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Abstract

In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon
recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-
associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it
has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding
precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of
the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and
proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is
cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic
peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and
pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7)
functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses
together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP
flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous
secreted peptides.
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Introduction

Immune signaling in plants is typically initiated when immune-

related receptors perceive the presence of pathogen molecules,

including so-called ‘‘pathogen-associated molecular patterns’’

(PAMPs) and race-specific effectors [1]. PAMPs, such as bacterial

flagellin and fungal chitin, are recognized by plasma membrane-

located pattern recognition receptors (PRRs), which activate

PAMP-triggered immunity (PTI). In addition, pathogen infection

causes the release of endogenous damage-associated molecular

patterns (DAMPs), such as peptides, oligogalacturonides (OGs), or

cutin monomers. DAMPs are released from the cytoplasm or the

cell wall into the extracellular space, where they induce immune

responses resembling PTI following perception by PRRs [2–4].

Over a dozen PRRs have been identified. Most belong to the

superfamily of receptor-like kinases (RLKs), characterized by an

extracellular domain, a transmembrane region and a cytoplasmic

kinase domain. Arabidopsis thaliana has more than 600 RLKs.

Among these, the leucine-rich repeat RLKs (LRR-RLKs) consti-

tute the largest group which has been divided into 13 categories (I

through XIII) [5]. Flagellin-sensitive 2 (FLS2), a LRR-RLK from

category XII, binds to a 22 residue epitope (flg22) present at the N

terminus of flagellin from Gram-negative bacteria [6]. Perception

of flg22 induces the dimerization and rapid phosphorylation of

FLS2 and BRASSINOSTEROID INSENSITIVE 1-associated

receptor kinase 1 (BAK1), as well as phosphorylation of the

receptor-like cytoplasmic kinase (RLCKs) BIK1 [7–10]. The

activated receptor complex triggers elevation of cytosolic calcium,

generation of reactive oxygen species (ROS), phosphorylation of

mitogen-activated protein kinases (MAPKs), callose deposition,

and transcriptional reprogramming of the cell, leading to

enhanced resistance against pathogens [11–14].

PEP1 was identified as an extracellular 23-aa peptide derived

from the C-terminus of the A. thaliana precursor protein

proPEP1. Since proPEP1 lacks an N-terminal signal peptide, the

release of PEP1 into the apoplast was suggested to result from

cellular damage caused by pathogen attack or wounding,

suggesting that PEP1 functions as DAMP. Two XI category

LRR-RLKs, PEPR1 and PEPR2, were shown to act as receptors

of PEP1 and homologous peptides in A. thaliana [15,16].

Perception of PEP1 by PEPR1/2 activates PTI and enhances

host resistance against the pathogens Pseudomonas syringae and

Pythium irregulare [3,16]. PEPR1 also modulates ethylene (ET)-

dependent resistance to Botrytis cinerea via the phosphorylation of

BIK1 [17,18]. Since expression of PEP1-PEPR1/2 is induced by

flg22 and PEP1 itself, and since PEP1-PEPR1/2 employs shared
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components with PAMPs signaling, PEP1-PEPR1/2 has been

proposed to function as an amplifier of PTI signaling [16,19].

Secreted peptides coordinate a variety of plant developmental

processes, including stem cell maintenance, stomatal development,

lateral root initiation, vascular formation, floral abscission and cell

expansion [20–22]. Recently, several secreted peptides have been

reported to modulate plant immune signaling. For instance, the

CLAVATA3 peptide (CLV3p), known to regulate stem cell

homeostasis in the shoot apical meristem, was suggested to be

recognized by FLS2 and activate FLS2-dependent immune

responses in the shoot meristem [23]. The sulfated peptides

phytosulfokine (PSK) and PSY1, were initially identified as

promoters of cell proliferation and tissue growth, and were

recently shown to attenuate PTI responses and to enhance

susceptibility to biotrophic pathogen and resistance to necro-

trophic pathogen [24,25]. A. thaliana has been suggested to

produce over 1000 secreted peptides [26], the overwhelming

majority of which remain functionally uncharacterized. To look

for secreted peptides potentially involved in regulation of

immunity, we searched the available A. thaliana microarray data

for flg22- and elf18-induced genes. This led to the identification of

a novel gene family of secreted peptide precursors, termed

‘‘prePIPs’’ (precursors of PAMP-Induced Peptides). We provide

evidence showing that PIP1 and PIP2, two peptides obtained from

processing of the representative prePIP family members prePIP1
and prePIP2, are able to activate immune responses in A. thaliana
and to enhance resistance against P. syringae and Fusarium
oxysporum. Using a reverse genetics approach, we demonstrate

that RLK7, a class XI LRR-RLK, is required for PIP1 and PIP2-

elicited immune activation, and that PIP1-RLK7 has a crucial role

in PTI amplification.

Results

Screening of A. thaliana genes encoding PAMP-induced
secreted peptide (PIP) precursors
Analysis of flg22- and elf18-induced transcription data (micro-

array accession number E-MEXP-547) resulted in the identifica-

tion of 12 genes encoding putative secreted peptide precursors

[27]. The predicted gene products were 70–110 amino acid

residues in length and included an N terminal signal peptide, as

predicted by the SignalP 3.0 server [28]. Of these, four have

known or predicted functions. They include PSK4 precursor [29],

PSY1 precursor [30], IDA [31], and an IDA-like protein

(At1g05300). The other eight are functionally uncharacterized.

Three of these eight genes (At4g28460, At4g37290, and

At2g23270) share a highly conserved C terminus, and their

products were named prePIP1, prePIP2 and prePIP3, respectively

(Table S1). A blastp search based on the prePIP1 C terminus

sequence revealed that A. thaliana has at least 11 prePIP

homologs, including seven annotated and four non-annotated

proteins. Orthologs of prePIP proteins are present in numerous

species of dicots and monocots, such as soybean, grape, maize, and

rice (Figure S1). All the prePIP family members exhibit the

hallmarks of post-translationally modified secreted peptide pre-

cursors: a signal peptide at the N terminus, a highly conserved

cysteine-poor region at the C-terminus (hereafter referred to as the

SGPS motif), and a variable region between the signal peptide and

the SGPS motif (Figure 1A) [20]. Eight A. thaliana family

members contain a single SGPS motif while three (prePIP2,

prePIP3 and prePIPL1) harbor two SGPS motifs. The prePIP

SGPS motif shares structural features with CLV3/CLE peptides

[32,33], the IDA peptide (IDAp), CEP1 [34], and PEP1 [3]. Since

all these peptides carry conserved Ser, Gly, Pro, and His residues

(Figure S2), we propose that they form a superfamily called ‘‘SGP-

rich’’ peptides.

During the process of translation, the prepropeptide, the

original form of secreted peptide precursor, is targeted to the

endoplasmic reticulum/Golgi-dependent secretory pathway where

the N-terminal signal peptide is removed resulting in the pro-

peptide. The propeptide is subsequently secreted into the apoplast

and subjected to proteolytic processing, releasing the mature C-

terminal peptide [20]. To experimentally determine whether the

prePIP1 propeptide is secreted, the green fluorescent protein gene

(GFP) was fused to the C-terminus of prePIP1 (prePIP1-GFP)
under the control of the cauliflower mosaic virus 35S (CaMV 35S)

promoter and transiently expressed in tobacco leaves using agro-

infiltration. Confocal microscopy imaging showed that prePIP1-

GFP fluorescence was distributed in the pericellular apoplastic

space. In contrast, GFP protein alone was present in the cytoplasm

and the nucleus. The secreted peptide precursor CLV3, which was

previously shown to localize in the extracellular matrix, exhibited a

similar localization as prePIP1-GFP when a C-terminal GFP
fusion allele was expressed in tobacco leaves (Figure 1B). These

results suggest that the prePIP1 product is secreted into the plant

extracellular space.

An in-vitro assay was conducted to determine whether pre

PIP1 and prePIP2 are proteolytically processed. Glutathione

S-transferase-tagged signal peptide-deleted prePIP1 and prePIP2

(GST-DP1 and GST-DP2) were expressed in E. coli strain BL21

(DE3) and purified through Glutathione Sepharose (Figure S3).

Incubation of GST-DP1 and GST-DP2 in a reaction solution

supplementing extracts of A. thaliana seedlings but not BSA

(negative control) resulted in a reduction of 1–2 kDa in size

(Figure 1C and D). When GST-DP1 was injected into A. thaliana
leaves, a similar reduction in molecular size was detectable after a

2 h incubation, consistent with a cleavage of GST-DP1 by a plant

protease(s) present in the extracellular space (Figure S4).

Expression of prePIP1
Transgenic plants carrying the GFP gene under control of the

prePIP1 promoter exhibited strong fluorescence in guard cells,

hydathodes and vascular tissue (Figure 2A). Interestingly, all these

tissues represent either potential entry points or proliferation

routes for invading pathogens. In contrast, no fluorescence was

detected in these tissues in untransformed plants (data not shown).

Author Summary

Both animals and plants have evolved mechanisms to
trigger innate immunity through perception of exogenous
and endogenous molecules. In the model plant Arabidop-
sis thaliana, endogenous molecules such as the peptide
elicitor PEP1 activate the immune response by means of
cell surface-located receptors. Here we describe a new
gene family in A. thaliana named prePIPs, whose members
encode secreted peptide precursors, and show that one of
its members, prePIP1, is secreted into extracellular space
and cleaved at the C-terminus. Exogenous application of
PIP1, the synthetic 13-amino acid peptide corresponding
to the conserved C-terminal region of prePIP1, triggered
immune responses and led to enhanced pathogen
resistance in A. thaliana. We further provide evidence
showing that PIP1 signals via the receptor-like kinase 7
(RLK7) and employs both shared and distinct components
with the PEP1 signaling pathway. Both PIP1 and PEP1
cooperatively amplify the immune response triggered by
flg22, the active epitope of bacterial flagellin.

PIP1-RLK7 Amplifies Plant Immunity
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When A. thaliana seedlings were exposed to flg22 or chitin,

prePIP1 transcription was markedly up-regulated (Figure 2B).

Subsequent experiments, based either on transcript abundance or

on the expression of a transgene carrying the b-glucuronidase

(GUS) gene driven by the prePIP1 promoter, confirmed that

prePIP1 was up-regulated during infection with the bacterial

pathogen P. syringae DC3000 (Pst DC3000) or with the fungal

pathogen F. oxysporum f. sp. conglutinans strain 699 (Foc 699)

(Figure 2C). Transcript abundance increased about eight folds

following inoculation with Pst DC3000 and about 15 folds with

Foc 699, extending throughout the leaf and root system within

24 h after inoculation (Figure 2C–E). PrePIP1 expression was

also increased in A. thaliana seedlings after treatment with

immune-related phytohormones. Quantitative RT-PCR (RT-

qPCR) analysis showed that the prePIP1 transcript was induced

by methyl salicylate (MeSA), but not by methyl jasmonate (MeJA)

or the ethylene precursor 1-aminocyclopropane-1-carboxylate

(ACC). Importantly, expression of the SA pathway marker

pathogenesis-related protein 1 (PR1) and of the JA pathway

marker PDF1.2 was induced by MeSA and MeJA treatments,

respectively (Figure 2F).

PIP1 and PIP2 inhibit A. thaliana root growth
A. thaliana transgenic lines overexpressing prePIP1 or prePIP2

(35S::prePIP1 and 35S::prePIP2) (Figure 3A) consistently exhib-

ited a shorter main root than the wild type (WT) plants (Figure 3B

and C). In contrast, transgenic plants overexpressing IDA and

IDA-like were abnormal with respect to their floral abscission zone

(AZ) [35]. In spite of the high sequence similarity between the C

termini of IDA and prePIPs, overexpression of prePIP1 or

prePIP2 did not affect AZ structure (Figure S5), indicating

different functions of the two protein families.

Because post-translationally modified secreted peptides gener-

ally coincide with the C-terminal conserved region of their

precursors [20], exogenous application of synthetic peptides such

as CLV3p, IDAp, and CEP1 reproduces the phenotypes of

overexpression lines of the respective precursor gene [32,34,35].

We tested whether addition of synthetic peptide PIP10 comprising

the conserved SGPS-motif of prePIP1, could reproduce the effect

on root growth of prePIP1 overexpression. PIP10 significantly

inhibited the elongation of the main root when applied at a

concentration of 100 nM (Figure 3D). Since SGP-rich peptides

usually undergo proline hydroxylation, the inhibitory effect on

root growth of three PIP1 derivatives, PIP1Hpy6, PIP1Hpy8, and

PIP1Hpy6, 8 (Table S2) was investigated. Of these, PIP1Hyp6

(hereafter denoted ‘‘PIP1’’) and PIP1Hpy6, 8 were more active than

PIP10 (Figure 3D), suggesting that proline hydroxylation at

position 6 contributes to biological activity of the peptide. PIP1

activity was also pH dependent, since root growth inhibition was

most active in the pH range 5.8–6.8 (Figure 3E). Results for PIP2,

the synthetic hydroxylated peptide corresponding to prePIP2,

were similar to those obtained with PIP1 (Figure 3F).

PIP1 and PIP2 elicit immune responses in A. thaliana
The role of the peptide derived from prePIP1 in plant immunity

was explored initially using a transient expression assay in

mesophyll protoplasts. The firefly luciferase gene (LUC) driven
by the promoter of Flg22-induced Receptor-like Kinase 1 (FRK1),
a marker gene of PTI signaling, was co-transfected as a reporter

with either prePIP1, prePIP1DSP (prePIP1 lacking the signal

peptide), or prePIP1DSGPS (prePIP1 lacking the SGPS-motif) all

driven by the CaMV 35S promoter. Activation of the FRK1
promoter was only detected with a full length copy of prePIP1,
implying that both secretion of prePIP1 and its SGPS-motif are

Figure 1. Identification of PIP peptides. (A) Schematic presentation of prePIP homologs in A. thaliana. (B) Sub-cellular distribution of prePIP1-GFP
in tobacco leaf cells. Tobacco leaves were transformed with Agrobacterium GV3101 harboring a construct containing GFP, prePIP1-GFP or CLV3-GFP,
respectively. The yellow arrows point the plasma member. Scale bar = 20 mm. (C) Time-course of GST-DP1 proteolytic processing. (D) Proteolytic
cleavage of GST-DP1 and GST-DP2 by total protein extract from A. thaliana. (C–D) SDS-PAGE separation of protein products. Dots mark intact GST-
DP1 or GST-DP2; triangles mark processed GST-DP1 or GST-DP2. At least three replicates were performed with similar results.
doi:10.1371/journal.ppat.1004331.g001

PIP1-RLK7 Amplifies Plant Immunity
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required for FRK1 induction (Figure 4A and B). Similar to flg22

and PEP1, exogenous application of PIP1 and PIP2 induced the

expression of pFRK1::LUC in protoplasts, but neither IDL2 nor

CEP1 did (Figure 4C). Moreover, RT-PCR and RT-qPCR

analyses revealed that PIP1 and PIP2 induced transcription

of the immune response genes FRK1, WRKY30, WRKY33,
WRKY53, and PR1 (Figure 5A–C and S6). Other characteristic

PTI responses such as stomatal closure (Figure 5D), ROS

production (Figure 5E), callose deposition (Figure 5F), and MAPK

phosphorylation (Figure 5G) were also induced by these two

peptides. In comparison with flg22, PIP1, PIP2 and PEP1 induced

significantly lower ROS production and leaf callose deposition

(Figure 5E and F). Similarly, the effect of PIP-induced immunity

on host resistance against Pst DC3000 was weaker than that

induced by flg22. Treatment with 1 mM PIP1 or PIP2 delayed Pst
DC3000 proliferation in leaves by ,70%, while 1 mM flg22

decreased bacterial growth by .90% (Figure 5H).

The prePIP1 gene is abundantly expressed in A. thaliana roots.

We therefore measured PIP-induced immunity in roots using a

MYB51p::GUS reporter which was previously employed to

monitor flg22-triggerred immune responses [36]. PIP1, PIP2,

PEP1 and flg22 strongly activatedMYB51 promoter activity in the

root elongation zone (EZ) (Figure 6A). MYB51-dependent indole-

glucosinolate synthesis is required for callose deposition [37]. All

peptides induced callose deposition in the root EZ (Figure 6A),

while no such induction was detectable in the presence of CEP1 or

IDL2 (Figure S7).

Given that prePIP1 expression was induced upon Foc 699

infection, resistance against this pathogen was compared between

WT and 35S::prePIP1 or 35S::prePIP2 plants. When A.
thaliana seedlings were challenged with microconidia of GFP-
labeled Foc 699 (Foc 699-GFP), fungal hyphae penetrated the EZ

cortex 3–6 h post infection and reached the vascular tissue

,12 hours later (Figure S8). However, the extent of Foc 699

penetration in the roots of 35S::prePIP1 and 35S::prePIP2
plants was significantly lower than in the roots of WT, as estimated

from the GFP fluorescence signal (Figure 6B and C). When Foc
699 infected seedlings were potted into soil and left to grow for

three weeks, the overexpression lines displayed a significantly

reduced mortality compared to the WT plants (Figure 6D). These

results indicate that overexpression of prePIP1 or prePIP2
enhances Arabidopsis resistance against Foc 699.

RLK7 is the PIP1 receptor
Secreted peptides are typically recognized by plasma-localized

LRR-RLKs [21]. The sequence similarity between PIPs and other

SGP-rich peptides suggested that the hypothetical PIP1 receptor(s)

could be structurally related to the CLV3p receptor CLV1 [38],

the IDAp receptors HAE and HSL2 [35], or the PEP1 receptors

PEPR1/2 [15,16], all of which are class XI LRR-RLKs [5]. Like

PEPR1/2 and other immune-related receptors, the hypothetical

PIP1 receptor(s) is likely to be up-regulated by pathogen attack or

PAMP induction. The A. thaliana genome harbors 28 category XI

LRR-RLKs genes, six of which are induced by PAMP treatment

or pathogen infection [27, 39]: PEPR1/2, HAE, RLK7 (At1g
09970), At5g25930 (here named HSL3), and SOBIR1. The

SOBIR1 product was shown to act as a co-regulator of multiple

receptor-like proteins (RLPs) that are involved in immune

recognition [40–42], and was suggested not to function directly

in ligand recognition due to its short LRR domain. To identify the

putative receptors of PIP1 and PIP2, we analyzed the response of

T-DNA insertion mutants of RLK7, HAE, HSL2, HSL3, and
FLS2 to PIP1 and PIP2 treatments. No inhibition of root growth

was observed in two rlk7 mutants, rlk7-2 and rlk7-3, while the

other mutants responded similar as the WT (Figures 7A, S9). The

roots of 35S::prePIP1 or 35S::prePIP2 plants were significantly

shorter than those of WT plants, while roots of the double

homozygous F2 progeny of a cross between 35S::prePIP1 or

35S::prePIP2 and rlk7-3 grew normally as did those of rlk7
mutants. Thus, inhibition of root growth by prePIP1 and prePIP2

is RLK7 dependent (Figure 7B).

In contrast to the WT, the rlk7-3 plants failed to up-regulate

expression of FRK1, WRKY33, and WRKY53 upon treatment

with PIP1 or PIP2 (Figure 7C and S10A and B). In contrast, flg22

strongly induced expression of FRK1 both in WT and rlk7-3
plants, but not in the fls2 mutant (Figure S10C), suggesting that

RLK7 responds specifically to PIPs. Moreover, PIP1-induced

MPK3 and MPK6 phosphorylation was also abolished in rlk7-3
(Figure 7D), as was the increase of host resistance against Pst
DC3000 infection by pre-treatment of Arabidopsis leaves with

PIP1 (Figure 7E). The prePIP1 overexpression line displayed a

significantly reduced mortality compared to the WT plants as

indicated above, while the double homozygous F2 progeny of a

Figure 2. Expression of prePIP1. (A) Transgenic A. thaliana
expressing GFP driven by the prePIP1 promoter in (a) the guard cell,
(b) the hydathode, (c) the epidermal trichome, (d) the leaf vascular
tissue and (e) the root vascular tissue. (B) RT-qPCR-based transcriptional
profiling of prePIP1 in A. thaliana following treatment with flg22 or
chitin. (C) RT-qPCR-based transcriptional profiling of prePIP1 in A.
thaliana following inoculation with Pst DC3000 or Foc 699. GUS staining
of prePIP1p-GUS transgenic A. thaliana seedlings after a 24 h exposure
to Pst DC3000 (D), and Foc 699 (E). Scale bar = 200 mm. (F) RT-qPCR-
based transcriptional profiling of prePIP1, PR1, and PDF1.2 in A. thaliana
following exposure to MeSA, MeJA, and ACC. Error bars represent 6
standard error (SE) of the mean (n = 3). *: difference significant at p,
0.01 (t-test). Three replicates were performed with similar results.
doi:10.1371/journal.ppat.1004331.g002
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cross between 35S::prePIP1 and rlk7-3 displayed a higher

mortality as did those of rlk7-3 mutants (Figure 7F).

We next asked whether RLK7 directly binds the PIP1 peptide.

This was first addressed through a pull-down assay with

biotinylated PIP1 in A. thaliana plants expressing hemagglutinin

(HA) tagged-RLK7 (RLK7-HA). Two derivatives of biotin labeled

PIP1 (Biotin-PIP1 and PIP1-biotin) were confirmed to maintain

their biological function by determining their activities on root

growth inhibition and marker gene induction (Figure S11). Since

PIP1-biotin exhibited a higher activity, it was used for all

subsequent experiments. We found that RLK7-HA was pulled

down with PIP1-biotin-associated streptavidin beads from mem-

brane protein extracts of rlk7-3 plants harboring RLK7-HA, but

not from rlk7-3 plants (Figure 7G). Binding of RLK7-HA to the

beads was inhibited by a 1006 excess of unlabelled PIP1 but not

by unlabelled IDA. Next, a chemical cross-linking assay was

employed to prove a direct binding of PIP1-biotin to RLK7-HA.

PIP1-biotin peptide was incubated with protein extracts of RLK7-
HA transgenic plants or rlk7-3 mutants, and cross-linked with its

potential receptor using a chemical cross-linker. After separation

by SDS-PAGE, protein samples were hybridized with an anti-

biotin antibody. A protein of 130 kD, consistent with the

molecular mass of RLK7-HA, was detected in RLK7-HA plants

but not in rlk7-3 mutants (Figure 7H), suggesting that the protein

corresponds to the RLK7-HA protein. Binding of PIP1 to RLK7

Figure 3. Root growth is inhibited by PIP1 and PIP2. (A) RT-PCR-based detection of prePIP1 and prePIP2 transcripts in transgenic A. thaliana. (B)
Morphology and (C) root length of eight day old WT, 35S::prePIP1 and 35S::prePIP2 transgenic seedlings. (D) Effect of the concentration of PIP1
derivatives on A. thaliana root growth inhibition. (E) Effect of pH on PIP1-induced root growth inhibition. (F) A. thaliana root growth is inhibited by
PIP1 and PIP2. Error bars represent the SE of the mean (n.30), *, **: differences significant at p,0.01, 0.001 (t-test). Three replicates were performed
with similar results.
doi:10.1371/journal.ppat.1004331.g003

Figure 4. The FRK1 promoter is activated by PIP1 and PIP2. (A)
Schematic presentation of the constructs containing prePIP1 and
truncated prePIP1 sequences. (B) FRK1 promoter activation in proto-
plasts following co-transfection with FRK1p-LUC and prePIP1 or
truncated prePIP1. (C) FRK1 promoter activation by PIP1, PIP2, flg22,
and PEP1. Protoplasts transfected with FRK1p-LUC were exposed to
1 mM of each peptide for 4 h. (B–C) Error bars represent the SE of the
mean (n = 5), *: significantly different from control at p,0.01 (t-test), ns:
non significant difference. Three replicates were performed with similar
results.
doi:10.1371/journal.ppat.1004331.g004

PIP1-RLK7 Amplifies Plant Immunity
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was further corroborated using a photoaffinity labeling assay.

RLK7-HA or GFP (negative control) were transiently expressed in

tobacco leaves, and homogenized leaf tissues were incubated with

1 nM 125I-labeled PIP1 in the presence or absence of 10 mM

unlabeled PIP1. Specific binding of 125I-labeled PIP1 was detected

in the homogenate from leaves expressing RLK7-HA protein, but

not in those from leaves expressing GFP (Figure 7I).

PIP1-RLK7 signaling is partially dependent on BAK1, but
independent of BIK1
The receptor kinase BAK1 plays an important role in PTI

immune activation by forming heteromeric co-receptor complexes

with multiple LRR-RLK receptors, including FLS2 and PEPR1

[7,8,39]. Sensitivity to flg22 and PEP1 was partially reduced in

bak1 T-DNA insertion mutants bak1-3 and bak1-4 [43]. While

dimerization of FLS2 with BAK1 occurs after flg22 perception by

FLS2, PEPR1 interacts constitutively with the kinase domain of

BAK1. Since PIP1 triggers similar early immune responses as flg22

and PEP1, we asked whether BAK1 also contributes to PIP1

responses. Indeed, PIP1-induced ROS production and root

growth inhibition were both reduced in bak1-4 than in WT

plants (Figure 8A and B). In contrast, while PEP1-induced ROS

production was also reduced in the bak1-4 mutant, inhibition of

root growth was unaffected (Figure 8A and B). Thus, while PIP1-

RLK7 signaling is partially dependent on BAK1, PIP1 and PEP1-

induced responses have different requirements for BAK1.

FLS2 and PEPR1 initiate downstream signaling by directly

interacting with the receptor-like cytoplasmic kinase BIK1 [9,17].

Therefore, we investigated the possible interaction between BIK1

and RLK7. Yeast two-hybrid results did not indicate an

interaction between BIK1 and the kinase domain of RLK7, while

confirming the interaction between BIK1 and the kinase domain

of PEPR1 reported previously (Figure 9A). In plants lacking BIK1,
flg22- and PEP1-induced root growth inhibition was attenuated

while the effect of PIP1 was unchanged (Figure 9B). Given the

known role of PEPR1-BIK1 in mediating ET responses [17], we

compared hypocotyl elongation in WT and rlk7 seedlings treated

with ACC, but found no significant difference (Figure 9C and D).

However, sensitivity to ACC treatment was attenuated in both

ein2 (ethylene insensitive 2) and bik1 mutants. Taken together,

Figure 5. Immune response activation by PIP1 and PIP2. Transcription of (A) FRK1, (B) WRKY53, (C) WRKY33 in A. thaliana seedlings treated
with flg22, PEP1, PIP1, and PIP2. Error bars represent the SE of the mean (n = 3). At least three replicates were performed with similar results. (D)
Stomatal closure induced by PIP1 and flg22. Error bars represent the SE of the mean (n.100). Three replicates were performed with similar results. (E)
Relative ROS production in adult leaves upon treatments with PIP1, PEP1, and flg22. Error bars represent the SE of the mean (n = 5). Two replicates
were performed with similar results. (F) Callose deposition in leaves upon induction with different peptides or chitin. Error bars represent the SE of the
mean (n = 5). Two replicates were performed with similar results. (G) MAPK activation induced by PIP1 and PIP2. Ten day old seedlings were exposed
to 1 mM peptides for 5, 10 or 15 min. Western blot analysis was performed with the phospho-p44/42 MAPK antibody. Two replicates were performed
with similar results. (H) Pst DC3000 growth in A. thaliana leaves. Error bars represent the SE of the mean (n = 6). *, **: significantly different from mock
treatment at p,0.001 and ,0.01 (t-test). Three replicates were performed with similar results.
doi:10.1371/journal.ppat.1004331.g005
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these results suggest that PIP1-RLK7 signaling is independent of

BIK1.

PIP1-RLK7 and PEP1-PEPR1 cooperate to amplify FLS2
signaling
Because the expression of prePIP1 andRLK7 is induced by flg22

and PIP1 triggers a similar immune response to flg22, we

hypothesized that PIP1-RLK7, like PEP1-PEPR1, may serve to

amplify PAMP signaling. In support of this idea, flg22- or chitin-

induced callose deposition was more pronounced in leaves and roots

of 35S::prePIP1 or 35S::prePIP2 plants than in WT plants

(Figure 10A–C). Moreover, we observed an additive effect in

elevation of host resistance against PstDC3000 in plants pre-treated

simultaneously with flg22 and PIP1, compared to each single

peptide elicitor (Figure 10D). Furthermore, activation of WRKY33
and PR1, two genes representing, respectively, early- and late-

response immune reporters, by flg22 was reduced in rlk7 plants

compared to WT plants (Figure 10E and F), and the level of flg22-

induced host resistance against Pst DC3118 (a coronatine deficient

Pst DC3000 mutant) was less marked in the rlk7 mutant

(Figure 10G). Finally, PIP1 and PEP1 both appeared to enhance

flg22 responses via up-regulation of FLS2 expression (Figure 10H).

A crosstalk between PIP1 and PEP1 signaling was further

supported by the finding that PEP1-induced root growth

inhibition and WRKY33 expression were impaired in mutants

lacking RLK7 (Figure S12). Either PEP1 or PIP1 induced the

transcription of all the genes encoding precursors and receptors of

the two peptides (Figure 10I–L). Thus, PIP1-RLK7 and PEP1-

PEPR1 act cooperatively to amplify FLS2-initiated immunity.

Discussion

PIP1 is a functional secreted peptide
The identification of elicitors to date has relied on various

bioassays conducted on extracts of pathogen and/or host tissue

Figure 6. Immune response activation in roots by PIP1 and PIP2. (A)MYB51p::GUS expression (top panel) and callose deposition (lower panel)
in A. thaliana seedlings exposed to peptide elicitors. Two replicates were performed with similar results. (B) Foc 699-GFP infection in WT, 35S::prePIP1
and 35S::prePIP2 seedlings. Top and center: GFP signal in roots of A. thaliana seedlings after 12–24 hour’ infection with Foc 699-GFP (scale
bar = 0.5 mm). Bottom: representative plants 21 days post infection. Three replicates were performed with similar results. (C) Quantification of fungal
biomass in 35S::prePIP1 and 35S::prePIP2 transgenic seedlings 12 h after infection with Foc 699-GFP. (D) Survival of plants 21 days after infection with
Foc 699-GFP. (C–D) Error bars represent the SE of three replicates that contained 30 to 40 plants or seedlings each. *: significantly different from
control at p,0.01 (t-test).
doi:10.1371/journal.ppat.1004331.g006
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[3,44,45]. Because the active components are typically present in

low abundance, this mode of analysis is technically challenging.

With the widespread development of genomic and transcriptomic

data in A. thaliana, bioinformatics is increasingly offering potential

for predicting the identity of elicitors. Here, by analyzing PAMP-

induced gene transcription data, a gene family encoding precur-

sors of the secreted peptide elicitors PIPs was identified.

The release from precursor proteins by proteolysis in the

extracellular space is a critical process for secreted peptides [20].

In vitro, prePIPs are typically cleaved close to the C terminus.

Specific cleavage was confirmed in vivo, since recombinant

GST-DP1 protein suffered a similar processing pattern when

injected into leaves of A. thaliana. Although it is generally assumed

that mature peptides are released from precursors through

endopeptidase-mediated cleavage [46], the only cleavage recogni-

tion site identified so far in A. thaliana is a specific sequence in the

peptide PSK4 which was confirmed to be proteolytically cleaved

by the subtilase SBT1.1 [46]. In most post-translationally modified

secreted peptide precursors, cleavage occurs before or after Arg,

Asp, His or Asn residues located at both sites of the C-terminal

conserved motifs [20]. Members of the prePIP1 family harbor a

conserved Arg or His residue at each side of the SGPS-motif. We

Figure 7. RLK7 is required for the PIP1 and PIP2 response and for PIP1 binding. (A) Root length of WT and rlk7 seedlings grown with or
without 1 mM PIP1 or 1 mM PIP2. (B) Root length of rlk7 and rlk7635S::prePIP seedlings. (A–B) Error bars represent the SE of the mean (n.30). Means
marked by ‘‘a’’ differed significantly (p,0.001) from those marked ‘‘b’’ (t-test). (C) Transcription of WRKY33 in WT and rlk7 seedlings exposed to 1 mM
PIP1 or 1 mM PIP2. Error bars represent the SE of the three replicates. Means marked by ‘‘a’’ differed significantly (p,0.001) from those marked ‘‘b’’ (t-
test). (D) MAPK activation by PIP1 in WT and rlk7-3 seedlings. Ten day old seedlings were exposed to 1 mM peptide for 5 and 10 min. Western blot
analysis was performed with the phospho-p44/42 MAPK antibody. Two replicates were performed with similar results. (E) Growth of Pst DC3000 in WT
and rlk7-3 plants with or without treatment with 1 mM PIP1. Error bars represent the SE of the mean (n = 6). Three replicates were performed with
similar results. Means marked by ‘‘a’’ differed significantly (p,0.01) from those marked ‘‘b’’ (t-test). (F) Survival rate of plants 21 days post infection
with Foc 699-GFP. Error bars represent SE from three replicates that contained 30 to 40 plants each. Statistically significant (p,0.05) differences are
indicated by different letters (t-test). (G) Detection of biotinylated PIP1 binding to RLK7-HA using a pull-down assay. Membrane proteins extracted
from rlk7 or rlk7/35S::RLK7-HA leaves incubated with PIP1-biotin bound to streptavidin beads in the presence (+) or absence (2) of unlabeled PIP1 or
IDA. RLK7-HA bound to the beads was detected with an anti-HA antibody. (H) Detection of RLK7-HA by chemical cross-linking of PIP1-biotin. Cross-
linking of PIP1-biotin to proteins from 35S::RLK7-HA and rlk7-3 plants in the presence (+) or absence (2) of excess unlabeled PIP1. Bands were
detected with anti-biotin antibody. (I) 125I-Y-PIP1 binding activity of plasma membrane fragments from tobacco leaves expressing RLK7-HA or GFP.
Error bars represent the SE of the mean (n = 5). Means marked by ‘‘a’’ differed significantly (p,0.01) from those marked ‘‘b’’ (t-test). (G–I) At least two
repeats were performed with similar results.
doi:10.1371/journal.ppat.1004331.g007
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found that exogenous application of synthetic PIP1 peptide

corresponding to the conserved SGPS-motif successfully mimicked

the phenotypes of A. thaliana plants transiently or constitutively

expressing prePIP1. This indicates that PIP1 is a biologically

active form derived from prePIP1, and shares part or all of the

sequence with the genuine mature peptide cleaved from the

precursor. However, considering that PIP1 peptide was saturated

at micromolar concentration in root growth inhibition assays, we

cannot exclude the presence of a more active peptide. Further, a

mass spectrometry analysis is needed to confirm the cleavage site

and to identify the mature peptides cleaved from prePIPs

precursors.

Proline hydroxylation is common in SGP-rich peptides such as

CLV3p and CEP1 [33,34]. PIP family members harbor two

conserved proline residues. A comparison of the root growth

inhibitory effect of proline hydroxylated and non-hydroxylated

forms of PIP1 revealed that hydroxylation enhances the biological

activity of the peptide. In contrast, unmodified CLV3 and

hydroxylated CLV3 peptides had similar activities in root growth

inhibition [32,33]. This suggests that proline hydroxylation

differentially affects the biological activities of PIP1 and CLV3.

It is currently not clear whether proline hydroxylation of PIP1

affects its affinity for the receptor or its stability.

PIP1 activates plant immunity in an RLK7-dependent
manner
We found that the PIP1 and PIP2 peptides activate similar

immune responses as flg22 and PEP1, including expression of

marker genes, ROS production, callose deposition and MAPK

activation. The possibility that this result was caused by

contamination with flg22 and/or PEP1 can be excluded for

several reasons. First, independently synthesized PIP peptides

exhibited the same activity; second, IDL2p and CEP1, two

peptides with a similar sequence structure to PIPs that were

synthesized together with PIPs, failed to activate immune

responses; third, a fls2 loss-of-function mutant that is insensitive

to flg22 still responded to PIPs; and fourth, PIP1 and PEP1

differed functionally from each another.

A reverse genetics screen identified the class XI LRR-RLK

RLK7 as the responsible for PIP1- and PIP2-triggered responses.

RLK7-PIP1 binding data implicate that RLK7 acts as the PIP1

receptor. However, the flg22 receptor FLS2 which was previously

proposed to perceive CLV3p and Ax21 [23,47,48], failed to

recognize PIP1 since fls2 mutants were still responsive to PIP1-

induced up-regulation of FRK1. Although RLK7 was required for

the PIP1-induced enhancement of host resistance against Pst

DC3000, loss-of-function rlk7 mutants showed no reduction in the

level of resistance in the absence of PIP1 treatment. This is

reminiscent of the finding that the pepr1/pepr2 double mutant is

not affected in the level of resistance against Pst DC3000 [16]. The

virulence of Pst DC3000 relies heavily on secreted effector

proteins which can suppress host immunity by blocking various

signaling pathways [49]. The resistance conferred by the PIP-

RLK7 signaling pathway may thus be severely disrupted by

pathogen effectors. Moreover, the expression pattern of prePIP1
suggests that PIP1-RLK7 resistance is perhaps more specific to

pathogens infecting through the hydathodes or proliferating in the

vascular tissue. This idea is consistent with the high host resistance

conferred by prePIP1 or prePIP2 over-expression against the

fungus Foc 699, a soil-borne pathogen that colonizes the root

vascular tissue.

PIP1-RLK7 share overlapping but also distinct signaling
components with PEP1-PEPR1
PIP1 activates an almost identical set of signaling events as flg22

and PEP1, suggesting that the three pathways likely share a

number of components. BAK1 regulates several of the immune

signaling pathways triggered by LRR-RLK type immune recep-

tors, including FLS2 and PEPR1 [7,8,39]. We found that PIP1-

RLK7 mediated responses are less pronounced in bak1-4 mutants,

Figure 8. Full PIP1 response requires BAK1. (A) PIP1-induced ROS
production in bak1-4 leaves. ROS production was measured after
elicitation with 1 mM peptides. Error bars represent the SE of the mean
(n = 5). (B) PIP1-induced root growth inhibition. Error bars represent the
SE of the mean (n.30). *, **: significantly different from mock treatment
at p,0.001 and ,0.01 (t-test). Three repeats were performed with
similar results.
doi:10.1371/journal.ppat.1004331.g008

Figure 9. PIP1-RLK7 signaling is BIK1 independent. (A) Interaction
between PEPR1 or the RLK7 kinase domain and BIK1 in the yeast two-
hybrid assay. Yeast cells containing the indicated plasmids were
analyzed for His and LacZ reporter activities. PEPR1KD, pGADT7
containing PEPR1 kinase domain; RLK7KD, pGADT7 containing RLK7
kinase domain; BIK1, pGBKT7 containing BIK1. (B) Root length of 8-day
old WT and bik1 seedlings grown in the presence of 1 mM flg22, PIP1, or
PEP1. Triple response phenotype (C) and hypocotyl length (D) of A.
thaliana seedlings grown in the presence or absence of ACC. Error bars
represent the SE of the mean (n.30). *, **: significantly different from
mock treatment at p,0.001 and ,0.01 (t-test). At least two repeats
were performed for all experiments with similar results.
doi:10.1371/journal.ppat.1004331.g009
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suggesting that BAK1 contributes to PIP1-RLK7 signaling.

Previous studies suggested that BAK1 and BAK1-LIKE1

(BKK1) function in parallel in FLS2- and PEPR1-activated

immune signaling, since the bak1 mutant is only partially

insensitive to flg22 and PEP1 while the bak1/bkk1 double mutant

is completely insensitive [7,39,43]. We noted that the bak1-4

Figure 10. PIP1-RLK7 and PEP1-PEPR1 cooperatively amplify FLS2 signaling. (A) Fluorescence microscopy imaging and (B) quantification of
flg22-induced callose deposition in leaves of WT and prePIP over-expression lines. Error bars represent the SE of the mean (n.10). Statistically
significant (p,0.01) differences indicated by different letters (t-test). Two repeats were performed with similar results. (C) Fluorescence microscopy
imaging of chitin-induced callose deposition in roots of WT and prePIP over-expression lines. Two repeats were performed with similar results. (D) Pst
DC3000 growth in A. thaliana leaves pretreated with flg22, PIP1 or a combination of flg22 and PIP1. Error bars represent the SE of the mean (n = 8).
Three repeats were performed with similar results. (E) RT-qPCR analysis of WRKY33 transcript abundance after 30 min treatment with H2O or 1 mM
peptide. Error bars represent the SE of the three repeats. (F) RT-qPCR analysis of PR1 transcript abundance after 24 h treatment with H2O or 1 mM
peptide. Error bars represent the SE of the mean (n = 3). Two repeats were performed with similar results. (D–F) Statistically significant (p,0.01)
differences were indicated by different letters (t-test). (G) Pst DC3118 growth in leaves of WT and rlk7 plants treated with water (mock) or 100 nM
flg22. Error bars represent the SE of the mean (n = 8). Statistically significant (p,0.01) differences were indicated by different letters (ANOVA). Three
repeats were performed with similar results. (H) Fold induction of FLS2 expression by treatment with PIP1 and PEP1. (I) Fold induction of prePIP1 and
RLK7 by PIP1. (J) Fold induction of proPEP1 and PEPR1 by PIP1. (K) Fold induction of proPEP1 and PEPR1 by PEP1. (L) Fold induction of prePIP1 and RLK7
by PEP1. (H–L) A. thaliana seedlings were treated with 1 mM PIP1 or PEP1 for 0.5 hours, and gene expression was measured by RT-qPCR analysis. Error
bars represent the SE of the mean (n = 3). *: significantly different from mock treatment at p,0.01 (t-test). Two repeats were performed with similar
results.
doi:10.1371/journal.ppat.1004331.g010
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mutant retained some sensitivity to PIP1, implying some degree of

redundancy between BAK1 and BKK1. However, both flg22- and

PIP1-induced ROS production and root growth inhibition were

attenuated in the bak1-4 mutant, whereas only ROS production

was affected upon induction with PEP1. This suggests possible

differences in the requirement for BAK1 between flg22, PEP1 and

PIP1 responses.

BIK1, another important regulator of the FLS2 and PEPR1

signaling pathways, is rapidly phosphorylated when flagellin binds

to FLS2 [9]. BIK1 phosphorylation can also be induced with

PEPR1 or PEPR2 in the presence of ET or PEP1 [17]. This is

consistent with the results from our root growth inhibition assay

and previous ET-induced triple response analysis. No direct

protein-protein interaction between RLK7 and BIK1 could be

detected by yeast two-hybrid analysis, and no parallels were found

between PIP1-RLK7 and PEP-PEPR1 in the context of the ET

response. Neither did the rlk7 mutants show reduced sensitivity to

ACC, nor was PIP1-induced root growth inhibition attenuated in

the bik1 mutant. BIK1 is a member of class VII RLCKs, which

have been suggested to integrate immune signaling in A. thaliana
from cell-surface-localized receptors [9,10]. Thus it is possible that

other members of class VII RLCKs mediate RLK7 signaling and

are responsible for the observed differences in signaling outputs

between RLK7 and PEPR1.

ProPEP1 family members lack a classical signal peptide, and

therefore the mechanism underlying PEP release is unclear. Since

expression of proPEP1 is up-regulated by wounding and

treatment with the wound signal MeJA, it was suggested that

release of PEP1 from plant cells may be the result of cell injury

caused by pathogen attack or wounding [3]. Consistent with this,

PEPR signaling was recently shown to operate predominantly at

local pathogen challenged sites, though systemic immunity can be

activated by treatment with PEP1 [50]. In contrast, PIP1 is

secreted into the extracellular spaces through a cell-autonomous

secretory pathway and massive expression of prePIP1 is detected

in vascular tissues, suggesting that PIP1 is likely to act as a mobile

signal involved in systemic immune activation.

PIP1-RLK7 and PEP1-PEPR1 cooperatively amplify FLS2
signaling
Activation of immunity by endogenous signals is a common

strategy exploited by animals and plants to amplify immune

responses after perceiving a limited number of invading pathogens

[51]. In animals, many endogenous peptides such as interleukins

which are generated upon PAMP recognition, were confirmed to

function in inflammation [52]. In plants, PEP1 was suggested to

act as a PTI amplifier because (1) PAMP treatment increases

transcription of proPEP1, (2) PEP1 and PAMPs activate similar

immune responses, and (3) PEP1 receptors are required for full

activation of PTI signaling and resistance against bacterial

infection [16,18,53]. In this study, prePIP1 and RLK7 were

induced by flg22, and flg22-triggered immunity was impaired in

rlk7 mutants. These findings imply that PIP1-RLK7 and PEP1-

PEPR1 have similar functions in FLS2 signal amplification. PIP1

and PEP1, respectively, induce their corresponding precursor and

receptor genes showing that self-amplification mechanisms act in

both signaling pathways. Importantly, PIP1 and PEP1 also induce

the expression of each other’s precursor and receptor genes.

Further, the level of PEP1 responses was decreased in rlk7
mutants. These demonstrate that the two endogenous peptide

signaling pathways are interdependent and cooperate to amplify

the immune response. We propose a working model (Figure 11) in

which FLS2 signaling is initially primed by the perception of flg22,

followed by upregulation of the host peptide elicitors PIP1 and

PEP1 and their respective receptors PEPR1 and RLK7. Once

PIP1 and PEP1 are released and processed in the apoplast, they

initiate the immune response and also increase expression of

prePIP1, RLK7, proPEP1, PEPR1 and FLS2, leading to an

amplification of the immune responses via the combined effect of

FLS2, PEPR1 and RLK7.

Materials and Methods

Plant materials
A. thaliana were grown in potting mix or on 1/2 MS medium

(containing 1/2 MS salts, 1% w/v sucrose and 0.8% w/v agar,

pH 5.7) in a controlled growth chamber providing a 10 h

photoperiod (140 mmolNm22
Ns21 light) at 22uC/20uC day/night

and 60% relative humidity. fls2 [54], rlk7 [55], hae/hsl2 [35],

ein2-1 [17], bak1-4 [7], and bik1 [10] mutants used were

described earlier. Verification of homozygous T-DNA insertion

mutants was carried out by a PCR assay based on locus-specific

primers (Table S3).

Root growth inhibition assay
Arabidopsis seedlings were germinated on 1/2 MS media, and

then transferred to 1/2 MS liquid medium (1/2 MS salts, 1%

sucrose, pH 5.7) adding various concentrations of PIP1 or other

peptides in a 6-well plate. The length of the seedling roots was

measured after 5–7 days.

Constructs
PrePIP1, prePIP2, and RLK7 coding sequences were PCR-

amplified from A. thaliana genomic DNA using locus-specific

primers, and the products were separately inserted into pCAM-
BIA1300-HA vector downstream of the CaMV 35S promoter to

generate pCAMBIA1300-35S::prePIP1-HA, pCAMBIA1300-
35S::prePIP2-HA and pCAMBIA1300-35S::RLK7-HA. An

,2.8 kb fragment upstream of the prePIP1 start codon was

amplified from A. thaliana genomic DNA and inserted into the

pGFPGUSPlus vector [56] to construct prePIP1p::GUS and

prePIP1p::GFP. Truncated prePIP1, prePIP2 and prePIPL5
coding sequences were amplified from A. thaliana genomic DNA

using locus-specific primers and inserted into pGEX-6p-1 to

generate GST-DprePIP1, GST-DprePIP2, GST-DprePIPL5. The
BIK1 coding sequence was amplified from A. thaliana cDNA and

Figure 11. Proposed model of the roles of PIP1-RLK7 and PEP1-
PEPR1 in PTI signal amplification. (A) flg22 perception by FLS2
primes immunity and activates transcription of FLS2, PEPR1, RLK7,
proPEP1 and prePIP1. (B) PEP1 and PIP1 peptides are generated from
their precursor proteins and released into the apoplast to trigger PTI
responses after recognition by the cognate receptors. Moreover, they
act in a positive feedback loop by activating expression of genes
encoding their own precursors and receptors, as well as FLS2. (C)
Finally, the level of immunity is maximized by the combined effect of
FLS2, PEPR1 and RLK7.
doi:10.1371/journal.ppat.1004331.g011
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inserted into pGBKT7 to generate pGADT7-BIK1. The sequenc-
es encoding the kinase domains of PEPR1 (residues 827–1123)

and RLK7 (residues 671–977) were amplified from A. thaliana
cDNA and inserted into pGADT7 to generate pGADT7-
PEPR1KD and pGADT7-RLK7KD. All the sequences primers

are listed in Table S3.

Synthetic peptides
Peptides of purity level 98% were synthesized by Yaguang

Biochemical Company (Shanghai, China). Their sequences are

given in Table S2.

Transient expression in tobacco leaves
Transient expression in tobacco leaves was performed as

described previously [57]. Agrobacterium tumefaciens strain GV3

101 harboring pCAMBIA1300-RLK7-HA, pCAMBIA1300-
GFP, pCAMBIA1300-prePIP1-GFP or pCAMBIA1300-CLV3-
GFP were grown overnight in YEB medium and transferred to 1/

2 MS liquid medium containing 50 mM acetosyringone for 4 h

until an OD600 of 0.4–0.6 had been reached. The culture was then

diluted 1:1 with 10 mM MES (pH 5.6), 10 mM MgCl2, 150 mM

acetosyringone, and pressure-infiltrated into the leaves of 4–5 week

old tobacco plants. Transfected leaves were collected after 48–

72 h.

Proteolytic processing assays
In-vitro cleavage assays were performed as described previously

[58]. In brief, GST-tagged truncated prePIPs (GST-DPIPs) were
expressed in E. coli BL21 (DE3) and purified using glutathione

Sepharose (GE Healthcare). The purified proteins were incubated

with Arabidopsis protein extracts or BSA (control) for 0–2 h at

room temperature. The samples were then subjected to SDS-

PAGE to determine the protein composition. For the in-vivo
cleavage assay, GST-PIP1 (1 mg/mL) or GST (1 mg/mL) was

syringe-injected into A. thaliana leaves and incubated for 2 h, then

extracellular fluids were extracted and analyzed by SDS-PAGE.

GUS staining
GUS staining was performed as described previously [36]. In

brief, plant tissues were immersed in staining buffer (100 mM

sodium phosphate buffer, pH 7.0, 10 mM EDTA, 1 mM potas-

sium ferrocyanide, 1 mM potassium ferricyanide, 1 mM X-Gluc,

and 0.1% Triton X-100) and incubated at 37uC for 2–6 h. Stained

samples were cleared in 70% ethanol and observed by the

Olympus BX53 microscope.

Luciferase reporter assay
Protoplast transfection and subsequent luciferase reporter assay

were performed as described previously [14]. FRK1p-LUC
reporter was co-transfected with prePIP1 constructs and

UBQ10p-GUS (internal control). After 6 hours’ incubation,

luciferase activities were tested with a Luciferase Assay kit and a

GloMax-20/20 luminometer (Promega). For analysis of FRK1p-
LUC induction by exogenous application of peptide elicitors,

protoplasts were incubated overnight after transfection with

FRK1p-LUC reporter, and then were induced with 1 mM peptide

for 4 hours before detection of luciferase activity.

Quantitative RT-PCR analysis
Total RNA was extracted from plant tissues by the TRIzol

reagent (Invitrogen) following the manufacturer’s protocol. A 2 mL

aliquot of the total RNA preparation was subjected to reverse

transcription using a RevertAi First Strand cDNA Synthesis kit

(Fermentas). The resulting cDNA was amplified using the SYBR

Green Mix (Roche) and gene-specific primers (Table S3). AtActin2
was used as the reference sequence.

ROS measurement
A luminol-based assay was used to quantify ROS in treated

leaves [59]. The same amount of 1–2 mm leaf fragments cut from

Arabidopsis leaves were incubated in 100 mL water for 12 h, and

then 100 mM luminol (Sigma), 10 mg/mL horseradish peroxidase

(Sigma) and 1 mM peptide were added rapidly in turn. The

resulting luminescence was measured using a GloMax-20/20

luminometer (Promega) at one minute intervals over 15 min.

Aniline blue staining
Staining of callose deposits was achieved following methods

described previously [36,59]. Adult leaves were infiltrated with

either water or 1 mM peptide for 8 h, and the roots of 10-day old

seedlings were immersed in 1/2MS liquid medium with or without

peptides (1 mM) or chitin (500 mg/L) for 18 h. The materials were

then fixed in 3:1 ethanol:acetic acid for 6 h, changing the fixative

solution every 2 h. The samples were rehydrated in 50% ethanol

for 2 h, and then thoroughly rinsed in water. Finally the samples

were incubated in staining solution (150 mM K2HPO4 (pH 9.5),

0.01% (w/v) aniline blue, Sigma-Aldrich) for 30 min. Callose was

visualized using UV-epifluorescence microscopy. Signal intensities

were estimated using Image J software.

MAPK assay
Ten seedlings were immersed in sterile water overnight.

Peptides were then added to a final concentration of 1 mM for

5–15 minutes induction. After induction, the seedlings were snap-

frozen in liquid nitrogen and ground to a fine powder, from which

total protein was extracted by suspension in 50 mM HEPES

(pH 6.8), 150 mM NaCl, 1% (w/v) SDS, 2 mM DTT, 10 mM

NaF, 10 mM NaVO3, 5 mM EDTA, 16 protease inhibitor

cocktail (Roche). An anti-phospho p44/p42 MAPK antibody (Cell

Signaling Technology) was used to detect active MPK6 and

MPK3 via immunoblotting.

Binding assay
Y-PIP1 peptide was labeled with 125I as described previously

[60]. In brief, 2 nmol Y-PIP1 peptide and 600 mCi Na125I

(PerkinElmer) dissolved in 100 mL sodium phosphate buffer

(10 mM, pH 7.4) were added into a glass vial pre-coated with

1,3,4,6-tetrachloro-3a,6a-diphenylglycouril, and were incubated

for 15 min at root temperature. After passing through a Sephadex

G25 column (PD-10 column, GE Healthcare), ,800 mL 125I-Y-

PIP1 containing 1.76107 counts per minute (cpm) was collected.

Plasma membrane fragments were extracted from 200 mg tobacco

leaves and re-suspended in binding buffer (25 mM MES, pH 6.0,

3 mM MgCl2, 10 mM NaCl, 2 mM dithiothreitol and protease

inhibitor cocktail (Roche)) with a final concentration of 2 mg/mL

total protein. The plasma membrane (100 mL) was incubated with

2 mL 125I-Y-PIP1 (,100 fmol) in the presence or absence of

10 mM unlabelled PIP1 for 15 min at 4uC, then were collected by

a vacuum filtration system through glass fibre filters (Millipore,

2.5-cm diameter). After washed with cold washing buffer (binding

buffer supplemented with 1% BSA, 1% bactotrypton, 1%

bactopepton), the binding was determined by c-counting.

Biotinylated-PIP1 pull-down assay
Plasma membrane proteins were extracted from the Arabidopsis

leaves of rlk7 mutant and rlk7/35S::RLK7-HA with an extraction
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buffer (25 mMMES/KOH (pH 6.0), 3 mMMgCl2, 10 mMNaCl,

0.5% SDS and 16 protein inhibitor cocktail (Roche)), then were

diluted ten folds with a binding buffer (25 mM MES/KOH

(pH 6.0), 3 mM MgCl2, 10 mM NaCl and 16 protein inhibitor

cocktail (Roche)). Biotinylated PIP1 (1 mg) was coupled to 20 mL

streptavidin beads (Pierce) for 1 h at 4uC. After three rinses in

500 mL binding buffer, the beads were incubated with 200 mL of the

prepared plasma membrane proteins in the presence or absence of

1006excess of unlabelled PIP1 or IDA for 2 h at 4uC. After rinsed

three times in 500 mL binding buffer, the beads were boiled for

5 minutes in 50 mL 16 Laemilli buffer. The RLK7-HA was

detected with an anti-HA monoclonal antibody (Qiagen).

Chemical cross-linking
Chemical cross-linking of PIP1-biotin to RLK7 was displayed as

described previously. PIP1-biotin (1 mM) was incubated with the

total protein (50 mg) extracted from rlk7 or 355S::RLK7-HA
plants in the presence or absence of excess (50 mM) unlabeled PIP1

for 30 min at 4uC. After adding 1/10 volume of 25 mM EGS

(Pierce), the mixture was incubated for another 30 minutes at

room temperature before the reaction was terminated by the

addition of 1 mL Tris-HCl buffer (1 M, pH 7.5). Proteins in

samples were separated by SDS-PAGE and detected with anti-

biotin antibody (Cell Signaling Technology).

Yeast two-hybrid assay
Interactions between BIK1 and the kinase domain of PEPR1

(residues 827–1123) or RLK7 (671–977) were tested using the GAL4

yeast two-hybrid system (Clontech). In brief, the pGADT7-
PEPR1KD or pGADT7-RLK7KD plasmid was co-transfected with

pGBKT7-BIK1 into Saccharomyces cerevisiae strain AH109. The

transformed yeast cells were spotted on a synthetic dropout (SD)

medium (Difco Yeast Nitrogen Base) lacking tryptophan, leucine, and

histidine (SD-Y2-L2-H2) but supplementing with 3 mM 3-amino-

1,2,4-triazole (3-AT, Sigma) to detect the His reporter activity.

Transformants were also detected on the basis of lacZ reporter

activity with 50 mg/mL X-gal dissolved in 25 mM phosphate buffer.

Pathogen inoculations and quantification
Pst DC3000 inoculation assay was performed as described

previously [61]. The bacterial suspension (26105 colony-forming

units (cfu)/mL) with or without 1 mM peptide was syringe

infiltrated into leaves of 5-week old A. thaliana plants. Foc 699-

GFP strain was obtained by cotransformation of the F. oxysporum
f. sp. conglutinans strain 699 with the sGFP coding region driven

the Aspergillus nidulans gpdA promoter and the trpC terminator,

and the hygromycin resistance cassette, as described previously

[62,63]. Foc 699-GFP was grown in half strength potato dextrose

broth at 28uC for 2 to 3 days. Ten day old seedlings were exposed

to a 2 mL volume of a microconidia suspension (16106 spores/mL

sterile water) and incubated for 3–24 h at 22uC. To quantify Foc
699-GFP biomass, genomic DNA was extracted from 30 infected

seedlings after rinsing them three times in sterile water, and used

as a template for qPCR with GFP-specific primers (Table S3). The

AtActin2 gene was used as the reference sequence. To monitor

infection, Arabidopsis seedlings were rinsed three times with sterile

water after 6-hour incubation with spore solution, planted into

soil, and survival of the plants was assessed after 21 days.

Accession numbers
Sequence information of genes involved in this article can be

found in the Arabidopsis information resource or the Arabidopsis

unannotated secreted peptide database under the following

accession numbers: At4g28460 (prePIP1), At4g37290 (prePIP2),
At2g23270 (prePIP3), At1g49800 (prePIPL1), At3g06090 (pre-
PIPL2), At4g37295 (prePIPL3), At5g43066 (prePIPL4), ath_-

mu_ch1_43150top (prePIPL5), ath_mu_ch5_43674top (pre-
PIPL6), ath_mu_ch4_17161top (prePIPL7), ath_mu_ch5_436

61top (prePIPL8), At1g09970 (RLK7), At5g46330 (FLS2),
At1g73080 (PEPR1), At1g17750 (PEPR2), At2g31880 (SO-
BIR1), At4g28490 (HAESA), At5g65710 (HSL2), At5g25930

(HSL3), At5g64900 (proPEP1), At4g33430 (BAK1), At2g39660
(BIK1), At5g24110 (WRKY30), At2g38470 (WRKY33),
At4g23810 (WRKY53), At2g19190 (FRK1), At2g14610 (PR1),
At5g44420 (PDF1.2), At1g18570 (MYB51), At5g03280 (EIN2),
At1g68765 (IDA), At5g64667 (IDL2), At1g47485 (CEP1).

Supporting Information

Figure S1 SGPS-motif of prePIP homologs in various
plants. (A) Multiple sequence alignments of the conserved C-

termini in prePIP homologs. (B) A neighbor-joining phylogenetic

tree of the C-terminal sequences in prePIP homologs. GenBank

accession numbers are as follows: ACU15907 (GmPIPL1), NP_0

01238364 (GmPIPL2), XP_006606893 (GmPIPL3), NP_00123

9759 (GmPIPL4), ACG48199 (ZmPIPL1), ACG26477 (ZmPIP

L2), NP_001175941 (OsPIPL1), XP_003632092 (VvPIPL1), X

P_003589124 (MtPIPL1), XP_003606833 (MtPIPL2), XP_002

534518 (RcPIPL1), XP_002322914 (PtPIPL1), XP_002462659

(SbPIPL1).

(TIF)

Figure S2 A. thaliana SGP-rich peptide sequences. (A)

Multiple sequence alignment. (B) A neighbor-joining phylogenetic

tree.

(TIF)

Figure S3 Expression and purification of GST and GST-
DprePIPs (GST-DPs) from E. coli strain BL21 (DE3).
Proteins were separated by SDS-PAGE and detected using

Coomassie Brilliant Blue staining. Arrows mark the expressed

GST and GST-DPs.

(TIF)

Figure S4 GST-DP1 cleavage in vivo. GST-DP1 or GST
(control) was injected into A. thaliana leaves. Extracellular
fruit was extracted for SDS-PAGE detection. Dots mark intact

GST-DP1, triangles processed GST-DP1. Two repeats were

performed with similar results.

(TIF)

Figure S5 The floral abscission region of A. thaliana

over-expressing prePIP1, prePIP2, IDA and At5g05300
(bar=1 mm).

(TIF)

Figure S6 Transcript abundance of FRK1, WRKY33,
WRKY53, and PR1 upon induction with flg22, PEP1,
PIP1 or PIP2. Ten day old seedlings were incubated with 1 mM

peptide for 0.5, 1 or 3 h before harvesting the RNA. At least two

repeats were performed with similar results.

(TIF)

Figure S7 Peptide-induced immune activation in roots.
(A) Peptide-induced MYB51p::GUS activity in the root. Trans-

genic seedlings carrying MYB51p::GUS incubated with 1 mM

peptide for 2 h before GUS staining. (B) Peptide-induced callose

deposition in roots. Callose deposits were stained after a 16 h

induction with 1 mM peptide. At least two repeats were performed

with similar results.

(TIF)
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Figure S8 Fluorescence microscopy image of A. thali-

ana roots infected with Foc 699-GFP. (A) The primary root

after co-cultivation with Foc 699-GFP for 24 h. (B) The elongation

zone of primary root after co-cultivation with Foc 699-GFP. At
least two repeats were performed with similar results.

(TIF)

Figure S9 Root growth inhibition by PIP1 and PIP2. (A)

T-DNA insertion sites in the rlk7 and hsl3 mutants with exons

shown as black boxes (top and middle). Primers indicated by LP

and RP were used to identify the RLK7 and HSL3 transcripts.

RT-PCR analysis of RLK7, HSL3 and Actin2 (control) transcripts

in Col-0 and T-DNA insertion mutants of RLK7 and HSL3
(bottom). (B) Morphology and (C) root length of eight day old A.
thaliana WT and rlk7-2 mutant seedlings in the presence of 1 mM

PIP1. (D) Morphology and (E) root length of eight day old A.
thaliana WT and rlk7-3 mutant seedlings in the presence of 1 mM

PIP2. (C) and (E) Means marked by ‘‘a’’ differed significantly (p,

0.01) from those marked ‘‘b’’ (t-test). At least two repeats were

performed with similar results.

(TIF)

Figure S10 PIP1 and PIP2-induced responses in RLK7-

dependent. PIP1- and PIP2-induced transcription of (A)

WRKY33 and WRKY53, and (B) FRK1 in WT, rlk7-3 and

hsl3-1 mutants. (C) flg22-induced expression of FRK1 in WT, fls2
and rlk7-3 mutants. Ten day old seedlings were incubated with

1 mM peptide for 0.5 (WRKY33 and WRKY53) or 3 h (FRK1)
before harvesting the RNA. At least two repeats were performed

with similar results.

(TIF)

Figure S11 Activity detection of biotinylated PIP1. (A)

Root growth inhibition induced by biotin-PIP1 and PIP1-biotin. (B)

WRKY33 and WRKY53 expression induced by PIP1, biotin-PIP1

and PIP1-biotin. Statistically significant (p,0.01) differences were

indicated by different letters (t-test). Two repeats were performed

with similar results.

(TIF)

Figure S12 PEP1 activities in rlk7. (A) Root growth

inhibition induced by PIP1 and PEP1 in WT and rlk7-2. (B)

WRKY33 expression induced by PIP1 and PEP1 in WT and rlk7-
2. Statistically significant (p,0.01) differences were indicated by

different letters (t-test). Two repeats were performed with similar

results.

(TIF)

Table S1 Secreted peptide precursor genes in A.

thaliana up-regulated ($2 fold) by PAMP treatments.
aThe data were obtained from a microarray analysis (microarray

accession number E-MEXP-547). belf18 represents the active

epitope of EF-Tu form Agrobacterium tumefaciens.
(DOC)

Table S2 Peptide sequences used in this study. P(OH)

and Hyp represent Hydroxyproline.

(DOC)

Table S3 Oligonucleotide sequences used in this study.
(DOC)
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