output would be a solution to `0 min-
imization (3). However, as Candes et al. [11] point out,
`0 reconstruction is NP-hard. The algorithm (5) would
therefore demonstrate that P = NP , and would require
significant new insight. This argument demonstrates that
while other attacks are feasible, a successful attack that
recovers x would, barring significant advances, not run
in polynomial time.

V. SIMULATIONS

To provide a numerical demonstration of our work,
we generated an ensemble of 100 matrices and 100
messages for each signal length N . Each message was
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Fig. 1. Statistics of attacker reconstruction error in a simulated attack,
as a function of signal length.

a spike signal, consisting of zeros except for spikes
of magnitude one. The number of spikes was K =
0.1N and the number of measurements was M = 4K.
We encrypted each message using its corresponding
key, and attempted to recover the encrypted message
using the other 99 keys. For each message length N ,
Figure 1 shows the result of 9900 attacks. The lines
in the graph correspond to the 90th percentile, median,
10th percentile, and lowest attacker reconstruction error,
where error is measured in terms of the squared `2 norm
of the reconstruction. The reconstruction was performed
using L1Magic [21]. From the graph, it is apparent
that Eve experiences significant reconstruction error
that increases linearly with N . At the same time, Bob
reconstructs with low error (with appropriate settings, up
to floating point precision). For example, for N = 269
the average squared `2 reconstruction error (over 100
messages) when using the correct key was 9.6× 10−5.

VI. CONCLUSIONS AND FUTURE WORK

We presented an analysis of the secrecy properties of
noiseless compressed sensing measurements of strictly
sparse signals. We proved that such compressed sensing
measurements do not achieve perfect secrecy. Instead,
we demonstrated a computational notion of secrecy by
showing that recovery using the wrong key will produce
an incorrect signal with probability one for all keys
but the one used to originally encrypt the signal. This
analysis shows a setting in which compressed sensing
measurements could be considered to be encrypted. Fu-
ture work includes analysis of the secrecy of noisy mea-
surements, and of compressible, as opposed to strictly
sparse, signals.
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