
8C R Y P T O B Y T E S S U M M E R 1 9 9 6 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Phillip Rogaway
Department of Computer Science

Engineering II Building

University of California

Davis, CA 95616 USA

With keys of just 56-bits, the susceptibility of DES
to exhaustive key search has been a concern since
the cipher was first made public. Now a simple ex-
tension of DES, called DESX, has been shown to be
virtually immune to exhaustive key search. This note
describes the DESX construction and the sense in
which it is has been proven sound. The construction
is due to Ron Rivest [4], while its soundness proof is
due to Joe Kilian and myself [3].

Strengthening DES
Despite impressive results on the differential and lin-
ear cryptanalysis of DES, the only practical attack
described to date remains exhaustive key search.
The cost of this attack keeps going down. In 1993
Wiener provided a careful estimate which showed
that for $1 million one could build an engine which,
given a single 〈plaintext, ciphertext〉 pair, could re-
cover the key in about 3.5 expected hours [5]. It
would seem that DES, when used in its most cus-
tomary manner, has already become a rather mar-
ginal choice for meeting commercial data privacy
requirements.

An attractive way to overcome DES’s susceptibility
to key search is to build a new block cipher out of
DES, leaving alone DES’s internal structure. One
advantage of this approach is that it can preserve
the assurance benefits which DES has gained over
the years. Another advantage is that it allows one to
gainfully employ existing DES hardware and soft-
ware. Finally, making a new block cipher which is to
be used in standard ways is more general and more
conducive to analysis than coming up with entirely
new DES-based modes of operation for specific
higher-level tasks such as encryption.

The most well-known suggestion to strengthen DES
is “triple DES,” one version of this being defined by

The Security of DESX

Phillip Rogaway is an assistant professor at UC Davis. His re-
search has focused on using a more practical provable-security ap-
proach to cryptographic protocol design and analysis. He can be
contacted at rogaway@cs.ucdavis.edu.

EDE3k1. k2. k3(x) = DESk3(DES k
–
2
1 (DESk1 (x))). That

is, the key for EDE3 is 56 × 3 = 168 bits, and one
enciphers a 64-bit block by enciphering under one
56-bit subkey, deciphering under a second, then
enciphering under a third. (The reason the second
step is DESk

–
2
1 and not DESk 2 is for DES-compatibil-

ity: set K = k.k.k to make EDE3K = DESk . The rea-
son for using DES three times instead of two is the
existence of “meet-in-the-middle” attacks on double
DES.)

The problem with triple DES is that it is much slower
than DES itself—roughly a third the speed. When
cipher block chaining EDE3, this slowdown will
occur in hardware (even if one tries to compensate
with additional hardware) as well as in software. In
many situations, these performance penalties are
unacceptable.

There is, then, a need for a cheap way to strengthen
DES against key-search attack, injecting extra key
bits without impacting the cipher’s internal struc-
ture. Back in 1984, Ron Rivest came up with just
such an extension of DES. It is called DESX.

The DESX Construction
DESX is defined by

DESXk .k1.k2(x) = k2 ⊕ DES k(k1 ⊕ x).

That is, a DESX key K=k.k1.k2 consists of
56 + 64 + 64 = 184 bits comprising three different
subkeys: a “DES key” k, a “pre-whitening key” k1,
and a “post-whitening key” k2.

To encrypt a message block we XOR it with k1, DES
encrypt under k, then XOR with k2. Thus the work
to DESX encrypt a message block is just two XORs
more than the work to DES encrypt a message block.

The amazing thing about DESX is that these two
XOR operations render the cipher much less suscep-
tible to key-search attack. In the sequel we will quan-
tify just how much the “DESX trick” really buys.
Here we won’t try to impart any intuition as to why
DESX works, except to suggest that the pre- and
post-whitening make it difficult for the attacker to
single out even one valid 〈x i, DESk (x i)〉 pair when
the attacker mounts a chosen-plaintext attack to get
many 〈Pj, DESXK (Pj)〉 pairs.

A simple
extension of

DES, called
DESX, has

been shown
to be virtually

immune to
exhaustive
key search.

The work to
DESX encrypt a
message block

is just two
XORs more

than the work
to DES encrypt

a message
block.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — S U M M E R 1 9 9 6 9

What is Key Search?
We want to emphasize that what we show in [3] is
that there is no feasible key-search attack on DESX;
we don’t know that there’s not a feasible attack of
some other type. Thus it is essential to understand
what exactly we mean by a key-search attack on
DESX. Understanding this may take a careful read-
ing or two.

Sometimes people think of a key-search attack as
one in which the adversary systematically explores
some universe of possible keys. But we mean some-
thing broader: we claim that the essence of key
search is that the adversary carries out her mission
in a way which doesn’t exploit the internal structure
of the underlying cipher—she uses the underlying
cipher (e.g., DES) as a black box.

Now it’s a very nebulous thing what we just said—
what does it mean to use DES only as a black box?
How can we make this idea formal? The first step to
an answer, oddly enough, is to generalize the DESX
construction.

For any block cipher F we can define block cipher
FX by FXk . k1. k2(x) = k2 ⊕ Fk (k1 ⊕ x). Of course
DESX = FX when F = DES.

Now if you’ve come up with a way to break DESX
and it doesn’t use anything structural about DES
(that is, it uses DES as a “black box”), then your
method ought to break FX for any F with a 56-bit
key and a 64-bit block size. In other words, we can
recast the problem analyze how well DESX resists key-
search attack to the problem analyze how well FX re-
sists key-search attack, for some other function F. But if
we just switch from looking at FX with F = DES to
looking at FX with F being some other particular
function, then we haven’t gained anything: what-
ever function F we choose, it also might have struc-
ture the adversary could exploit.

To overcome this difficulty we will demand that the
adversary attack FX for a random block cipher F. An
adversary can’t exploit structure in a random block
cipher because there is no structure to exploit! The
thesis underlying our analysis is that for any particu-
lar function F, we can measure how well a key-search
adversary can attack FX by measuring how well an
arbitrary adversary can attack the FX-construction

for a random block cipher F. In particular, it is our
thesis that one can measure how well a key-search
adversary can attack DESX by measuring how well
an arbitrary adversary can attack the FX-construc-
tion, when F is a random block cipher with a key
length and block length to match DES.

The Formal Model
Not using the structure of DES is one thing,
but even a key-search adversary on DESX
deserves the ability to compute DES or
DES –1 at points of her choosing. Analo-
gously, if we’re going to ask an adversary to
attack FX it’s only fair to give her the capa-
bility to compute F and F –1. So we will pro-
vide our adversary with “black boxes” to
compute these. The F black box, on input
(k,x), computes Fk(x). The F –1 black box,
on input (k,y), computes F –

k
1(y).

Now we’re ready to make quantitative the security
of the FX construction: we will define the advantage
an adversary A obtains in attacking it.

Fix parameters κ (the key length) and n (the block
length). Choose a random block cipher F which uses
a κ-bit key and an n-bit block length. This means to
choose a random permutation for each κ-bit key k.
We start off by giving adversary A black boxes for F
and F –1. This affords A the ability to compute the
underlying block cipher without letting her exploit
its structure. Next we need to present A with a “test”
to see how well she can attack FX.

Here is that test. We present A with one of two types
of encryption oracles. Which type A gets is chosen
at random.

• A good encryption oracle is one which chooses a
random (κ + 2n)-bit FX-key, K, and then answers
each n-bit question P by FXK (P).

• A bogus encryption oracle is one which chooses
a random permutation π on the space of n-bit
blocks and then answers each n-bit question P
by π(P).

To win the above “FXK-or-π” game, A is supposed
to correctly identify if she was given a good encryp-
tion oracle or a bogus encryption oracle. The ad-

It is our thesis
that one
can measure
how well a
key-search
adversary can
attack DESX
by measuring
how well
an arbitrary
adversary can
attack the FX-
construction,
when F is
a random
block cipher.

Figure 1.
Encryption using
DESXk.k1.k2

DES

plaintext

ciphertext

k1

k

k2

10C R Y P T O B Y T E S S U M M E R 1 9 9 6 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

vantage of A is defined as the probability that A an-
swers that she has a good encryption oracle given
that we give her a good encryption oracle, minus
the probability that A answers that she has a good
encryption oracle given that we give her a bogus
encryption oracle. An advantage of 1 indicates the
the adversary is doing a great job of distinguishing
FXK from a random permutation π unrelated to F;
she always answers correctly. An advantage of 0 in-
dicates that A is doing a worthless job of making
this distinction; she could just as well answer by flip-
ping a coin. An advantage of –1 indicates that A is
doing a terrible job of guessing; in this case, she’d do
well to just swap when she says “good” and when
she says “bogus.”

We have given the adversary what would seem to
be a very easy game—much easier, say, then asking
her to try to recover the key K when presented
with a bunch of FXK-encrypted points. Indeed if
there were an adversary A who could recover K
from FXK-encrypted points, then there would be
another adversary A’ who, with resources compa-
rable to A’s, could get an advantage of ≈1 in the
FXK -or-π game. In general, we use the FXK-or-π
game because adopting this liberal notion of
adversarial success makes our results stronger: if no
adversary can distinguish FXK from a random per-
mutation, then no adversary can break FX in any
useful way.

Like Having 118-lg m Bits
Having defined the FXK -or-π game and the ad-
vantage an adversary achieves in playing it, it be-
comes possible to analyze the maximal advantage
that any adversary can obtain, assuming that the
adversary expends only some specified computa-
tional effort. We won’t describe any details of this
analysis; we’ll just state the final answer. See [3]
for the proof. That proof and its setup builds, in
turn, on [1].

Consider the maximal advantage that any adversary
can achieve in the FXK-or-π game when the adver-
sary asks a total of t questions of her F / F –1 black
boxes and a total of m questions of her FXK-or-π
encryption oracle. This value, MaxAdv, depends on
m and t, as well as on F’s block length n and key
length κ. The main result of [3] says that
MaxAdv(m, t,n,κ) ≤ mt · 2–n–κ+1.

Since each query to an F /F –1 black box takes at least
one unit of time, we see that an adversary which
runs in time T can get advantage which is at most
T · 2–n–κ+1+lg m. So another way to state the result
of [3] is that the effective key length of the FX-con-
struction, with respect to key search, is at least
 n+κ–1–lg m bits.

Let’s apply the above result. Assume that you use
DESX on a given key to encrypt at most 230 blocks.
Use the thesis stated earlier. Then a key-search
adversary attacking DESX which runs in time T
could gain an advantage of at most T · 2–56–64+1+30 =
T · 2–89. For example, if T < 270 then the adversary’s
advantage is less than 2–19.

Now the truth is that there is one structural prop-
erty of DES which attacks sometimes do exploit:
it is the DES key-complementation property:
DES k (x) = DES –

k (–x). We can “factor out” this prop-
erty (that is, allow the adversary to exploit this par-
ticular structural property) by fixing some particular
bit of the DES key. This reduces the DES key length
by 1. Thus, taking account of the DES key-comple-
mentation property and then applying our thesis,
we get that the effective key length of DESX, with
respect to key search, is at least 55 + 64 – 1 – lg m =
118 – lg m bits.

Concluding Remarks
DESX should be used just as one would use DES.
For example, instead of applying cipher block
chaining (CBC) to DES, one would apply it to
DESX. DESX interacts particularly nicely with
CBC, as DESX-CBC encryption amounts to mask-
ing the plaintext with key material, then DES-CBC
encrypting, then masking what results with more
key material. In particular, hardware which per-
forms DES-CBC encryption can be gainfully em-
ployed to perform the non-trivial part of DESX-
CBC encryption.

A minor inconvenience of DESX is its strange key
size. In applications it might be preferable to extend
the definition of DESX to use arbitrary-length keys,
or else to use keys of some fixed but more conve-
nient length. As an example, in RSA DSI’s BSAFE
3.0 implementation of DESX, the underlying key key
may be 128 bits, in which case the DES key and the
pre-whitening key are determined directly from key,

Taking account
of the DES key-

complementation
property and
then applying
our thesis, the
effective key

length of DESX,
with respect to

key search,
is at least

118-lg m bits,
where m is the

number of
DESX-encrypted
message blocks

the adversary
can obtain.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — S U M M E R 1 9 9 6 11

while the post-whitening key is a complex function
of all 16 bytes of key.

DESX was intended to improve DES’s strength
against key search, and preserve its strength with re-
spect to other possible attacks. But as Kaliski and
Robshaw indicate, DESX actually does add security
against differential and linear cryptanalysis [2], in-
creasing the required number of known or chosen
plaintexts to be in excess of 260. Further added
strength against these attacks would seem to be
achieved by replacing the XOR operations of DESX
by addition, as in DES-PEPk . k1. k 2(x) = k1 +
DESk (k2+x), where L.R+L’.R’ = (L ^+ L’). (R ^+ R’),
|L|=|R|=|L’|=|R’|= 32, and ^+ denotes addition
modulo 232. The κ + n – 1 – lg m bound of [3] also
applies to variants such as this one.

As we’ve explained, our results don’t say that it’s in-
feasible to build a machine which would break DESX
in a reasonable amount of time. But they do imply
that such a machine would have to employ some
radically new idea: it couldn’t be a machine imple-
menting a key-search attack, in the general sense
which we’ve described.

DESX would seem, in virtually every sense, to be a
“better DES than DES.” It is simple, DES-compat-
ible, efficiently implementable in hardware, essen-
tially the same speed as single DES in software, can
profitably use existing DES hardware, and it has been
proven, in a strong sense, to add much strength
against exhaustive key search. Emerging standards
which specify DES or triple DES would do well to
consider DESX.

References
[1] S. Even and Y. Mansour, “A construction of a cipher from

a single pseudorandom permutation.” Asiacrypt ’91.

[2] B. Kaliski and M. Robshaw, “Multiple encryption: weigh-

ing security and performance.” Dr. Dobb’s Journal, Janu-

ary 1996, 123—127.

[3] J. Kilian and P. Rogaway, “How to protect DES against

exhaustive key search.” Crypto ’96, and http://wwwcsif.

cs.ucdavis.edu/~rogaway.

[4] R. Rivest, personal communication.

[5] M. Wiener, “Efficient DES key search.” Manuscript of

August 20, 1993, and Technical Report TR-244, School

of Computer Science, Carleton University, May 1994.

S T A N D A R D S U P D A T E

Standardization Efforts for
Triple-DES Continue
Progress on the ANSI X9.52 standard continues with
the completion of version 6 of a proposed draft stan-
dard for the use of triple-DES.

Triple-DES is a natural way to design a block cipher
that builds on the strengths of DES, however there
are many important considerations in the drafting of
such a standard.

In all, nine modes of triple-DES are proposed with
four being the natural counterparts of the well known
modes of use of single DES. For triple-DES some ad-
ditional flexibility in specifying some modes is avail-
able and in addition to the cipher block chaining
(CBC), cipher feedback (CFB) and output feedback
(OFB) modes inherited from single DES, three slight

variants termed interleaved CBC and pipelined CFB
and pipelined OFB are also available.

Two new modes of triple-DES that were developed
at IBM are also presented in the current draft. One
new mode, termed cipher block chaining with masking
or CBCM, enhances the conventional CBC triple-
DES arrangement with the inclusion of an exclu-
sive-or of the same 64-bit quantity both before and
after the middle DES operation. This 64-bit quan-
tity varies for each block of encryption and it is gen-
erated by the independent running of a fourth DES
operation in OFB mode. The other new mode is the
interleaved variant of CBCM.

For more information on the progress of ANSI
X9.52 contact the X9.52 editor, Bill Lattin, at
lattin@cylink.com.

DESX would
seem, in
virtually
every sense,
to be a
"better DES
than DES.”

Two new modes
of triple-DES
that were
developed at
IBM are also
presented in the
current draft.

