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ABSTRACT

This paper studies model inversion attacks, in which the access to a model is
abused to infer information about the training data. Since its first introduction
by [Fredrikson et al.[(2014), such attacks have raised serious concerns given that
training data usually contain sensitive information. Thus far, successful model
inversion attacks have only been demonstrated on simple models, such as linear
regression and logistic regression. Previous attempts to invert neural networks, even
the ones with simple architectures, have failed to produce convincing results. We
present a novel attack method, termed the generative model inversion attack, which
can invert deep neural networks with high success rates. Rather than reconstructing
private training data from scratch, we leverage partial public information, which can
be very generic, to learn a distributional prior via generative adversarial networks
(GANSs) and use it to guide the inversion process. Moreover, we theoretically
prove that a model’s predictive power and its vulnerability to inversion attacks are
indeed two sides of the same coin—highly predictive models are able to establish
a strong correlation between features and labels, which coincides exactly with
what an adversary exploits to mount the attacks. Our experiments demonstrate
that the proposed attack improves identification accuracy over the existing work by
about 75% for reconstructing face images from a state-of-the-art face recognition
classifier. We also show that differential privacy, in its canonical form, is of little
avail to protect against our attacks.

1 INTRODUCTION

Deep neural networks (DNN5s) have been adopted in a wide range of applications, including computer
vision, speech recognition, healthcare, among others. The fact that many compelling applications of
DNNs involve processing sensitive and proprietary datasets raised great concerns about privacy. In
particular, when machine learning (ML) algorithms are applied to private training data, the resulting
models may unintentionally leak information about training data through their output (i.e., black-box
attack) or their parameters (i.e., white-box attack).

A concrete example of privacy attacks is model inversion (MI) attacks, which aim to reconstruct
sensitive features of training data by taking advantage of their correlation with the model output.
Algorithmically, MI attacks are implemented as an optimization problem seeking for the sensitive
feature value that achieves the maximum likelihood under the target model. The first MI attack was
proposed in the context of genomic privacy (Fredrikson et al., [2014), where the authors showed
that adversarial access to a linear regression model for personalized medicine can be abused to
infer private genomic attributes about individuals in the training dataset. Recent work (Fredrikson
et al., [2015) extended MI attacks to other settings, e.g., recovering an image of a person from a face
recognition model given just their name, and other target models, e.g., logistic regression and decision
trees.

Thus far, effective MI attacks have only been demonstrated on the aforementioned simple models. It
remains an open question whether it is possible to launch the attacks against a DNN and reconstruct its
private training data. The challenges of inverting DNNs arise from the intractability and ill-posedness
of the underlying attack optimization problem. For neural networks, even the ones with one hidden
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layer, the corresponding attack optimization becomes a non-convex problem; solving it via gradient
descent methods may easily stuck in local minima, which leads to poor attack performance. Moreover,
in the attack scenarios where the target model is a DNN (e.g., attacking face recognition models),
the sensitive features (face images) to be recovered often lie in a high-dimensional, continuous data
space. Directly optimizing over the high-dimensional space without any constraints may generate
unrealistic features lacking semantic information (See Figure[T).

In this paper, we focus on image data and
propose a simple yet effective attack method,
termed the generative model inversion (GMI)
attack, which can invert DNNs and synthesize
private training data with high fidelity. The key
observation supporting our approach is that it is
arguably easy to obtain information about the
general data distribution, especially for the im-
age case. For example, against a face recog-
nition classifier, the adversary could randomly
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Figure 1: Reconstruction of the individual on
the left by attacking three face recognition mod-
els (logistic regression, one-hidden-layer and two-

hidden-layer neural network) using the existing

crawl facial images from the Internet without . .
knowing the private training data. We find these attack algorithm in (Fredrikson et al} 2015)

datasets, although may not contain the target individuals, still provide rich knowledge about how a
face image might be structured; extraction and proper formulation of such prior knowledge will help
regularize the originally ill-posed inversion problem. We also move beyond specific attack algorithms
and explore the fundamental reasons for a model’s susceptibility to inversion attacks. We show that
the vulnerability is unavoidable for highly predictive models, since these models are able to establish
a strong correlation between features and labels, which coincides exactly with what an adversary
exploits to mount MI attacks.

Our contributions can be summarized as follows: (1) We propose to use generative models to learn
an informative prior from public datasets so as to regularize the ill-posed inversion problem. (2)
We propose an end-to-end GMI attack algorithm based on GANSs, which can reveal private training
data of DNNs with high fidelity. (3) We present a theoretical result that uncovers the fundamental
connection between a model’s predictive power and its susceptibility to general MI attacks and
empirically validate it. (4) We conduct extensive experiments to demonstrate the performance of the
proposed attack. Experiment code is publicly available at https://tinyurl.com/yxbnjk4s.

Related Work Privacy attacks against ML models consist of methods that aim to reveal some
aspects of training data. Of particular interest are membership attacks and MI attacks. Membership
attacks aim to determine whether a given individual’s data is used in training the model
[2017). MI attacks, on the other hand, aim to reconstruct the features corresponding to specific target
labels.

In parallel to the emergence of various privacy attack methods, there is a line work that formalizes
the privacy notion and develops defenses with formal and provable privacy guarantees. One dominate
definition of privacy is differential privacy (DP), which carefully randomizes an algorithm so that its
output does not to depend too much on any individuals’ data (Dwork et al[2014)). In the context of
ML algorithms, DP guarantees protect against attempts to infer whether a data record is included in
the training set from the trained model (Abadi et all,[2016). By definition, DP limits the success rate
of membership attacks. However, it does not explicitly protect attribute privacy, which is the target of

MI attacks (Fredrikson et al.,[2014).

The first MI attack was demonstrated in (Fredrikson et al., 2014)), where the authors presented an
algorithm to recover genetic markers given the linear regression that uses them as input features,
the response of the model, as well as other non-sensitive features of the input. [Hidano et al.| (2017)
proposed a algorithm that allows MI attacks to be carried out without the knowledge of non-sensitive
features by poisoning training data properly. Despite the generality of the algorithmic frameworks
proposed in the above two papers, the evaluation of the attacks is only limited to linear models.
Fredrikson et al.|(2015) discussed the application of MI attacks to more complex models including
some shallow neural networks in the context of face recognition. Although the attack can reconstruct
face images with identification rates much higher than random guessing, the recovered faces are
indeed blurry and hardly recognizable. Moreover, the quality of reconstruction tends to degrade for
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more complex architectures. |[Yang et al.|(2019b)) proposed to train a separate network that swaps the
input and output of the target network to perform MI attacks. The inversion model can be trained
with black-box accesses to the target model. However, their approach cannot directly be benefited
from the white-box setting.

Moreover, several recent papers started to formalize MI attacks and study the factors that affect a
model’s vulnerability from a theoretical viewpoint. For instance, [Wu et al.|(2016) characterized
model invertibility for Boolean functions using the concept of influence from Boolean analysis; Yeom
et al.| (2018) formalized the risk that the model poses specifically to individuals in the training data
and shows that the risk increases with the degree of overfitting of the model. However, their theory
assumed that the adversary has access to the join distribution of private feature and label, which
is overly strong for many attack scenarios. Our theory does not rely on this assumption and better
supports the experimental findings.

2 GENERATIVE MI ATTACK

An overview of our GMI attack is illustrated in Figure E} In this section, we will first discuss the
threat model and then present our attack method in details.
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Figure 2: Overview of the proposed GMI attack method.

2.1 THREAT MODEL

In traditional MI attacks, an adversary, given a model trained to predict specific labels, uses it to
make predictions of sensitive features used during training. Throughout the paper, we will refer to the
model subject to attacks as the rarget network. We will use face recognition classifiers as a running
example for the target network. Face recognition classifiers label an image containing a face with
an identifier corresponding to the individual depicted in the image. We assume that the adversary
employs an inference technique to discover the face image x for some specific identity y output
by the classifier f. Following the canonical setup of MI attacks, we assume that the adversary has
access to the target network f. In addition to f, the adversary may also have access to some auxiliary
knowledge that facilitates his inference.

Possible Auxiliary Knowledge Examples of auxiliary knowledge could be a blurred or corrupted
image which only contains nonsenstive information, such as background pixels in a face image. This
auxiliary knowledge might be easy to obtain, as blurring and corruption are often applied to protect
anonymity of individuals in public datasets (Carrell et al.| [2012} |L1 et al., 2019).

Connection to Image Inpainting The setup of MI attacks on images resembles the widely studied
image inpainting tasks in computer vision, which also try to fill missing pixels of an image. The
difference is, however, in the goal of the two. MI attacks try to fill the sensitive features associated with
a specific identity in the training set. In contrast, image inpainting tasks only aim to synthesize visually
realistic and semantically plausible pixels for the missing regions; whether the synthesized pixels are
consistent with a specific identity is beyond the scope. Despite the difference, our approach to MI
attacks leverages some training strategies from the venerable line of work on image inpainting (Yeh
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et al.| 2017; lizuka et al., 2017} |Yang et al.| 2019a) and significantly improves the recognizability of
the reconstructed images over the existing attack methods.

2.2 INFERRING MISSING SENSITIVE FEATURES

To realistically reconstruct missing sensitive regions in an image, our approach utilizes the generator
G and the discriminator D, all of which are trained with public data. After training, we aim to find
the latent vector 2 that achieves highest likelihood under the target network while being constrained
to the data manifold learned by G. However, if not properly designed, the generator may not allow
the target network to easily distinguish between different latent vectors. For instance, in extreme
cases, if the generated images of all latent vectors collapse to the same point in the feature space of
the target network, then there is no hope to identify which one is more likely to appear in its private
training set of the target network. To address this issue, we present a simple yet effective loss term
to promote the diversity of the data manifold learned by G' when projected to the target network’s
feature space.

Specifically, our reconstruction process consists of two stages: (1) Public knowledge distillation,
in which we train the generator and the discriminators on public datasets in order to encourage the
generator to generate realistic-looking images. The public datasets can be unlabeled and have no
identity overlapping with the private dataset. (2) Secret revelation, in which we make use of the
generator obtained from the first stage and solve an optimization problem to recover the missing
sensitive regions in an image.

For the first stage, we leverage the canonical Wasserstein-GAN (Arjovsky et al.l 2017) training loss.
The loss function is adapted to the two discriminators for our case:

min max Lygan(G, D) = E;[D(x)] — E.[D(G(2))] (1

In addition, inspired by [Yang et al.|(2019a)), we introduce a diversity loss term that promotes the
diversity of the images synthesized by G when projected to the target network’s feature space. Let F'
denote the feature extractor of the target network. The diversity loss can thus be expressed as

1F(G(21)) = F(G(z2))]

|z1 — z2]|

2

m(a;tx Ldiv(G) = EZl,Z2

As discussed above, larger diversity will facilitate the targeted network to discern the generated
image that is most likely to appear in its private training set. Our full objective for public knowledge
distillation can be written as ming maxp Lygan (G, D) — AgLaiv(G).

In the secret revelation stage, we solve the following optimization to find the latent vector that
generates an image achieving the maximum likelihood under the target network while remaining
realistic: 2 = argmin, Lyior(2) + A;Lia(2), where the prior loss Lyior(2) penalizes unrealistic
images and the identity loss Liq(z) encourages the generated images to have likelihood under the
targeted network. They are defined, respectively, by

Lprior(2) = —EL[D(G(2))] Lia = —E,10g[C(G(2))] 3)
where C'(G(z)) represent the probability of G(z) output by the target network.

3 CONNECTION BETWEEN MODEL PREDICTIVE POWER AND MI ATTACKS

For a fixed data point (x, y), we can measure the performance of a model f for predicting the label y
of feature = using the log likelihood log p¢(y|x). It is known that maximizing the log likelihood is
equivalent to minimizing the cross entropy loss—one of the most commonly used loss function for
training DNNs. Thus, throughout the following analysis, we will focus on the log likelihood as a
model performance measure.

Now, suppose that (X,Y") is drawn from an unknown data distribution p(X,Y"). Moreover, X =
(Xs, Xns), where X, and X, denote the sensitive and non-sensitive part of the feature, respectively.
We can define the predictive power of the sensitive feature X under the model f (or equivalently, the
predictive power of model f using X) as the change of model performance when excluding it from
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the input, i.e., B x y)p(x,v)[log s (Y| Xs, Xpns) — ps (Y| Xps)]. Similarly, we define the predictive
power of the sensitive feature given a specific class y and nonsensitive feature x,, s as

Uf(xnsa y) = EXSNp(XS\y,mT,,S)[Ingf(y|st xns) - 10g Pf(y|1'ns)] (4)

We now consider the measure for the MI attack performance. Recall the goal of the adversary is to
guess the value of x5 given its corresponding label y, the model f, and some auxiliary knowledge x,, ;.
The best attack outcome is the recovery of the entire posterior distribution of the sensitive feature,
i.e., p(Xsly, xns). However, due to the incompleteness of the information available to the adversary,
the best possible attack result that adversary can achieve under the attack model can be captured
by pr(Xs|y, Tns) x Dr (Y| Xs, Tns)P(Xs|Tns), assuming that the adversary can have a fairly good
estimate of p(Xs|z,s). Such estimate can be obtained by, for example, learning from public datasets
using the method in Section[2.2] Although MI attack algorithms often output a single feature vector
as the attack result, these algorithms can be adapted to output a feature distribution instead of a
single point by randomizing the starting guess of the feature. Thus, it is natural to measure the MI
attack performance in terms of the similarity between p(X,|y, ©,s) and ps(Xs|y, ). The next
theorem indicates that the vulnerability to MI attacks is unavoidable if the sensitive features are
highly predictive under the model. When stating the theorem, we use the negative KL-divergence
SkL(+]|-) to measure the similarity between two distributions.

Theorem 1. Let f1 and fo be two models such that for any fixed label y € Y, Uy, (zps,y) >
Uy, (Tns,y). Then, SKL(p(XS‘y7xn5)prl (Xsly, wns)) > SKL(p(XS|y7an)pr2 (Xsly, Tns))-

We omit the proof of the theorem to the supplementary material. Intuitively, highly predictive models
are able to build a strong correlation between features and labels, which coincides exactly with what
an adversary exploits to launch MI attacks; hence, more predictive power inevitably leads to higher
attack performance.

In|Yeom et al.| (2018)), it is argued that a model is more vulnerable to MI attacks if it overfits data
to a greater degree. Their result is seemingly contradictory with ours, because fixing the training
performance, more overfitting implies that the model has less predictive power. However, the
assumption underlying their result is fundamentally different from ours, which leads to the disparities.
The result in |Yeom et al.| (2018) assumes that the adversary has access to the joint distribution
p(Xs, Xns,Y) that the private training data is drawn from and their setup of the goal of the MI attack
is to learn the sensitive feature associated with a given label in a specific training dataset. By contrast,
our formulation of MI attacks is to learn about private feature distribution p(X,|y, z,s) for a given
label y from the model parameters. We do not assume that the adversary has the prior knowledge
of p(Xs, X5, Y), as it is a overly strong assumption for our formulation—the adversary can easily
obtain p(X;|y, ) for any labels and any values of non-sensitive features when having access to
the joint distribution.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evalaute our method using three datasets: (1) the MNIST handwritten digit data
(MNIST), (2) the Chest X-ray Database (Wang et al.,2017) (ChestX-ray8), and (3) the CelebFaces
Attributes Dataset (CelebA) containing 202,599 face images of 10,177 identities with coarse
alignment. We crop the images at the center and resize them to 64x64 so as to remove most
background.

Protocol We split each dataset into two disjoint parts: one part used as the private dataset to train
the target network and the other as a public dataset for prior knowledge distillation. The public data,
throughout the experiments, do not have class intersection with the private training data of the target
network. Therefore, the public dataset in our experiment only helps the adversary to gain knowledge
about features generic to all classes and does not provide information about private, class-specific
features for training the target network. This ensures the fairness of the comparison with the existing
MI attack (Fredrikson et al., [2015)).
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Models We implement several different target networks with varied complexities. For all the
adapted networks, we modify the FC-layer to fit in our task. For digit classification on MNIST, our
target network consists of 3 convolutional layers and 2 pooling layers. For the disease prediction on
ChestX-ray8, we use ResNet-18 adapted from (He et al.,2015) as our target network. For the face
recognition tasks on Celeba, we use the following networks: (1) VGG1 6 adapted from (Simonyan
and Zisserman, |2014); (2)ResNet—-152 adapted from (He et al.l2015); (3) face.eoLVe adapted
from the state-of-the-art face recognition network (Cheng et al., 2017)).

Training We split the private dataset defined above into training set (90%) and test set (10%) and
use the SGD optimizer with learning rate 10~2, batch size 64, momentum 0.9 and weight decay
10~ to train these networks. To train the GAN in the first stage of our attack pipeline, we set
Aq¢ = 0.5 and use the Adam optimizer with the learning rate 0.004, batch size 64, 5; = 0.5, and
B2 = 0.999 (Kingma and Ba, [2014). In the second stage, we set A; = 100 and use the SGD optimizer
to optimize the latent vector z with the learning rate 0.01, batch size 64 and momentum 0.9. z is
drawn from a zero-mean unit-variance Gaussian distribution. We randomly initialize z for 5 times
and optimize each round for 1500 iterations. We choose the solution with the lowest identity loss as
our final latent vector.

4.2 EVALUATION METRICS

Evaluating the success of MI attacks requires to assess whether the recovered image exposes the
private information about a target individual. Previous works analyzed the attack performance mainly
qualitatively by visual inspection. Herein, we introduce four metrics which allow to quantitatively
judge the MI attack efficacy and perform evaluation at a large scale.

Peak Signal-to-Noise Ratio (PSNR) PSNR is the ratio of an image’s maximum squared pixel
fluctuation over the mean squared error between the target image and the reconstructed image Hore
and Ziou| (2010). PSNR measures the pixel-wise similarity between two images. The higher the
PSNR, the better the quality of the reconstructed image.

However, oftentimes, the reconstructed image may still reveal identity information even though it
is not close to the target image pixel-wise. For instance, a recovered face with different translation,
scale and rotation from the target image will still incur privacy loss. This necessitates the need for the
following metrics that can evaluate the similarity between the reconstructed and the target image at a
semantic level.

Attack Accuracy (Attack Acc) We build an evaluation classifier that predicts the identity based
on the input reconstructed image. If the evaluation classifier achieves high accuracy, the reconstructed
image is considered to expose private information about the target individual. The evaluation classifier
should be different from the target network because the reconstructed images may incorporate features
that overfit the target network while being semantically meaningless. Moreover, the evaluation
classifier should be highly performant. For the reasons above, we adopt the state-of-the-art architecture
in each task as the evaluation classifier. For MNI ST, our evaluation network consists of 5 convolutional
layers and 2 pooling layers. For ChestX-ray8, we adapt VGG-19 from (Simonyan and Zisserman),
2014) as our evaluation network. For Celed, we use the model in (Cheng et al., [2017)) for the
evaluation classifier. We first pretrain it on the MS—-Celeb—-1M (Guo et al.,|2016)) and then fine tune
on the identities in the training set of the target network. The resulting evaluation classifier can
achieve 96% accuracy on these identities.

Feature Distance (Feat Dist) Feat Dist measures the /5 feature distance between the reconstructed
image and the centroid of the target class. The feature space is taken to be the output of the penultimate
layer of the evaluation network.

K-Nearest Neighbor Distance (KNN Dist) KNN Dist looks at the shortest distance from the
reconstructed image to the target class. We identify the closest data point to the reconstructed image
in the training set and output their distance. The distance is measured by the /o distance between the
two points in the feature space of the evaluation classifier.
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Table 1: Comparison of the proposed GMI attack with the existing MI attack in (Fredrikson et al.|
2015)) (EMI), when the attacker does not have any auxiliary knowledge about the target image.

KNN Dist Feat Dist Attack Acc  Top-5 Attack Acc
EMI | 239750 225554 0 0
VGGI6 | ovr | 209892 2012.10 28 53
EMI | 242299  2288.13 0 i
ResNet-152 | cvir | 1969.09  1886.44 44 72
facecvalve | EMI | 237152 224881 0 I
. GMI | 192372  1802.62 46 76

Target  EMI Ghdl Target Elurred  EMI Fll Al

Target Masked EMI Fll GMI

5] [ o
ChREL

{2) Wout auxiliary knowledge (k) Blurring () Center Mask (d} Face T Mask

Figure 3: Qualitative comparison of the proposed GMI attack with the existing MI attack (EMI), the
pure image inpainting method (P II). The ground truth target image is shown in Ist col.

4.3 EXPERIMENTAL RESULTS

We compare our approach with two baselines: (1) Existing model inversion attack (EMI), which
implements the algorithm in (Fredrikson et al.,2015)). For this algorithm, the adversary only exploits
the identity loss for image reconstruction and return the pixel values that minimize the the identity
loss; (2) Pure image inpainting (PII), which minimizes the W-GAN loss and performs image
recovery based on the information completely from the public dataset.

4.3.1 ATTACKING FACE RECOGNITION CLASSIFIERS

For Celeba, the private set comprises 21,152 images of 1000 identities and samples from the rest
are used as a public dataset. We evaluate the attack performance in the three settings: (1) the attacker
does not have any auxiliary knowledge about the private image, in which case he will recover the
image from scratch; (2) the attacker has access to a blurred version of the private image and his goal
is to deblur the image; (3) the attacker has access to a corrupted version of the private image wherein
the sensitive, identity-revealing features (e.g., nose, mouth, etc) are blocked.

Table [T compares the performance of our proposed GMI attack against EMI for different network
architectures. We can see that the EMI works poorly on the deep nets and achieve around zero attack
accuracy. GMI is much more effective than EMI. Particularly, our method improves the accuracy of
the attack against the state-of-the-art face . evoLVe classifier over the existing MI attack by 75%
in terms of Top-5 attack accuracy. Also, note that models that are more sophisticated and have more
predictive power are more susceptible to attacks. We will examine this phenomenon in more details
in Section

We now discuss the case where the attacker has access to some auxilliary knowledge in terms of
blurred or partially blocked images. For the latter, we consider two types of masks—center and face
“T”, illustrated by the second column of Figure[3](c) and (d), respectively. The center mask blocks the
central part of the face and hides most of the identity-revealing features, such as eyes and nose, while
the face T mask is designed to obstruct all private features in a face image.

Table 2] shows that our method consistently outperforms the two baselines discussed above. Since
the existing MI attack does not exploit any prior information, the inversion optimization problem
is extremely ill-posed and performing gradient descent ends up at some visually meaningless local
minimum, as illustrated by Figure 3] Interestingly, despite having the meaningless patterns, these
images can all be classified correctly into the target label by the target network. Hence, the existing
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Table 2: Comparison of the proposed GMI attack with the existing MI attack in (Fredrikson et al.,
2015) (EMI), a pure image inpainting (P II) method that recovers the private image based only on
the public dataset.

Blurring Center Mask Face T mask |
EMI PII GMI EMI PII GMI EMI PII GMI
PSNR 19.66 20.78 21.97 18.69 25.49 27.58 19.77 24.05 26.79
VGG16 Feat Di§t 2073.56 2042.99 1904.56 | 1651.72 1866.07 1379.26 | 1798.85 1838.31 1655.35
KNN Dist | 2164.40 2109.82 1946.97 | 1871.21 1772.74 1414.37 | 1980.68 1916.67 1742.74
Attack Acc 0% 6% 43% 14% 34% 78 % 11% 20% 58%
PSNR 19.63 20.78 22.00 18.69 25.49 27.34 19.89 24.05 26.64
ResNet-152 Feat Di§t 2006.46  2042.99 1899.79 | 1635.03 1866.07 1375.36 | 1641.31 1838.31 1594.81
KNN Dist | 2101.13  2109.82 1922.14 | 1859.78 1772.74 1403.24 | 1847.74 1916.67 1670.05
Attack Acc 1% 6% 50% 9% 34% 80% 11% 20% 63%
PSNR 19.64 20.78 22.04 18.97 25.49 27.69 19.86 24.05 25.77

Feat Dist | 1997.93 204299 1878.38 | 1609.35 1866.07 1364.42 | 1762.57 1838.31 1624.95
KNN Dist | 2085.53 2109.82 1904.47 | 1824.10 1772.74 1403.19 | 1962.07 1916.67 1682.56
Attack Ace 1% 6% 51% 12% 34% 82% 11% 20% 64%

face.evoLVe

Table 3: Evaluation for the impact of public datasets on the attack accuracy.

CelebA—CelebA PubFig83— CelebA

1:1 1:4 1:6  1:10 | W/o Preproc. W/ Preproc. EMI

VGG 8% T1% T5% 712% 48% 67% 14%
LeNet 81% 5% T1% 15% 52% 66% 9%
face.evoLVe | 77% 77% 71% 70% 56% 70% 12%

MI attack tends to generate “adversarial examples” that can fool the target network but does not
exhibit any recognizable features of the private data. Figure[3|also compares our results with PTT,
which is completely based on the information from the public dataset to recover the private image.
We can see that although PIT leads to realistic recoveries, the reconstructed images do not present
the same identity features as the target images. This can be further corroborated by the quantitative
results in Table[2l Note that the attacks are more effective for the center mask than the face T mask.
This is because the face T mask we designed completely hides the identity revealing features on the
face while the center mask may still expose the mouth information.

4.3.2 IMPACT OF PUBLIC KNOWLEDGE

We have seen that distilling prior knowledge and properly incorporating it into the attack algorithm
are important to the success of MI attacks. In our proposed method, the prior knowledge is gleaned
from public datasets through GAN. We now evaluate the impact of public datasets on the attack
performance.

We first consider the case where the public data is from the same distribution as the private data and
study how the size of the public data affects the attack performance. We change the size ratio (1:1,
1:4, 1:6, 1:10) of the public over the private data by varying the number of identities in the public
dataset (1000, 250, 160, 100). As shown in Table the attack performance varies by less than 7%
when shrinking the public data size by 10 times.

Moreover, we study the effect of the distribution shift between the public and private data on the
attack performance. We train the GAN on the PubF ig83 dataset, which contains 13,600 images
with 83 identities, and attack the target network trained on CelebA. There are more faces with
sunglasses in PubFig83 than CelebA, which makes it harder to distill generic face information.
Without any pre-processing, the attack accuracy drops by more than 20% despite still outperforming
the existing MI attack by a large margin. To further improve the reconstruction quality, we detect
landmarks in the face images, rotate the images such that the eyes lie on a horizontal line, and crop
the faces to remove the background. These pre-processing steps make the public datasets better
present the face information, thus improving the attack accuracy significantly.

4.3.3 ATTACKING MODELS WITH DIFFERENT PREDICTIVE POWERS

We perform experiments to validate the connection between predictive power and the vulnerability to
MI attacks. We measure the predictive power of sensitive feature under a model using the difference of
model testing accuracy based on all features and just non-sensitive features. We consider the following
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Figure 4: (a)-(c): The performance of the GMI attack against models with different predictive powers
by varying training size, dropout, and batch normalization, respectively. (d) Attack accuracy of
the GMI attack against models with different DP budgets. Attack accuracy of PIT is plotted as a
baseline.

KNN Dist Feat Dist Attack Acc
EMI 31.60 82.69 40%
GMI 4.04 16.17 80%

Table 4: Comparing the GMI against the EMI attack on MNIST.

different ways to construct models with increasing feature predictive powers, namely, enlarging the
training size per class, adding dropout regularization, and performing batch normalization. For the
sake of efficiency, we slightly modify the proposed method in Section[2.2]in order to avert re-training
GANS for different architectures. Specifically, we exclude the diversity loss from the attack pipeline
so that multiple architectures can share the same GAN for prior knowledge distillation. Figure [4]
shows that, in general, the attack performance will be better for models with higher feature predictive
powers. Moreover, this trend is consistent across different architectures.

4.3.4 ATTACKING DIGIT CLASSIFIERS

For MNIST, we use all 34265 images with la-

bels 5,6,7,8,9 as private set, and the rest of
35725 images with labels 0,1,2,3,4 as a pub- cm
lic dataset. Note that the labels in the private
and public data have no overlaps. We augment
the public data by training an autoencoder and
interpolating in the latent space. Our GMI at-
tack is compared with the baseline in Table [4]
We omit the PII baseline because the public and
private set defined in this experiment are rather Figure 5: Visualization of the recovered input im-
disparate and the PII essentially produce results ages by the GMI and the EMI attack.

close to random guesses. We can see from the

table that the performance of GMI is significantly better than the EMI. Examples of the recovered
images with both attacks are compared in Figure 5]

EMI

4.3.5 ATTACKING DISEASE PREDICTORS

For ChestX-ray8, we use 10000 images of seven classes as the private data and the other 10000
with different labels as public data. The GMI and EMI attack are compared in Table[5] Again, the
GMI attack outperforms the EMI attack by a large margin.

KNN Dist Feat Dist Attack Acc
EMI 130.19 155.65 14%
GMI 63.42 93.68 71%

Table 5: Comparing the GMI against the EMI attack on ChestX-ray8.
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4.3.6 ATTACKING DIFFERENTIALLY PRIVATE MODELS

We investigate the implications of DP for MI attacks. (¢, §)-DP is ensured by adding Gaussian noise
to clipped gradients in each training iteration /Abadi et al.| (2016). We find it challenging to produce
useful face recognition models with DP guarantees due to the complexity of the task. Therefore,
we turn to a simpler dataset, MNIST, which is commonly used in differential private ML studies.
We set § = 1075 and vary the noise scale to obtain target networks with different e. The attack
performance against these target networks and their utility are illustrated in Figure 4] (d). Since the
attack accuracy of the GMI attack on differentially private models is higher than that of PI T which
fills missing regions completely based on the public data, it is clear that the GMI attack can expose
private information from differentially private models, even with stringent privacy guarantees, like
€ = 0.1. Moreover, varying differential privacy budgets helps little to protect against the GMI attack;
sometimes, more privacy budgets even improve the attack performance (e.g., changing e from 1
to 0.1). This is because DP, in its canonical form, only hides the presence of a single instance in
the training set. Limiting the learning of specific individuals may facilitate the learning of generic
features of a class, which, in turn, helps to stage MI attacks.

5 CONCLUSION

In this paper, we present a generative approach to MI attacks, which can achieve the-state-of-the-art
success rates for attacking the DNNs with high-dimensional input data. The idea of our approach
is to extract generic knowledge from public datasets via GAN and use it to regularize the inversion
problem. Our experimental results show that our proposed attack is highly performant even when the
public datasets (1) do not include the identities that the adversary aims to recover, (2) are unlabeled,
(3) have small sizes, (4) come from a different distribution from the private data. We also provide
theoretical analysis showing the fundamental connection between a model’s predictive power and its
vulnerability to inversion attacks. For future work, we are interested in extending the attack to the
black-box setting and studying effective defenses against MI attacks.
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A PROOF OF THEOREM 1

Theorem 2. Let fi and fo are two models such that for any fixed label y € Y, Uy, (xns,y) >
Uf2 (x'fLSa y)- Then, SKL(p(Xs ‘y, Ins) ‘ |pf1 (XG |ya xns)) > SKL(p(Xs |y7 xns) | ‘pfz (Xs |y7 xne))

Proof. We can expand the KL divergence Dxp, (p(Xs|y, Zns)| s, (Xs|y, ns) as follows.

DKL(p(X.s|yaxns)||pf1 (Xs|y,xns)) (5)
= EX~p(Xs\y,zm)[logp(Xs|ya Tps)] — ]EXN;D(XSIy’:vns)[lngfl (Xsly, Tps)] (6)

Thus,
DKL(p(Xs |y7 xns) | |pf1 (Xs ‘97 mns)) - DKL(p(Xs |y7 xns) | |pf2 (Xs \y, xns)) @)
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= IEXN;D(XSIy,acm)[logpfg (XS‘ZU» xns) - Ingfl (Xs|y, an)]

XS7 “ns XS ns
= 3 p(Xuly. ) (log Lo e P[]

by, (Y]2ns)

Prn (y|Xs; mns)p(Xs‘-rns)

— log
P (Y|Tns)

= Zp(Xs|y7 xns) (( 10gpf2 (y|Xs; xns) - 10gpf2 (y|xns))

- (Ingfl (Y| Xy Tns) — logpy, (ylan)))

= Uf2(xn8uy) - Uf1 (irnsay) S 0

B EXPERIMENTAL DETAILS

B.1 NETWORK ARCHITECTURE

®)
) O

(10)
Y

The detailed architectures for the two encoders, the decoder of the generator, the local discriminator,
and the global discriminator are presented in Table [6| Table [7, Table [§] Table 0] and Table [I0}

respectively.

Table 6: The encoder of the generator that takes as input the corrputed RGB image and the binary

mask.

Type Kernel Dilation Stride Outputs
conv. 5x5 1 1x1 32
conv. 3x3 1 2x2 64
conv. 3x3 1 1x1 128
conv. 3x3 1 2x2 128
conv. 3x3 1 1x1 128
conv. 3x3 1 1x1 128
conv. 3x3 2 1x1 128
conv. 3x3 4 1x1 128
conv. 3x3 8 1x1 128
conv. 3x3 1 1x1 128

Table 7: The encoder of the generator that takes as input the latent vector.

Type Kernel Stride Outputs
linear 8192
deconv. 5x5 12x1/2 256
deconv. 5x5 12x1/2 128

Table 8: The decoder of the generator.

Type Kernel Stride Outputs
deconv. 5x5 1/2x1/2 128
deconv. 5x5 12x1/2 64
conv. 3x3 1x1 32
conv. 3x3 1x1 3

(1) LeNet adapted from (Lecun et al., [1998), which has three convolutional layers, two max pooling
layers and one FC layer; (2) SimpleCNN, which has five convolutional layers, each followed by a
batch normalization layer and a leaky ReL.U layer; (3) SoftmaxNet, which has only one FC layer.

12



Under review as a conference paper at ICLR 2020

Table 9: The global Discriminator.

Type Kernel Stride Outputs
conv. 5x5 2x2 64
conv. 5x5 2x2 128
conv. 5x5 2x2 256
conv. 5x5 2x2 512
conv. 1x1 4x4 1

Table 10: The local Discriminator.

Type Kernel Stride Outputs
conv. 5x5 2x2 64
conv. 5x5 2x2 128
conv. 5x5 2x2 256
conv. 1x1 4x4 1

B.2 THE DETAILED SETTING OF THE EXPERIMENTS ON “ATTACKING DIFFERENTIALLY
PRIVATE MODELS”

We split the MNIST dataset into the private set used for training target networks with digits 0 ~ 4
and the public set used for distilling prior knowledge with digits 5 ~ 9. The target network is
implemented as a Multilayer Perceptron with 2 hidden layers, which have 512 and 256 neurons,
respectively. The evaluation classifier is a convulutional neural network with three convolution layers,
followed by two fully-connected layers. It is trained on the entire MNIST training set and can achieve
99.2% accuracy on the MNIST test set.

Differential privacy of target networks is guaranteed by adding Gaussian noise to each stochastic
gradient descent step. We use the moment accounting technique to keep track of the privacy budget
spent during training (Abadi et al.,[2016). During the training of the target networks, we set the batch
size to be 256. We fix the number of epochs to be 40 and clip the L2 norm of per-sample gradient to
be bounded by 1.5. We set the ratio between the noise scale and the gradient clipping threshold to
be 0,0.694, 0.92, 3, 28, respectively, to obtain the target networks with € = 00,9.89,4.94,0.98,0.10
when § = 10~°. For model with ¢ = 0.1, we use the SGD with a small learning rate 0.01 to ensure
stable convergence; otherwise, we set the learning rate to be 0.1.

The architecture of the generator in Section is tailored to the MNIST dataset. We reduce the
number of input channels, change the size of kernels, and modify the layers of discriminators to be
compatible with the shape of the MNIST data. To train the GAN in the first stage of our GMI attack,
we set the batch size to be 64 and use the Adam optimizer with the learning rate 0.004, 5; = 0.5,
and 2 = 0.999 (Kingma and Ba, 2014). For the second stage, we set the batch size to be 64 and
use the SGD with the Nesterov momentum that has the learning rate 0.01 and momentum 0.9. The
optimization is performed for 1500 iterations.

The center mask depicted in the main text is used to block the central part of digits. We report the
attack accuracy averaged across 640 randomly sampled images from the private set and 5 random
initializations of the latent vector for each sampled image.
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