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The secretion profile of mesenchymal stem cells and potential
applications in treating human diseases
Yuyi Han1,2,3, Jianxin Yang2, Jiankai Fang2, Yipeng Zhou2, Eleonora Candi3,4, Jihong Wang1, Dong Hua5, Changshun Shao 2✉ and
Yufang Shi 2✉

Mesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies
have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of
MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions.
Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional
molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling,
and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of
the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
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THE IDENTIFICATION OF MSCS
In 1970, Alexander J. Friedenstein and colleagues described an
adherent and non-hematopoietic cell type present in the
mouse bone marrow (BM) that could form fibroblast-like
colonies in vitro, unlocking the door to the world of
mesenchymal stem cells (MSCs).1 While MSCs, which are later
found to reside in various organs, can generally self-renew and
exhibit stromal cell-like characteristics in vitro, the lineages that
contribute to MSCs in each organ in vivo and their spatiotem-
poral changes during development have yet to be well
explored. An early study of the hierarchy of BM-derived
mesenchymal progenitors showed that Sca1+ progenitors can
differentiate into CD146+ and CD166+ progenitors sequen-
tially.2 While all three types of progenitors support bone
formation, only Sca1+ progenitors can home back to the BM
through a chemotactic axis post-intravenous infusion. Another
report showed that the niches formed by interleukin (IL)-7+

mesenchymal progenitors could functionally regulate hemato-
poietic stem cell maintenance and multilineage differentiation.3

These MSCs in BM highly express the intermediate filament
protein nestin and are located around hematopoietic stem cells
(HSCs).4 The nestin+ MSCs are proven to regulate the homing of
transplanted HSCs to BM,4 as well as guiding immune cells to
egress to circulation.5 In other organs, most of the mesench-
ymal progenitors are closely associated with capillaries and
blood vessels.6–8 These perivascular cells display phenotypes
similar to those of MSCs derived from BM and dental pulps.9 A
population of stromal cells that resides among choroidal
vascular endothelial cells was also recognized to display the
MSC phenotype and possess the capacity for mesenchymal
differentiation.10 Thus, blood vessel walls in diverse human

tissues (such as BM, umbilical cord (UC), adipose, muscle, and
placenta) are considered as the primary dwellings of progenitor
cells that give rise to MSCs.
The first batch of MSCs during embryonic development could

be traced to Sox1+ neuroepithelium partly through a neural crest
intermediate stage,11 arguing for their ectodermal origin. The MSC
lineages during organ development are being actively investi-
gated and, owing to the widespread use of single-cell sequencing,
imaging analysis, and tracing technologies, functionally distinct
new subsets of MSCs are emerging rapidly.

MSC ISOLATION AND CHARACTERIZATION
Well-characterized MSCs can now be isolated and propagated
in vitro from multiple organs (such as BM, dental pulp, thymus,
muscle, pancreas, and lung).12 According to the International
Society for Cellular Therapy (ISCT)-published minimal guidelines to
define human MSC identity, the isolated cells are generally
positive for CD105, CD73, and CD90, and negative for CD45, CD34,
CD14, or CD11b, CD79α, or CD19 and MHC class II.13 Additionally,
these cells possess the potential of specific-lineage differentiation
toward osteoblasts, adipocytes, or chondrocytes, as well as the
capacity of plastic adherence when cultured in vitro.

Tissue specificity
MSCs isolated from different sources can vary in their gene
expression patterns and differentiation potentials.14 There are
several non-classical markers (such as CD36, CD163, CD271,
CD200, CD273, CD274, CD146, CD248, and CD140b) that
potentially distinguish MSCs of different sources.15 For instance,
CD271 is a surface marker for the majority of BM-derived MSCs
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(MSC(BM)s),16,17 while this marker is inadequate for the isolation of
MSCs from other sources(such as UC, dental pulp, or placenta).18

Lately, a population of highly proliferative multipotent progenitors
marked by dipeptidyl peptidase-4 (DPP4)/CD26 has been dis-
covered during the development of subcutaneous adipose tissue
in mice through single-cell RNA sequencing analysis. These
progenitor cells could produce two subpopulations, committed
preadipocytes marked by intercellular adhesion molecule-1 (ICAM-
1) and CD142.19 More recently, the MSCs/fibroblast atlases were
constructed by integrating available single-cell transcriptomic
data.20 Based on the transcription profiles across tissues, two
universal subtypes were identified as the primitive lineages to
generate more specialized descendants in health and disease.
Since freshly isolated MSCs comprise multiple MSC subgroups

or progenitors varying in proportions depending on the source of
origin, MSCs with different tissue origins may meet specific needs.
For example, MSC(AD)s are more efficient in supporting hemato-
poiesis and angiogenesis than MSC(BM)s.21 Human UC-derived
MSCs (MSC(UC)s) exhibit a relatively more stable capacity of
proliferation and trilineage differentiation than MSC(BM)s.22

Compared to MSCs from BM, adipose tissue, or placenta, MSC
(UC)s possess the strongest potential to suppress T lymphocyte
proliferation by inducing cell-cycle arrest (G0/G1 phase) and
apoptosis, along with altered expression of apoptosis-related
genes.23

Cell plasticity
The phenotype and biological features of MSCs could be
dynamically altered by culture conditions, leading to distinct
capacities of differentiation and proliferation during their expan-
sion in vitro. Freshly isolated MSC(BM)s from humans and mice
lack the expression of CD44 but display poly directional
differentiation potential.24 During in vitro expansion, freshly
isolated MSC(BM)s acquire CD44 expression without compromis-
ing their proliferation efficiency or differential potential, accom-
panied by dramatic upregulation of hyaluronan synthases (HAS1
and HAS2), growth factors, and matrix proteins.24 On the other
hand, young MSCs undergo cellular senescence in response to
transforming growth factor-β (TGFβ2), while anti-TGFβ antibodies
could reverse the aging phenotypes of old MSCs.25 In addition,
peritoneal dialysis effluent-derived MSCs (MSC(P)s) displayed a
homogeneous pattern of classical MSC markers with multipotency
in vitro, which was decided by specific culture medium.26 MSC
subsets with distinct phenotypic and functional properties could
be furtherly identified by using markers including CD56 and MSC
antigen-1 (MSCA-1).27 Nestin marks human MSC(BM)s that are
more readily differentiated to insulin-producing cells (IPCs) than
the nestin− cells.28 They highly express maintenance genes and
favor BM homing of HSCs.4 CD271+ adult MSCs show higher
clonogenic and osteogenic capacities than CD271− ones.29 The
Thy-1(CD90)−/− MSCs are unable to form healthy bone tissues as
the wild-type counterparts do and are more likely to differentiate
into adipocytes.30 On the contrary, the inflammatory cytokine
lipocalin-2 is shown to augment the transcription of osteogenic
genes in MSCs, exacerbating the cascade of dysregulated cellular
events in myelofibrosis.31 Revealing this high plasticity of MSCs
has opened new perspectives to explain the disrupted balance of
adipogenesis and osteogenesis in developmental and metabolic
diseases.

Therapeutic applications of MSCs
Researchers were firstly attracted by the self-renewal capacity of
MSCs and their differentiation potential towards multiple lineages,
afterwards the ability of MSCs to regulate immune responses was
discovered. These biological properties of MSCs promoted the
development of therapeutics for tissue regeneration. MSC(BM)s, as
one of the main supporters for hematopoiesis, could restore
defective BM microenvironment for myelopoiesis. They are also

involved in lymphocyte maturation32,33 and integrate with the
inordinate immune system to modulate tumor progression, such
as reprogramming host macrophages to retard leukemia devel-
opment.34 Both allogenic or autologous MSCs are able to traverse
the circulation through the chemotactic network and migrate to
specific destinies to support the growth or function of resident
cells in the lesion sites. This mobility feature and the low
immunogenicity endow MSCs with biological acceptability
in vivo. Strikingly, MSC(BM)s can greatly inhibit the immune
responses mediated by active lymphocytes in a dose-dependent
manner.35 This regulatory potential of MSCs has attracted much
attention and has been shown to be surprisingly effective in
controlling inflammation and balancing immune response.
Allogenic MSCs were shown to promote orthopaedical repair,36

skin wound healing,37 and nerve regeneration/reconnection.38

The clinical superiority of MSCs in treating inflammatory and
degenerative diseases has been intensively reported. As of
November 25, 2021, a total of 965 mesenchymal stromal/stem
cell-based, clinical trials had been registered in the US National
Institutes of Health (https://clinicaltrials.gov/), including ongoing,
withdrawal, complete and unknown status studies (Table 1).
Apparently, the MSC-based clinical trials are mainly applied to
inflammation, wound healing, infection, organ dysfunction, as well
as degenerative diseases in different organs and tissues (Fig. 1).
However, several pitfalls of engrafted MSCs are encountered
during practical use, such as their limited vitality,39 uncertain
responsiveness, as well as the difficulty in monitoring their
differentiation in situ. The massive expansion of MSCs in vitro
also incur high cost, which cannot be afforded by many financially
strapped patients, especially when taking the transient curative
effect into consideration. A shift in focus from MSCs allografting to
the effector molecules that mediate the cell-specific effects should
bypass the disadvantages resulting from immune compatibility,
tumorigenicity, and the unpredictable pathogen carried by living
cells, in addition to the pitfalls listed above.40

THE SECRETORY FUNCTIONS OF MSCS
MSCs engraftment is usually limited by the rigorous tissue
structure around the injured site, where allografted cells undergo
cell death or be engulfed by resident cells. How MSCs exert their
plerosis and immunoregulatory effects have been intensively
studied. In the skin incison, the supernatant of cultured MSCs not
only enhanced the function of keratinocytes and endothelial cells,
but also attracted macrophages into wound healing process.41

Considering that the paracrine function of MSCs plays a major role
in tissue repair, there is a renewed interest in the components and
molecular basis of MSCs secretion involved in the interaction
between allogeneic cells and the tissue microenvironment.

Secretion is central to MSC-based therapy
Our early studies demonstrated an indispensable role of soluble
factors in the immunosuppressive functions of MSCs.42 Of note,
intrathecal injection of MSCs showed high efficacy than
intravenous administration in treating multiple sclerosis,
indicating that cells delivered in closer proximity to the
damaged areas could bring a higher proportion of trophic
factors and immunomodulatory molecules to the lesion sites in
central nervous system.43 Numerous studies have indicated the
paracrine actions of MSCs in treating diseases (Table 2). MSCs-
generated signaling molecules can be isolated and enriched as
cell-free products in clinical translation. Apart from the essential
role of bioactive fractions released by MSCs in modulating the
intrinsic tissue repair process, MSCs also express a wide array of
chemokines and receptors to form a subtle chemotactic
network in vivo for guiding circulating cells to the injury sites,
or mobilizing immune cells in inflammatory tissues.44 Impor-
tantly, the tissue remodeling process mediated by MSCs cannot
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be attributed to a single effector, but the combined regulation
of various factors to maintain homeostasis. A deeper under-
standing of the secretion function of MSCs in both physiological
and pathological conditions is necessary for designing more
effective and safe treatment strategies.

Variability of the secretion profiles
Orchestration by inflammatory signals. There are various types of
inflammatory factors in the process of tissue damage, repair, and
remodeling along with disease progression, these factors are
indispensable for boosting the reaction of MSCs. One of the innate

Table 1. Status of MSC-based clinical trials for various diseases registered at NIH.gov

Open studies Closed studies Unknown status

Diseases Recruiting Enrolling by
invitation

Not yet
recruiting

Active, not
recruiting

Completed Suspended Terminated Withdrawn

Hematological 4 0 0 0 8 0 2 2 17

Cardiovascular 9 1 7 5 19 2 5 3 10

Renal 6 0 3 3 6 0 2 1 11

Hepatic 7 0 3 1 10 1 1 0 34

Respiratory 39 1 19 13 19 1 3 2 15

Cutaneous 6 2 5 3 9 1 1 0 10

Neural 31 5 7 15 66 6 7 8 34

Skeletal 30 1 10 3 58 3 4 8 34

Muscular 4 0 1 2 4 0 1 1 5

Diabetes 14 1 1 4 9 0 1 1 25

GvHD 6 0 2 1 11 0 1 2 16

Crohn’s 8 0 1 0 8 0 0 1 6

SLE 2 0 3 0 3 0 0 0 6

Other 29 4 9 10 53 1 3 3 40

Total 195 15 71 60 283 15 31 32 263

GvHD graft versus host disease, SLE systemic lupus erythematosus.

Fig. 1 MSC-based clinical trials involve a variety of diseases in different organs and tissues. MSC-based clinical trials are mainly applied to the
diseases associated with inflammation, wound healing, infection, as well as degeneration in diverse organs and tissues. The figure shows the
types of diseases that have completed clinical trials (reproductive diseases and aging are not listed), and the most widely applied diseases
involve the bone and nervous system. MSCs possess a strong capacity in balancing immune responses, especially in autoimmune disorders,
such as GvHD and Crohn’s disease. As a lot of refractory diseases are often combined with poor repairing of damaged tissues and dysfunction
of diseased organs, such as bones nonunion and multiple sclerosis, the clinicians also favor the multi-directional differentiation potential and
pleiotropic effects of MSCs, to promote wound healing and functional recovery. In addition, researchers have been gradually investigating the
therapeutic potential of MSC-based therapy in some congenital diseases. (Created with BioRender.com)

The secretion profile of mesenchymal stem cells and potential. . .
Han et al.

3

Signal Transduction and Targeted Therapy            (2022) 7:92 



responses to acute injury is the formation of a relatively hypoxic
microenvironment in situ, which is resulted from the increase in
oxygen demand of infiltrated cells and the high metabolic rate,
coupled with the vasoconstriction caused by inflammatory
stimuli.45 Hypoxia rapidly upregulates the level of ICAM-1 in
inflamed sites (such as the endothelium) via hypoxia-inducible
factor 1α(HIF1α)46 and ICAM-1 could remarkably promote MSC
migration to inflamed tissues.47 Also, the paracrine property of
MSCs to release chemotactic and angiogenic factors is signifi-
cantly amplified under hypoxic condition.48

Given that the MSCs stimulated by interferon-γ (IFNγ) and
tumor necrosis factor-α (TNFα) or IL-1 exhibited greater immuno-
suppressive capacity by upregulating the expression of ICAM-1
and vascular cell adhesion molecule-1(VCAM-1) both in vitro and
in vivo,49 the inflammatory environment is pivotal in shaping the

regulatory role of MSCs. During inflammation, the M1 macro-
phages or T helper cell type 1 (Th1) lymphocytes secrete high
levels of proinflammatory cytokines, which confer MSCs dramatic
immunomodulatory ability.50 We found that inflammation primed-
MSCs secreted a series of chemokines to attract immune cells (Fig. 2),
and produced inducible nitric oxide synthase (iNOS) in rodents or
indoelmine-2–3-dixoygenase (IDO) in other mammalian species to
suppress T cell responsiveness.51,52 Regarding proliferation, the
activated lymphocytes and MSCs are mutually inhibitory in co-
culture.42 Although the differentiation capacities and immune
regulatory functions of individual MSC clones are heterogeneous,
priming MSCs with pro-inflammatory agents uniformly amplified
their inhibitory effects on T cell response and eliminated the
difference in the suppressive extent among different MSC
clones.53 The inflammatory signals polarize MSCs towards an

Table 2. Outcomes of MSC treatments through paracrine mechanisms

Organ injury and diseases

Tissue Target cells/tissues Outcome

Hair Dermal papilla cells Promote hair growth and elongation of hair shafts251

Skin Cutaneous tissue Ameliorate Psoriasis vulgaris252

Dermal fibroblast, keratinocyte Accelerate skin wound closure and reduce inflammation253,254

Nose Immune cells Reduce allergic rhinitis255

Eye Limbal myofibroblasts, neutrophils Anti‐inflammation and reduce cornea fibrosis256

Retinal endothelial cell, microglia Anti-inflammation and modulate neurovascular in retina257

Immune cells, vascular endothelial cells Alleviate allergic conjunctivitis258

Heart Cardiac tissue Improved arrhythmias and reduced cardiac fibrosis259

Cardiomyocytes Reduce myocardial ischemic damage260

Cardiac fibroblasts Promote cell survival and reduce collagen deposition261

Intestines Immune cells Reduce inflammation in colitis262

Liver Hepatic stellate cell Reduce liver fibrosis131

Hepatocytes Promote cell survival and hepatic regeneration263,264

Lung Pulmonary tissue Alleviate bronchopulmonary dysplasia265

Bacteria Reduce pneumonia266

Lung fibroblasts Promote cell survival and restore cell function267

Epithelial cells, fibroblasts Reduce pulmonary fibrosis132

Epithelial cells Stimulate functional and structural maturation of the fetal lung268

Kidney Renal tubular epithelial cells, immune cells Reduce inflammation and attenuate renal fibrosis269–271

Immune cells Reduce inflammation and promote renal injury repair272

Nerve Nerve fibers Reduce neuroinflammation and ameliorate degenerative changes273

Neurons and Schwann cell Reduce neuroinflammation and promote cell survival274

Neural stem cells, neurite Promote neuronal differentiation and neurite outgrowth275

Neural cells and myelin Modulate immune response and myelin repair133

Bone Skeletal tissue Facilitate bone repair276,277

Joint, cartilage, synovium Reduce inflammation278,279

Chondrocyte, cartilage matrix Preserve bone microarchitecture and promote cell survival280

Muscle Muscular tissue Promote skeletal muscle regeneration281

Muscle cells Prevent muscle atrophy282

Reproduction Testicular tissue Promote cell survival and protect spermatogenesis283

Ovarian tissue Reduce ovarian injury and improve ovarian function284

Systemic disorders

Diabetes Pancreatic islets, immune cells Reduce inflammation and preserve pancreatic function in type I diabetes285

Hepatocytes, immune cells Promote cell survival and reverse insulin resistance in type 2 diabetes286

Obesity Adipose tissue Increase adiponectin secretion and multimerization287

Atherosclerosis Vascular, immune cells Reduce macrophage accumulation and regulate M2 polarization288

GvHD Immune cells Suppress immune response289

Sjögren’s syndrome Immune cells Enhanced the suppressive function of myeloid-derived suppressor cells290
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anti-inflammatory and pro-trophic phenotype for tissue recov-
ery.54 In turn, the factors released from MSCs promote the
remodeling of damaged tissue microenvironment.52

Hyper-inflammation endows MSCs with unique regulatory
functions, while low doses of inflammatory cytokines could hardly
elicit such a response or even cause an opposite effect. High levels
of cytokines stimulate MSCs to inhibit immune responses, whereas
MSCs activated by the weak stimulus are barely immunosuppres-
sive but still can release chemokines for attracting immune cells.55

The MHC class II expression in MSCs requires stimulation by a low
dose of IFNγ, which endows MSCs with antigen-presentation
effect to enhance T cell-mediated immune response.56,57 When
the IFNγ levels increase to a level higher than 25 pg/ml, MSCs
become immune-suppressive with diminished antigen-
presentation cell (APC) function.56 Signal transducer and activator
of transcription (STAT) 1 and STAT3 are both activated by IFNγ at
early stages. Inhibition of mTOR further promotes pSTAT1 nuclear
translocation and strengthens the ability of MSCs to inhibit T cell
vitality. However, sustained exposure to IFNγ led to inhibition of
STAT3 activity and impaired the capacities of proliferation and
differentiation of MSCs.58

Tumor-associated MSCs. MSCs can sense distinct signals from
surrounding tissues to adapt to different pathological condi-
tions.59 In comparison with naïve MSCs, tumor resident MSCs
produce more chemokines that recruit monocytes/macro-
phages to the tumor tissue.60 The tumor microenvironment
triggers the transformation of MSCs into cancer-associated-
MSCs (MSC(CA)s), which in turn polarize monocytes to a pro-
tumoral phenotype.61 Tumor cells, such as those of multiple
myeloma, can deliver miR-146a-containing exosomes into
MSCs. This microRNA has been shown to elevate the secretion
of several cytokines and chemokines in MSCs to support tumor
metastasis.62 The acute myeloid leukemia (AML) cells highly
expressed macrophage migration inhibitory factor (MIF) to
activate its receptor CD74 on MSC(BM)s and thereby promoted
MSC(BM)s to secrete IL-8 to support tumor cells survival.63 MSC
(BM)s can also express periostin to increase the C-C motif

chemokine ligand (CCL)2 expression in acute lymphoblastic
leukemia (ALL) cells, which conversely upregulates periostin
expression in MSC(BM)s and contribute to leukemia progres-
sion.64 Thus, there is a crosstalk between MSCs and the
surrounding factors in the tumor microenvironment.
Despite that MSCs are reported to promote survival of cancer

cells,65–67 discerning the specific role of MSCs in tumorigenesis
is critically needed for targeted cancer therapy. MSC(CA)s
support the growth and invasion potential of cancer cells
through secreting cytokine GM-CSF, providing a novel cytokine
pathway for therapeutic intervention.68 During traditional ROS-
inducing chemotherapies for ALL, MSC(BM)s from patients
could be activated by cytarabine and rescue the stressed cancer
cells through mitochondrial transfer. Thus, steroids and micro-
tubule inhibitors can be exploited to improve the therapeutic
strategies for ALL, by preventing MSC activation and disrupting
microtube formation respectively.69 In another study, promye-
locytic leukemia gene expression in MSCs was found to play an
essential role in generating pro-inflammatory cytokines and
soluble factors, which are crucial to the persistence of leukemic
cells in patients with chemotherapy resistance.70 C-X-C motif
chemokine ligand (CXCL)12-expressing MSC(BM)s are also
important for retaining quiescence leukemic stem cells (LSCs),
while MSC-specific deletion of CXCL12 makes LSCs become
more sensitive to tyrosine kinase inhibitors, although at the risk
of leukemic cell expansion.71 On the other hand, survival of
leukemia-bearing mice could be prolonged by intra-BM
transfusion of MSC(BM)s from healthy mice. The healthy MSC
(BM)s functionally recovered the host MSCs and reprogrammed
the host macrophages in BM to execute the tissue repair
function.34 These investigations strongly suggest that targeting
MSCs in tumors may overcome major obstacles of drug
resistance and disease recurrence.

Context-dependent efficacy of MSC therapies
The recognition of the paracrine mode of MSCs opens a new
venue for understanding the cellular mechanisms of MSC
therapies for diverse diseases. It was reported that toll-like

Fig. 2 Supernatant of anti-CD3-activated splenocytes increased the gene expression of chemotactic factors in MSCs. a Fold increase of gene
expression in the MSCs treated with supernatant from anti-CD3-activated splenocytes, relative to the ones treated by supernatant from naive
splenocytes. b Heatmap for log value of chemotactic genes expression in MSCs. (Modified from Ren et al., Cell Stem Cell, 2008)
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receptor 4 (TLR-4) activated MSCs increased VCAM-1 and ICAM-1
dependent binding of leukocytes, whereas TLR3 stimulated MSCs
exhibit enhanced affinity to leukocytes through hyaluronic acid
(HA).72 Therefore, specific stimuli are important in provoking the
immunomodulatory capacities of MSCs during MSCs-based
therapy. As the inflammatory signals always fluctuate with the
progression of diseases, various immunosuppressive signals in
the tissue microenvironment, including TGFβ and IL-10, as well as
the immunosuppressant such as cyclosporin A, have been proven
to abrogate MSCs-mediated immunosuppression and to sustain
inflammation instead.59 Injection of MSC(AD)s at the peak of
experimental autoimmune encephalomyelitis (EAE) produced
more satisfactory effects than those injected during the regression
phase.73 Moreover, a clinical trial of autologous MSC transplanta-
tion yielded improved clinical scores in multiple sclerosis patients
with active disease progression.43 The use of steroids may
complicate the therapeutic effect of MSCs. Steroids disrupt
STAT1-mediated expression of IDO and iNOS and therefore may
cause a dose-dependent reversion of MSCs mediated-T cell
suppression without affecting the chemokines induction.74

Additionally, the secretion spectrum of MSCs is not only
influenced by diverse exogenous stimuli, but also by the status
of MSCs themselves. MSC(AD)s have a higher immunomodulatory
capacity than MSC(BM)s at equal cell numbers, at least partly
because of higher expressions of TGFβ than MSC(BM)s with their
vigorous metabolic activity.75 The mitochondria of MSC(AD)s from
atherosclerotic patients possess a higher level of reactive oxygen
species and altered secretion profile, leading to an impaired
immunosuppressive capacity.76 In the organoid model of alveolo-
spheres, aged lung MSCs have higher levels of NADPH oxidase 4
(NOX4) to produce oxidants and acquire senescence-associated
secretory phenotype, so that they lose the normal 3D structure
with type 2 alveolar epithelial cells.77 The senescent MSCs
appeared to be less potent in tissue protection than the young
ones, due to insufficient production of growth factors and
chemokines.78 Therefore, senescent MSCs deploy a more blunted
secreting response to the activated immune cells compared to
young MSCs, but IFNγ could partly restore the immunosuppressive
deficiency of senescent ones.79

Collectively, these discoveries suggest that MSCs are highly
plastic in their secretion spectrum. The context of pathological
status in vivo and MSCs-produced mediators vary dependently
and thus result in heterogeneous immunoregulatory functions,
which could partly explain why clinical trials of MSC applications
have produced ambiguous outcomes.80 Thus, it is essential to
tailor MSCs secretion to meet the context-specific needs.

MAJOR FACTORS RELEASED BY MSCS
The secretory profiles of MSCs encompass a variety of biologically
active ingredients. A large portion of bioactive factors is packaged
by vesicles for external transmission. Most molecules are
discharged outside the cell through the classical exocytosis fusion
mechanism, while the other transportation involves direct
membrane translocation of proteins.40 In fact, there are few
reports about the mechanisms of intracellular molecule assembly
and transmembrane transport process in MSCs.

Extracellular vehicles
Generation and actions. One of the most important mechanisms
for MSCs to communicate with other cells is through extracellular
vesicles (EVs). Exosomes are the smallest subtype of EVs that have
been intensively studied. Exosomes generally originate from
endosomes, as their membranes are enriched in lipids rafts, which
are involved in the fusion and release cascades between
intraluminal vesicles (ILV) and multivesicular bodies (MVB).81 The
fusion of MVB with the plasma membrane leads to the release of
exosomes. Exosomes may subsequently be taken up by other cells

via membrane fusion, endocytosis or cell-type-specific phagocy-
tosis.82 Microvesicles (MVs) are slightly larger than exosomes and
are formed from plasma membrane budding and fission. TNFα
upregulates Fas and Fas-associated phosphate-1(Fap-1) expres-
sion via the NF-κB pathway and facilitates the Fas/Fap-1/Caveolin-
1 complex transfer to the cell membrane of MSCs derived from
the gingiva, promoting membrane fusion to release small EVs in a
soluble N-ethylmaleimide-sensitive factor (NSF) attachment pro-
tein receptor (SNARE)-dependent manner.83

The nanoscale exosomes can easily shuttle through tissues and
biological barriers to transfer microRNAs, lipids, and proteins, thus
they have been adapted as therapeutic agents.84 For example,
exosomal miR-125b-5p was shown to mediate the therapeutic
effects of MSCs in myocardial infarction and ischemic acute kidney
injury, it directly downregulated p53 and prevent cell apoptosis
through reducing autophagic flux or cell cycle arrest.85–87 In
practice, the immunoregulatory functions of MSCs partially rely on
exosomes, which mediate the MSC-immune cell crosstalk in some
pathological conditions. The exosomes from MSC(AD)s inhibit T
cell proliferation, differentiation, and activation as well.88 MSC-
derived exosomes were shown to ameliorate the pathological
changes of experimental autoimmune uveoretinitis by preventing
the accumulation of inflammatory cells (CD4+T cells, neutrophils,
NK cells, and macrophages) around the eyes and reducing the
percentage of CD4+IFN-γ+ and CD4+IL-17+ cells in the retina,
without inhibiting proliferation of IRBP-specific T cells.89 The
mitochondria of donor MSCs, carried by EVs, can be transferred to
neighboring macrophages to enhance oxidative phosphorylation,
consequently achieving an anti-inflammatory and highly phago-
cytic macrophage phenotype.90 MSC(AD)s transferred the exo-
somes loaded with active STAT3 into macrophages and polarized
them towards the anti-inflammatory M2 phenotype through the
transactivation of arginase-1. These M2 macrophages reversely
promoted MSC(AD) proliferation and lactate production, thus
facilitating metabolic activity and resistance to obesity progres-
sion.91 Exosomal miR-182 delivery from MSCs to macrophages
directly downregulates TLR-4 to confer M2 phenotype, contribut-
ing to the therapeutic effects of exosomes on myocardial
ischemia/reperfusion injury.92 Moreover, MSC-derived MVs also
enhanced monocyte phagocytosis of bacteria in severe pneumo-
nia and ameliorated inflammation in injured alveolar epithelium.93

Notably, EVs can attach to the extracellular matrix (ECM), and the
soluble factors released from EVs can also attach to ECM or
directly act on adjacent target cells. Intravitreal injection of MSC-
derived EVs significantly enhanced functional recovery, and
decreased neuroinflammation and apoptosis in retinal ischemia.94

The MSC-EVs could bind to vitreous humor components and
persist in the vitreous humor for a long time to provide
sustainable protection.94 The therapeutic efficacy of MSC-derived
exosomes in retinal degeneration models was long-lasting, as the
protective effects on photoreceptors and retina could be detected
even months after a single injection.95

EV-based therapeutics. EVs have emerged as a rising therapeutic
paradigm for cell-free MSC-based therapies. Clinical study has shown
that the use of MSC-EVs led to significant improvement in GvHD
symptoms, remarkably reducing the dosage of steroids.96 MSC-EVs
induced polarization of M2 macrophages to dampen inflammatory
response in damaged tissue sites, thereby promoting tissue
remodeling in diabetic wounds.97 The MSC-EVs were also reported
to ameliorate lung injury90 and decelerate renal fibrosis via
modulating the phenotype and function of infiltrated macro-
phages.98 MSC-EVs act as efficiently as MSCs in treating various
degenerative diseases and immune dysfunctions, while EVs bypass a
series of drawbacks of direct cell infusion. The therapeutic efficacy of
human MSCs can be reproduced by the administration of their
autologous exosomes.99 Moreover, genetic engineering modified
MSC-derived exosomes can act as ‘Trojan horses’ to target the tumor
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microenvironment and strengthen tumor immunotherapy.100 Such
exosomes are constructed to carry galectin-9 siRNA and oxaliplatin
pro-drug. More importantly, in sharp contrast to native MSCs, their
EVs do not cause undesired immune responses due to fewer
stimulatory HLA-complex molecules and surface co-stimulators.101,102

In COVID-19 treatment, MSCs administration may potentially cause
coagulopathy, which synergizes with COVID-19 pneumonia and
deteriorates the patients’ condition. In comparison, low immuno-
genic exosome delivery can avoid this side effect.103

However, how to make EV-based therapies more practical and
effective in disease treatment is an urgent issue in the clinical
application of MSCs. EVs from different origins of MSCs may have
conflicting effects, as the exosomes released by MSCs of
Langerhans islets in non-obese diabetic (NOD) mice have been
shown to be highly immunostimulatory and able to trigger
autoimmune response.104 Different isolation methods determine
the yield and purity of exosomes.105 Distinct culture conditions,
such as oxygen concentration and culture matrix, also influence
the functional properties of EVs. Exosomes derived from MSCs
preconditioned with hypoxia conditions possess greater ther-
apeutic effects on bone fracture healing. In this scenario, the
activation of HIF-1α increased exosomal miR-126 abundance,
consequently promoting the proliferation, angiogenesis, and
migration of endothelial cells through the SPRED1/Ras/Erk
signaling pathway.106 Certain biomaterials combined with EVs
can reinforce stem cell-based tissue repair. MSC-derived exo-
somes loaded in a 3D printed cartilage ECM/gelatin methacrylate
bio-scaffold have improved osteoarthritis therapeutic efficacy.107

The EV-based therapy may provide a new venue for the
treatment of diseases, but the variability in the contents of EVs
due to harvest procedures and cell sources may complicate their
clinical applications.

Chemokines and receptors
MSCs homing. Like leukocytes, MSCs can fully transverse the
vascular endothelium, a process that can be significantly
enhanced by the presence of CXCL9, CXCL16, CCL20, and
CCL25.108 MSCs harness the network of multiple chemotactic
factors to access specific locations and further facilitate tissue
remodeling in situ. In this review, we distill the recent studies
about the intercellular activities mediated by the wide set of
chemotaxis (Table 3). Among these chemotactic gradients,
CXCL12(SDF1) is the most prominent one for accumulating stem
cells in the BM. The CXCL12/ C-X-C motif chemokine receptor
(CXCR)4 axis is essential for MSCs migration, homing, and
engraftment in BM stroma,109 and is vital for sustaining the
function and development of other precursor cells in tissues. For
instance, MSCs modulate the self-renewal and the growth of
cardiac cKit+ cells via the CXCL12/CXCR4 pathway.110 Intrinsic
expression of CXCR4 is required for the differentiation of lymphoid
precursors and their positioning adjacent to the mesenchymal
progenitors in the BM, whereas CXCL12 deletion causes a
decrease in natural HSCs and expansion of abnormal HSCs.3

CXCL12 is one of the target genes of HIF-1α, which is rapidly
upregulated by ischemia or reduced oxygen tissue tension in the
initial stage of acute injury. The mobilization of MSCs could be
propagated by the hypoxic conditions through induction of the
CXCL12–CXCR4 axis.111 Moreover, the chemotactic function of
CXCL12 could be augmented by many priming agents such as
complement components112 (C1q) and bioactive lipids113 (sphin-
gosine-1 phosphate, or ceramide-1 phosphate). TNFα signal also
stimulates MSC migration towards the inflammatory site in a dose-
dependent manner.114 Therefore, the bioactive gradients released
from damaged tissue amplify and shape the chemokine network
of MSCs.

Actions on immune cells. The decisive roles of chemokines and
receptors expressed by MSCs in cell mobilization have been

extensively investigated. Additionally, they are also defined as the
driving force to regulate the migration of immune cells, so that
MSCs functionally foster the immune response to maintain
homeostasis in the body. As illustrated earlier, MSC(BM)s secrete
CCL2 in response to TLR ligands or bacterial infection to induce
monocyte emigration to the circulation, thereby enhancing
resistance to bacterial infections.115 The chemotaxis mediated by
cues from MSCs assists in recruiting T cells for Fas ligand (FasL)-
mediated apoptosis and diminishing excessive inflammatory
reactions in treating autoimmune disorders, such as systemic
sclerosis and colitis.116 The chemotactic gradients have a short
half-live and undergo degradation by extracellular proteases.
Unlike the neurotoxicity of cleaved-CXCL12 fragments,117 the
proteolytic processing of CCL2 by matrix metalloproteinase (MMP)
generates an antagonistic derivative that inhibits the activity of
CD4+Th17 cells.118 Thus, MSC-derived CCL2 inhibits CD4+ T cell
activation by suppressing STAT3 phosphorylation and reversing
symptomatic neuroinflammation in experimental autoimmune
EAE.118 Moreover, blockade of CXCR3 or C–C motif chemokine
receptor (CCR)5 abolished the MSCs-induced immunological
suppression of lymphocytes.51 The upregulated CCL5 from
irradiated MSCs, as a result of the activation of the cGAS-STING
signaling pathway, is responsible for increasing tumor metastasis
in mice, by recruiting macrophages to the lung.119 Importantly,
MSC-mediated immunosuppression in vivo is closely associated
with the polarization of tissue-resident macrophages to the anti-
inflammatory phenotype. Different from the direct signaling
pathway mediated by other immunoregulatory factors, MSC-
derived CCL2 requires heterodimerization with CXCL12 to
synergistically polarize macrophages via CCR2.120 The hetero-
dimerization occurs between members of CXC and CC subfamilies
and dramatically alters responsive cell functionality other than
mere chemotaxis.120,121 The studies above indicate the require-
ment of chemotactic gradients in MSC-mediated immunoregula-
tory effects, but the role of chemokines goes well beyond these
effects. MSCs release C-X3-C motif chemokine ligand 1 (CX3CL1) to
target the C-X3-C motif chemokine receptor 1(CX3CR1) on
microglia to control their activation and phagocytosis.122 The
CX3CR1+ microglia are functionally enhanced by an MSC-driven
increase in intracellular calcium concentration and display
enhanced phagocytotic activity in swallowing axon fragments or
apoptotic cell bodies. As expected, MSCs switch microglia to a
neuroprotective phenotype and provide a beneficial environment
for the regeneration of nerve axons.

Growth factors
A variety of growth factors have been identified among the
secretion profile of MSCs, including vascular endothelial growth
factor (VEGF), basic fibroblast growth factor (bFGF), keratinocyte
growth factor (KGF), insulin-like growth factors (IGF-1 and IGF-2),
and hepatocyte growth factor (HGF). These growth factors are not
only important effector molecules that promote tissue repair but
can also regulate the differentiation and function of MSCs
themselves. VEGF-C induces the phosphorylation of VEGF
receptors (VEGFR2, VEGFR3) and the activation of ERK signaling
in MSCs. VEGF-C enables MSCs to acquire enhanced expressions of
osteogenic marker genes such as RUNX family transcription factor
2 (RUNX2) and facilitates MSC mineralization.123 When stimulated
by bFGF, the HGF expression in MSCs was upregulated through
the JNK signaling pathway, contributing to the tissue repair and
suppression of fibrogenesis.124

Pro-and anti-angiogenesis. The superiority of MSCs in promoting
wound healing mainly results from a series of mitogenic and
vascular trophic factors, including angiogenic factors to restore
the blood supply in ischemia tissues.125 It has been confirmed that
growth factors (VEGF, HGF, and IGF-1) are rich in MSC culture
medium (MSC-CM) and provide a renal protective effect in acute
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kidney injury after MSCs infusion.126 We reported that MSCs
treated with TNFα and IFNγ could secret a large amount of VEGF-C
that accelerates wound closure through promoting angiogen-
esis.127 Nevertheless, the MSCs-mediated therapeutic effect does
not always result from angiogenesis. We found that human MSC
(AD)s could effectively inhibit neovascularization and reduce the
opacification of ethanol-injured cornea via promoting the
clearance of neutrophils during the granulation stage.128 Likewise,
another study demonstrated that MSCs extracted from corneas
and then embedded in fibrin gel for local application prevented
corneal neovascularization after corneal injury in mice. These
effects were significantly abrogated by knocking down the
pigment epithelium-derived factor (PEDF) expression in cornea-
derived MSCs (MSC(C)s). Mechanistically, the secretion of anti-
angiogenic factors including soluble fms-like tyrosine kinase
receptor (sFLT)-1 and PEDF in MSC(C)s attenuated the injury-
triggered angiogenesis.129

Tissue remodeling. MSC-EVs improve the survival of animals
with experimental lung injury in part through the secretion of
KGF93 and HGF,130 which is associated with decreased
endothelial permeability and protection of cell growth. Mass
spectrometry analysis showed that the milk fat globule-EGF
factor 8 (MFGE8) secreted by MSCs strongly inhibited hepatic
stellate cells and thus prevented liver fibrosis.131 Of note, HGF is
a crucial factor in MSC-mediated protective effects in chronic
inflammatory disease models. HGF does not only prevent

epithelial cells from apoptosis but also exhibits anti-fibrotic
effects in the experimental fibrosis model.132 Moreover, HGF
contributes to MSC-mediated functional recovery in the animal
model of multiple sclerosis133 and Alzheimer’s disease.134 HGF
inhibits hyperphosphorylation of tau protein and rescues the
cytoskeleton branches of damaged neurons, suggesting that
MSCs-derived HGF may be the key factor for endogenous
neurogenesis and cognition improvement in Alzheimer’s
patients.134 It is worth noting that some of the growth factors
secreted by MSCs support their immunoregulatory ability as
well. IFNγ induces MSCs to produce flt3-ligand through the JAK/
STAT signaling pathway, which binds to flt3 on CD1c+ dendritic
cells (DCs) to promote the survival of tolerogenic CD1c+DCs in
SLE.135 IGF-2, another important growth factor, is highly
expressed in MSCs exposed to low oxygen and in muscle stem
cells (MuSCs) and exhibits potent anti-inflammatory proper-
ties.136 IGF-2 administered to EAE mice preprogrammed
maturing macrophages to acquire an anti-inflammatory prop-
erty.137 It instructed maturing macrophages to undergo
oxidative phosphorylation and to highly express programmed
death-ligand 1 (PD-L1).136 However, modulation of macro-
phages by MSCs-derived growth factors cannot achieve the
desired outcome all along. As mentioned before, PEDF is a
pleiotropic protein in possession of anti-angiogenic, anti-
oxidant, anti-tumor, and neuroprotective properties.138 PEDF
interferes with macrophage infiltration and activation in the
injury site, leading to a delayed remodeling process.139

Table 3. The chemotactic axis involved in MSC-mediated efficacy

MSC-secreted ligands Target cell/tissue Receptors Effects

CCL2 Macrophages CCR2 Macrophage polarization291

CCL3/4 Colorectal cancer cells CCR5 Tumor progression292

CCL5 Breast cancer cells, colorectal cancer cells CCR1/5 Tumor metastasis293,294

CCL20 CD4+ T cells CCR6 Lymphocyte recruitment and MSC differentiation295

CCL21 Melanoma, glioma, lung carcinoma cells CCR7 Tumor metastasis296

CXCL1 Multiple myeloma cells CXCR2 Tumor metastasis62

CXCL1/2/8 Macrophages CXCR1/2 Macrophage polarization and tumor progression61

CXCL1/5 Mammary cancer cell CXCR2 Tumor metastasis297

CXCL8 Acute myeloid leukemia cells CXCR1/2 Acute myeloid leukemia cells survival63

CXCL8 CD4 + T cell CXCR1/2 CD4+ T cell migration298

CXCL12 Cardiac myocytes CXCR4 Progenitors recruitment and myocyte survival299

CXCL12 Cardiac cKit+ cells CXCR4 Cardiac cKit+ cells migration and prolferation110

CXCL16 Gastric cancer cells CXCR6 Tumor progression300

CX3CL1 Microglia CX3CR1 Neuroprotective phenotype of microglia301,302

MSC-expressed
receptors

Donor cell/tissue Ligands Effects

CCR1 Macrophages CCL3 MSC migration303

CCR2 Macrophages CCL2 MSC migration303

CCR1 Hepatoma cells CCL15 MSC migration304

CCR4 Bone marrow CCL22 MSC transendothelial migration305

CCR6 Hepatoma cells CCL20 MSC migration304

CCR7 Intradermal site CCL21 MSC migration and wound repair306

CCR9 Myeloma CCL25 MSC mobilization307 and tumor progression308

CCR10 Skin CCL27 MSC recruitment309

CXCR2 Buccal mucosa CXCL2 MSC migration and accelerate ulcer healing310

CXCR2 NK cell CXCL7 MSC recruitment311

CXCR5 Injured sites CXCL13 MSC recruitment312

CXCR6 Bone marrow CXCL16 MSC transendothelial migration305
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Therefore, MSCs that highly express PEDF counteract the
therapeutic actions and eventually give rise to more cardiac
fibroblasts with impaired angiogenesis in the myocardial
infarction region.139

Inflammatory cytokines
Supporting cell differentiation and survival. MSCs are reported to
produce a variety of factors to support the differentiation of
CD34+ hematopoietic progenitors,140,141 including the cytokine IL-
6. MSCs are critical for the maturation of human antibody-
secreting cells (ASCs), and IL-6 is the crucial component to support
the survival and secretory function of ASCs.142 Our previous study
has shown that IL-6 derived from MSCs mediated the protective
effect against the spontaneous death of splenocytes in vitro.143

Another report revealed that MSC(BM)s induced the proliferation
of colitogenic CD4+ memory T cells via secreting IL-7 and played a
pathogenic role in inflammatory bowel disease (IBD).144 IL-7 is an
indispensable cytokine that contributes to B cell development,
deprivation of IL-7 in MSC(BM)s reduced the tendency to
differentiate into B cells of lymphoid progenitors.3 Moreover,
LPS-triggered MSCs selectively recruit neutrophils through the
secretion of IL-8 and macrophage migration inhibitory factor (MIF)
to strengthen the function and survival of neutrophils.145,146

Considering the pro-survival property of MSCs for immune cells,
the activated MSCs might boost immune responses in the injured
site or exacerbate tissue necrosis under particular circum-
stances.147 Meanwhile, MSCs-derived IL-28 can trigger prostate
cancer cells to undergo apoptosis, despite that IL-28 insensitive
cancer cells eventually evolve in the BM.148 We recently showed
that C3 produced by lung MSCs can promote the formation of
neutrophil extracellular traps in establishing a pre-metastatic lung
microenvironment. Interestingly, the C3 production by MSCs is
stimulated by Th2 cytokines.149 Hence, the secreted factors by
MSCs may serve as the essential signals to remodel the tumor
microenvironment.

Immunoregulation and tissue remodeling. MSCs exert their
immunomodulatory effects by interacting with both the innate
and adaptive immune cells. MSCs reduce the expression of MHC II,
CD40 and CD86 costimulatory molecules on mature DCs, as well
as inhibiting the maturation of cultured DCs partially through an
IL-6-dependent mechanism, thus inhibiting T-cell proliferation.150

Multiple cytokines are involved in the immunoregulatory func-
tions of MSCs, including HLA-G151 and LIF.152 Splenocytes treated
with MSC-CM produce large amounts of IL-10,153 which is an
essential cytokine to induce MSCs to secrete soluble isoform of
HLA-G5 to suppress innate immunity.154

MSCs usually perform their therapeutic function through
balancing proinflammatory and anti-inflammatory responses,
which are generally mediated by the suppression of excessive
Th1 responses and the switch toward Th2 type. Interleukin-1
receptor antagonist (IL-1Ra) produced by MSCs is reported to alter
the inflammatory and fibrotic response during chronic lung
injury.155 IL-1Ra also can induce macrophage polarization from
the M1 to M2 phenotype and accelerate wound healing.156,157

MSCs secreted IL-4 to polarize microglia towards the anti-
inflammatory phenotype with enhanced phagocytic ability to
clear extracellular α-synuclein, indicating a neuroprotective role in
parkinsonian disorder.158 As to airway hypersensitivity mediated
by uncontrolled Th2 response during asthma, MSCs diminish the
content of Th2 cytokines (IL-4, IL-5, and IL-13) in bronchial lavage
and Th2 type immunoglobulins in serum, through increased
production of TGF-β in the activated STAT6 pathway.159 TGF-β in
MSC-CM mediates most suppressive effects, especially for indu-
cing regulatory T cells and inhibiting adaptive immune reac-
tions.160 In LPS-stimulated microglia, TGF-β impedes their
polarization to the M1 phenotype by inhibiting NF-κB signaling
and restores their CX3CR1 expression, which endows them with

enhanced phagocytosis of apoptotic debris.161 However, autocrine
TGF-β in MSCs would restrict the immunosuppressive effect of
MSCs via inhibiting their iNOS expression in a SMAD3-dependent
manner.162

ECM components
MSCs express various components of ECM, including vimentin,
galectins, integrin, and collagens.163–165 The ECM molecules
produced by MSCs are likely to support the formation and
stabilization of vessels, as well as to provide ECM-associated
bioactive factors.166 Upon the osteogenic stimuli, MSC(BM)s
cultivated on collagen matrices showed decreased MMP expres-
sion along with increased tissue inhibitors of metalloproteinase
(TIMPs), while the expression profile became exactly the opposite
when they are subjected to adipogenic conditions.167 The
conversion of native collagen to denatured collagen IV by MMPs
is proven to switch the lineage commitment of MSCs to
adipogenic differentiation.168 Follistatin-like protein 1 (FSTL1), a
glycoprotein that has been found to mediate pro-inflammatory
events, is closely correlated with chondrogenesis of MSCs, which is
reflected in the production of ECM proteoglycans and collagen
II.169

The change of ECM expression in differentiated MSCs provides a
narrow window for researchers to gain insight into the commu-
nication between ECM and immune response. During the process
of tissue injury and repair, chronic inflammation is always
associated with aberrant ECM deposition, and the fragments of
ECM may activate immune cells and support their survival during
the tissue-remodeling processes.170 The crucial role of the ECM for
adhesion and migration of inflammatory cells has been well
established, which involves the HA receptor CD44 expressed by
the leukocytes. The TLR3-activated MSCs strongly increased the
affinity of leukocytes to MSCs through the formation of cable-like
HA structures, in which the immune-suppressive activity was
partially mediated by prostaglandins.72 In fact, MSCs co-cultured
with inflammatory cells is enriched with glycocalyx, which is
mainly composed of modified HA matrix, chondroitin sulfate-
proteoglycan, and versican.171 These proteoglycans are biological
macromolecules that are widely present on cell membrane
surfaces and in ECM and possess a highly complex structure
consisting of one or more glycosaminoglycans (GAGs) side chains
with covalently conjugated core proteins. In spite of the active
proteolysis in injury sites and the short life-span of active
gradients, the negatively charged GAGs are usually attracted by
the highly basic proteins such as chemokines, thus forming a
stable structure to avoid chemokine degradation.172 The interac-
tion of chemokines and GAGs is harnessed by MSCs and gives
them unique advantages in quickly traversing into the circulation
and mobilizing immune cells or other progenitors. As mentioned
above, MSCs secreted a multifunctional extracellular component,
periostin, to form a mutually reinforcing loop between matrix and
B-ALL cells derived-CCL2 and increased leukemia burden.64

Moreover, the stable matrix structure functions as a “cloak” to
make MSCs escape from host rejection and survive in xenograft
transplantation. High molecular weight HA, but not that with the
low molecular weight, was shown to induce IL-10-producing
regulatory T cells to suppress responder cell proliferation in both
human and murine system.173,174 In addition, MSCs constitutively
secrete galectins-1 and galectins-3 that take part in T cell
suppression, which also provides convincing evidence for the
ECM-dependent mechanism of immunomodulation by MSCs.164

On the other hand, treating MSCs with fibronectin, or laminin
could stimulate cell proliferation and migration,175 suggesting that
ECM molecules further support the biological functions of MSCs.
Tissue-resident HA in the kidney promoted transfused MSCs to
localize in the injured renal tissue by binding with CD44 and
accelerated functional recovery in an acute renal failure model.176

Such ECM cooperativity allows more MSCs to converge in the

The secretion profile of mesenchymal stem cells and potential. . .
Han et al.

9

Signal Transduction and Targeted Therapy            (2022) 7:92 



injury site through certain chemotaxis pathways, which may
enable engineered materials to preserve active chemokines and
effectively facilitate tissue repair.177,178

MAIN PATHWAYS OF MSC-MEDIATED IMMUNOMODULATION
The mechanisms that underlie the versatile immunomodulatory
function of MSCs are widely described. Here, we distill some
important regulatory factors that define the interface between
MSCs and immune responses.

The iNOS-NO axis
iNOS can be induced by inflammatory cytokines and is a dominant
enzyme mediating the immunoregulatory effects of MSCs from
rodents (such as mouse, rat, hamster, and rabbit), while MSCs from
other mammalian species (such as monkey, pig, dog, cattle, and
human) preferentially use IDO.179 The murine MSCs express high
levels of iNOS upon activation by pro-inflammatory cytokines and
produce NO. While IFNγ-induced NO synthesis could diminish T
cell proliferation,180 inhibition of iNOS abolishes the mouse MSC-
mediated anti-proliferative effect on T cells.181 Recently, we have
found that the SH2 domain-containing phosphatase-1 (SHP1)
negatively modulates the iNOS expression in MSCs. SHP1-deficient
MSCs have higher levels of JAK1 and STAT3 phosphorylation and
produce more iNOS and cyclooxygenase 2 (COX2), which endow
MSCs more immunosuppressive ability in alleviating liver injury.182

NO may coordinate with phosphorylated STAT3 to increase PD-L1
expression in IL-17-stimulated MSCs. Thus, the IL-17 pretreated
MSCs acquire more potent immunosuppressive capacity, an effect
likely attributed to IL-17 modulated mRNA stability through
degrading ARE/poly(U)-binding/degradation factor 1 (AUF1).183

However, NO is very labile and rapidly lost through oxidation.
Therefore, T cells have to be attracted in close proximity to MSCs
by chemokines and be restrained by adhesion molecules such as
ICAM-1 and VCAM-1.51 During the progression of tuberculosis, the
pathogen recruits MSCs to the lesion site and induces the
production of NO, thereby blunting T-cell responses to help
mycobacterium tuberculosis to evade host immune responses.184

The therapeutic efficacy of MSCs was also shown in Coxsackievirus
B3 (CVB3)-induced myocarditis, indicating an important role of
MSCs in antiviral immunity to blunt the cytotoxic T cell activation
in a NO-dependent manner.185 Nevertheless, the NO-mediated
immunosuppression by MSCs is likely to switch to an immune-
enhancing effect under inadequate stimulus or insufficient
inflammation-exposure time. Administration of iNOS inhibitor or
genetic ablation of iNOS expression in MSCs could even boost
immune reactions because the self-produced chemokines are still
attracting immune cells.186 iNOS−/− MSCs enhance immune
responses in vitro and in vivo and suppress tumor growth as
well.186 In addition, the antifibrotic function of MSCs-derived NO
has been proposed. We have revealed that the therapeutic effect
of MSCs on liver fibrosis was mediated by the expression of iNOS
under inflammatory conditions. iNOS−/− MSCs secreted chemo-
kines but not NO, without any amelioration on the pathological
changes in liver fibrotic mice.74 In the experimental model of
systemic sclerosis, the iNOS−/− MSCs lost the capacity of
eliminating oxidative stress or exerting the anti-fibrotic effect.187

The tryptophan-IDO-kynurenine-aryl hydrocarbon axis
IDO is a rate-limiting enzyme for degrading tryptophan (Trp) to
N-formylkynurenine. Apart from the cell–cell contact requirement
for MSC to induce T-cell tolerance, the culture medium also
inhibits the proliferation of activated T lymphocytes, a paracrine
effect that partly depends on the expression of IDO.188 The IDO-
mediated conversion of Trp into kynurenine (KYN) induces
apoptosis and cell cycle arrest in activated conventional T-cells
and promotes the differentiation of regulatory T cells.189 Given
that IDO-expressing macrophages suppress T-cell proliferation

in vitro by reducing tryptophan concentrations,190 rapid exhaus-
tion of Trp causes the generation of uncharged transfer RNA that
subsequently activates the general control nonderepressible 2
(GCN2) kinase, which makes T-cells unresponsive and inactive.191

The tryptophan catabolites such as KYN and picolinic acid could
also inhibit activated T cells and NK cells in the absence of
tryptophan,192 although the addition of tryptophan could restore
allogeneic T-cell proliferation.193 As reported, KYN induces
FOXP3+ Tregs in an aryl hydrocarbon receptor (AhR)-dependent
manner, the binding of kynurenine to the AHR could be further
potentiated by TGF-β.194 In human MSCs, we have found that
kynurenic acid (KYNA), which is another IDO-derived metabolite
with little cytotoxicity and shares the same AhR receptor as KYN,
could promote TNFα-stimulated gene-6 (TSG-6) expression due to
the augmented binding of AhR to the promoter of TSG-6, thereby
alleviating neutrophils infiltration in injured lungs.195 MSCs also
require IDO in promoting the differentiation of monocytes into
immunosuppressive macrophages to ameliorate inflammatory
responses.196 However, KYNA limited IL-10 production via the
increase of intracellular cAMP in BM-derived macrophages and
predicted poor prognosis in atherosclerosis.197

Human MSCs primarily express IDO upon stimulation with IFNγ
together with TNFα or IL-1 to exert the immunosuppressive
effects. IFNγ triggers MSCs to express IDO in a STAT1-dependent
manner. STAT1 overexpression enhances MSC-mediated T-cell
suppression in vitro.198 In addition, the pro-inflammatory stimula-
tion leads to a metabolic shift to glycolysis. Once the glycolytic
flux of MSCs is blocked by 2-Deoxy-d-glucose (2-DG) treatment,
STAT1 binding to the IFNγ-activated sequence region in the IDO1
promoter is impaired, thereby abolishing IDO upregulation and
reducing the inhibition on T cell response.199 As STAT1
phosphorylation could also be inhibited by dexamethasone, the
expression of IDO or iNOS by activated MSCs would be blocked by
steroids without affecting the production of chemokines.74

Silencing IDO in human MSCs would result in an unexpected
boost of immune responses, as the MSCs could facilitate
stimulated PBMC proliferation at both low and high cell
densities.186 On the contrary, aberrant activation of IDO aggra-
vates tumor evasion and are closely associated with poor clinical
prognosis.200 IDO and the downstream metabolites are consid-
ered as the important mediators of MSCs to regulate immune
cells, their involvement in the aging process also should be taken
into account. As mentioned before, continuous inflammatory
stimulation induces IDO expression but impedes MSC proliferation
and differentiation. Of note, hyperactivity of IDO-mediated
tryptophan degradation may be associated with a relative
reduction in another metabolic pathway to generate melatonin,
which serves as an antioxidant to reverse aging phenotypes of
MSCs201 and regulate the multi-lineage differentiation of MSCs.202

KYN was found to be accumulated along with age in the plasma
and bone tissue, making the aged mice vulnerable to bone loss
and osteoporosis.203 These findings could be related to the
observation that KYN inhibited autophagy and induced senes-
cence in MSC(BM)s via AhR signaling.204

The COX2-PGE2 axis
When MSCs were used to treat GvHD, it was found that MSCs
displayed potent dose-dependent immunosuppressive effects on
lymphocyte responses, an effect mediated by the expression of
COX1/COX2 enzymes and the production of PGE2.

205 The immuno-
suppressive role of MSC(BM)s to treat EAE mice was also found to
rely on PGE2.

206 COX2 is an inducible enzyme that mainly presents on
the luminal surface of the endoplasmic reticulum and at the inner
and outer membranes of the nuclear envelope.207 COX1, on the
other hand, is encoded by a housekeeping gene and is constitutively
expressed in most mammalian cells, playing a vital role in regulating
renal function and protecting gastric mucosa. COX2/PGE2 axis has
been reported as a significant mediator of MSC-mediated immune
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regulation, which includes programming macrophages plasticity,208

dampening NK cell acitivity,209 and suppressing Th17 differentia-
tion.210 MSCs alleviate allergic inflammation by suppressing degra-
nulation and pro-inflammatory factors production in mast cells in a
COX2-dependent manner.211 Importantly, PGE2 preserves the
immune privilege of allogeneic MSCs during therapeutic infusion.212

MSCs-derived PGE2 induces CD4+ T cell differentiation into Tregs
along with TGFβ1, by means of direct cell-cell contact.160 In an
experimental model of liver injury, PGE2 was found to bind to the EP
prostanoid receptor 4(EP4) on CD11c+B220− DC precursors and
induce their differentiation towards a regulatory phenotype in a PI3K-
dependent manner.213 It should be noted that COX2 is also essential
for MSC-mediated tissue remodeling, especially to bone repair. COX2
could augment osteogenesis potential and suppress chondrogenic
differentiation in mouse skeletal stem cells through the canonical
Wnt/β-catenin signaling pathway.214 The COX-2/PGE2 axis plays a
key role in facilitating osteogenic differentiation of MSCs in the initial
pro-inflammatory phase mediated by M1 macrophages.215 Mean-
while, MSCs-secreted PGE2 acts on macrophages to alter the
metabolic status, skewing toward M2 polarization,208 which is more
conducive to guiding MSC differentiation and bone regeneration.
Interestingly, it has been found that hyperthermia increases the

efficacy of MSC-driven immune-suppression that involves the
COX2/PGE2 pathway, which relies on the translocation of heat
shock proteins into the nucleus of MSCs.216 It should be noted that
fever is a hallmark of inflammation and/or infection and can be
triggered by PGE2. The COX2/PGE2 axis somehow acts to lure the
inflammatory signals into cells and to activate the immunosup-
pressive potential of MSCs to a greater extent. For instance, when
carcinoma cells-derived IL-1 increased the production of PGE2 in
surrounding MSCs, PGE2 acted in concert with IL-1 to induce other
cytokines, proceeding to elicit the formation of cancer stem cell
niche and to promote tumorigenesis.217 The high amount of TNFα
induces COX2 expression and PGE2 production in MSCs, and NO
also participates in the upstream induction of COX2.218 Pro-
inflammatory stimuli cause rapid expression of COX2 and
abundant production of prostaglandins, which preferentially enter
the nucleus to exert both stimulatory and inhibitory effects on the
activity of NF-κB complexes, thereby promoting a series of
inflammation-associated transcription.219 When the promoters of
COX2/PTGS2 and prostaglandin E synthase (PTGES) were hypo-
methylated by DNA methyltransferase inhibitor, elevated produc-
tion of PGE2 enhanced the immunosuppressive effects of MSCs on
colitis mice.220 This COX2-based immunomodulation can also be
enhanced in other ways. Phagocytosis of apoptotic cells endows
human MSC(UC)s with powerful immunosuppressive capacity, the
engulfment of apoptotic cells stimulates MSCs to express COX2
and produce PGE2 through NF-κB signaling so that it further
potentiates the immunosuppressive effects of MSCs.221 Unlike
IDO, the expression of COX2 in MSC is more variable with cell
culture conditions. In vitro, the secretion of PGE2 by MSCs is
affected by the content of fetal bovine serum (FBS) in the culture
medium. The absence of FBS led to less production of PGE2 and
compromised the immunomodulatory properties.222 Although
hypoxia enabled MSCs to produce several growth factors and
chemokines more efficiently, it accelerates proteasome-mediated
degradation of COX2 and decreases PGE2 in MSCs, as well as loss
of immune privilege.212 Meanwhile, arachidonic acid along with its
other downstream metabolites of COX2, such as PGA2 and PGD2,
displayed an inhibitory effect on IFNγ induced IDO expression in
monocytes.223 Therefore, the interaction between PGs and the
immune system cannot be generalized.

The TNFα-TSG-6 axis
TSG-6, a 277 amino acid glycoprotein secreted by many cells in
response to pro-inflammatory factors, confers MSCs with prominent
anti-inflammatory properties for treating myocardial infarction,224

peritonitis,225 acute lung injury,226 and corneal injury.227 Both MSCs-

secreted TSG-6 and recombinant mouse TSG-6 inhibited the
STAT3 signaling pathway and alleviated pathologic changes in
ethanol-induced liver injury.228 Our previous study showed that the
IDO metabolite, KYNA, could promote TSG-6 expression by inducing
the nuclear translocation of AhR and its binding to the promoter of
TSG-6.195 The secretion of TSG-6 in MSCs was enhanced by KYNA and
the protein-restricted leukocytes extravasation during inflamma-
tion.195 Recently, we have found that the presence of IFNγ and TNFα
upregulates the expression of 11β-hydroxysteroid dehydrogenase
type 1 in MSCs, subsequently augments TSG-6 expression via the
canonical NF-κB pathway.229

The anti-inflammatory property of TSG-6 is largely due to its
binding with HA fragments and the subsequent diminishment of
the inflammatory network. Early in the 1990s, TSG-6 and adhesion
receptor CD44 were found to share significant sequence homol-
ogy, suggesting its possible binding to HA.230 It was later
confirmed by structural analysis that the Link module of TSG-6
defines its interaction with HA.231 Furthermore, a part of GAGs also
showed affinity to the Link_domain of TSG-6.232,233 It is interesting
to note that the binding of Link_TSG-6 with HA is largely
dependent on PH.233 The relative hypoxic condition and active
metabolic activity of immune cells in the inflammatory sites often
lead to the accumulation of metabolites such as lactic acid and
contribute to the establishment of an acidic environment, which
makes TSG-6 more tendentious to the damaged sites. These
findings provide the molecular basis for its action mode in cell-ECM
interaction and in cell migration during inflammation. In the course
of cell-based therapy, TSG-6 contributes to the formation of the
protective glycocalyx matrix in MSCs to circumvent xenograft
rejection via the interaction with HA when exposed to inflamma-
tion.171 It does not only provide shelter for MSCs from host
immune surveillance but also links up HA and GAGs to support the
modulatory effects of MSCs. After cell transplantation, the presence
of TSG-6 enables MSCs to accurately reach the damaged tissue,
most likely because the microenvironment in the injured site
stimulates MSCs to release more TSG-6, which may organize the
surrounding HA-contained matrix complex for MSC settlement.234

TSG-6 also performs the immunomodulatory function by acting on
immune cells. It was shown that TSG-6 inhibited activation of
antigen-presenting cells and T cells in a CD44 dependent manner,
consequently blocking insulitis within the pancreas and delaying
the onset of type 1 diabetes.235 Similarly, TSG-6 reduces the TLR2/
NF-κB signaling in resident macrophages in the mouse model of
peritonitis through CD44.225 In addition, cell-to-cell contact with
M1 macrophages enhanced the TSG-6 paracrine production by
MSCs, which become more potent in regulating immune cells.236

Therefore, MSCs rely on TSG-6 to survive in transplantation and to
remodel the inflammatory environment.
The inhibitory effects of TSG-6 on leukocytes transversing across

vascular endothelium have been extensively investigated.237

Studies by the Darwin Prockop group proved that intraocular
injection of recombinant human TSG-6, especially the injections
within the first few hours after injury, remarkably prevented
neutrophils from infiltrating in injured cornea and protected
cornea from opacification and neovascularization.227 In fact, the
mechanisms of TSG-6-mediated inhibition of neutrophil migration
are more than just binding with HA.238 TSG-6 also modulates
chemokine/GAGs interactions and then inhibits leucocytes infil-
tration to the damaged tissues.239 TSG-6 targets the GAG-binding
region of CXCL8 to antagonize its interaction with heparin and
prevent CXCL8-mediated neutrophil transmigration.240 High con-
centrations of TSG-6 could even obstruct the interaction of CXCL8
with its receptor CXCR2, as well as the associated neutrophil
chemotaxis.240 TSG-6 provides the binding sites for chemokines,
and the Link module of TSG-6 shows high affinities for multiple
chemokines through their GAG-binding epitopes, thus disrupting
the presentation of interactive chemokines on cell surfaces or their
binding to collagen.239,240
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ADVANCES IN THE APPLICATION OF MSC-SECRETED FACTORS
The cellular and molecular basis of the actions of MSC-derived
factors remains to be fully elucidated, while the clinical applica-
tions of MSC-based therapy have outpaced our mechanistic
understanding of their multitrophic and immunomodulatory
properties (Fig. 3).

Enhancement of secretory function
One of the most important steps for optimizing MSCs-based
strategies is to stimulate MSC secretion to a greater extent.
Researchers have focused on the strategy of cultivating MSCs
under specific conditions of near anoxia (0.1% oxygen) to
potentiate their secretory actions.48 Also, a few reports showed
that combined administration of platelet-rich plasma (PRP) and
MSCs was superior in tissue repair, especially for bone healing.241

Apart from the secretory organelles containing growth factors
from platelets, this superiority is likely due to the transfer of
mitochondria from platelets to MSCs.242 Such transfer could
significantly augment the secretion of pro-angiogenic factors so
that PRP-stimulated MSCs have improved capacity in accelerating
wound healing.

Engineered MSCs
Considering the context of pathological conditions and MSCs
secretion, another option is to design cell/molecule-specific
therapeutic schemes. A variety of chemokine delivery devices
have emerged as a novel approach for stem cell recruitment and
tissue regeneration. The designed protease-resistant chemokine
CXCL12 is proven to potentiate the recruitment of CXCR4+/c-Kit+

stem cells and protect the myocardial function.243 The delivery of
engineered alginate microparticles that contain CCL2 and VEGF is
adapted for therapeutic vascularization in ischemic disease.244

These elements contained in biomaterials for tissue regeneration
require far lower doses than the administration of unpackaged
molecules. However, single agents cannot substitute all the
secretory advantages of MSCs. MSCs possess a unique chemotac-
tic network to orient their transmission as a cell ark and build
positive feedback with the cells in situ. They could tactfully avoid
immune rejection triggered by artificial materials, or the drug
toxicity that comes from traditional pharmacological administra-
tion, so researchers are trying to take advantage of these
characteristics to maximize the therapeutic potential of MSCs. It
has been proven that lentiviral transduced human MSCs could

Fig. 3 Schemes of cell/molecule-based therapy in MSCs application. The designed chemokine delivery devices have emerged as a novel
approach for stem cell recruitment and tissue regeneration. Another strategy to potentiate MSCs’ secretory actions, is cultivating MSCs under
low oxygen or stimulating MSCs with PRP and cytokines. Importantly, MSCs possess a unique chemotactic network to orient their
transmission as the cell ark and deliver specific factors on purpose. MSCs encapsulated in biomaterials such as collagen gels or fibrous protein-
based gels have increased migrating capacity to converge in damaged tissues. The factors produced by MSCs support the function and
development of other cell types, such as HSC in the bone marrow. MSC also serves as a prominent vehicle to carry antibiotics to the deeply
infected sites and accelerate tissue repair. The genetically modified MSCs not only achieve more homing capacity to reach target sites but also
recruit more immune cells in the tumor environment to elicit an anti-tumor immunity, which bypasses the side effects caused by
chemotherapeutic drugs. (Created with BioRender.com)
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persistently deliver therapeutic enzymes in vivo without affecting
their trafficking ability.245 Silencing the gene of prolyl hydroxylase
2 (PHD2) enhances the paracrine effects of MSC(BM)s so that the
modified MSCs possess a stronger ability to alleviate inflammation
in necrotizing enterocolitis rats.246 Furthermore, engineered MSCs
could serve as a prominent vehicle to carry bioactive reagents or
to arise specific cellular activity on purpose. For example,
translation of genetically modified MSCs that expressed α4
integrin (CD49d) achieved more bone homing in an immuno-
competent mouse model, and successfully formed osteoblasts
and osteocytes. The strategy may broadly benefit targeted
therapies for osteoporosis.165 The genetically modified MSCs that
highly express PEDF provide a more satisfactory outcome in
preventing lung carcinoma progression.247 The MSCs that deliver
CXCL9 and OX40 ligand, as well as the CCL19-expressing MSCs,
could increase the infiltration of CCR7+ DCs, CD8+ T cells, and NK
cells in tumor sites to elicit their anti-tumor effects.248,249

Additionally, MSC(BM)s could internalize antibiotics such as
ciprofloxacin (CPX) and then release CPX to inhibit bacterial
activity. Combined with the migration tendency of these cells
toward the injury sites, MSCs may serve as an ideal antibiotic
delivery system to convey a higher amount of antibiotics to deep
infection sites.250 MSCs as efficient vehicles to deliver bioactive
agents to the target tissues merit further exploration.

CONCLUSION
MSCs are powerful bioactive agents for treating various diseases,
especially for refractory immune disorders, tissue degeneration, or
tissue damage, mainly through their paracrine actions. Investiga-
tions of the mediators synthesized by MSCs under various
conditions should provide a better understanding of their
immunoregulatory function and repair capability.
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