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ABSTRACT

We derive the kinetic equation that describes the secular evolution of a large set of particles orbiting a dominant massive object,
such as stars bound to a supermassive black hole or a proto-planetary debris disc encircling a star. Because the particles move in a
quasi-Keplerian potential, their orbits can be approximated by ellipses whose orientations remain fixed over many dynamical times. The
kinetic equation is obtained by simply averaging the BBGKY equations over the fast angle that describes motion along these ellipses.
This so-called Balescu-Lenard equation describes self-consistently the long-term evolution of the distribution of quasi-Keplerian orbits
around the central object: it models the diffusion and drift of their actions, induced through their mutual resonant interaction. Hence,
it is the master equation that describes the secular effects of resonant relaxation. We show how it captures the phenonema of mass
segregation and of the relativistic Schwarzschild barrier recently discovered in N-body simulations.
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1. Introduction

The stars in a stellar cluster surrounding a dominant supermassive
black hole (BH) move in a quasi-Keplerian potential. Their orbits
are ellipses that maintain their spatial orientation for many orbital
periods. So, for many purposes, the cluster can be thought of as a
system of massive wires, in which the mass of each star is smeared
out along the path traced by its quasi-Keplerian orbit. The conse-
quences of this idea were first developed by Rauch & Tremaine
(1996), who showed that wire-wire interactions greatly enhance
the relaxation of the stars’ angular momenta when compared to
conventional estimates that ignore the coherence of the stars’ or-
bits over many dynamical times and consider only uncorrelated
two-body encounters. They named this phenomenon “resonant
relaxation”, because such enhanced relaxation occurs more gener-
ally in any potential in which the three-dimensional vector of stel-
lar orbital frequencies Ω satisfies a commensurability condition
of the form n·Ω'0 for some vector of integers n = (n1, n2, n3).

Understanding the effects of these relaxation processes in
galactic nuclei is important when predicting the rates of tidal
disruptions of stars by black holes (e.g. Rauch & Tremaine 1996;
Rauch & Ingalls 1998), predicting merging rates of binary su-
permassive black holes (e.g. Yu 2002) or of gravitational wave
signatures from star-BH interactions (e.g. Hopman & Alexander
2006; Merritt et al. 2011). Resonant relaxation provides as well
a promising framework for explaining some of the puzzling fea-
tures of the young stellar populations found at the centre of our
own Galaxy (e.g. Kocsis & Tremaine 2011).

A first way to study the evolution of such star clusters is
by direct N-body simulations. Unfortunately, extracting physi-
cal insights from such simulations is challenging, because the
complex dynamical processes involved are entangled and, more

practically, the computational costs of running the simulations
typically mean that one can run just a few realisations, each with
relatively small N. For problems that focus on resonant relaxation
phenomena, one can often do better by using N-wires codes (e.g.
Kocsis & Tremaine 2015) in which individual stars are replaced
by orbit-averaged Keplerian wires.

A complementary way of understanding these systems is by
using the tools of kinetic theory. For plasmas, Balescu (1960)
and Lenard (1960) have developed a rigorous kinetic theory that
takes the most important collective effects into account. In this
theory, the coupled evolution equations for the system’s one-body
distribution function and its two-body correlation function are
reduced to a single equation – the Balescu-Lenard equation –
that describes the evolution of the one-body distribution func-
tion alone. See Chavanis (2010, 2013a,b), Fouvry et al. (2016a),
for a review on the early development of kinetic theory for plas-
mas, stellar systems, and other long-range interacting systems.
The original Balescu-Lenard formalism was developed for ho-
mogeneous plasmas. One way of generalising it to inhomoge-
neous self-gravitating systems, such as star clusters, was proposed
by Gilbert (1968). Sridhar & Touma (2016a,b) have recently ap-
plied Gilbert’s methods to the secular evolution of a star cluster
around a BH, which is the problem addressed by the present
paper.

An alternative way of generalising the Balescu-Lenard formal-
ism to inhomogeneous systems has been presented by Heyvaerts
(2010) and Chavanis (2012), who reformulate the non-linear ki-
netic equation in terms of the angle-action variables that are
appropriate for spatially inhomogeneous multi-periodic systems.
Fouvry et al. (2015a,b, 2016b) have applied this formalism to
describe the secular response of tepid self-gravitating stellar discs.
The resulting inhomogeneous Balescu-Lenard equation accounts
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for the self-induced secular orbital diffusion of a self-gravitating
system driven by the internal shot noise due to the finite number N
of particles involved. In common with all results based on the
Balescu-Lenard formalism, it is valid to order O(1/N) in a formal
expansion of the dynamics ordered by the small parameter 1/N.
Therefore, it describes the evolution of the system on timescales
of about Ntd, where td is the dynamical time. The secular interac-
tions between particles need not be local in space: they need only
correspond to gravitationally amplified long-range correlations
via resonances.

In its original form, however, the Balescu-Lenard formalism
assumes that resonances are localised in action space and not
degenerate. Therefore, it must be re-examined before it can be
applied to the degeneracies inherent to resonant systems. In this
paper, we show how to account for these degeneracies in the case
of a cluster of N particles orbiting a massive, possibly relativistic,
central body. We first average the equations of motion over the
fast angle associated with the orbital motion of the stars around
the BH. Once such an averaging is carried out, it turns out that the
general formalism of the inhomogenous Balescu-Lenard equa-
tion applies straightforwardly and yields the associated secular
collisional equation. This equation captures the diffusion and
drift of particles’ actions induced through their mutual resonant
interaction at the frequency shifts present in addition to the mean
Keplerian dynamics, for instance induced by the self-gravity of
the cluster or relativistic effects. Hence it is well suited to de-
scribe the secular evolution of a large set of particles orbiting
around a massive object, for instance to account for the long-term
evolution of a disc or a sphere of (possibly relativistic) stars near
a galactic centre, or a proto-planetary debris disc circling a star.
As such, it captures the secular effects of a sequence of polarised
wire-wire interactions (corresponding to scalar or vector resonant
relaxation) on the underlying orbital structure of the cluster.

The paper is organised as follows. Section 2 derives the
BBGKY hierarchy of a system with a massive central body using
canonical coordinates to account properly for the black hole’s
motion. Section 3 introduces angle-action coordinates for such
quasi-Keplerian systems. Section 4 averages the corresponding
dynamical equations over the fast angles of the Keplerian mo-
tion. Section 5 presents the degenerate one and multi-component
Keplerian Balescu-Lenard equations (Appendix B details both
derivations, following the steps of Heyvaerts 2010, while also cor-
recting for a minor issue in the multi-component case). Section 6
discusses applications to the cases of razor-thin axisymmetric
and spherical clusters orbiting a massive central object, and com-
pares our results to those of Sridhar & Touma (2017) and others,
while Sect. 7 concludes. Appendix A outlines the relativistic
precessions frequencies involved near a massive black hole, and
Appendix C presents the stochastic counterpart of the Keplerian
Balescu-Lenard equation.

2. The BBGKY hierarchy

Consider a system of N stars in motion about a central black hole
of mass M•, in which each star has mass µ. We assume that the
total stellar mass M? ≡ µN is small enough that the ratio

ε ≡ M?/M• � 1. (1)

Let X• be the location of the BH and Xn be the location of the nth
star referred to an inertial frame. The Hamiltonian for the system

is then given by

H =
P2
•

2M•
+

N∑
i=1

P2
i

2µ

+ µM•
N∑

i=1

U(|Xi−X•|) + µ2
N∑

i< j

U(|Xi − X j|)

+ µM?

N∑
i=1

Φrel(Xi−X•), (2)

in which the canonical momenta are given by P•≡M•Ẋ• and
Pn≡µẊn. Here, U(|X|) corresponds to the interaction potential,
that is U(|X|)≡−G/|X| in the gravitational context. In Eq. (2), the
first two terms correspond to the kinetic energy of the BH and
the stars. The third term corresponds to the Keplerian potential
of the BH, while the fourth term is associated with the pairwise
interactions among stars. Finally, the third line of Eq. (2) accounts
for the relativistic correction forces such as the Schwarzschild
and Lense-Thirring precessions occurring in the vicinity of the
BH (see Appendix A), where the normalisation prefactor µM?

was added for later convenience. For simplicity, we neglected any
additional external perturbations, which could offset the system.
This will be the subject of a future work.

Let us now rewrite the Hamiltonian from Eq. (2) as N
decoupled Keplerian Hamiltonians plus perturbations. We fol-
low Duncan et al. (1998) and carry out a canonical transformation
to a new set of coordinates, the democratic heliocentric coordi-
nates (x•, x1, ..., xN) defined as

x• =
1

Mtot

M• X•+
N∑

i=1

µ Xi

 ; xi = Xi−X•, (3)

where we have introduced the total mass of the system
Mtot = M•+M?. In Eq. (3), x• corresponds to the position of
the system’s centre of mass and xi to the locations of the stars in
the frame centred on the BH. These relations have inversion

X• = x•−
1

Mtot

N∑
i=1

µ xi; Xi = x•+xi−
1

Mtot

N∑
j=1

µ x j. (4)

As obtained in Duncan et al. (1998), the associated canonical
momenta (p•, p1, ..., pN) are

p• = P•+
N∑

i=1

Pi; pi = Pi−
µ

Mtot

P•+
N∑

j=1

P j

 . (5)

Within these new canonical coordinates, the Hamiltonian from
Eq. (2) takes the form

H =

N∑
i=1

 p2
i

2µ
+µM•U(|xi|)+µM?Φrel(xi)

 + µ2
N∑

i< j

U(|xi−x j|)

+
p2
•

2Mtot
+

1
2M•

 N∑
i=1

pi

2

, (6)

which consists of N independent Keplerian Hamiltonians (first
term of the first line) plus the two-body couplings among them
(second term) plus additional kinetic terms (second line). The evo-
lution of the total momentum p• is given by ṗ• = −∂H/∂x• = 0.
Without loss of generality, we may therefore assume that p• = 0.
The evolution of the barycentre position is then given by
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ẋ• = ∂H/∂p• = p•/Mtot = 0, and we therefore set x• = 0. Intro-
ducing the notation un≡ pn/µ, ẋn, the Hamiltonian from Eq. (6)
becomes

H =

N∑
i=1

[
µ

2
u2

i +µM•U(|xi|)+µM?Φrel(xi)
]

+ µ2
N∑

i< j

U(|xi−x j|)

+
µ2

2M•

 N∑
i=1

ui

2

, (7)

in which one of the kinetic terms in the second line has been
transformed away.

In order to obtain a statistical description of the system, we
now introduce its N-body probability distribution function (PDF)
PN(Γ1, ...,ΓN , t) defined so that PN(Γ1, ...,ΓN , t) dΓ1...dΓN is at
time t the probability of finding particle 1 within the volume ele-
ment dΓ1 located at the phase space point Γ1 = (x1, u1), particle 2
within dΓ2 of the phase space point Γ2 = (x2, u2), and so on. We
normalise PN such that∫

dΓ1...dΓN PN(Γ1, ...,ΓN , t) = 1. (8)

It evolves according to Liouville’s equation

∂PN

∂t
+

N∑
i=1

[
ẋi ·
∂PN

∂xi
+u̇i ·

∂PN

∂ui

]
= 0. (9)

The dynamics of the individual particles are given by Hamilton’s
equations, µdxi/dt = ∂H/∂ui and µdui/dt = −∂H/∂xi, where the
system’s Hamiltonian was obtained in Eq. (7). From PN , we
define reduced PDFs,

Pn(Γ1, ...,Γn, t) ≡
∫

dΓn+1...dΓN PN(Γ1, ...,ΓN , t), (10)

by integrating over the phase space locations of particles n + 1
to N. To obtain the evolution equation of any reduced PDF Pn, we
integrate Liouville’s Eq. (9) over dΓn+1...dΓN and use the fact that
PN and H are unchanged under permutations of their arguments.
This leads to the general term of the BBGKY hierarchy

∂Pn

∂t
+

n∑
i=1


ui+

ε

N

n∑
j=1

u j

· ∂Pn

∂xi
+

M•Fi0+µ

n∑
j=1, j,i

Fi j+M?Fir

· ∂Pn

∂ui


+ (N−n)

n∑
i=1

∫
dΓn+1

[
ε

N
un+1 ·

∂Pn+1

∂xi
+µFi,n+1 ·

∂Pn+1

∂ui

]
= 0.

(11)

Here, we have written the force exerted by particle j on par-
ticle i as µF i j = −µ∂Ui j/∂xi, using the shorthand notation
Ui j = U(|xi−x j|). The force exerted by the BH on particle i is
denoted by M•F i0 = −M•∂Ui0/∂xi and the force associated with
the relativistic corrections as M?F ir = −M?∂Φrel/∂xi.

It is convenient to replace these PDFs by the reduced distribu-
tion functions (DFs)

fn(Γ1, ...,Γn, t) ≡ µn N!
(N−n)!

Pn(Γ1, ...,Γn, t), (12)

in terms of which Eq. (11) can be rewritten as

∂ fn
∂t

+

n∑
i=1


ui+

ε

N

n∑
j=1

u j

· ∂ fn
∂xi

+

M•Fi0+µ

n∑
j=1, j,i

Fi j+M?Fir

· ∂ fn
∂ui


+

n∑
i=1

∫
dΓn+1

[
1

M•
un+1 ·

∂ fn+1

∂xi
+Fi,n+1 ·

∂ fn+1

∂ui

]
= 0.

(13)

To isolate the contributions to fn that arise from correlations
among particles, let us introduce the cluster representation of the
DFs. We define the 2-body correlation function g2 in terms of f1
and f2 via

f2(Γ1,Γ2) = f1(Γ1) f1(Γ2) + g2(Γ1,Γ2). (14)

Similarly, the 3-body correlation function g3 is defined by

f3(Γ1,Γ2,Γ3) = f1(Γ1) f1(Γ2) f1(Γ3) + f1(Γ1) g2(Γ2,Γ3)
+ f1(Γ2) g2(Γ1,Γ3) + f1(Γ3) g2(Γ1,Γ2)
+ g3(Γ1,Γ2,Γ3). (15)

These correlation functions have simple dependence on the num-
ber of particles N. It is straightforward to check that the following
normalisations hold:∫

dΓ1 f1(Γ1) = µN;
∫

dΓ1dΓ2 g2(Γ1,Γ2) = −µ2N;∫
dΓ1dΓ2dΓ3 g3(Γ1,Γ2,Γ3) = 2µ3N. (16)

As the individual mass scales like µ ∼ 1/N, one immediately has
| f1| ∼ 1, |g2| ∼ 1/N, and |g3| ∼ 1/N2. Using the decompositions
from Eqs. (14) and (15), after some simple algebra, the first two
equations of the BBGKY hierarchy from Eq. (13) become

∂ f1
∂t

+

[
u1+

ε

N
u1

]
·
∂ f1
∂x1

+M•F10 ·
∂ f1
∂u1

+

[∫
dΓ2F12 f1(Γ2)

]
·
∂ f1
∂u1

+M?F1r ·
∂ f1
∂u1

+

∫
dΓ2F12 ·

∂g2(Γ1,Γ2)
∂u1

+
1

M•

∂ f1
∂x1
·

∫
dΓ2 u2 f1(Γ2)+

1
M•

∫
dΓ2 u2 ·

∂g2(Γ1,Γ2)
∂x1

= 0,

(17)

and

1
2
∂g2

∂t
+

[
u1+

ε

N
(u1+u2)

]
·
∂g2

∂x1
+
ε

N
u2 ·

∂ f1
∂x1

f1(Γ2)

+M•F10 ·
∂g2

∂u1
+

[∫
dΓ3F13 f1(Γ3)

]
·
∂g2

∂u1

+M?F1r ·
∂g2

∂u1
+ µF12 ·

∂ f1
∂u1

f1(Γ2)+
[∫

dΓ3F13g2(Γ2,Γ3)
]
·
∂ f1
∂u1

+
1

M•

∂ f1
∂x1
·

∫
dΓ3 u3g2(Γ2,Γ3) +

1
M•

∂g2

∂x1
·

∫
dΓ3 u3 f1(Γ3)

+µF12 ·
∂g2

∂u1
+

∫
dΓ3F13 ·

∂g3(Γ1,Γ2,Γ3)
∂u1

+
1

M•

∫
dΓ3 u3 ·

∂g3(Γ1,Γ2,Γ3)
∂x1

+(1↔2) = 0, (18)

where (1↔2) means that all preceding terms are written out
again, but with indices 1 and 2 swapped.

We now use the scalings obtained in Eq. (16) to truncate
Eqs. (17) and (18) at order 1/N. Notice that the system includes
two small parameters, namely 1/N associated with the discrete-
ness of the system and ε = M?/M• associated with the amplitude
of the non-Keplerian components. As will be emphasised in the
upcoming calculations, we will perform kinetic developments,
where we only keep terms of the order ε and ε/N. In Eq. (17), all
the terms are of order 1/N or larger, and should therefore all be
kept. In Eq. (18), the first four lines are of order 1/N (except for
the correction (ε/N)(u1+u2)·∂g2/∂x1 which may be neglected),
while all the terms from the two last lines are of order 1/N2 and
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may therefore be neglected. Notice that the first term on the fifth
line of Eq. (18), which, while being of order 1/N2, can never-
theless get arbitrarily large as particles 1 and 2 get closer. This
term accounts for strong collisions between two particles, which
are not accounted for in the present formalism. In addition to
these truncations, and in order to consider terms of order 1, let
us finally introduce the system’s 1-body DF F and its 2-body
autocorrelation function C as

F =
f1

M?
; C =

g2

µM?
· (19)

Moreover, in order to emphasise the various order of magnitude
of the forces present in the problem, let us also rescale some of
the quantities appearing in Eqs. (17) and (18). Let us first rescale
the interaction potential using the mass of the central black hole,
so as to have the relations

Fi j = −
∂Ui j

∂xi
; Ui j = −

GM•
|xi−x j|

· (20)

Similarly, the relativistic potential Φr = Φrel is also rescaled so
that

Fir = −
∂Φr

∂xi
; Φr→

Φr

M•
; Fir→

Fir

M•
· (21)

Following these various truncations and renormalisations,
Eq. (17) becomes

∂F
∂t

+

[
u1+

ε

N
u1

]
·
∂F
∂x1

+F10 ·
∂F
∂u1

+ε

[∫
dΓ2F12F(Γ2)

]
·
∂F
∂u1

+εF1r ·
∂F
∂u1

+
ε

N

∫
dΓ2F12 ·

∂C(Γ1,Γ2)
∂u1

+ε
∂F
∂x1
·

∫
dΓ2 u2 F(Γ2)+

ε

N

∫
dΓ2 u2 ·

∂C(Γ1,Γ2)
∂x1

= 0, (22)

while Eq. (18) becomes

1
2
∂C

∂t
+u1 ·

∂C

∂x1
+F10 ·

∂C

∂u1
+ε u2 ·

∂F
∂x1

F(Γ2)

+ε
[∫

dΓ3F13F(Γ3)
]
·
∂C

∂u1
+εF1r ·

∂C

∂u1

+εF12 ·
∂F
∂u1

F(Γ2)+ε
[∫

dΓ3F13C(Γ2,Γ3)
]
·
∂F
∂u1

+ε
∂F
∂x1
·

∫
dΓ3 u3 C(Γ2,Γ3)+ε

∂C

∂x1
·

∫
dΓ3 u3 F(Γ3)+(1↔2) = 0.

(23)

The next step of the calculation involves rewriting Eqs. (22)
and (23) within appropriate angle-action coordinates allowing
us to capture in a simple manner the dominant mean Keplerian
motion due to the central BH. When considering Keplerian po-
tentials, one has to deal with additional dynamical degeneracies
between the orbital frequencies, which should be handled with
care, as we will now detail.

3. Degenerate angle-action coordinates

In Eqs. (22) and (23), one can note the presence of an advection
term u1 ·∂/∂x1+F10 ·∂/∂u1 associated with the Keplerian motion
driven by the central black hole. The next step of the derivation is
to introduce the appropriate angle-action coordinates (Goldstein
1950; Born 1960; Binney & Tremaine 2008) to simplify this in-
tegrable Keplerian motion. We therefore remap the physical coor-
dinates (x, u) to the Keplerian angle-action ones (θ, J). Along the

unperturbed Keplerian orbits, the actions J are conserved, while
the angles θ are 2π-periodic, evolving with the frequency ΩKep
defined as

θ̇ = ΩKep(J) ≡
∂HKep(J)

∂J
, (24)

where HKep is the Hamiltonian associated with the Keplerian
motion due to the black hole. For 3D spherical potentials,
the usual angles and actions (Binney & Tremaine 2008) are
given by

(J, θ) = (J1, J2, J3, θ1, θ2, θ3) = (Jr, L, Lz, θ1, θ2, θ3), (25)

where Jr is the radial action, L the magnitude of the angular mo-
mentum, and Lz its projection along the z-axis. The Keplerian
Hamiltonian then becomes HKep = HKep(Jr +L). Another choice
of angle-action coordinates in 3D is given by the Delaunay
variables (Sridhar & Touma 1999; Binney & Tremaine 2008) de-
fined as

(J, θ) = (I, L, Lz, w, g, h). (26)

In Eq. (26), (I = Jr +L, L, Lz) are the three actions of the system,
while (w, g, h) are the associated angles. Here, w stands for the
orbital phase or mean anomaly, g for the angle from the ascending
node to the periapse, and h for the longitude of the ascending
node. With these variables, one has HKep = HKep(I), so that the
angle w advances at the frequency ẇ = ΩKep = ∂HKep/∂I, while
the angles g and h are constant. The existence of these additional
conserved quantities makes the Keplerian potential dynamically
degenerate. This can have some crucial consequences on its long-
term behaviour, as we will now detail.

To clarify the upcoming discussions we denote as d the di-
mension of the considered physical space, for instance d = 2 for
a razor-thin disc. In this space, we consider an integrable poten-
tial ψ and an associated angle-action mapping (x, u) 7→ (θ, J). A
potential is said to be degenerate if there exists n∈Zd such that

∀J , n·Ω(J) = 0, (27)

where it is understood that the vector n is independent of J , so that
the degeneracy is global. A given potential may have more than
one such degeneracy, and we denote as k the degree of degeneracy
of a potential, that is the number of linearly independent vectors n
satisfying Eq. (27). For example, for the angle-action coordinates
from Eq. (25), the frequencies and degeneracy vectors are given
by

Ω3D = (ΩKep,ΩKep, 0) ⇒ n1 = (1,−1, 0) and n2 = (0, 0, 1),
(28)

so that k = 2. Using the Delaunay angle-action coordinates from
Eq. (26), one can similarly write

ΩDel = (ΩKep, 0, 0) ⇒ n1 = (0, 1, 0) and n2 = (0, 0, 1), (29)

which also gives k = 2. The degree of degeneracy of the poten-
tial is independent of the chosen angle-action coordinates. The
Delaunay variables from Eq. (26) appear as a simpler choice than
the usual ones from Eq. (25), because of their simpler degeneracy
vectors.

For a given degenerate potential, one can always remap
the angle-action coordinates to get simpler degeneracies. In-
deed, let us assume that in our initial angle-action coordinates
(θ, J), we have at our disposal k degeneracy vectors n1, ... , nk.
Thanks to a linear transformation, we may change coordinates
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(θ, J) 7→ (θ′, J ′), so that in the new coordinates the k new degener-
acy vectors take the simple form n′i = ei, where ei are the natural
basis elements of Zd. Following Morbidelli (2002), as the vectors
ni are assumed to be linearly independent, we may complete this
family with d−k vectors nk+1, ..., nd ∈Z

d to have a basis over Qd.
We then define the transformation matrixA of determinant 1 as

A =
(
n1, ..., nd

)t
/ |

(
n1, ..., nd

)
|, (30)

and the new angle-action coordinates (θ′, J ′) are defined as

θ′ =A · θ; J ′ = (At)−1 · J. (31)

One can check that (θ′, J ′) are indeed new angle-action coor-
dinates, with J ′ conserved and θ′ ∈ [0, 2π]. Within these new
coordinates, the k degeneracy vectors are immediately given
by n′i = ei, that is the intrinsic frequencies satisfy Ω′i = 0 for
1 ≤ i ≤ k. The degeneracies of the potential got simpler. In the
upcoming calculations, we will always consider such simpler
angle-action coordinates, and we introduce the notations

θs = (θ1, ..., θk); θf = (θk+1, ...θd),

Js = (J1, ..., Jk); J f = (Jk+1, ..., Jd),
E = (J, θs), (32)

where θs and Js respectively stand for the slow angles and actions,
while θf and J f stand for the fast angles and actions. Finally, we
introduced E as the vector of all the conserved quantities (for
a Keplerian potential, this corresponds to a Keplerian elliptical
wire). For a degenerate potential, the slow angles are the angles
for which the associated frequencies are equal to 0, while these
frequencies are non-zero for the fast angles. Let us finally define
the degenerate angle-average with respect to the fast angles as

F(J, θs) ≡
∫

dθf

(2π)d−k F(J, θs, θf). (33)

We now use these various properties to rewrite Eqs. (22) and (23)
using the angle-action coordinates appropriate for the Keplerian
motion due to the central BH. In these coordinates, the Keplerian
advection term becomes

u1 ·
∂

∂x1
+ F 10 ·

∂

∂u1
= ΩKep ·

∂

∂θ
· (34)

A nice property of the average from Eq. (33), is that the collision-
less advection term from Eq. (34) then naturally vanishes, so that
one has

ΩKep ·
∂F
∂θ

=

∫
dθk+1

2π
...

dθd

2π

d∑
i=k+1

Ωi
Kep(J)

∂F
∂θi

= 0. (35)

Finally, the mapping (x, u) 7→ (θ, J) preserves the infinitesimal
volumes so that dΓ = dxdu = dθdJ. In addition, it also preserves
Poisson brackets, so that for two functions G1(x, u), and G2(x, u),
one has[
G1,G2

]
=
∂G1

∂x
·
∂G2

∂u
−
∂G1

∂u
·
∂G2

∂x
=
∂G1

∂θ
·
∂G2

∂J
−
∂G1

∂J
·
∂G2

∂θ
· (36)

In order to shorten the notations, let us now introduce the rescaled
self-consistent potential Φ as

Φ(x1) =

∫
dΓ2 U12 F(Γ2); −

∂Φ

∂x1
=

∫
dΓ2F12 F(Γ2). (37)

One can now rewrite Eq. (22) within these angle-action coordi-
nates and it takes the form

∂F
∂t

+Ω1
Kep ·

∂F
∂θ1

+ ε
[
F,Φ + Φr

]
+
ε

N

∫
dΓ2

[
C(Γ1,Γ2),U12

]
(1)

+
ε

N

[
F,
u2

1

2

]
+ ε

[
F, u1 ·

∫
dΓ2 u2 F(Γ2)

]
+
ε

N

∫
dΓ2

[
C(Γ1,Γ2), u1 · u2

]
(1) = 0, (38)

where we have written Ω1
Kep = ΩKep(J1) and have introduced the

notation[
G1(Γ1,Γ2),G2(Γ1,Γ2)

]
(1) =

∂G1

∂θ1
·
∂G2

∂J1
−
∂G1

∂J1
·
∂G2

∂θ1
, (39)

so that it corresponds to the Poisson bracket with respect to the
variables 1. In Eq. (38), the terms of the second and third lines
are associated with the additional kinetic terms appearing in
the Hamiltonian from Eq. (7). As we will emphasise later on,
once averaged over the fast Keplerian dynamics, these terms will
be negligible at the order considered here. Similarly, one can
straightforwardly rewrite Eq. (23) as

1
2
∂C

∂t
+Ω1

Kep ·
∂C

∂θ1
+ε

[
C(Γ1,Γ2),Φ+Φr

]
(1)+ε

[
F(Γ1)F(Γ2),U12

]
(1)

+ε

∫
dΓ3 C(Γ2,Γ3)

[
F(Γ1),U13

]
(1)

+ε
[
F(Γ1), u1 ·u2F(Γ2)

]
(1)+ε

[
F(Γ1), u1 ·

∫
dΓ3 u3 C(Γ2,Γ3)

]
(1)

+ε
[
C(Γ1,Γ2), u1 ·

∫
dΓ3 u3 F(Γ3)

]
(1)

+(1↔2) = 0, (40)

where the terms from the two last lines are associated with the
additional kinetic terms from Eq. (7), and will become negligible
once averaged over the fast Keplerian dynamics. The rewriting
from Eq. (38) is particularly enlightening, since one can easily
identify in its first line the three relevant timescales of the problem.
These are: i) the dynamical timescale TKep = 1/ΩKep associated
with the Keplerian advection term Ω1

Kep ·∂F/∂θ1; (ii) the secu-
lar collisionless timescale of evolution Tsec = ε−1TKep associated
with the potential contributions ε[Φ + Φr]; and finally (iii) the
collisional timescale of relaxation Trelax = NTsec, associated with
the last term in the first line of Eq. (38).

4. Fast averaging the evolution equations

Starting from Eqs. (38) and (40), let us carry out an average
over the degenerate angles as defined in Eq. (33). We recall that
the main virtue of such an averaging is to naturally cancel out
any contributions associated with the Keplerian advection term,
as observed in Eq. (35). We start from Eq. (38) and multiply it
by

∫
dθf/(2π)d−k. In order to estimate the average of the various

crossed terms in Eq. (38), let us assume that the DF of the system
can be expanded as

F = F+ε f with
{

f ∼O(1),
f = 0,

(41)

where ε�1 is a small parameter of order 1/N. This ansatz is the
crucial assumption of the present derivation. Indeed, the BH’s
domination on the dynamics strongly limits the efficiency of vio-
lent relaxation or phase mixing to allow for a rapid dissolution
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of any dependence on θf . Hence it is somewhat arbitrarily as-
sumed here that this condition has been achieved, so that, for our
purposes, the system starts in a phased-mixed state.

We now discuss in turn how the various terms appearing in
Eq. (38) can be averaged with respect to the fast Keplerian angle.
In the first Poisson bracket of Eq. (38), one should keep in mind
that the self-consistent potential Φ, introduced in Eq. (37), should
be seen as a functional of F. As a consequence, this term takes
the form

ε
[
F,Φ(F)+Φr

]
= ε

[
F+ε f ,Φ(F+ε f )+Φr

]
= ε

[
F,Φ(F)+Φr

]
+O(εε)

= (2π)d−kε
[
F,Φ(F)+Φr

]
+O(εε), (42)

where the averaged self-consistent potential Φ was introduced as

Φ(E1) =

∫
dE2 F(E2) U12(E1,E2). (43)

In Eq. (43), for clarity, the notation was shortened for the self-
consistent potential as Φ = Φ(F). The (doubly) averaged interac-
tion potential U12 is defined as

U12(E1,E2) =

∫ dθf
1

(2π)d−k

dθf
2

(2π)d−k U12(Γ1,Γ2), (44)

while the angle-averaged potential Φr was also introduced as

Φr(E) =
1

(2π)d−k

∫
dθf

(2π)d−k Φr(Γ), (45)

where the prefactor 1/(2π)d−k, was introduced for convenience.
As emphasised in Eq. (42), one should note that at first order in
ε and zeroth order in ε, the self-consistent potential has to be
computed while only considering the averaged system’s DF F.

To deal with the second Poisson bracket of Eq. (38), the same
double average as introduced in Eq. (44) should be performed
on C. As we did for Eq. (41), it is assumed that the 2-body
correlation can be developed as

C = C+εc with
{

c∼O(1),
c = 0.

(46)

At first order in ε and zeroth order in ε, the third term from
Eq. (38) can immediately be rewritten as
ε

N

∫
dΓ2

[
C(Γ1,Γ2),U12

]
(1) =

ε(2π)d−k

N

∫
dE2

[
C(E1,E2),U12

]
(1).

Finally, at first order in ε and zeroth order in ε, the terms from
the two last lines of Eq. (38) will involve the quantities∫

dθf
1 u1 = 0;

∫
dθf

1

u2
1

2
∝ HKep(J f

1). (47)

The first identity comes from the fact that Keplerian orbits are
closed, so that the mean displacement over one orbit is zero, while
the second identity comes from the virial theorem. As these terms
either vanish or do not depend on the slow coordinates θs and Js,
they will not contribute to the dynamics at the orders considered
here once averaged over the fast angle. Therefore, keeping only
terms of order ε and ε/N, one can finally rewrite Eq. (38) as
∂F
∂t

+ ε(2π)d−k
[
F,Φ + Φr

]
+
ε(2π)d−k

N

∫
dE2

[
C(E1,E2),U12

]
(1)

= 0. (48)

In Eq. (48), we note that all the functions appearing in the Poisson
brackets only depend on E1 = (J1, θ

s
1). As a consequence, the

Poisson brackets defined in Eq. (36) take the shortened form[
G1(E),G2(E)

]
=
∂G1

∂θs ·
∂G2

∂Js −
∂G1

∂Js ·
∂G2

∂θs , (49)

so that only derivatives with respect to the slow coordinates ap-
pear. Let us finally introduce the rescaled time τ as

τ = (2π)d−kεt, (50)

so that Eq. (48) becomes

∂F
∂τ

+
[
F,Φ+Φr

]
+

1
N

∫
dE2

[
C(E1,E2),U12

]
(1) = 0. (51)

One may use a similar angle-averaging procedure for the sec-
ond equation of the BBGKY hierarchy. Indeed, multiplying
Eq. (40) by

∫
dθf

1dθf
2/(2π)2(d−k), relying on the developments from

Eqs. (41) and (46), and keeping only terms of order ε, Eq. (40)
can finally be rewriten as

1
2
∂C

∂τ
+

[
C(E1,E2),Φ(E1) + Φr(E1)

]
(1)

+

[
F(E1)F(E2),U12

]
(1)

(2π)d−k

+

∫
dE3 C(E2,E3)

[
F(E1),U13

]
(1)

+ (1↔ 2) = 0, (52)

where one can note that all the additional kinetic terms of the
two last lines of Eq. (40) vanish at the considered order, when
averaged over the fast Keplerian angle.

Equations (51) and (52) are the main results of this section.
They describe the coupled evolutions of the system’s averaged DF,
F and 2-body correlation C. A rewriting of the same pair of equa-
tions has recently been derived by Sridhar & Touma (2016a,b)
using Gilbert’s method. At this stage, one could investigate at
least four different dynamical regimes of evolution for the system:

I. Considering Eq. (51), the Keplerian wires could initially be
far from a quasi-stationary equilibrium, so that

[
F,Φ+Φr

]
,0.

One then expects that this out-of-equilibrium system will
undergo a phase of violent relaxation (Lynden-Bell 1967),
allowing it to rapidly reach a quasi-stationary equilibrium.
We do not investigate this process here, but still rely on
the assumption that the collisionless violent relaxation of
the wires’ DF can be sufficiently efficient for the system
to briefly reach a quasi-stationary stable state, which will
then be followed by a much slower secular evolution, either
collisionless or collisional.

II. For a given DF of stationary wires, one could also investigate
the possible existence of collisionless dynamical instabilities
associated with the collisionless part of the evolution
Eq. (51), namely ∂F/∂τ+

[
F,Φ+Φr

]
= 0. Such instabilities

are not considered in the present paper, and we will
assume, as will be emphasised in the upcoming derivations,
that throughout its evolution the system always remains
dynamically stable with respect to the collisionless dynamics.
See for instance Tremaine (2005), Polyachenko et al. (2007),
Jalali & Tremaine (2012) for examples of stability investiga-
tions in this context.

III. Once it is assumed that the system has reached a quasi-
stationary stable state, one can study the secular evolution
of this system along quasi-stationary equilibria. Such
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a long-term evolution can first be induced by the presence of
external stochastic perturbations. To capture such a secular
collisionless evolution, one should neglect contributions
from the collisional term in 1/N in Eq. (51), and look for the
long-term effects of stochastic perturbations. The formalism
appropriate for such a secular collisionless stochastic forcing
is similar to the one presented in Fouvry et al. (2015c)
in the context of stellar discs. The specification of such
externally forced secular dynamics to the case of dynamically
degenerate systems is postponed to a future work.

IV. During its secular evolution along quasi-stationary equilibria,
the dynamics of an isolated system can also be driven by
finite-N fluctuations. This amounts to neglecting the effects
due to any external stochastic perturbations, and considering
the contributions associated with the collisional term in 1/N
in Eq. (51). This requires to solve simultaneously the system
of two coupled evolution Eqs. (51) and (52). This approach
is presented in Sect. 5, where the analogs of the (bare, that
is without collective effects) Landau equation and (dressed,
that is with collective effects) Balescu-Lenard equation are
derived in the context of degenerate dynamical systems, such
as galactic nuclei. As will be emphasised later on, these diffu-
sion equations, sourced by finite-N fluctuations capture the
known mechanism of resonant relaxation (Rauch & Tremaine
1996). See Bar-Or & Alexander (2014) for a similar study of
the effect of the finite-N stochastic internal forcing via the
so-called η-formalism.

We note that one could also consider the secular evolution of a
non-axisymmetric set of eccentric orbits orbiting a black hole as
an unperturbed collisionless equilibrium (corresponding to the
expected configuration of the galactic centre of M 31 Tremaine
1995). The derivation of the associated Balescu-Lenard equation
for such a configuration would first involve identifying new angle-
action variables for the non-axisymmetric configuration so as
to satisfy II, and then extend the formalism accordingly. This
will not be explored any further in this paper. Regarding item II,
we expect that, depending on the relative mass of the considered
cluster, there is a regime where the self-induced orbital precession
is significant, but the self-gravity of the wires is not strong enough
to induce a collisionless instability. In this regime, accounting
for the polarisation of the orbits becomes important in item III
and IV. This motivates the rest of the paper.

5. The degenerate Balescu-Lenard equation

We now show how to obtain the closed kinetic equations – the
degenerate Balescu-Lenard and Landau equations – when con-
sidering the 1/N collisional contribution present in the evolution
Eq. (51). It will be assumed that the system is isolated so that
it experiences no external perturbations. Our aim is to obtain a
closed kinetic equation involving F only. To do so, we rely on the
adiabatic approximation (or Bogoliubov’s ansatz) that the system
secularly relaxes through a series of collisionless equilibria. In
this context, collisionless equilibria are stationary (and stable)
steady states of the collisionless advection component of Eq. (51).
Therefore, it is assumed that throughout the secular evolution,
one has

∀τ,
[
F(τ),Φ(τ)+Φr(τ)

]
= 0. (53)

As already highlighted, it is expected that such collisionless equi-
libria are rapidly reached by the system (on a few Tsec), through

an out-of-equilibrium mechanism related to violent relaxation. In
addition, the symmetry of the system is expected to be such that
the collisionless equilibria are of the form

F(J, θs, τ) = F(J, τ), (54)

so that, during its secular evolution, the system’s averaged DF
does not have any slow angle dependence. Notice however that,
despite the hypothesis from Eq. (54), the averaged autocorrelation
C evolving according to Eq. (52) still depends on the two slow
angles θs

1 and θs
2. We also assume that the symmetry of the system

is such that

F = F(J) ⇒ Φ = Φ(J) and Φr = Φr(J). (55)

As we will see later on in Sects. 6.1 and 6.2, such symmetry is
satisfied for instance for razor-thin axisymmetric discs and 3D
spherical clusters (see also Appendix A for the expression of the
relativistic precession frequencies). Given Eqs. (54) and (55), the
equilibrium condition from Eq. (53) is immediately satisfied. We
introduce the precession frequencies Ωs as

Ωs(J) =
∂[Φ+Φr]
∂Js · (56)

These frequencies correspond to the precession frequencies of the
slow angles due to the joint contributions from the system’s self-
consistent potential and the relativistic corrections. Notice that
they do not involve the Keplerian frequencies from Eq. (24) any-
more and hence are not degenerate a priori. With them, one can
for example easily rewrite the collisionless precession advection
term from Eq. (52) as

[
C(E1,E2),Φ(E1)+Φr(E1)

]
(1) = Ωs

1 ·
∂C(E1,E2)

∂θs
1

, (57)

where the precession frequencies Ωs
1 = Ωs(J1) associated with

the slow angles θs
1 come into play.

The two coupled evolution Eqs. (51) and (52) are now
quasi-identical to the traditional coupled BBGKY equations
considered in Heyvaerts (2010) to derive the inhomogeneous
Balescu-Lenard equation for non-degenerate inhomogeneous
systems. Various methods have been proposed in the literature
to derive the closed kinetic equation satisfied by F. Heyvaerts
(2010) proposed a direct resolution of the BBGKY equations,
based on Bogoliubov’s ansatz. Chavanis (2012) considered a
rewriting of Eqs. (51) and (52) using the Klimontovich equa-
tion (Klimontovich 1967), and relied on a quasi-linear approx-
imation. Finally, in the limit where collective effects are not
accounted for, Fouvry et al. (2016a) recently presented a new
derivation of the relevant kinetic equation based on functional
integrals.

In the present paper, the derivation proposed by Heyvaerts
(2010) will be followed, by directly solving the two first averaged
BBGKY Eqs. (51) and (52). The basic idea of this approach is
to solve Eq. (52), so as to obtain the system’s autocorrelation
C as a functional of the system’s 1-body DF F. Injecting this
expression in Eq. (51) yields finally a closed kinetic equation
quadratic in F. The detailed calculations required to derive the in-
homogeneous degenerate Balescu-Lenard equation are presented
in Appendix B.
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5.1. The one component Balescu-Lenard equation

In its explicitly conservative form, the degenerate inhomogeneous
Balescu-Lenard equation reads

∂F
∂τ

=
π(2π)2k−d

N
∂

∂Js
1
·

 ∑
ms

1,m
s
2

ms
1

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1, J2,ms

1 ·Ω
s
1)|2

×

(
ms

1 ·
∂

∂Js
1
−ms

2 ·
∂

∂Js
2

)
F(J1) F(J2)

 . (58)

In Eq. (58), we recall that d is the dimension of the physical
space and k the number of degeneracies of the underlying zeroth-
order potential. The r.h.s. of Eq. (58) is the degenerate inho-
mogeneous Balescu-Lenard collision operator, which describes
the secular diffusion induced by dressed finite-N fluctuations. It
describes the distortion of Keplerian orbits as their actions dif-
fuse through their self-interaction. As expected, it vanishes in
the large N limit. Notice the presence of the resonance condi-
tion operating on their precession frequencies encapsulated by
the Dirac delta δD(ms

1 ·Ω
s
1−ms

2 ·Ω
s
2) (using the shortened notation

Ωs
i = Ωs(Ji)), where ms

1, ms
2 ∈ Z

k are integer vectors. In fact,
Eq. (58) shows that the diffusion occurs along preferred discrete
directions labelled by the resonance vectors ms

1. The integra-
tion over the dummy variable J2 scans action space for regions
where the resonance condition is satisfied, and such resonant
(possibly distant) encounters between orbits are the drivers of the
collisional evolution. The resonance condition is illustrated in
Fig. 1. Notice also that Eq. (58) involves the antisymmetric oper-
ator, ms

1 ·∂/∂Js
1−ms

2 ·∂/∂Js
2, which when applied to F(J1) F(J2)

weighs the relative number of pairwise resonant orbits caught in
this resonant configuration. The quantities 1/Dms

1,m
s
2
(J1, J2, ω)

are the so-called dressed susceptibility coefficients: each dis-
tribution entering the r.h.s. of Eq. (58) is boosted by this sus-
ceptibility. These dressed coefficients include the effects of the
gravitational wake induced by each wire, represented by the last
term of Eq. (52); in constrast, bare susceptibility coefficients (in-
troduced later) are obtained without taking this self-gravity into
account. In order to solve Poisson’s non-local equation relating
the DF’s perturbations and the induced potential perturbations,
Kalnajs’ matrix method (Kalnajs 1976) can be used to implement
a biorthonormal basis of potentials and densities ψ(p) and ρ(p)

such that

ψ(p)(x) =

∫
dx′ ρ(p)(x′) U(|x−x′|);

∫
dxψ(p)(x) ρ(q)∗(x) = −δ

q
p,

(59)

where U stands for the rescaled interaction potential from
Eq. (20). The dressed susceptibility coefficients appearing in
Eq. (58) are then given by

1
Dms

1,m
s
2
(J1, J2, ω)

=
∑
p,q

ψ
(p)
ms

1
(J1)

[
I−M̂(ω)

]−1

pq
ψ

(q)∗
ms

2
(J2), (60)

where I is the identity matrix, and M̂ is the system’s averaged
response matrix defined as

M̂pq(ω) = (2π)k
∑
ms

∫
dJ

ms ·∂F/∂Js

ω−ms ·Ωs ψ
(p)∗
ms (J)ψ

(q)
ms (J). (61)

In Eq. (61), the averaged basis elements ψ
(p)

were defined fol-
lowing Eq. (33). Their Fourier transform with respect to the slow

Fig. 1. Illustration of the resonance condition appearing in the degenerate
inhomogeneous Balescu-Lenard Eq. (58). Top-left: a set of two resonant
orbits precessing at the same frequency ωs. Top-right: in the rotating
frame at frequency ωs in which the two orbits are in resonance. Bottom:
fluctuations of the system’s DF in action space caused by finite-N effects
and showing overdensities for the blue and red orbits. The dashed line
correspond to the critical resonant line in action space along which the
resonance condition Ωs(J) = ωs is satisfied. The two set of orbits satisfy
a resonance condition for their precession frequencies, and uncorrelated
sequences of such interactions lead to a secular diffusion of the system’s
orbital structure following Eq. (58). Such resonances are non local in the
sense that the resonant orbits need not be close in action space nor in
position space. As emphasised in Sect. 6.1 for axisymmetric razor-thin
discs, symmetry enforces ms

1 = ms
2, so that the two orbits are caught in

the same resonance.

angles was also defined using the convention

ψ
(p)

(E) =
∑
ms

ψ
(p)
ms(J) eims·θs

; ψ
(p)
ms(J) =

∫
dθs

(2π)k e−ims·θs
ψ

(p)
(E). (62)

The susceptibility coefficients from Eq. (60) quantify the po-
larisation cloud around each orbit, which triggers sequences of
transient wakes (Julian & Toomre 1966; Toomre 1981). In the
secular timeframe, these are assumed to be instantaneous, via the
so-called Bogoliubov’s ansatz, as shown in Appendix B.1.

One can straightforwardly rewrite the Balescu-Lenard
Eq. (58) as an anisotropic non-linear diffusion equation, by in-
troducing the appropriate drift and diffusion coefficients. Equa-
tion (58) then reads

∂F
∂τ

=
∂

∂Js
1
·

∑
ms

1

ms
1

Ams
1
(J1)F(J1) + Dms

1
(J1) ms

1 ·
∂F
∂Js

1


 , (63)

where Ams
1
(J1) and Dms

1
(J1) are respectively the drift and dif-

fusion coefficients associated with a given resonance ms
1. The

secular dependence of these coefficients with the system’s aver-
aged DF, F, is not written out explicitly to simplify the notations
but is a central feature of the present formalism. In Eq. (63), the
drift coefficients Ams

1
(J1) and diffusion coefficients Dms

1
(J1) are
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given by

Ams
1
(J1)=−

π(2π)2k−d

N

∑
ms

2

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1,J2,ms

1 ·Ω
s
1)|

2 ms
2 ·
∂F
∂Js

2
,

Dms
1
(J1)=

π(2π)2k−d

N

∑
ms

2

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1,J2,ms

1 ·Ω
s
1)|

2 F(J2). (64)

When collective effects are not accounted for (that is when
the last term of Eq. (52) is neglected), the degenerate Balescu-
Lenard Eq. (58) becomes the degenerate Landau equation
(see Polyachenko & Shukhman 1982; Chavanis 2013b, for the
non-degenerate case), which reads

∂F
∂τ

=
π(2π)2k−d

N
∂

∂Js
1
·

 ∑
ms

1,m
s
2

ms
1

∫
dJ2 δD(ms

1 ·Ω
s
1−ms

2 ·Ω
s
2)

×
∣∣∣Ams

1,m
s
2
(J1, J2)

∣∣∣2 (
ms

1 ·
∂

∂Js
1
−ms

2 ·
∂

∂Js
2

)
F(J1) F(J2)

 .
(65)

Notice that this is just the previous Balescu-Lenard Eq. (58) with
the dressed 1/Dms

1,m
s
2
(J1, J2, ω) replaced by the bare susceptibil-

ity coefficients Ams
1,m

s
2
(J1, J2). The latter are related to the (partial)

Fourier transform of the interaction potential (Lynden-Bell 1994;
Pichon 1994; Chavanis 2013b) and read

Ams
1,m

s
2
(J1, J2) =

∫ dθs
1

(2π)k

dθs
2

(2π)k U12(E1,E2) e−i(ms
1·θ

s
1−ms

2·θ
s
2), (66)

so that the averaged interaction potential U12 from Eq. (44) can
be decomposed as

U12(E1,E2) =
∑

ms
1,m

s
2

Ams
1,m

s
2
(J1, J2) ei(ms

1·θ
s
1−ms

2·θ
s
2). (67)

One should note that the kinetic Eqs. (58) and (65), while defined
on the full action space J = (Js, J f), do not allow for changes in
the fast actions J f . Indeed, if one defines the marginal DF, PF , as
PF =

∫
dJsF(J), Eqs. (58) and (65) immediately give

∂PF

∂τ
= 0, (68)

so that the collisional secular diffusion occurs only in the direc-
tions J f = const.

5.2. Multiple components black hole environment

It is of prime importance to follow the joint long-term evolution
of multiple types of stars or black holes orbiting a central super-
massive black hole, as it will allow astronomers to capture their
relative segregation, when the lighter black holes sink in towards
the more massive one. In turn, this could allow us to predict the
expected rate of mergers and accretion events.

As already emphasised in Heyvaerts (2010), Chavanis (2012),
the Balescu-Lenard equation can also be written for a system
involving multiple components (corresponding to say, a spectrum
of stars and low mass black holes or debris of different masses
orbiting the central object). The different components will be
indexed by the letters “a” and “b”. The particles of the component
“a” have a mass µa and follow the DF Fa. As briefly detailed in

Appendix B.3 (which gives the details of all normalisations), the
evolution of each DF is given by

∂Fa

∂τ
= π(2π)2k−d ∂

∂Js
1
·

 ∑
ms

1,m
s
2

ms
1

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1, J2,ms

1 ·Ω
s
1)|2

×
∑

b

ηbms
1 ·
∂Fa

∂Js
1

Fb(J2)−ηaFa(J1) ms
2 ·
∂Fb

∂Js
2


 , (69)

where the dimensionless relative mass ηa = µa/M? was intro-
duced, and where M? =

∑
a Ma

? is the total active mass of the
system. In the multi-component case, the dressed susceptibility
coefficients are still given by Eq. (60). However, as expected, the
response matrix now encompasses all the active components of
the system which polarise so that

M̂pq(ω) = (2π)k
∑
ms

∫
dJ

ms ·∂(
∑

b Fb)/∂Js

ω−ms ·Ωs ψ
(p)∗
ms (J)ψ

(q)
ms (J).

In the limit where only one mass is considered, one has ηa = 1/Na,
and the single mass Balescu-Lenard Eq. (58) is recovered. Equa-
tion (69) describes the evolution of the “a” population, and differs
from Eq. (58) via the weight ηa, and the sum over “b” weighted
by ηb. As in Eq. (63), one can introduce drift and diffusion coeffi-
cients to rewrite Eq. (69) as

∂Fa

∂τ
=

∂

∂Js
1
·

∑
ms

1

ms
1

∑
b

ηaAb
ms

1
(J1)Fa(J1)+ηbDb

ms
1
(J1)ms

1 ·
∂Fa

∂Js
1


 ,

(70)

where the drift and diffusion coefficients Ab
ms

1
(J1) and Db

ms
1
(J1)

depend on the position in action space J1, the considered reso-
nance ms

1, and the component “b” used as the underlying DF to
estimate them. The drift coefficients and diffusion coefficients are
given by

Ab
ms

1
(J1) = −π(2π)2k−d

∑
ms

2

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1,J2,ms

1 ·Ω
s
1)|

2 ms
2 ·
∂Fb

∂Js
2
,

Db
ms

1
(J1)=π(2π)2k−d

∑
ms

2

∫
dJ2

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1,J2,ms

1 ·Ω
s
1)|

2 Fb(J2). (71)

Equation (70) can finally be rewritten as

∂Fa

∂τ
=

∂

∂Js
1
·

∑
ms

1

ms
1

ηaAtot
ms

1
(J1) Fa(J1)+Dtot

ms
1
(J1) ms

1 ·
∂Fa

∂Js
1


 ,
(72)

where the total drift and diffusion coefficients Atot
ms

1
and Dtot

ms
1

are
given by

Atot
ms

1
(J1) =

∑
b

Ab
ms

1
(J1); Dtot

ms
1
(J1) =

∑
b

ηbDb
ms

1
(J1).

In Eq. (72), the total drift coefficients are multiplied by the dimen-
sionless mass ηa of the considered component. This essentially
captures the known process of segregation, when a spectrum
of masses is involved, so that components with larger individ-
ual masses tend to narrower steady states. Indeed, the multi-
component Balescu-Lenard formalism captures the secular effect
of multiple resonant (non-local) deflections of lighter particles by
the more massive ones: the lighter population will drift towards
larger radii, while the massive one will sink in. This can be seen
for instance by seeking asymptotic stationary solutions to Eq. (72)
by nulling the curly brace in its r.h.s.

A71, page 9 of 24



A&A 598, A71 (2017)

5.3. Secular evolution increases Boltzmann entropy

Following closely the demonstration presented in Heyvaerts
(2010), let us define the system’s entropy S (τ) as

S (τ) = −

∫
dJ1 s(F(J1)), where s(x) = x log x. (73)

Differentiating Eq. (73) once with respect to τ yields

dS
dτ

= −

∫
dJ1 s′(F(J1))

∂F
∂t
· (74)

Let us introduce the system’s diffusion flux, Ftot(J1), given by

Ftot(J1) =
∑

ms
1,m

s
2

ms
1

∫
dJ2 αms

1,m
s
2
(J1, J2)

×

[
ms

1 ·
∂

∂Js
1
−ms

2 ·
∂

∂Js
2

]
F(J1) F(J2), (75)

with αms
1,m

s
2
(J1, J2) given by

αms
1,m

s
2
(J1, J2) =

π(2π)2d−k

N
δD(ms

1 ·Ω
s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1, J2,ms

1 ·Ω
s
1)|2
≥ 0, (76)

such that Eq. (58) reads

∂F
∂τ

=
∂

∂Js
1
·Ftot(J1). (77)

Using integration by parts in Eq. (74) and ignoring boundary
terms leads to

dS
dτ

=

∫
dJ1 s′′(F(J1))

∂F
∂Js

1
·Ftot(J1). (78)

Given Eq. (75), Eq. (78) can be rewritten as
dS
dτ

=
∑

ms
1,m

s
2

∫
dJ1dJ2αms

1,m
s
2
s′′1 (ms

1 ·F
′

1)
[
F2(ms

1 ·F
′

1)−F1(ms
2 ·F

′

2)
]
,

with s′′i = s′′(F(Ji)), F i = F(Ji) and F
′

i = ∂F/∂Js
i . This equa-

tion can symmetrised via the substitutions ms
1↔ms

2 and J1↔ J2,
relying on the fact that αms

2,m
s
1
(J2, J1) = αms

1,m
s
2
(J1, J2), so that

dS
dτ

=
1
2

∑
ms

1,m
s
2

∫
dJ1dJ2 αms

1,m
s
2
(J1, J2) ×

[
F2s′′1 (ms

1 · F
′

1)2

− (ms
1 · F

′

1)(ms
2 · F

′

2)(F1s′′1 + F2s′′2 ) + F1s′′2 (ms
2 · F

′

2)2
]
.

(79)

As the entropy function satisfies s′′(x) = 1/x (any double prim-
itive of 1/x would work too), the square braket of Eq. (79) can
immediately be factored as

1

F1F2

[
F2(ms

1 ·F
′

1)−F1(ms
2 ·F

′

2)
]2
≥ 0, (80)

so that one finally gets dS/dτ≥0. This entropy increase corre-
sponds to heat generation as the orbital structure of the cluster
rearranges itself in a more eccentric configuration. The previous
demonstration naturally extends for the multi-component Balescu-
Lenard Eq. (69). Indeed, defining the system’s total entropy S tot,
summed for all components, as

S tot(τ) = −

∫
dJ1

∑
a

1
ηa

s
(
Fa (J1)

)
, (81)

one can again show that for s′′(x) = 1/x, one has dS tot/dτ≥0,
which does not necessarily imply that the entropy of each compo-
nent increases.

6. Applications

Up to now we have considered the general framework of a system
made of a finite number of particles orbiting a central massive
object. We now examine in turn some more specific configu-
rations of particles orbiting a black hole, and discuss how the
results of the previous section can be further extended when con-
sidering specific geometries and physical secular processes, to
highlight the wealth of possible implications one can draw from
this framework. Detailed applications are postponed to follow-up
papers.

6.1. Razor-thin axisymmetric discs

Let us first specialise the degenerate Balescu-Lenard Eq. (58)
to razor-thin axisymmetric discs. For such systems, the dimen-
sion of the physical space is given by d = 2, while the number
of dynamical degeneracies of the Keplerian dynamics is k = 1.
Therefore, the resonance condition in Eq. (58) takes the simpler
form of a 1D condition naively reading ms

1Ωs
1−ms

2Ωs
2 = 0 and the

Delaunay angle-action variables from Eq. (26) become

(J, θ) = (J1, J2, θ1, θ2) = (Js, Jf , θs, θf) = (L, I, g, w). (82)

Symmetries of the interaction potential lead to relationships
among the susceptibility coefficients, which simplify the Balescu-
Lenard equation. The rescaled interaction potential U12 from
Eq. (20) takes the form

U12 = −
GM•
|x1−x2|

= −
GM•√

R2
1+R2

2−2R1R2 cos(φ1−φ2)
, (83)

in which we introduce the usual polar coordinates (R, φ). Follow-
ing Eqs. (3.28a) and (3.28b) of Binney & Tremaine (2008), the
mapping from the physical polar coordinates to the Delaunay
angle-action ones can be written as

R = a(1−e cos(η)); φ = g+ f , (84)

where the semi-major axis a, eccentricity e, true anomaly f , and
eccentric anomaly η are introduced as

e =
√

1−(L/I)2; a =
I2

GM•
;

f = tan−1
[√1−e2 sin(η)

cos(η)−e

]
; w = η−e sin(η). (85)

Substituting Eq. (84) into Eq. (83), we immediately have that

U12 = U(g1−g2, w1, w2, J1, J2) ⇒ U12 = U(g1−g2, J1, J2).
(86)

As a consequence, the bare susceptibility coefficients from
Eq. (66) for a razor-thin disc are related to one another through

Ams
1,m

s
2
(J1, J2) = δ

ms
2

ms
1

Ams
1,m

s
1
(J1, J2). (87)

A similar result also holds for the dressed susceptibility coeffi-
cients from Eq. (60). Indeed, for any 2D razor-thin system, one
can assume the basis elements from Eq. (59) to be generically of
the form

ψ(p)(R, φ) = ei`pφU`p

np (R), (88)

where `p and np are two integer indices, andU`
n are radial func-

tions. Such a decomposition of the basis elements allows us
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to decouple the azimuthal and radial dependence of the basis
elements. Noting that in the mapping from Eq. (84) only the az-
imuthal angle φ depends on the slow angle g, one obtains that the
Fourier transformed basis elements satisfy

ψ
(p)
ms (J) = δms

`p ψ
(p)
ms (J). (89)

Substituting this into the expression (61) for the response matrix,
we find that

M̂pq(ω) = δ`
q

`p M̂pq(ω). (90)

Using Eqs. (89) and (90), the dressed susceptibility coefficients
satisfy

1
Dms

1,m
s
2
(J1, J2, ω)

= δ
ms

2
ms

1

1
Dms

1,m
s
1
(J1, J2, ω)

, (91)

just as the bare ones satisfy Eq. (87).
The symmetry corresponding to Eq. (91) allows us to get rid

of the sum over the resonance index ms
2 in the Balescu-Lenard

Eq. (58), so that it becomes

∂F
∂τ

=
π

N
∂

∂Js
1

[∫
dJ2 δD(Ωs(J1)−Ωs(J2))

1
|Dtot(J1, J2)|2

×

[
∂

∂Js
1
−

∂

∂Js
2

]
F(J1) F(J2)

]
, (92)

in which we use the relation δD(αx) = δD(x)/|α| and introduce
the (unique) total dressed susceptibility coefficient

1
|Dtot(J1, J2)|2

=
∑
ms

1

|ms
1|

|Dms
1,m

s
1
(J1, J2,ms

1Ωs(J1))|2
· (93)

Similarly, if we neglect self-gravity, then the symmetry in Eq. (87)
applies and Eq. (92) becomes the associated Landau equation, in
which the total dressed susceptibility coefficient 1/|Dtot(J1, J2)|2
is replaced by the bare one,

|Atot(J1, J2)|2 =
∑
ms

1

|ms
1| |Ams

1,m
s
1
(J1, J2)|2. (94)

This Landau analog of Eq. (92) for razor-thin axisymmetric discs
with the bare susceptibility coefficients from Eq. (94) has already
been derived in Sridhar & Touma (2017) via Gilbert’s equation.

The result of these simplifications is that the degenerate
Balescu-Lenard Eq. (92) possesses a straightforward resonance
condition in which resonant encounters can only occur between
two orbits caught in the same resonance, as illustrated in Fig. 1. To
compute the diffusion flux appearing in the r.h.s. of this equation,
we employ the generic definition of the composition of a Dirac
delta and a function (Hörmander 2003), which in a d-dimensional
setup takes the form∫
Rd

dx f (x) δD(g(x)) =

∫
g−1(0)

dσ(x)
f (x)
|∇g(x)|

, (95)

where g−1(0) =
{
x | g(x) = 0

}
is the hypersurface of dimension

(d−1) defined by the constraint g(x) = 0, and dσ(x) is the surface
measure on g−1(0). In our case, the resonance condition is given
by the function

g(J2) = Ωs(J1) −Ωs(J2). (96)

For a given value of J1, and introducing ω = Ωs(J1), we define
the critical resonant curve γ(ω) as

γ(ω) =
{
J2

∣∣∣ Ωs(J2) = ω
}
. (97)

This curve corresponds to the set of all orbits which are in reso-
nance with the precessing orbit of action J1. Once this resonance
line has been identified, the diffusion flux from Eq. (92) is straight-
forward to compute and reads

∂F
∂τ

=
∂

∂Js
1

[∫
γ(Ωs(J1))

dσ
G(J1, J2)
|∇(Ωs(J2))|

]
, (98)

where to shorten the notations, we introduced the function
G(J1, J2) as

G(J1, J2) =
π

N
1

Dtot(J1, J2)

[
∂

∂Js
1
−

∂

∂Js
2

]
F(J1) F(J2), (99)

as well as the resonant contribution |∇(Ωs(J2))| given by

∇(Ωs(J2)) =

√√[
∂Ωs

∂Js
2

]2

+

∂Ωs

∂Jf
2

2

· (100)

We note that Eq. (98) is now a simple one-dimensional integral
involving a regular integrand.

In summary, because the quasi-stationary potentials Φ and
Φr are known via Eqs. (43) and (A.8), one can compute the
associated precession frequencies Ωs (and their gradients). This
allows for the determination of the critical resonant lines γ from
Eq. (97). Following Eq. (98), it then only remains to integrate
along these lines to determine the secular diffusion flux. Such an
effective computation for razor-thin discs in the Landau limit is
postponed to a follow-up paper, as Eq. (43) involves a singular
triple integral over wire-wire interactions. Similarly, the study
of the long-term evolution of quasi-stationary non-axisymmetric
razor-thin discs (such as M 31) will also be the subject of a future
work.

6.2. Spherical cluster around BH

We now turn to the application of the degenerate Balescu-Lenard
Eq. (58) to spherically symmetric systems. The general proce-
dure is the same as for the razor-thin disc case, but now the
dimension of the physical space is d = 3, while the number of
Keplerian dynamical degeneracies is given by k = 2. The reso-
nance condition in Eq. (58) becomes two-dimensional and reads
ms

1 ·Ω
s
1−ms

2 ·Ω
s
2 = 0. In the 3D context, the Delaunay variables

from Eq. (82) become

(J, θ) = (Js
1, J

s
2, J

f
3, θ

s
1, θ

s
2, θ

f
3) = (L, Lz, I, g, h, w), (101)

where g stands for the angle from the ascending node to the
periapse, h for the longitude of the ascending node and w for the
Keplerian orbital phase, that is the mean anomaly.

As was done in Eq. (92) for razor-thin discs, let us now show
how the 3D geometry allows us to further simplify the kinetic
equation. Written in spherical coordinates (R, θ, φ), the rescaled
interaction potential from Eq. (20) becomes

U12 = −
GM•
|x1−x2|

= −GM•
[
R2

1+R2
2−2R1R2

{
sin(θ1) sin(θ2) cos(φ1−φ2)

+ cos(θ1) cos(θ2)
}]−1/2

. (102)
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Following Eq. (5.20) from Merritt (2015), these (R, θ, φ) can be
expressed as a function of the Delaunay angle-action variables,
so that

R = a(1−e cos(η)); φ = h + tan−1[cos(i) tan(g+ f )
]
;

θ = cos−1[sin(i) sin(g+ f )
]
, (103)

where a, e, f and η were introduced in Eq. (85), and i is the
orbit’s inclination, defined through cos(i) = Lz/L. Therefore the
interaction potential of Eq. (102) and its angle-averaged version
(Eq. (44)) have the symmetries

U12 = U(g1, g2, h1−h2, w1, w2, J1, J2),

U12 = U(g1, g2, h1−h2, J1, J2). (104)

From this, it immediately follows that the bare susceptibility
coefficients (Eq. (66)) are related to one another via

Ams
1,m

s
2
(J1, J2) = δ

ms
2,h

ms
1,h

Ams
1,m

s
2
(J1, J2). (105)

Here, we have written the resonance vectors as ms
1 = (ms

1,g,m
s
1,h),

so that the coefficient ms
1,h is the one associated with the slow

angle h. A similar result holds for the dressed susceptibility coef-
ficients defined in Eq. (60). Indeed, for any 3D system, the basis
elements in Eq. (59) can be written as

ψ(p)(R, θ, φ) = Ymp

`p (θ, φ)U`p

np (R), (106)

where `p, mp and np are three integer indices, Ym
` are the usual

spherical harmonics, and U`
n are radial functions. We note in

the mappings from Eq. (103) that only the azimuthal angle φ
depends on the slow angle h. Because the spherical harmonics are
of the form Ym

` (θ, φ)∝Pm
` (cos θ) eimφ, where Pm

` are the associated
Legendre polynomials, one immediately finds that the Fourier
transformed basis elements satisfy

ψ
(p)
ms (J) = δ

ms
h

mp ψ
(p)
ms (J). (107)

As a consequence, the expression (61) of the response matrix
immediately gives

M̂pq(ω) = δmq

mp M̂pq(ω). (108)

Equations (107) and (108) allow us to rewrite the dressed suscep-
tibility coefficients as

1
Dms

1,m
s
2
(J1, J2, ω)

= δ
ms

2,h

ms
1,h

1
Dms

1,m
s
2
(J1, J2, ω)

, (109)

showing that they are related to one another in the same way as
the bare susceptibility coefficients of Eq. (105).

As a consequence, when considering a spherically symmet-
ric system, one can simplify the resonance condition, and the
Balescu-Lenard Eq. (58) becomes

∂F
∂τ

=
2π2

N
∂

∂Js
1
·

∑
ms

1,m
s
2,g

ms
1

∫
dJ2

δD(ms
1 ·Ω

s
1−(ms

2,g,m
s
1,h)·Ωs

2)

|Dms
1,(m

s
2,g,m

s
1,h)(J1, J2,ms

1 ·Ω
s
1)|2

×

[
ms

1 ·
∂

∂Js
1
−(ms

2,g,m
s
1,h)·

∂

∂Js
2

]
F(J1) F(J2)

]
. (110)

To neglect collective effects in Eq. (110), one only has to make
the substitution 1/|D|2→|A|2. Here, it is important to note that the
1.5PN relativistic precession frequencies obtained in Appendix A
do depend on the action Lz, so that at this stage further simpli-
fications of Eq. (110) are not possible. The computation of the
diffusion flux in Eq. (110) proceeds as in Eq. (98) by identify-
ing the critical surfaces of resonance. We do not detail these
calculations here.

6.3. Relativistic barrier crossing in the vicinity of BHs

We now show how the degenerate Balescu-Lenard Eq. (58) natu-
rally accounts for the presence of the “Schwarzschild barrier”
encountered by stars diffusing towards the central BH. This
Schwarzschild barrier was discovered by Merritt et al. (2011)
in their simulations of spherically symmetric star clusters. Here,
we show how it arises in the simpler case of a razor-thin axisym-
metric disc of stars around the BH, but the same fundamental
idea applies to the 3D case. The secular collisional evolution of
such a disc is governed by Eq. (92). The resonance condition
in that equation is Ωs

1(J1)−Ωs
2(J2) = 0, in which the precession

frequency Ωs(J) of each of the two wires, defined in Eq. (56),
is composed of two parts. The first is the contribution from the
system’s self-consistent Newtonian potential,

Ωs
self(L1, I1)=

∂

∂L1

[
Φ(L1, I1)

]
=

∂

∂L1

[∫
dE2 F(E2)U12

]
. (111)

The second is the additional contribution from relativistic effects.
We derive it in Appendix A. In the case of a razor-thin disc, it
reads

Ωs
rel(L, I) =

1
2π

M•
M?

(GM•)4

c2

[
−

3
I3L2 +

GM•
c

6s
I3L3

]
· (112)

We now study how these precession frequencies depend on dis-
tance to the central BH. Following the timescale comparisons
of Kocsis & Tremaine (2011), one expects the relativistic pre-
cession frequency Ωs

rel to dominate close to BH (and, in fact, to
diverge as the star gets closer to capture), while the self-consistent
one, Ωs

self , will be the largest for orbits in the vicinity of the con-
sidered disc. Such a behaviour is qualitatively illustrated in Fig. 2,
where we represent the typical dependence of the precession fre-
quencies as a function of the distance to the central BH. Figure 2
shows that, for a given precession frequency ωs, one can identify
the actions J within the disc for which the resonance condition
Ωs

tot(J)−ωs = 0 is satisfied.
Equation (92) involves the quadratic factor F(J1) F(J2),

which is the product of the system’s density at the two loca-
tions that are in resonance. As shown in Fig. 2, because the disc is
only located in the outer regions of the BH, the resonant coupling
between two locations within the disc will be much stronger than
one involving a resonant location inside the inner edge of the disc,
very close to the BH. Therefore, in Fig. 2, the coupling between
the two outer black dots will be much larger than the couplings
involving the inner dot. The situation becomes even worse if one
wants to couple a region even closer to the BH, for which the
precession frequency is too large to resonate with any part of the
disc. In this situation, no efficient resonant couplings are possi-
ble and the secular diffusion is drastically suppressed. In short,
the divergence of the relativistic precession frequencies in the
neighbourhood of the BH means that stars whose orbits diffuse
inwards closer to the BH experience a rise in their precession
frequency, which prevents them from resonating anymore with
the disc, strongly suppressing further inward diffusion. This is
the so-called Schwarzschild barrier.

This explanation of the Schwarzschild barrier using the no-
tion of resonant coupling is directly related to the explanation
proposed in Bar-Or & Alexander (2014), which relies on the con-
cept of adiabatic invariance. In their picture, a test star can un-
dergo resonant relaxation only if the timescale associated with
its relativistic precession is longer than the coherence time of the
perturbations induced by the field stars and felt by the test star.
Because the typical coherence time of the perturbations scales as
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R

Ωs

ωs

Ωs
rel

Ωs
self

Ωs
tot

Disc

Fig. 2. Illustration of the typical dependence of the precession frequen-
cies Ωs

self and Ωs
rel (Eqs. (111) and (112)) as a function of the distance to

the central BH. The relativistic precession frequencies, Ωs
rel diverge as

the star gets closer to the central BH, while the self-consistent ones Ωs
self

are typically the largest for stars in the neighbourhood of the considered
disc. The black dots give all the locations, whose precession frequency
is equal to ωs (illustrated by the dotted horizontal line). These positions
are in resonance and will therefore have a non-vanishing contribution in
the Balescu-Lenard Eq. (92). Because Eq. (92) involves the product of
the system’s DF in the two resonating locations, the resonant coupling
between the two outer points (which belong to the region where the disc
dominates) will be much stronger than the couplings involving the inner
point (which does not belong to core of the disc). As stars move inward,
their precession frequencies increase up to a point where this prevents
any resonant coupling with the disc’s region. This effectively stops the
secular diffusion, and induces a diffusion barrier.

the inverse of the typical precession frequency of the field stars
(which lie within the cluster), the requirement for an efficient
diffusion from the adiabatic invariance point of view is equivalent
to the requirement from the point of view of the Balescu-Lenard
resonance condition.

6.4. Solving the Balescu-Lenard equation by Monte Carlo
sampling

This suppression of diffusion in the neigbourhood of the BH
can also be illustrated by considering the orbit-averaged motion
of individual wires. Equation (92) takes the form of a diffusion
equation in action space, where one follows self-consistently the
evolution of the system’s DF. One could also be interested in
describing the stochastic evolution of individual stellar wires,
whose ensemble average is described by this diffusion equation.
To do so, let us rewrite Eq. (92) as

∂F
∂τ

=
∂

∂L

A(J, τ) F(J, τ)+D(J, τ)
∂F
∂L

 · (113)

Then, as detailed in Appendix C, one can write the corresponding
Langevin equation that captures the dynamics of individual test
wires. Here, we consider the case of a razor-thin axisymmetric
disc and denote as J (τ) = (L(τ),I(τ)) the position at time τ of
a test wire in action space J = (L, I). Following Eq. (C.5), the
dynamics of the test wire takes the form

dL
dτ

= h(J , τ)+g(J , τ) Γ(τ),
dI
dτ

= 0; (114)

j

a

γωsSch.

Ωs

Fig. 3. Illustration of the individual dynamics of stars in the ( j, a) =
(L/I, I2/GM•) space, as given by the Langevin Eq. (114). The grey
region corresponds to the capture region, within which stars inevitably
sink into the BH. As I is an invariant of the diffusion (see Eq. (114)),
stars’ diffusion is one-dimensional, conserves a, and occurs only in the
j-direction. The background dotted curves illustrate the contour lines
of the precession frequency given by the function ( j, a) 7→ Ωs( j, a). As
illustrated in Fig. 2, the precession frequencies get larger as particles
approach the central BH, due to the contributions from the relativistic
precession frequencies. The blue and red orbits precess at the same
frequency ωs, so that they belong to the same critical resonant line
γωs , which allows them to resonate one with another. As the precession
frequencies diverge in the vicinity of the BH, such resonant couplings are
significantly less likely as stars get closer to the BH, which effectively
creates a diffusion barrier in action space, the so-called Schwarzschild
barrier.

in which the 1D Langevin coefficients that describe the diffusion
of the wire in the L-direction are given by

h = −A+
∂D
∂L
−
√

D
∂
√

D
∂L

; g =
√

D, (115)

and the Langevin stochastic force Γ(τ) satisfies Eq. (C.6). As in
Eq. (68), the individual fast action Jf = I is preserved during the
wire’s evolution.

Equation (114) describes the diffusion of an individual test
wire when embedded in the self-induced noisy environment that
is described by the drift and diffusion coefficients from Eq. (92).
As such it could be used iteratively jointly with Eq. (93) – which
depends on the sampled position of all orbits in action space via
Eq. (61) – to effectively integrate Eq. (92) over cosmic time.
This would simply involve discretising Eq. (114) in time as
Li+1 = Li+(dL/dτ)i∆τ, while sampling initial L0s to match the
original distribution. Strikingly, Eq. (114) shares some similar-
ity with the individual Hamilton’s equations associated with the
Hamiltonian from Eq. (7), but the significant gain of the present
work is to allow for individual timesteps, ∆τ, which are orders
of magnitudes larger than the original one required to solve for
the trajectories of individual stars. It also deals seamlessly with
post-Newtonian orbit integration over the fast and slow angles.

A qualitative description of the dynamics of individual orbits
from Eq. (114) is illustrated in Fig. 3. Following the represen-
tations from Bar-Or & Alexander (2016), Fig. 3 represents the
diffusion of stars in the ( j, a) = (L/I, I2/(GM•)) space. As ob-
served in Eq. (114), the fast action I of the stars is conserved
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during the diffusion, so that stars diffuse only in the j-direction
along a = const. lines. When diffusing, individual particles may
resonate with stars which precess at the same frequency, such as
the blue and red particles in Fig. 3. However, as already illustrated
in Fig. 2, the precession frequencies diverge as stars get closer
to the BH. This increase in the precession frequencies will then
forbid any resonant coupling between a star in this internal region
and stars belonging the disc itself, where precession frequencies
are much smaller. Resonances becoming impossible, the diffusion
is stopped and stars cannot keep diffusing closer to the central
BH. This suppression of the diffusion is the Schwarzschild barrier.
A quantitative illustration of this damping of resonant couplings
is postponed to a later paper, where we will effectively compute
the precession frequencies Ωs

tot = Ωs
rel+Ωs

self in action space for a
physically motivated razor-thin axisymmetric disc.

6.5. Evolution of BH mass and spin

The calculations above successfully explain the existence of the
so-called Schwarzschild barrier, which strongly suppresses the
supply of tightly bound matter to the black hole. We note that
the analysis of Merritt et al. (2011) suggests that, in practice, this
suppression is probably tempered by simple two-body relaxation
(not accounted for in the orbit-averaged approach followed in this
paper), which provides an additional mechanism for transporting
stars even closer to the BH, once resonant relaxation becomes
inefficient. This mechanism was recently demonstrated in de-
tail in Bar-Or & Alexander (2016), which showed that adiabatic
invariance (in other words the damping of resonant relaxation)
limits the effects of resonant relaxation to a region well away
of the loss lines, so that the dynamics of accretion of stars by
the BH is only very moderately affected by the presence of res-
onances. Nevertheless, one can calculate the rate at which stars
are transported across any boundary in phase space within which
resonant relaxation dominates, which is important for quantifying
the growth rate of the central black hole. Consider then a fixed
boundary S in action space. From the divergence theorem, the
flux of mass, dM/dτ through that boundary, S, due to secular
diffusion is proportional to

dM
dτ
∝
∑
ms

∫
S

dS (ms ·n)
Ams (J) F(J)+Dms (J) ms ·

∂F
∂Js

 , (116)

where n is the exterior pointing normal vector. In Eq. (116),
one can note that the contribution from a given resonance ms

takes the form of a preferential diffusion in the direction of ms.
This diffusion is therefore anisotropic because it is maximum for
n ∝ ms and equal to 0 for n·ms = 0. We note that if a set of stars
of various masses or black holes orbit the galactic centre, the net
flux of each component can also be computed via Eq. (70) as

dMa

dτ
∝
∑
ms

∫
S

dS (ms·n)

∑
b

ηaAb
ms (J) Fa(J)+ηbDb

ms (J) ms ·
∂Fa

∂Js


 .

This is likely to be of particular interest for predicting the dis-
tribution of heavy compact remnants, which, from equipartition
arguments, are expected to sink more rapidly towards the centre.
Similarly, the flux of angular momentum, dL/dτ, can be com-
puted, and is proportional to

dL
dτ
∝
∑
ms

∫
S

dS (ms ·n) L
Ams (J) F(J)+Dms (J) ms ·

∂F
∂Js

 , (117)

and could contribute to either spinning up or down the central
black hole, once the self-consistent evolution of the black hole’s

spin and loss of angular momentum via gravitational wave emis-
sion are taken care of. We note that if the disc is sufficiently
self-gravitating, the diffusion in action space is likely to be dom-
inated by a specific resonance (as was shown in Fouvry et al.
2015b).

7. Discussion and conclusion

Supermassive black holes absorb stars and debris whose orbits
reach the loss-cone, the region of phase space corresponding to
orbits on which they are either taken directly into the black hole
or close enough to interact strongly with it. Such accretion affects
the secular evolution of the SMBH’s mass and spin, which is of
interest in understanding black hole demographics and AGN feed-
back (Volonteri et al. 2016). It also affects the matter that remains.
For instance, the continuous loss of stars can resupply and reshape
the central stellar distribution (e.g. Genzel et al. 2000). These dy-
namical processes have observable signatures, such as binary
capture and hyper-velocity star ejection (Hills 1988), the tidal
heating and disruption of stars (Frank & Rees 1976), gravitational
waves produced by inspiraling compact remnants (Abbott et al.
2016). All these signatures provide possible indirect evidence
of the existence of the black hole and offer the opportunity of
probing the theory of relativity in the strong field limit (Blanchet
2014). Understanding the dynamics of stars in the vicinity of
supermassive black holes is in fact one of the prime goal of the
new generation of interferometers such as Gravity (Jocou et al.
2014).

In this paper, we have specialised the recently developed ki-
netic theory of self-gravitating systems of N particles (Heyvaerts
2010; Chavanis 2012) to quasi-Keplerian systems dominated by a
massive central object, deriving the equation that governs the sec-
ular evolution of such systems to leading order in 1/N. The self-
consistent dressed equations (Eq. (58) and its multi-component
and stochastic counterparts, Eqs. (69) and (C.5) respectively) ac-
count for the dynamical degeneracies in quasi-Keplerian systems.
Because purely Keplerian orbits do not precess, the dynamical
evolution of such degenerate systems may differ significantly
from that of fully self-gravitating systems, such as discs and
spheroids. In particular, to a good approximation stars behave as
if they were smeared out into orbit-averaged Keplerian wires and
the evolution of the system modelled by following the dressed
interactions among such wires. The coupling among these wires
generates sequences of uncorrelated transient polarised density
waves, which make the underlying stars’ orbits diffuse in phase
space.

The quasi-Keplerian Balescu-Lenard Eq. (58) is quadratic in
the phase-averaged distribution function and describes i) the self-
gravity of the orbiting particles; ii) the discreteness of the cluster;
iii) the resonances between such orbits; iv) a full spectrum of
masses, via Eq. (69); and v) possible post-Newtonian corrections,
including relativistic precession induced by the rotation of the
central black hole, if present. These last effects are encoded in
the frequency shifts occurring in the resonance condition from
the diffusion and drift coefficients. It is therefore the quasi-linear
self-consistent master equation quantifying the effect of resonant
relaxation. As such it provides a very rich framework to describe
the evolution of galactic centres for cosmic times, or the secular
evolution of debris discs – which is an interesting venue in the
context of planet formation (e.g. Tremaine 1998).

A key step in the derivation of this equation is the phase
averaging of the first two equations of the BBGKY hierarchy
over the fast angles associated with the orbital motion of the
bodies on their Keplerian orbits. In order to derive Eqs. (58)
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and (69), we assumed that the (spherical or coplanar) cluster
was dynamically relaxed at every stage of its secular evolution.
As the equations are averaged over the Keplerian fast angles,
the corresponding actions are adiabatically preserved. Because
of this phase average, the Keplerian Balescu-Lenard equation
cannot capture mean motion resonances. Hence a limitation of
the present formalism is that it is restricted to systems with a high
degree of symmetry.

More generally, the averaging over fast angles means that
traditional non-resonant two-body relaxation is not accounted for
in the Balescu-Lenard equations we derive here. This is usually
appropriate though, because the derivation of these equations
ignores terms of order O(1/N2), which means that they are valid
only on timescales .Ntd, where td is the dynamical timescale.
Such timescales are typically expected to be much shorter than
the non-resonant two-body relaxation time. When investigating
specifically the vicinity of supermassive black holes, we found
that the quasi-Keplerian Balescu-Lenard equation captures nat-
urally the presence of a Schwarzschild barrier, explains why it
is not fully impermeable, and why it allows us to estimate for
instance the mass and angular momentum fluxes of each compo-
nent through its boundary. In its multi-component formulation,
the Balescu-Lenard equation also captures mass segregation and
radial migration as entropy increases.

7.1. Comparison to other work

A number of other recent papers have tackled the dynamics of
quasi-Keplerian stellar systems. The closest to the present paper
is the recent sequence of papers by Sridhar & Touma (2016a,b),
who have already obtained equations equivalent to our Eqs. (51)
and (52) following a different route starting from the approach
of Gilbert (1968), which itself extended the work of Balescu
(1960), Lenard (1960) from plasma physics. The “passive re-
sponse” approximation they make in their analysis of razor-thin
axisymmetric discs (Sridhar & Touma 2017) corresponds to the
Landau limit in which one uses the bare susceptibility coefficients
from Eq. (94) in the Balescu-Lenard Eq. (92).

Another way of modelling such dynamics is by using some
form of Monte Carlo approach in which the noise due to the
discrete number of stars is treated as an externally imposed per-
turbation (e.g. Madigan et al. 2011; Bar-Or & Alexander 2014).
This basic idea is very powerful, particularly if one wants to
investigate additional perturbations that are genuinely exter-
nal to the cluster. For example, the η-formalism introduced re-
cently in Bar-Or & Alexander (2014) and implemented in detail
in Bar-Or & Alexander (2016) is one such scheme. Imposing
plausible constraints on the power spectrum of the discreteness
noise, these papers recovered the location of the Schwarzschild
barrier (explained in terms of adiabatic invariance), and inves-
tigated the role of 2-body relaxation for the loss-cone problem.
They showed that on longer timescales, 2-body non-resonant re-
laxation completely erases the Schwarzschild barrier, and also
argued that resonant relaxation is effective only in a restricted
region of action space away from the loss-lines, so that its overall
effect on plunge rates is small.

The Balescu-Lenard equation has a couple of important con-
ceptual advantages over the η-formalism (and similar Monte
Carlo schemes). First, the η-formalism requires assumptions
about the statistical characteristics of the externally imposed dis-
creteness noise felt by each wire. The Balescu-Lenard equation
requires no such external input, because the system’s discrete-
ness is described self-consistently. Second, in the η-formalism

the self-gravity of the response to the noise is difficult to account
for. In the Balescu-Lenard equation, this full response is naturally
present in the dressed susceptibility coefficients (Eq. (60)). Such
collective effects can be crucial in systems close to marginal sta-
bility, where the associated polarisation can get very large (see
e.g. Fouvry et al. 2015b, for an illustration in the case of razor-
thin stellar discs). We note that, just as in Monte Carlo schemes,
the Balescu-Lenard approach also offers a natural way of includ-
ing external potential fluctuations (see point III of Sect. 4).

At the heart of the η-formalism lies a distinction between
“field” and “test” stars: the dynamics of the test stars are followed
as they undergo the stochastic perturbations generated by the field
stars. Such a split is also used in the restricted N-body calculations
recently presented in Hamers et al. (2014): the motion of each
field star is followed along their precessing Keplerian orbits (with
a precession induced by both relativistic effects and the system’s
self-consistent potential), but interactions among field stars are
ignored. The test stars are then followed by direct integration of
their motion in the time-varying potential due to the field stars: it
does not rely on the averaging approximation. Such an approach
is especially useful in order to get a better grasp of the typical
stochastic perturbations generated by the cluster of field stars.
Like the η-formalism, it ignores the interactions among field stars
(and indeed among test stars) and there is no back-influence of
the test stars on the field ones.

7.2. Future work

The Langevin formulation of the Balescu-Lenard equation
(Sect. 6.4 and Appendix C) combines the flexibility of Monte
Carlo methods with a self-consistent treatment of the dynamics.
A subsequent improvement is offered by the possibility of adding
the secondary effects of two-body relaxation and gravitational-
wave losses to the resonant relaxation dynamics, on which the
present paper was focused. Eventually, one could evolve jointly
the BH and its environment. This would involve considering that
the frequencies in Eq. (58) are time dependent, via the variation
of the BH’s mass and spin as outlined in Sect. 6.3. In the con-
text of razor-thin axisymmetric discs, one would compute the
drift and diffusion coefficients given by Eq. (92), following the
steps of Fouvry et al. (2015b) transposed to the Keplerian frame-
work. A few difficulties have to be overcome to perform such
a computation. The first is the computation of the wire-wire in-
teraction potential (see e.g. Touma et al. 2009; Touma & Sridhar
2012) and its harmonic transform over the slow angles. Then, in
order to account for the system’s self-gravity, one has to com-
pute the system’s averaged response matrix from Eq. (61), which
asks for the integration of a resonant function over action space,
a daunting numerical task. Finally, on secular timescales, one
has to deal with the self-consistency of the diffusion, so that the
system’s drift and diffusion coefficients should be updated along
the diffusion. As was shown in the present paper, the net effect
of Eq. (92) will be to induce diffusion along preferred ridges,
whose properties are set by the distribution of stars within the
cluster and their self-gravity. Depending on their starting point
in action space, some orbits will be driven near the region where
the black hole dominates diffusion. This will allow us to quantify
for instance the relative importance of black hole spin on barrier
crossing, and the efficiency at which a supermassive black hole is
fed by its surrounding stellar cluster (as discussed in Sect. 6.3).
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Appendix A: Relativistic precessions

Let us briefly detail the relativistic precessions encompassed
in particular by the averaged potential correction Φr present in
Eqs. (51) and (52). In order to obtain explicit expressions for
these corrections, the 3D Delaunay variables from Eq. (26) will
be used. In addition, we assume here that the spin of the BH
is aligned with the z-direction and introduce the BH’s spin pa-
rameter 0 ≤ s ≤ 1. To recover the expression of these preces-
sion frequencies, let us follow Merritt (2015). Equation (5.103)
therein gives us that during one Keplerian orbit of duration
TKep = 2π/ΩKep = 2πI3/(GM•)2, the 1PN Schwarzschild pre-
cession effect leads to a modification of the slow angle g
given by

∆g1PN
rel = g(TKep)−g(0) =

6πGM•
c2a(1−e2)

· (A.1)

This is straightforwardly associated with a precession frequency
ġ1PN

rel = ∆g1PN
rel /TKep given by

ġ1PN
rel =

3(GM•)4

c2I3L2 =
∂H1PN

rel

∂L
, (A.2)

where the semi-major axis a and the eccentricity e satisfy
a = I2/(GM•) and 1 − e2 = (L/I)2. We also introduced the Hamil-
tonian H1PN

rel as

H1PN
rel (I, L) = −

3(GM•)4

c2

1
I3L
· (A.3)

Similarly, Eq. (5.118) of Merritt (2015) gives that the 1.5PN
Lense-Thirring precession during one Keplerian orbit leads to a
precession of the slow angle g given by

∆g1.5PN
rel = g(TKep)−g(0) = −

12πs
c3

[
GM•

(1−e2)a

]3/2

cos(i), (A.4)

where it is assumed that the spin of the BH was aligned with
the z-direction. This is immediately associated with a precession
frequency ġ1.5PN

rel given by

ġ1.5PN
rel = −

6s
c3

(GM•)5Lz

I3L4 =
∂H1.5PN

rel

∂L
, (A.5)

relying on the relation Lz = L cos(i). Hence the Hamiltonian
H1.5PN

rel which accounts for the rotation of the BH reads

H1.5PN
rel (I, L, Lz) =

2s(GM•)5

c3

Lz

I3L3 · (A.6)

Such a Hamiltonian also induces relativistic precessions with
respect to the second slow angle h associated with Lz. We do not
detail here how these precessions are indeed correctly described
by the Hamiltonian H1.5PN

rel . Paying a careful attention to the nor-
malisation prefactors used in Eqs. (2), (21), and (45), one finally
gets the expression of the averaged 1PN and 1.5PN relativistic
corrections Φr appearing in Eqs. (51) and (52). These read

Φr(I, L, Lz) =
1

(2π)d−k

M•
M?

[
H1PN

rel (I, L)+H1.5PN
rel (I, L, Lz)

]
. (A.7)

From this potential correction, following Eq. (56), one can imme-
diately compute the associated precession frequencies Ωs

rel with
respect to the slow angles θs. They read

Ωs
rel =

∂Φr

∂Js =
M•

(2π)d−k

(GM•)4

M?c2

∂

∂Js

[
−

3
I3L

+
2GM•

c
sLz

I3L3

]
· (A.8)

Note finally that gravitational waves emissions, along with the
associated dissipations, are not considered here.

Appendix B: The degenerate collisional equation

For completeness, let us revisit the derivation of the Balescu-
Lenard equation presented in Heyvaerts (2010) in this new quasi-
Keplerian regime. The starting point of this derivation is the two
coupled averaged Eqs. (51) and (52), which involve the system’s
averaged 1-body DF F, and its averaged 2-body autocorrelation C.
The heart of the present derivation is the following: first one must
solve the evolution Eq. (52), so as to obtain C = C

[
F
]

(Sect. B.1).
Injecting this relation in Eq. (51), one obtains a closed kinetic
equation involving F only. Its simplification will be carried out
in Section B.2. Section B.3 will present the specifics of the corre-
sponding multi-component derivation.

B.1. Solving for the autocorrelation

With the assumption of stationarity from Eq. (53) and the
Bogoliubov’s ansatz from Eq. (54), one can rewrite Eq. (51) as

∂F
∂τ

= C
[
F
]
, (B.1)

where the collision operator C is introduced as

C
[
F
]

= −
1
N

∫
dE2

[
C(E1,E2),U12

]
(1)

=
1
N

∫
dE2

∂

∂Js
1
·

∫ dθs
1

(2π)k

∂U12

∂θs
1
C(E1,E2)

 , (B.2)

relying on the fact that during the secular diffusion, F is of the
form F = F(J1), allowing us to perform an angle-average with
respect to θs

1. Similarly, relying on the definition of the precession
frequencies from Eq. (56), Eq. (52) can be rewritten as

∂C

∂τ
+Ωs

1 ·
∂C

∂θs
1

+Ωs
2 ·

∂C

∂θs
2
−

∫
dE3 C(E2,E3)

∂F
∂Js

1
·
∂U13

∂θs
1

−

∫
dE3 C(E1,E3)

∂F
∂Js

2
·
∂U23

∂θs
2

= S 2(E1,E2, τ), (B.3)

where in the r.h.s. the source term S 2(E1,E2, τ) obeys

S 2(E1,E2, τ) =
1

(2π)d−k

∂U12

∂θs
1
·

[
∂

∂Js
1
−

∂

∂Js
2

]
F(J1) F(J2). (B.4)

Notice that Eq. (B.3) is linear in C, symmetric in 1 and 2, and
can therefore be solved by working out the Green’s function,
G(2)(E1,E2,E

′
1,E

′
2, τ
′), associated with the linear differential op-

erator of the l.h.s. of Eq. (B.3). The solution for C(E1,E2, τ) may
therefore be written as

C(E1,E2, τ) =

∫ +∞

0
dτ′

∫
dE′1dE′2 G

(2)(E1,E2,E
′
1,E

′
2, τ
′)

× S 2(E′1,E
′
2, τ − τ

′). (B.5)

Injecting Eq. (B.5) into Eq. (B.3), one gets the propagation equa-
tion satisfied by G(2). It reads

∂G(2)

∂τ′
+Ωs

1 ·
∂G(2)

∂θs
1

+Ωs
2 ·
∂G(2)

∂θs
2

−

∫
dR3 G

(2)(R3,R2,R
′
1,R

′
2, τ
′)
∂F
∂Js

1
·
∂U13

∂θs
1

−

∫
dR3 G

(2)(R1,R3,R
′
1,R

′
2, τ
′)
∂F
∂Js

2
·
∂U23

∂θs
1

= 0, (B.6)
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where we assumed that the source term S 2(t) was effectively
turned on only for t ≥ 0, so that S 2(t<0) = 0. In addition,
the Green’s function G(2) has to satisfy the initial condition
G(2)(E1,E2,E

′
1,E

′
2, 0) = δD(E1−E

′
1) δD(E2−E

′
2). When consider-

ing Eq. (B.6), it is worth noting that this propagation equation
acts separately on the variables (E1,E

′
1) and (E2,E

′
2) (and the

initial condition of G(2) is also separable). We may then solve
Eq. (B.6) by factoring the 2-body Green’s function as the product
of two 1-body Green’s function so that

G(2)(E1,E2,E
′
1,E

′
2, τ
′) = G(1)(E1,E

′
1, τ
′)G(1)(E2,E

′
2, τ
′), (B.7)

where the 1-body Green’s function G(1) satisfies the linearised
1-body Vlasov equation, namely

∂G(1)(E1,E
′
1, τ
′)

∂τ′
+Ωs

1 ·
∂G(1)(E1,E

′
1, τ
′)

∂θs
1

−

∫
dE2 G

(1)(E2,E
′
1, τ
′)
∂F
∂Js

1
·
∂U12

∂θs
1

= 0, (B.8)

with the initial condition G(1)(E1,E
′
1, 0) = δD(E1−E

′
1). Heyvaerts

(2010) interestingly notes that, if one were to account for contri-
butions associated with strong collisions, such as in the fifth line
of Eq. (18), the property of separability from Eq. (B.7) would
not hold anymore. Because of causality, Eq. (B.8) only has to be
solved for τ′ ≥ 0. To do so, we rely once again on Bogoliubov’s
ansatz, and assume that the system’s 1-body DF F evolves on a
slow secular collisional timescale Trelax, while the fluctuations
evolve much faster on a secular collisionless timescale Tsec. As a
consequence, in Eq. (B.8), which describes the evolution of fluctu-
ations, we may assume F to be frozen. Therefore, the correlations
at a given time τ can be seen as functionals of F evaluated at
the very same time. To solve Eq. (B.8), we introduce the Laplace
transfom following the convention

f̃ (ω) =

∫ +∞

0
dt f (t) eiωt; f (t) =

1
2π

∫
B

dω f̃ (ω) e−iωt. (B.9)

In Eq. (B.9), for the inverse Laplace transform, the Bromwich
contour B in the complex ω-plane should pass above all the
poles of the integrand, that is Im[ω] should be large enough. The
Laplace transform of Eq. (B.8) gives

−iωG̃(1)(E1,E
′
1, ω) +Ωs

1 ·
∂G̃(1)(E1,E

′
1, ω)

∂θs
1

−

∫
dE2 G̃

(1)(E2,E
′
1, ω)

∂F
∂Js

1
·
∂U12

∂θs
1

= δD(E1−E
′
1), (B.10)

where the source term on the r.h.s. comes from the initial condi-
tion. We now perform a Fourier transform with respect to the slow
angles θs

1 of Eq. (B.10), following the convention from Eq. (62).
We multiply Eq. (B.10) by 1/(2π)k

∫
dθs

1e−ims
1·θ

s
1 and get

− iωG̃(1)
ms

1
(J1,E

′
1, ω)+ims

1 ·Ω
s
1 G̃

(1)
ms

1
(J1,E

′
1, ω)

− ims
1 ·
∂F
∂Js

1
(2π)k

∑
ms

2

∫
dJ2 G̃

(1)
ms

2
(J2,E

′
1, ω) Ams

1,m
s
2
(J1, J2) =

e−ims
1·θ

s′
1

(2π)k δD(J1−J ′1). (B.11)

Equation (B.11) introduced the bare susceptibility coefficients
Ams

1,m
s
2
, associated with the Fourier transform of the interaction

potential and defined in Eq. (66). Equation (B.11) can easily be
rewritten as

G̃
(1)
ms

1
(J1,E

′
1, ω)

+ (2π)k ms
1 ·∂F/∂Js

1

ω−ms
1 ·Ω

s
1

∑
ms

2

∫
dJ2 G̃

(1)
ms

2
(J2,E

′
1, ω) Ams

1,m
s
2
(J1, J2) =

i
(2π)k

e−ims
1·θ

s′
1

ω−ms
1 ·Ω

s
1
δD(J1−J ′1). (B.12)

At this stage, it is important to note that Eq. (B.12) takes the
form of a Fredholm equation for the Green’s function G(1)

ms
1
, as

it appears twice in the l.h.s., in particular under the form of
an integral term. The trick to solve such an equation is to rely
on Kalnaj’s matrix method (Kalnajs 1976), and introduce a ba-
sis of potential and densities (ψ(p), ρ(p)) presented in Eq. (59),
thanks to which potential perturbations may be decomposed. Let
us first decompose the rescaled interaction potential U from
Eq. (20) on these basis elements. We consider the function
x1 7→U(|x1−x2|) and project it on the basis ψ(p)(x1). This takes
the form U(|x1−x2|) =

∑
pup(x2)ψ(p)(x1), where the coefficients

up(x2) are given by

up(x2) = −

∫
dx1 U(|x1−x2|) ρ(p)∗(x1) = −ψ(p)∗(x2). (B.13)

As they were defined in Eq. (66) as the Fourier transform in angles
of the averaged interaction potential U, the bare susceptibility
coefficients Ams

1,m
s
2
(J1, J2) can immediately be written as

Ams
1,m

s
2
(J1, J2) = −

∑
p

ψ
(p)
ms

1
(J1)ψ

(p)∗
ms

2
(J2), (B.14)

where the averaged Fourier-transformed basis elements were in-
troduced in Eq. (62). In order to invert Eq. (B.12), we perform on
G̃

(1)
ms

1
the same operations than those acting on G̃(1)

ms
2
. This amounts

to multiplying Eq. (B.12) by (2π)k ∑
ms

1

∫
dJ1ψ

(q)∗
ms

1
(J1), so that it

becomes(2π)k
∑
ms

1

∫
dJ1 G̃

(1)
ms

1
(J1,E

′
1, ω)ψ

(q)∗
ms

1
(J1)


−

∑
p


(2π)k

∑
ms

1

∫
dJ1

ms
1 ·∂F/∂Js

1

ω−ms
1 ·Ω

s
1
ψ

(p)
ms

1
(J1)ψ

(q)∗
ms

1
(J1)


×

[
(2π)k

∑
ms

2

∫
dJ2 G̃

(1)
ms

2
(J2,E

′
1, ω)ψ

(p)∗
ms

2
(J2)

] =

∑
ms

1

ie−ims
1·θ

s′
1

ω−ms
1 ·Ω

s′
1
ψ

(q)∗
ms

1
(J ′1). (B.15)

In order to further simplify Eq. (B.15), let us introduce the
notations

Kp(E′1, ω) = (2π)k
∑
ms

∫
dJ G̃(1)

ms (J,E′1, ω)ψ
(p)∗
ms (J),

Lp(E′1, ω) =
∑
ms

ie−ims·θs′
1

ω−ms ·Ωs′
1
ψ

(p)∗
ms (J ′1). (B.16)
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Using the response matrix M̂ introduced in Eq. (61), Eq. (B.15)
then becomes

Kq(E′1, ω) −
∑

p

M̂qp(ω) Kp(E′1, ω) = Lq(E′1, ω). (B.17)

Assuming that the system always remains dynamically stable, so
that

[
I−M̂(ω)

]
can be inverted (where I stands for the identity

matrix), Eq. (B.17) leads to

Kq(E′1, ω) =
∑

p

[
I−M̂(ω)

]−1
qp Lp(E′1, ω). (B.18)

Injecting this relation into Eq. (B.12), G̃(1)
ms

1
can be written as

G̃
(1)
ms

1
(J1,E

′
1, ω) =

1
(2π)k

ie−ims
1·θ

s′
1

ω−ms
1 ·Ω

s
1
δD(J1−J ′1)

+
ms

1 ·∂F/∂Js
1

ω−ms
1 ·Ω

s
1

∑
ms′

1

1
Dms

1,m
s′
1
(J1, J ′1, ω)

ie−ims′
1 ·θ

s′
1

ω−ms′
1 ·Ω

s′
1
, (B.19)

where the dressed susceptibility coefficients 1/Dms
1,m

s′
1

were in-
troduced in Eq. (60). Relying on the inverse Fourier transform
in angles from Eq. (62), we finally obtain the expression of the
1-body Green’s function G̃(1) as

G̃(1)(E1,E
′
1, ω) =

∑
ms

1,m
s′
1

iei(ms
1·θ

s
1−ms′

1 ·θ
s′
1 )

ω − ms
1 ·Ω

s
1

[ δms′
1

ms
1

(2π)k δD(J1 − J ′1)

+
ms

1 · ∂F/∂Js
1

(ω − ms′
1 ·Ω

s′
1 )Dms

1,m
s′
1
(J1, J ′1, ω)

]
=

∑
ms

1,m
s′
1

G̃
(1)
ms

1,m
s′
1
(J1, J ′1, ω) ei(ms

1·θ
s
1−ms′

1 ·θ
s′
1 ). (B.20)

B.2. Simplifying the collision operator

Given the explicit calculation of the 1-body Green’s func-
tion in Eq. (B.20), one may proceed to the evaluation of the
collision operator from Eq. (B.2). Relying again on Bogoli-
ubov’s ansatz in Eq. (B.5), we may perform the replacement
S 2(E′1,E

′
2, τ−τ

′)→S 2(E1,E
′
1, τ). Given the factorisation of the

Green’s function from Eq. (B.7), and the inverse Laplace trans-
form from Eq. (B.9), the collision operator then takes the
form

C
[
F
]

=

∫ +∞

0
dτ′

∫
dE2dE′1dE′2

dθs
1

(2π)k

∫
B

dω
2π

∫
B′

dω′

2π
e−i(ω+ω′)τ′

×
(2π)k−d

N
∂

∂Js
1
·

∂U12

∂θs
1
G̃(1)(E1,E

′
1, ω) G̃(1)(E2,E

′
2, ω

′)

×
∂U1′2′

∂θs′
1
·

[
∂

∂Js′
1
−

∂

∂Js′
2

]
F(J ′1) F(J ′2)

 , (B.21)

where the Laplace transformed 1-body Green’s functions were
introduced in Eq. (B.20). Let us then rewrite Eq. (B.21) simply as
a function of the system’s 1-body DF only. Integrating Eq. (B.21)

with respect to θs
1, θs

2, θs′
1 , and θs′

2 , one gets

C
[
F
]

=

∫ +∞

0
dτ′

∫
dJ2dJ ′1dJ ′2

∫
B

dω
2π

∫
B′

dω′

2π
e−i(ω+ω′)τ′ (2π)4k−d

N

×
∂

∂Js
1
·

 ∑
ms

1,m
s
2

∑
ms′

1 ,m
s′
2

G̃
(1)
ms

1,m
s′
1
(ω) G̃(1)

ms
2,m

s′
2
(ω′) ms

1 A−ms
1,m

s
2

×

Ams′
1 ,−ms′

2
ms′

1 ·
∂F
∂Js′

1
F(J ′2)+Ams′

2 ,−ms′
1

ms′
2 ·

∂F
∂Js′

2
F(J ′1)


 ,

(B.22)

with the notations G̃(1)
ms

1,m
s′
1
(ω) = G̃

(1)
ms

1,m
s′
1
(J1, J ′1, ω) and

Ams
1,m

s
2

= Ams
1,m

s
2
(J1, J2). Using the explicit expression of the

Fourier coefficients of the 1-body Green’s function from
Eq. (B.20), Eq. (B.22) becomes

C
[
F
]

= −

∫ +∞

0
dτ′

∫
dJ2dJ ′1dJ ′2

∫
B

dω
2π

∫
B′

dω′

2π
e−i(ω+ω′)τ′ (2π)2k−d

N

×
∂

∂Js
1
·

 ∑
ms

1,m
s
2

∑
ms′

1 ,m
s′
2

1
ω−ω1

1
ω′−ω2

ms
1 A−ms

1,m
s
2

×

δms′
1

ms
1
δD(J1−J ′1)+(2π)k ms

1 ·∂F/∂Js
1

(ω−ω′1)Dms
1,m

s′
1
(ω)


×

δms′
2

ms
2
δD(J2−J ′2)+(2π)k ms

2 ·∂F/∂Js
2

(ω′−ω′2)Dms
2,m

s′
2
(ω′)


×

Ams′
1 ,−ms′

2
ms′

1 ·
∂F
∂Js′

1
F(J ′2) + Ams′

2 ,−ms′
1

ms′
2 ·

∂F
∂Js′

2
F(J ′1)

 ,
(B.23)

with the shortened notations 1/Dms
1,m

s′
1
(ω) = 1/Dms

1,m
s′
1
(J1, J ′1, ω),

as well as ω1/2 = ms
1/2 ·Ω1/2 and ω′1/2 = ms′

1/2 ·Ω
s′
1/2. The rest of this

section is devoted to simplifying Eq. (B.23), which still involves a
triple integration over action space, two integrals over frequency
space and one time integration. In the following, we will first
integrate over two actions, then over time, and over the two
remaining frequencies, the trickiest step.

Let us first deal with the integration and sum with respect to
J2 and ms

2. It requires to evaluate

∑
ms

2

∫
dJ2

A−ms
1,m

s
2

ω′−ω2

δms′
2

ms
2
δD(J2−J ′2)+(2π)k ms

2 ·∂F/∂Js
2

(ω′−ω′2)Dms
2,m

s′
2
(ω′)

 =

−
1

ω′−ω′2

1
D−ms

1,m
s′
2
(ω′)
· (B.24)

To obtain Eq. (B.24), we relied on the intrinsic definition of
the dressed susceptibility coefficients (see Eq. (A.8) in Chavanis
2012) reading

1
Dms

1,m
s
2
(J1, J2, ω)

= −Ams
1,m

s
2
(J1, J2)

− (2π)k
∑
ms

3

∫
dJ3

ms
3 ·∂F/∂Js

3

ω−ms
3 ·Ω

s
3

Ams
1,m

s
3
(J1, J3)

Dms
3,m

s
2
(J3, J1, ω)

, (B.25)

which is straightforward to obtain given the basis decomposi-
tions of the susceptibility coefficients from Eqs. (60) and (B.14),
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and the definition of the response matrix from Eq. (61).
Equation (B.23) then becomes

C
[
F
]

=

∫ +∞

0
dτ′

∫
dJ ′1dJ ′2

∫
B

dω
2π

∫
B′

dω′

2π
e−i(ω+ω′)τ′ (2π)2k−d

N

×
∂

∂Js
1
·

∑ms
1

∑
ms′

1 ,m
s′
2

1
ω − ω1

1
ω′ − ω′2

ms
1

1
D−ms

1,m
s′
2
(ω′)

×

[
δ

ms′
1

ms
1
δD(J1−J ′1) + (2π)k ms

1 · ∂F/∂Js
1

(ω − ω′1)Dms
1,m

s′
1
(ω)

]
×

Ams′
1 ,−m

s′
2

ms′
1 ·

∂F
∂Js′

1
F(J ′2) + Ams′

2 ,−ms′
1

ms′
2 ·

∂F
∂Js′

2
F(J ′1)

 .
(B.26)

Next, the integration and sum with respect to J1
′ and ms′

1 are
performed. These only act on the two last lines of Eq. (B.26). As
previously, one relies on the intrinsic definition of the dressed
susceptibility coefficients from Eq. (B.25). Two different contri-
butions have to be dealt with: the first one C1

[
F
]

is associated
witht the gradient ms′

1 ·∂F/∂Js′
1 F(J ′2), and the second one C2

[
F
]

with the gradient ms′
2 ·∂F/∂Js′

2 F(J ′1). The first contribution C1
[
F
]

takes the form

C1
[
F
]

=
∑
ms′

1

∫
dJ ′1

δms′
1

ms
1
δD(J1−J ′1)+(2π)k ms

1 ·∂F/∂Js
1

(ω−ω′1)Dms
1,m

s′
1
(ω)


× Ams′

1 ,−ms′
2

ms′
1 ·

∂F
∂Js′

1
F(J ′2)

= −
1

Dms
1,−ms′

2
(ω)

ms
1 ·
∂F
∂Js

1
F(J ′2). (B.27)

Similarly, the second contribution C2
[
F
]

takes the form

C2
[
F
]

=
∑
ms′

1

∫
dJ ′1

δms′
1

ms
1
δD(J1−J ′1)+(2π)k ms

1 ·∂F/∂Js
1

(ω−ω′1)Dms
1,m

s′
1
(ω)


× Ams′

2 ,−ms′
1

ms′
2 ·

∂F
∂Js′

2
F(J ′1)

= ms
1 ·
∂F
∂Js

1
ms′

2 ·
∂F
∂Js′

2
(2π)k

∑
ms′

1

∫
dJ ′1

F(J ′1) Ams′
2 ,−ms′

1

(ω−ω′1)Dms
1,m

s′
1
(ω)

+ Ams
2,−ms

1
ms′

2 ·
∂F
∂Js′

2
F(J1). (B.28)

Let us now rewrite Eq. (B.26) while relying on the matrix method,
that is by using the basis elements ψ(p). Within the basis, the bare
and dressed susceptibility coefficients take the form of Eq. (B.14)
and allow for a rewrite of Eq. (60) as

1
Dms

1,m
s
2
(J1, J2, ω)

= ψ
(α)
ms

1
(J1) ε−1

αβ(ω)ψ
(β)∗
ms

2
(J2), (B.29)

where the sums over the greek indices are implied. Follow-
ing more closely Heyvaerts (2010), we introduced here the ma-
trix ε(ω) = I−M̂(ω), where the response matrix M̂ is given by
Eq. (61). Finally, let us accordingly define the matrix H(ω) as

Hαβ(ω) = (2π)k
∑
ms

∫
dJ

F(J)
ω−ms ·Ωs ψ

(α)∗
ms (J)ψ

(β)∗
−ms (J). (B.30)

Combining the two contributions from Eqs. (B.27) and (B.28),
and after some straightforward algebra, Eq. (B.26) becomes

C
[
F
]

= −

∫
dτ′

∫
B

dω
2π

∫
B′

dω′

2π
e−i(ω+ω′)τ′ (2π)k−d

N
∂

∂Js
1
·

[∑
ms

1

ms
1

ω−ω1

×

ψ(α)
−ms

1
(J1) ε−1

αβ(ω′) Hβδ(ω′) ε−1
γδ (ω)ψ

(γ)
ms

1
(J1) ms

1 ·
∂F
∂Js

1

+ψ
(α)
−ms

1
(J1)

[
ε−1
αγ(ω′)−δαγ

]
ψ

(γ)∗
−ms

1
(J1) F(J1)

+ψ
(α)
−ms

1
(J1) ε−1

αγ(ω′) ε−1
δλ (ω) Hλγ(ω)ψ

(δ)
ms

1
(J1) ms

1 ·
∂F
∂Js

1

−ψ
(α)
−ms

1
(J1) ε−1

δλ (ω) Hλα(ω)ψ
(δ)
ms

1
(J1) ms

1 ·
∂F
∂Js

1

 ]
. (B.31)

Next the integrations with respect to τ′ and ω′ in Eq. (B.31)
should be performed, which is technically demanding. This equa-
tion formally takes the form∫ +∞

0
dτ′

∫
B′

dω′

2π
e−i(ω+ω′)τ′ g(ω,ω′). (B.32)

The integration over τ′ is straightforward provided that ω+ω′ has
a negative imaginary part. We therefore introduce p>0 and per-
form the substitution ω+ω′→ω+ω′−ip, so that the integration
may be computed as

(B.32) = lim
p→0

∫
B′

dω′

2π
−i

ω+ω′−ip
g(ω,ω′). (B.33)

As the system is assumed to be linearly stable, the poles of the
function ω′ 7→g(ω,ω′) are all in the lower half complex plane and
the Bromwich contour B′ has to pass above all these singularities.
The only pole in ω′ which remains is then ω′ = −ω+ip and is
located in the upper half plane. We carry the integral overω′ using
the residue theorem by closing the contour B′ in the upper half
complex plane – this is possible because the integrands decreases
sufficiently fast at infinity like 1/|ω′|2. One therefore gets

(B.32) = lim
p→0

g(ω,−ω+ip). (B.34)

We may now consider the integration with respect to ω in
Eq. (B.31). First, we note that the fourth term of Eq. (B.31)
vanishes when integrated upon ω. Indeed, by construction, the
Bromwich contour B has to pass above all the singularities of the
functions of +ω. This contour may then be closed in the upper
half complex plane, and, because it surrounds no singularities,
gives a vanishing result for this term. Equation (B.31) may then
be rewritten as

C
[
F
]

= lim
p→0
−

∫
B

dω
2π

(2π)k−d

N
∂

∂Js
1
·

∑
ms

1

ms
1

ω−ω1

×

{
ψ

(α)
−ms

1
(J1)

[
ε−1
αγ(−ω+ip)−δαγ

]
ψ

(γ)∗
−ms

1
(J1) F(J1)

+ψ
(α)
−ms

1
(J1) ε−1

αβ(−ω+ip) ε−1
γδ (ω)ψ

(γ)
ms

1
(J1)

×
[
Hβδ(−ω+ip)+Hδβ(ω)

]
ms

1 ·
∂F
∂Js

1


 . (B.35)
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Let us now evaluate the term within brackets in the second term
of Eq. (B.35). It reads[
Hβδ(−ω+ip)+Hδβ(ω)

]
=(2π)k

∑
ms

2

∫
dJ2 ψ

(δ)∗
ms

2
(J2)ψ

(β)∗
−ms

2
(J2)F(J2)

×

[
1

ω−ω2
−

1
ω−(ω2+ip)

]
, (B.36)

using the notation ω2 = ms
2 ·Ω

s(J2). When considering the limit
p→0, one should be careful with the factω = ω2 andω = ω2+ip
are on opposite sides of the prescribed integration contour B. In-
deed, when lowering the integration contour to the real axis,
the pole ω = ω2 remains below the contour, while the one in
ω = ω2+ip is above it. In this limit, the term in bracket in
Eq. (B.36) becomes

[
1/(ω−ω2+i0)−1/(ω−ω2−i0)

]
. We may

rely on Plemelj formula

1
x±i0+

= P

(1
x

)
∓ iπδD(x), (B.37)

where P stands for Cauchy principal value. Equation (B.36) can
then be evaluated and reads

(B.36) = −2πi(2π)k
∑
ms

2

∫
dJ2 ψ

(δ∗)
ms

2
(J2)ψ

(β)∗
−ms

2
(J2)F(J2) δD(ω−ω2).

When lowering the contour B to the real axis, one can also
compute the integration with respect to ω of the first term in
Eq. (B.35). Once again, the system being stable, the poles of
ε−1
αγ(−ω+ip) are all located in the upper half plane, and there re-

mains only one pole on the real axis in ω = ω1. The contour B is
closed in the lower half plane and only encloses this second pole.
Accounting for the direction of integration, the residue theorem
gives a factor −2iπ and Eq. (B.35) then becomes

C
[

F
]

= i
(2π)k−d

N
∂

∂Js
1
·

∑
ms

1

ms
1 ψ

(α)
−ms

1
(J1)ψ

(γ)∗
−ms

1
(J1) F(J1)

×
[
ε−1
αγ(−ω1+i0)−δαγ

]
+(2π)k

∑
ms

1,m
s
2

ms
1

∫
dJ2

[
ψ

(α)
−ms

1
(J1) ε−1

αβ(−ω2)ψ
(β)∗
−ms

2
(J2)

]
×

[
ψ

(γ)
ms

1
(J1) ε−1

γδ (ω2)ψ
(δ)∗
ms

2
(J2)

] ms
1 ·∂F/∂Js

1 F(J2)
ω2−ω1+i0

 ,
(B.38)

keeping track of the small positive imaginary part in the pole
1/(ω2−ω1+i0) associated with the fact that the contour B passed
above the pole ω = ω1. Relying on the expression of the suscepti-
bility coefficients from Eq. (B.29), Eq. (B.38) can immediately
be rewritten as

C
[
F
]

= i
(2π)k−d

N
∂

∂Js
1
×−∑

ms
1

ms
1

(
1

Dms
1,m

s
1
(J1, J1, ω1+ i0)

+ Ams
1,m

s
1
(J1, J1)

)
F(J1)

+(2π)k
∑

ms
1,m

s
2

ms
1

∫
dJ2

ms
1 · ∂F/∂Js

1 F(J2)
ω2− ω1+ i0

×
1

D−ms
1,−ms

2
(J1, J2,−ω2)

1
Dms

1,m
s
2
(J1, J2, ω2)

 , (B.39)

where we made the change ms
1→−ms

1 for the first term. We note
that Ams

1,m
s
1
(J1, J1) is real in Eq. (B.29).

Let us now rely on the fact that the collision term C
[
F
]

is
also a real quantity. In Eq. (B.39), because of the prefactor “i”,
we may restrict ourselves only to the imaginary part of the terms
within brackets. The first term of Eq. (B.39) requires us to study

Im
[

1
Dms

1,m
s
1
(J1, J1, ω1+i0)

]
=

1
2i
ψ

(α)
ms

1
(J1)ψ

(β)∗
ms

1
(J1)

×
[
ε−1
αβ(ω1+i0)−ε−1∗

βα (ω1+i0)
]
. (B.40)

In order to compute the term within brackets, we rely on the
identity

ε−1−(ε−1)† = ε−1(ε†−ε) (ε†)−1. (B.41)

The inner term within parenthesis in Eq. (B.41) reads

[
ε†−ε

]
γδ(ω1+i0) = −(2π)k

∑
ms

2

∫
dJ2 ms

2 ·
∂F
∂Js

2
ψ

(γ)∗
ms

2
(J2)ψ

(δ)
ms

2
(J2)

×

[( 1
ω1−ω2+i0

)∗
−

1
ω1−ω2+i0

]
(B.42)

= −2πi(2π)k
∑
ms

2

∫
dJ2 δD(ω1−ω2) ms

2 ·
∂F
∂Js

2
ψ

(γ)∗
ms

2
(J2)ψ

(δ)
ms

2
(J2),

where Plemelj formula was used once again. Combining
Eqs. (B.40) and (B.42) yields

Im
[

1
Dms

1,m
s
1
(J1, J1, ω1+i0)

]
= − π(2π)k

∑
ms

2

∫
dJ2 ms

2 ·
∂F
∂Js

2

×
δD(ω1−ω2)

|Dms
1,m

s
2
(J1, J2, ω1)|2

· (B.43)

This contribution corresponds to the drift term in the Balescu-
Lenard equation.

To evaluate the second term in Eq. (B.39), we make use of the
relation 1/D−ms

1,−ms
2
(J1,J2,−ω) = 1/D∗ms

1,m
s
2
(J1,J2,ω), as demon-

strated in note [83] of Chavanis (2012), while relying on Plemelj
formula. This second term corresponds to the diffusion term in
the Balescu-Lenard equation. All calculations are straightforward.
Gathering these two contributions and keeping track of the signs
of the various terms, we finally get the expression of the collision
term C

[
F
]

as

C
[
F
]

=
π(2π)2k−d

N
∂

∂Js
1
·

 ∑
ms

1,m
s
2

ms
1

δD(ms
1 ·Ω

s
1−ms

2 ·Ω
s
2)

|Dms
1,m

s
2
(J1, J2,ms

1 ·Ω
s
1)|2

×

(
ms

1 ·
∂

∂Js
1
−ms

2 ·
∂

∂Js
2

)
F(J1)F(J2)

]
. (B.44)

This collision term, together with Eq. (B.1) finally yields the
Balescu-Lenard Eq. (58). It now only involves the divergence of
a flux corresponding to a simple integration over action space,
and a physically motivated resonant condition and amplification
factor, as discussed in the main text.
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B.3. Multi-component Balescu-Lenard derivation

Let us explain how one can adapt the formalisms presented in
the main text to the situation where the system is composed of
multiple components. The different components are indexed by
the letters “a” and “b”. We assume that the component “a” is made
of Na particles of individual mass µa, and the total mass of this
component is Ma

?. When accounting for multiple components and
placing ourselves within the democratic heliocentric coordinates
from Eq. (3), the total Hamiltonian from Eq. (7) becomes

H =
∑

a

Na∑
i=1

µa

2
(ua

i )2 +
∑

a

µaM•
Na∑
i=1

U(|xa
i |)

+
∑

a

µ2
a

Na∑
i< j

U(|xa
i −xa

j |) +
∑
a<b

Na∑
i=1

Nb∑
j=1

µaµbU(|xa
i −xb

i |)

+
∑

a

µaM?

Na∑
i=1

Φr(xa
i )+

1
2M•

∑
a

µa

Na∑
i=1

ua
i


2

(B.45)

where Γa
i = (xa

i , u
a
i ) stands for the position and velocity of the

ith particle of component “a”. The various terms appearing in
Eq. (B.45) are respectively the kinetic energy of the particles, the
Keplerian potential due to the central BH, the self-gravity among
a given component, the interaction between particles of different
components, the relativistic potential corrections Φr, and finally
the additional kinetic terms due to the change of coordinates from
Eq. (3). One should pay attention to the normalisation of the com-
ponent Φr. Indeed, we rewrite this potential as µaM?Φr, where
we introduce the total active mass of the system as M? =

∑
a Ma

?.
This allows for a rewriting similar to Eq. (7). The dynamics of
individual particles is then given by the Hamilton’s equations
associated with the Hamiltonian from Eq. (B.45). We now intro-
duce the system’s total PDF Ptot(Γa

1, ...Γ
a
Na
,Γb

1, ...,Γ
b
Nb
, ...), which

gives the probability of finding at time t, the particle 1 of the
component “a” at position xa

1 with velocity ua
1, etc. As in Eq. (8),

we normalise Ptot so that∫
dΓa

1...dΓa
Na

dΓb
1...dΓb

Nb
... Ptot(Γa

1, ...,Γ
a
Na
,Γb

1, ...,Γ
b
Nb
, ...) = 1.

(B.46)

Following Eq. (9), the dynamics of Ptot is governed by Liouville’s
equation which becomes

∂Ptot

∂t
+

∑
a

Na∑
i=1

[
ẋa

i ·
∂Ptot

∂xa
i

+ u̇a
i ·
∂Ptot

∂ua
i

]
= 0. (B.47)

We define the system’s reduced PDFs Pa1,...,an
n (see Eq. (10)) where

one integrates Ptot over all particles, except n particles belonging
respectively to the components a1, ..., an. Our aim is now to write
the two first equations of the associated BBGKY hierarchy. To
get the evolution equation of Pa

1, one proceeds as in Eq. (11), by
integrating Eq. (B.47) over all particles except Γa

1. In order to
clarify the upcoming calculations, we will from now on neglect
any contributions associated with the last additional kinetic terms
from Eq. (B.45). Indeed, we justified in Eq. (47), that, because
of the ansatz from Eqs. (41) and (46), once averaged over the
fast Keplerian angle, these terms do not contribute the system’s
dynamics at the considered order of our kinetic developments.
Relying on the symmetry of Ptot with respect to interchanges of

particles of the same component, one gets
∂Pa

1

∂t
+ ua

1 ·
∂Pa

1

∂xa
1

+

[
M•F 1a0 + M?F 1ar

]
·
∂Pa

1

∂ua
1

(B.48)

+ (N − 1) µa

∫
dΓa

2F 1a2a ·
∂Paa

2

∂ua
1

+
∑
b,a

Nbµb

∫
dΓb

2F 1a2b ·
∂Pab

2

∂ua
1

=0.

In Eq. (B.48), we used the same notations as in Eq. (11), and
introduced as F1a0 the force exerted by the BH on particle 1a,
F1ar the force acting on particle 1a associated with the relativistic
corrections, andF i j the force between two particles. To obtain the
second equation of the hierarchy, one may proceed similarly and
integrate Eq. (B.47) for all particles, except 2. Two different cases
should be considered, depending on whether one is considering
Paa

2 or Pab
2 (with a,b). Let us first consider the diffusion equation

satisfied by Paa
2 . Integrating Eq. (B.47) with respect to all particles

except Γa
1 and Γa

2, one gets

∂Paa
2

∂t
+ ua

1 ·
∂Paa

2

∂xa
1

+ua
2 ·
∂Paa

2

∂xa
2

+ µaF1a2a ·
∂Paa

2

∂ua
1

+µaF2a1a ·
∂Paa

2

∂ua
2

+ [M•F1a0+M?F1ar]·
∂Paa

2

∂ua
1

+[M•F2a0+M?F2ar]·
∂Paa

2

∂ua
2

+ (Na−2) µa

∫
dΓa

3

[
F1a3a ·

∂Paaa
3

∂ua
1

+F2a3a ·
∂Paaa

3

∂ua
2

]
+

∑
b,a

Nb µb

∫
dΓb

3

F1a3b ·
∂Paab

3

∂ua
1

+F2a3b ·
∂Paab

3

∂ua
2

 = 0.

(B.49)

Similarly, starting from Eq. (B.47), and integrating it with respect
to Γa

1 and Γb
1 (for b,a), one gets

∂Pab
2

∂t
+ ua

1 ·
∂Pab

2

∂xa
1

+ub
2 ·
∂Pab

2

∂xb
2

+µbF1a2b ·
∂Pab

2

∂ua
1

+µaF2b1a ·
∂Pab

2

∂ub
2

+ [M•F1a0+M?F1ar]·
∂Pab

2

∂ua
1

+[M•F2b0+M?F2br]·
∂Pab

2

∂ub
2

+ (Na−1) µa

∫
dΓa

3

F1a3a ·
∂Paba

3

∂ua
1

+F2b3a ·
∂Paba

3

∂ub
2


+ (Nb−1) µb

∫
dΓb

3

F1a3b ·
∂Pabb

3

∂ua
1

+F2b3b ·
∂Pabb

3

∂ub
2


+

∑
c,a,b

Nc µc

∫
dΓc

3

F1a3c ·
∂Pabc

3

∂ua
1

+F2b3c ·
∂Pabc

3

∂ub
2

 = 0.

(B.50)

As in Eq. (12), we now introduce the renormalised DFs f a
1 , f ab

2 ,
and f abc

3 as

f a
1 = µaNaPa

1; f aa
2 = µ2

a Na(Na−1)Paa
2 ; f ab

2 = µaµbNaNbPab
2

f aaa
3 = µ3

a Na(Na−1)(Na−2)Paaa
3 ; f aab

3 = µ2
aµbNa(Na−1)NbPaab

3

f abc
3 = µaµbµcNaNbNcPabc

3 , (B.51)

where we assumed that “a”, “b”, and “c” were associated with
different components. With these new normalisations, Eq. (B.48)
immediately becomes
∂ f a

1

∂t
+ua

1 ·
∂ f a

1

∂xa
1

+[M•F 1a0+M?F 1ar] ·
∂ f a

1

∂ua
1

+
∑

b

∫
dΓb

2F 1a2b ·
∂ f ab

2

∂ua
1

=0, (B.52)
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where one should note that the sum over “b” runs for all com-
ponents, which allows for a generic writing. Equations (B.49)
and (B.50) can then be cast under the same generic form

∂ f ab
2

∂t
+ ua

1 ·
∂ f ab

2

∂xa
1

+ub
2 ·
∂ f ab

2

∂xb
2

+µbF1a2b ·
∂ f ab

2

∂ua
1

+µaF2b1a ·
∂ f ab

2

∂ub
2

+

M•F1a0+M?F1ar

]
·
∂ f ab

2

∂ua
1

+

[
M•F2b0+M?F2br

· ∂ f ab
2

∂ub
2

+
∑

c

∫
dΓc

3

F1a3c ·
∂ f abc

3

∂ua
1

+F2b3c ·
∂ f abc

3

∂ub
2

 = 0. (B.53)

Let us insist on the fact that Eq. (B.53) holds for both the cases
where “a” and “b” are equal or different, and the sum on “c”
runs for all components. As in Eqs. (14) and (15), one can now
define the cluster representation of the DFs which, in this multi-
component context, reads

f ab
2 (Γa

1,Γ
b
2) = f a

1 (Γa
1) f b

1 (Γb
2)+gab

2 (Γa
1,Γ

b
2), (B.54)

and

f abc
3 (Γa

1,Γ
b
2,Γ

c
3) = f a

1 (Γa
1) f b

1 (Γb
2) f c

1 (Γc
3)

+ f a
1 (Γa

1) gbc
2 (Γb

2,Γ
c
2)+ f b

1 (Γb
2) gac

2 (Γa
1,Γ

c
3)+ f c

1 (Γc
3) gab

2 (Γa
1,Γ

b
1)

+ gabc
3 (Γa

1,Γ
b
2,Γ

c
3). (B.55)

Following Eq. (16), we assume that gab
2 scales like the inverse

of the number of particles, while gabc
3 scales like the square of

the inverse of the number of particles. Using the decompositions
from Eqs. (B.54) and (B.55), and keeping only terms of order
1/Na or larger (where “a” runs over all the components), the first
Eq. (B.52) of the BBGKY hierarchy becomes

∂ f a
1

∂t
+ua

1 ·
∂ f a

1

∂xa
1

+

M•F1a0+M?F1ar+
∑

b

∫
dΓb

2F1a2b f b
1 (Γb

2)

· ∂ f a
1

∂ua
1

+
∑

b

∫
dΓb

2F1a2b ·
∂gab

2

∂ua
1

= 0. (B.56)

while the second Eq. (B.53) becomes
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2
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+ua

1 ·
∂gab

2

∂xa
1

+ub
2 ·
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2

∂xb
2

+ µbF1a2b ·
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1

∂ua
1
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∂ f b

1

∂ub
2
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1)

+ [M•F1a0+M?F1ar]·
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2
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1
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2
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2
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2

∂ub
2

+

∑
c
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dΓc

3F1a3cgbc
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2,Γ
c
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· ∂ f a
1
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1

+

∑
c

∫
dΓc

3F2b3cgac
2 (Γa

1,Γ
c
3)

· ∂ f b
1

∂ub
2

= 0. (B.57)

Much like for Eq. (19), let us introduce the system’s 1-body DF
Fa and 2-body autocorrelation Cab as

Fa =
f a
1

M?
; Cab =

gab
2

M2
?

, (B.58)

noting the slightly different normalisations of Cab, so as to ensure
a symmetric rescaling with respect to “a” and “b”. We also follow
Eqs. (20) and (21) to rescale the interaction potential as well as
the relativistic corrections with the mass of the BH. Given these
various renormalisations, Eq. (B.56) becomes

∂Fa

∂t
+ua

1 ·
∂Fa

∂xa
1

+F1a0 ·
∂Fa
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1

+ ε

∑
b
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2F1a2b Fb(Γb
2)

· ∂Fa
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1

+εF1ar ·
∂Fa
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1

+ε
∑

b

∫
dΓb

2F1a2b ·
∂Cab

∂ua
1

= 0, (B.59)

where the small parameter ε = M?/M• was introduced. Similarly,
Eq. (B.57) becomes
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1

+ub
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2

+ ε
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1

+ ε
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c

∫
dΓc

3F2b3cCac(Γa
1,Γ

c
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· ∂Fb

∂ub
2

= 0, (B.60)

where we introduced the small parameter ηa = µa/M? of or-
der 1/Na. Equations (B.59) and (B.60) are the direct analogs
of Eqs. (22) and (23), when one considers a system with multiple
components.

As was done in Sect. 3, one may now rewrite the two pre-
vious evolution equations within the appropriate angle-action
coordinates for the BH-induced Keplerian motion. We perform a
degenerate angle-average as defined in Eq. (33), and assume that
Fa and Cab satisfy the ansatz from Eqs. (41) and (46). It is then
straightforward to rewrite Eq. (B.59) as

∂Fa

∂τ
+
[
Fa,Φ+Φr

]
+
∑

b

∫
dE2

[
Cab(E1,E2),U12

]
(1) = 0, (B.61)

where we used the rescaled time τ = (2π)d−kεt from Eq. (50),
with ε = M?/M•. Following Eq. (43), we also introduced the
total averaged self-consistent potential Φ as

Φ =
∑

a

Φa, (B.62)

where the averaged potential Φa is given by

Φa(E1) =

∫
dE2 Fa(E2) U12(E1,E2). (B.63)
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In Eq. (B.63), the averaged interaction potential U12 introduced
in Eq. (44) was used. One can similarly rewrite Eq. (B.60) as

∂Cab

∂τ
+
[
Cab(E1,E2),Φ(E1)+Φr(E1)

]
(1)

+
[
Cab(E1,E2),Φ(E2)+Φr(E2)

]
(2)

+
∑

c

∫
dE3 C

bc(E2,E3)
[
Fa(E1),U13

]
(1)

+
∑

c

∫
dE3 C

ac(E1,E3)
[
Fb(E2),U23

]
(2)

+
1

(2π)d−k

{
ηb

[
Fa(E1)Fb(E2),U12

]
(1)

+ηa

[
Fa(E1)Fb(E2),U21

]
(2)

}
= 0. (B.64)

With the two coupled evolution Eqs. (B.61) and (B.64) while
keeping track of the different mass prefactors, one can follow the
path presented in the previous subsection to derive Eq. (69), the
appropriate closed kinetic equation for Fa.

Appendix C: From Fokker-Planck to Langevin

Following Risken & Frank (1996), let us briefly recall how one
may obtain the stochastic Langevin equation describing the indi-
vidual dynamics of a test particle starting from a Fokker-Planck
equation describing the diffusion of the system’s DF as a whole.
We start from the generic writing of the degenerate Balescu-
Lenard equation from Eq. (63), written as an anisotropic self-
consistent Fokker-Planck equation. It reads

∂F
∂τ

=
∂

∂Js ·

A(J, τ) F(J, τ)+ D(J, τ)·
∂F
∂Js

 , (C.1)

where, following the notations from Eq. (64), the drift vector
A(J, τ) and diffusion tensor D(J, τ) are introduced as

A(J, τ) =
∑
ms

msAms (J, τ); D(J, τ) =
∑
ms

ms⊗ms Dms (J, τ).

(C.2)

One should keep in mind that in Eq. (63) the drift and diffusion
coefficients also secularly depend on the system’s DF F, but
this was not written out to simplify the notations. Following
the notations of Eq. (4.94a) in Risken & Frank (1996), we may

immediately rewrite Eq. (C.1) as

∂F
∂τ

=
∂

∂Js ·

[
− D(1)(J, τ) F(J, τ) +

∂

∂Js ·

[
D(2)(J, τ) F(J, τ)

] ]
,

(C.3)

where the first- and second-order diffusion coefficients read

D(1)(J, τ) = −A(J, τ)+
∂

∂Js·D(J, τ); D(2)(J, τ) = D(J, τ). (C.4)

One should pay attention to the fact that the diffusion of stars
takes place in the full action domain J , while only gradients with
respect to the slow actions Js are present in Eq. (C.3). Of course,
by enlarging the diffusion coefficients D(1) and D(2) with zero
coefficients for all the adiabatically conserved fast actions J f , it
is straightforward to rewrite Eq. (C.3) as a diffusion equation in
J-space involving derivatives with respect to J.

Let us now focus on the individual dynamics of a given test
particle. We denote as J (τ) its position in action space at time
τ. This test particle then undergoes a stochastic diffusion consis-
tent with the averaged diffusion captured by the Fokker-Planck
Eq. (C.3), namely a Langevin equation reading

dJ
dτ

= h(J , τ) + g(J , τ)·Γ(τ), (C.5)

where we introduced the Langevin vector and tensor h and g,
as well as the stochastic Langevin forces Γ(τ), whose statistics
satisfy〈
Γ(τ)

〉
= 0;

〈
Γ(τ)⊗Γ(τ′)

〉
= 2 I δD(τ−τ′), (C.6)

with I the identity matrix. Following Eq. (3.124)
of Risken & Frank (1996), we may now express the Langevin
coefficients from Eq. (C.5) as a function of the coefficients
appearing in the Fokker-Planck Eq. (C.3). The second-order
diffusion tensor D(2) being definite positive, we introduce as
√

D(2) one of its square root, so that one has the component
relations

hi = D(1)
i −

∑
j,k

(√
D(2))

k j

∂
(√

D(2))
i j

∂xk
; gi j =

(√
D(2))

i j. (C.7)

Equation (C.7) therefore allows us to fully specify the proper-
ties of the diffusion of an individual particle as captured by the
Langevin Eq. (C.5). Of course, self-consistency requires that the
diffusion coefficients D(1) and D(2), and therefore the Langevin
coefficients h and g should be updated as the system’s DF F
changes on secular timescales, as mentioned in the main text.
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