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Abstract

In-network aggregation is an important paradigm for current and future net-
worked systems, enabling efficient cooperate processing of aggregate infor-
mation, while providing sub-linear scalability properties. However, security
of this important class of algorithms has to date not been sufficiently ad-
dressed.

In this dissertation, we focus on the integrity properties of in-network aggre-
gation algorithms, with emphasis on the sub-goals of correctness and com-
pleteness. We propose an efficient solution that provides strong correctness
guarantees by ensuring individual node integrity a priori by applying the
principles of trusted systems. To this end, we propose dedicated trusted sen-
sor and aggregator modules. Trusted modules, in conjunction with cryp-
tographic authentication and transport protocols, are applied to construct
trusted aggregation overlays, giving strong guarantees in terms of correct-
ness. We support our findings by a proof-of-concept prototype in a single
aggregator model, as well as a design for a hierarchical in-network aggrega-
tion system.

Completeness is a more elusive goal than correctness, if only for the fact
that drops and message corruptions are a fact of life in distributed systems.
Hence, it may not be possible to distinguish between benign and malicious
losses. Building on the trusted systems solution for correctness, we propose
a protocol that decreases the adversarial influence in a tree-based aggregation
network. We exploit the fact that a secure protocol can be executed over a
trusted overlay, enabling per-edge fault detection and dissemination of edge
ratings. Simulation-based trials suggest that the presented protocol achieves
significant reduction in the potential impact an adversary can have on the
completeness of aggregate results.



Öryggiseiginleikar netlægrar samsöfnunar gagna
í dreifðum kerfum

Kristján Valur Jónsson

Desember 2012

Útdráttur

Samsöfnunarreiknirit (e. aggregation algorithms) eru iðulega notuð til að ná
yfirsýn yfir mikinn og flókinn flaum upplýsinga í dreifðum netkerfum, svo
sem mælinetum. Eftir því sem netkerfin stækka að umfangi reynir æ meira á
skölunareiginlega þessara reiknirita og á samvinnu milli tölvanna sem safna
og vinna úr upplýsingunum. Þó skalanleg reiknirit af þessu tagi séu til er
sá galli á gjöf Njarðar að í mörgum tilfellum geta óheiðarlegir þátttakendur
ógnað öryggi þeirra og þannig minnkað traust á útreikningum. Nauðsynlegt
er að tryggja gagnaöryggi í slíkum kerfum en það felur í sér ýmis óleyst
vandamál.

Í þessari ritgerð er fjallað um öryggiseiginleika dreifðra kerfa sem nota net-
læga samsöfnun upplýsinga (e. in-network aggregation), með áherslu á traust
sem bera má til reiknaðrar lokaniðurstöðu. Unnið er út frá dreifðum mæli-
netum þar sem margir þátttakendur vinna saman að mælingum og vinnslu.
Sem dæmi má nefna stór skynjaranet og rauntímamælingar á ástandi stórra
tölvukerfa. Lagt er til að traust í veitingu og samsöfnun upplýsinga verði
tryggt með einingum sem byggja á fræðum traustra kerfa. Sett er fram kerfi
sem byggir á traustum skynjurum og vinnslueiningum þar sem hver eining
er prófuð og varin á sjálfstæðan hátt. Með öruggum netsamskiptareglum
(e. network protocols) mynda þessar einingar síðan heildstætt öruggt dreift
mælikerfi. Hönnun kerfisins er sannreynd með frumgerð að traustum skyn-
jara.

Með traustu mælikerfi má að ákveðnum skilyrðum uppfylltum tryggja að
lokaniðurstaða sé rétt, þ.e. að öll gögn sem saman mynda niðurstöðuna séu
sannanlega byggð á traustum frummælingum og vinnslu. Þó geta árásaraði-
lar enn skemmt niðurstöðuna með að fjarlægja réttar upplýsingar áður en
þær berast til móttakandans. Til að taka á því vandamáli eru settar fram
samskiptareglur sem draga úr þessum áhrifum árásaraðilans. Virkni þeirra er
studd með hermunum og benda niðurstöður til að með þeim aðferðum sem
lýst er megi draga verulega úr áhrifum slíkra árása.
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Chapter 1

Introduction

New networking paradigms, such as wireless sensor networks (Akyildiz et al., 2002) and

the Internet of Things (Uckelmann et al., 2011), will without a doubt enable new and excit-

ing applications. At the same time, the unprecedented scale of future networked systems

and the sheer volume of information produced can be expected to pose new challenges

in terms of scalability and security. In this dissertation, we consider a particular class of

applications in networked systems, those that employ aggregation algorithms to address

the scalability challenges involved in gathering information from a large set of contribu-

tors and co-operatively produce a series of concise digests representing an approximate

global view. In particular, we focus on the security challenges posed by the application of

distributed aggregation algorithms in large networked systems.

Aggregation in Networked Systems

Modern networked systems are capable of generating vast amounts of information about

their inner workings and surroundings. This information has the potential to help us visu-

alize systems, aiding us in making intelligent management decisions and learning about

an observed environment. However, great volumes of detailed data are not necessarily

helpful for this purpose. On the contrary, we may argue that very large data sets or fine-

grained streams can occlude system visualization, as one may not see the forest for the

trees. Consider the problem of big data (Nature, 2008; Horowitz, 2008). Recent advances

in computing and research methodologies can generate enormous data sets that challenge

traditional information processing techniques. Examples of big data generating sources

are diverse and bound to proliferate in the near future, but with respects to the topic of

this dissertation, we can consider applications such as sensor networking (Akyildiz et al.,
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2002; Roush, 2003; Yick et al., 2008), aggregation of incident logs (Slagell & Yurcik,

2005) and cooperative sensing (Kansal et al., 2007), all of which are classes of applica-

tions that may be expected to flourish both in number and size in the near future.

Aggregation (van Renesse, 2003; Keshav, 2006) is an umbrella term for techniques used

to summarize volumes of raw information into a more manageable form. Aggregation

can be used to summarize and condense a number of contributions into a digest that

concisely describes an aspect of the state of a system. For instance, the average ambient

temperature over an area can be described as the average of samples taken simultaneously

by a number of motes in a wireless sensor network. In network management applications,

we may want to monitor a system to maintain a running average of packet drops in router

queues or detect an increase in the number of abnormal TCP connections. Generalizing,

the objective of aggregation in a networked system is to provide a small subset of nodes,

which we will call queriers, with a bird’s eye view of the system. This view is produced by

processing and condensing local inputs contributed by the node population into a series of

manageable digests that suffice to characterize some aspect of a monitored system.

We define networked systems, local inputs and aggregation functions abstractly in this

dissertation. Networked systems are a general term applying to a diverse range of sys-

tems, from static wireless sensor networks (Madden et al., 2002b) to network manage-

ment applications in dynamic computer networks and clusters (Stadler et al., 2008). The

contributions of the local state of participating nodes are called the local inputs to the

protocol. Local inputs and aggregation functions are also broadly defined as the represen-

tation of some sort of locally observable and quantifiable phenomenon. Examples include

measurement of environmental variables (Yao & Gehrke, 2002), pollution particle count

(Paulos et al., 2007) and structural stress (Gomez et al., 2009) in a wireless sensor net-

work, monitoring of performance parameters (Stadler et al., 2008) and efficient meta-data

directed searches in information-centric networking (Palmskog et al., 2010).

Our goal in this dissertation is to address a range of problems in the case of aggregation

in networked systems in the general case, that is, for arbitrary dynamic network types as

well as arbitrary local inputs and aggregation functions.

Scalability

Networked aggregation systems have to date been relatively constrained in terms of size,

even considering seemingly large-scale examples, such as sensor networks and enterprise-

scale computer networks. However, new paradigms, such as shared and cooperative sens-

ing (Deshpande et al., 2003; Kansal et al., 2007) and the Internet of Things (Gershenfeld
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et al., 2004; Uckelmann et al., 2011), are poised to shatter such bounds, creating large and

complex networked sensing, management and control systems. Hence, scalability must

be a primary consideration in the design of future systems.

In distributed systems theory, we generally define scalability with respect to the asymp-

totic relationship of several performance metrics to system size. For instance, one must

consider the impact of system size on the maximum memory consumption and CPU load

on any single node in a distributed system. The maximum time required to execute a

distributed algorithm is also of concern.

In this dissertation, we are primarily interested in messaging complexity, the number of

messages generated in course of the execution of a distributed algorithm. Consider a cen-

tralized aggregation system in which a querier sends individual requests in a round-robin

fashion to managed hosts that in turn report the local state of the requested variables to a

central aggregation node (management station). The aggregate is computed in a straight-

forward manner by the aggregation node, once all answers have been received. Several

problems are immediately apparent with regards to scalability, one being the processing

power and memory requirements of the aggregation node. Time complexity, the time re-

quired to obtain a snapshot of the entire system, is linear with regards to the system size.

Message complexity is also a critical factor. Centralized systems of this sort typically

have highly asymmetrical link utilization: a separate end-to-end request/response phase

is triggered for each of the hosts queried, leading to exponentially increasing network

link utilization in proportion to decreasing distance to the querier. This increase implies

potential congestion and resource allocation problems.

In-Network Aggregation

To address the scalability issues associated with large-scale future systems, we may expect

a paradigm shift from the predominance of relatively straight-forward client/server-based

aggregation systems, e.g. SNMP (Case et al., 1990), to distributed architectures. This shift

has already begun with distributed aggregation algorithms being common in wireless sen-

sor networks (Madden et al., 2002b), as well as being introduced in network monitoring

applications (Birman & van Renesse, 2002). The class of in-network aggregation proto-

cols, in which participants co-operatively compute the aggregate, is of particular interest.

These protocols are efficient, with regards to both time and message complexity, typically

sub-linear with regards to the system size. Further, the per-edge messaging complexity is

generally of a constant order, irrespective of the system size.
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Considerable work has already been carried out in the field of in-network aggregation,

most prominently for sensor networks (Intanagonwiwat et al., 2000; Krishnamachari

et al., 2002; Madden et al., 2002b; Shrivastava et al., 2004; Rajagopalan & Varshney,

2006; Upadhyayula & Gupta, 2007), but also in network monitoring and management

systems (van Renesse, 2003; Keshav, 2006; Stadler et al., 2008). In-network processing

has also been proposed as an approach to process big data (Costa et al., 2012).

In-network aggregation protocols can be roughly categorized into families. Protocols

which aggregate over a spanning-tree overlay are amongst the most efficient ones, in

terms of message and time complexity (Madden et al., 2002b; Dam & Stadler, 2005; Lim

& Stadler, 2005). Gossip-based protocols (Kempe et al., 2003; Jelasity et al., 2005; Boyd

et al., 2006) are based on randomized “rumor spreading” amongst neighbors on a network

overlay and can converge quite quickly to a close approximation of the true system state.

Consensus propagation (Moallemi & Van Roy, 2006; Aurell & Pfitzner, 2009) is yet

another technique, particularly applicable to aggregation of Gaussian data.

Security

The inherent scalability attributes of in-network aggregation algorithms makes them an

attractive choice for data processing applications in large-scale networked systems. In

this dissertation, we focus on the integrity properties of in-network aggregation, but open

issues abound, for instance regarding data confidentiality and integrity, entity authenti-

cation, key distribution and management, availability and privacy (Wood & Stankovic,

2002; Karlof & Wagner, 2003; Perrig et al., 2004; Shi & Perrig, 2004; Roosta et al.,

2006).

Research on distributed aggregation algorithms has historically regarded the population

of nodes as uniformly benign. Security considerations have mostly been confined to an

adversarial model in which nodes are honest but edges may be corrupt, giving the adver-

sary the ability to view, drop and inject messages, akin to the classical Dolev-Yao model

(D. Dolev & Yao, 1983). Under this model, standard cryptographic primitives and proto-

cols, such as SSL/TLS (Dierks & Rescorla, 2008), suffice to neutralize the adversary by

confining communications to trusted channels. However, allowing for the eventuality of

node compromise paints a different picture. Let us now assume the existence of an insider

adversary able to corrupt one or more nodes participating in the system. Corruption of

nodes gives the adversary access to a subset of the system secrets, such as cryptographic

keys. For instance, the SSL security model provides strong security guarantees against

outsiders, as long as the integrity of participating nodes remains intact. However, all bets
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are off with regards to the security of future communications if an attacker is able to

compromise one of the node participating in such an exchange (Moehrke, 2011).

The insider adversary poses an acute threat to aggregation algorithms based on the princi-

ple of in-network aggregation. Under this model, we are forced to place considerable trust

in the individual contributing nodes, not only in terms of their data production but also

their data processing. In fact, even a single corrupt insider is capable of introducing arbi-

trary bias into the computation (Wagner, 2004), presenting an acute threat to the integrity

of the aggregate data. Furthermore, this malfeasance is in general hard to detect.

Information is the primary product of a networked aggregation system, whose trustwor-

thiness is, hence, of prime concern. Yet, security has too often been neglected when

designing in-network aggregation protocols and systems. In our opinion, applications

which can tolerate arbitrary data can only be used for the most trivial of applications. Ex-

amples of applications in which aggregate accuracy and authenticity is of concern include

military systems (Arora et al., 2004; He et al., 2006), public safety command and control

(Gomez et al., 2009) and nuclear plant monitoring (Barbarán et al., 2007). We can also

consider applications where money is at stake, such as distributed monitoring of electric-

ity usage in a smart grid system (Amin & Wollenberg, 2005). The expected importance

of distributed aggregation system and the importance of reliable data motivates our focus

on their integrity properties.

Contributions

Our research question can be stated as follows: Can we guarantee the integrity of dy-

namic aggregation systems if some data contributors or aggregators are in the hands of

untrusted entities? We will explore this subject in the remainder of this dissertation, seek-

ing solutions which give strong integrity guarantees. In light of efficiency being one of

the primary motivations for adoption of in-network aggregation, we seek solutions which

impose minimal overhead in terms of messaging and processing.

Our proposed set of solutions is based on the principles of trusted computing (TCSEC,

1985). In essence, we propose to extend the trusted computing base (TCB) (Lampson,

1974) of the otherwise corruptible nodes in an aggregation network by hosting trusted

modules. Trusted data sources, e.g. trusted sensors (Jónsson & Vigfússon, 2012a), pro-

vide unmodifiable outputs, while trusted aggregators (Jónsson & Vigfússon, 2011) ensure

correct function evaluation. Finally, robust authentication protocols (Jónsson & Vigfús-

son, 2012b) and cryptographic primitives, enable us to construct a trusted aggregation

overlay, providing transitive aggregate trust relations from sources to querier over an arbi-



6 The Security Properties of In-Network Aggregation

trary dynamic system. We support this work by a proof-of-concept prototype (Rúnarsson,

Kristinsson, & Jónsson, 2010) of a secure centralized monitoring system of trusted sen-

sors, as well as a design for a trusted hierarchical aggregation system (Jónsson & Vigfús-

son, 2011).

The trusted overlay provides strong guarantees in terms of overall aggregate correctness,

that is, the property that the set of partial aggregates delivered to a trusted querier are

consistent with truthful local inputs of contributing nodes. The complementary objective

of completeness, that is, that the entire set of contributed local inputs are delivered to the

querier, is a more elusive goal and one which is unlikely to be achieved, even assum-

ing strictly benign faults. To address completeness, we consider light-weight means of

decreasing the potential adversarial influence. To this end, we present a protocol which

exploits the trusted overlay and local per-edge misbehavior, enabling trusted modules to

choose the forwarding paths least likely to be faulty. As a case-study, the protocol is ap-

plied to construct a secure version on the Generic Aggregation Protocol (GAP) (Dam &

Stadler, 2005). We validate the protocol by means of simulation. Our results indicate that

the protocol significantly limits the influence an adversary can have over the aggregation

process in terms of completeness.

This dissertation makes the following contributions:

(i) To tackle the problem of integrity preserving sensing, we propose, design and im-

plement a trusted sensor (Jónsson & Vigfússon, 2012a), that provides data source

integrity guarantees for the sub-goal of correctness. The concept is supported by

a full system design and a proof-of-concept prototype (Rúnarsson, Kristinsson, &

Jónsson, 2010).

(ii) We propose a fully distributed aggregation system that provides integrity guarantees.

A trusted aggregation overlay is proposed, composed of trusted modules and secure

communications protocols that provide correctness guarantees (Jónsson & Vigfús-

son, 2011). We consider the problem of simulation attacks, which can be mounted

against a trusted aggregation system in the event of cryptographic keys being dis-

covered. As a countermeasure, we propose an enhanced authentication protocol,

incorporating physically unclonable functions (Jónsson & Vigfússon, 2012b).

(iii) Having addressed the integrity sub-goal of correctness, we turn our attention to the

more challenging goal of completeness. We show (informally) that under our adver-

sarial model, no solution is likely to exist that provides completeness on all problem

instances. We instead design and evaluate a secure aggregation protocol based on

the Generic Aggregation Protocol (GAP) (Dam & Stadler, 2005), integrating the



Kristján Valur Jónsson 7

trusted devices approach to correctness with a protocol which enhances complete-

ness by monitoring faults and disseminating fault information.

Overview

The dissertation is structured as follows:

• We provide an overview of issues pertaining to in-network aggregation and dis-

tributed systems security in Chapter 2.

• The problem of data source integrity in distributed sensing systems and the trusted

sensors concept and prototype is discussed in Chapter 3.

• The trusted sensors concept is extended to a general solution for integrity-preserving

in-network aggregation in Chapter 4.

• In Chapter 5, we consider the issue of completeness in in-network aggregation and

propose a practical protocol that achieves reduction of the potential influence an

adversary can wield.

• We conclude in Chapter 6 and suggest directions for future work.
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Chapter 2

Background

2.1 Aggregation in Networked Systems

Aggregation is the act of composing an aggregate – to assemble a whole from a collection

of smaller pieces. In terms of networked systems, which are the focus of this disserta-

tion, we refer to aggregation as the act of collecting and processing information, often

from a large set of participants. The processed data set provides us with a concise and

manageable digest, representing a set of locally observable phenomena in the system. Ag-

gregation in distributed systems is a broad field, encompassing many different paradigms.

We address the subject abstractly in the following chapters, with the goal being the con-

struction of a general, broadly applicable and efficient solution to the problem of secure

aggregation in large networked systems. Let us now consider some examples highlight-

ing the applications of aggregation as motivation for the material in the remainder of this

dissertation.

Smart Grids

The smart grid (Amin & Wollenberg, 2005) is a vision for the next-generation power

delivery systems, integrating the traditional power grid and a communications network.

Smart grid systems enable new and more efficient power delivery and billing models by

means of integrated data processing and decision-making capabilities. One example of in-

novative power delivery models is the concept known as vehicle-to-grid (V2G) (Kempton

& Tomić, 2005), in which electric plug-in vehicles can be used as a resource for the grid

at large, using their batteries as a power source during peak load periods. In our opinion,
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aggregation will prove to be a key component of such systems, enabling a fine-grained

but dynamic overview of large power delivery systems.

Network Monitoring and Management

Network monitoring is essential for effective network management, enabling informed

decision making based on a complex set of inputs in enterprise-scale networks and clus-

ters. An aggregate view of networked systems is commonly used to provide a dynamic

view of the overall system state. A wide range of variables are commonly monitored in

networked systems. For instance, operators may be interested in the average and maxi-

mum VoIP traffic on various links as an aid to more efficient resource usage and allocation,

the percentage of peer-to-peer traffic and the number of SYN packets passing through a

domain gateway (Dam & Stadler, 2005; Wuhib et al., 2008; Gonzalez Prieto & Stadler,

2009). Information of this sort can be used to identify network provisioning problems or

potentially malicious events, such as distributed denial-of-service (DDoS) attacks.

Flow monitors, such as NetFlow (Claise, 2004) and SNORT (Sourcefire, 2012), are com-

monly used in network monitoring. In flow monitoring, one or more sensors are strategi-

cally placed on major backbones, intercepting the traffic and directing filtered aggregates

to a set of management stations. Flow monitoring by definition provides an aggregate

view by intercepting all messages in the aggregate flow. However, the on-line processing

necessary to provide usable digests from such flows is non-trivial, demanding consider-

able processing and storage capabilities from the sensors and management stations. Fur-

ther, the changing nature of network traffic decreases the utility of in-network monitoring

as a significant fraction of typical network traffic is tunneled and encrypted for security

reasons, leaving flow monitors blind to much of the information passing through (Cooke

et al., 2006).

In contrast to the aggregate flow, one may be interested in monitoring a set of proper-

ties that involve querying and processing information from individual nodes, for instance

workstations, servers and routers in an enterprise-scale computer network. The Simple

Network Management Protocol (SNMP) (Case et al., 1990) is one example, in which a

management station queries the Management Information Base (MIB) of managed de-

vices in a round-robin based fashion. SNMP is primarily a polling (pull) mechanism,

while push-type monitoring of local states has been proposed, for instance by Mortier et

al. (2005) and Cooke et al. (2006). In the push paradigm, individual monitored systems

publish their local states to the management station, following some pre-defined schedule

or in response to local events. Monitoring protocols, such as SNMP, allow flexible queries
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to be executed over the system, providing a relatively efficient steady-state monitoring,

while more extensive "drill-down" queries can be executed on demand, for instance to

analyze potential problems.

Environmental Monitoring via Sensor Networks

Wireless sensor networks and their potential applications (Akyildiz et al., 2002; Roush,

2003; Yick et al., 2008) have been extensively researched for over a decade. The clas-

sical vision for such networks is a self-organizing (ad-hoc) network of simple and cheap

battery powered wireless nodes, commonly called sensor motes. The archetypal appli-

cation example of sensor networks is the smart dust concept (Dickinson, 2010) in which

cheap disposable motes are randomly placed in some area to be monitored, for instance

watching for forest fires (Yu et al., 2005; Doolin & Sitar, 2005) or enemy troop move-

ment (Arora et al., 2004; He et al., 2006). Random scattering of motes from airplanes has

been suggested (Arora et al., 2004). Motes deployed in this fashion must be autonomous,

forming self-organized communications meshes. The vision of large-scale deployment

of sensors, perhaps over large geographic areas, implies large volumes of data, thereby

highlighting the importance of aggregation for this class of systems.

The vision of small and cheap motes implies limited battery power. For this reason, mote

radios are generally low power and low rate, limiting their communications capabilities.

Hence, wireless sensor motes typically form high diameter networks in which multiple

hops may be required in order to forward a report to the sink (recipient). For this rea-

son, care must be taken when designing routing and aggregation mechanisms in sensor

networks to ensure even utilization of communications and processing resources.

While the vision of smart dust has yet to be fulfilled, the fundamental concepts behind

sensor networking have been applied in current systems. For instance, systems of battery

powered sensor nodes are currently proposed for applications such as radiation monitoring

in nuclear power plants (Barbarán et al., 2007) and building integrity monitoring (Gomez

et al., 2009).
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Cooperative Sharing and Processing of Measurements

Sophisticated distributed aggregation networks can be composed of devices owned and

operated by volunteers. One example is the Weather Underground1, a collaborative sys-

tem that collects and aggregates information provided by networked weather stations op-

erated by volunteers around the world. Systems of this sort enable fine-grained weather

reporting and analysis (Geller, 2007). Pachube2 is a generalization of this concept, im-

plementing a virtual patch-bay into which volunteers can connect sensors and share data.

IrisNet (Gibbons et al., 2003) is another example of a proposed globally integrated sens-

ing framework. The NETI@home project (Simpson, Jr. & Riley, 2004) collects mea-

surements contributed by end-users to be aggregated by a central system, providing an

unique and detailed aggregate view on data flows in networked systems. Collaborative

aggregation systems can in some respect be considered an extension of the collaborative

processing paradigm, in which a distributed system of volunteers collaborates on solving a

computationally intensive task. Examples include the SETI@home3 and Folding@home4

projects, as well as distributed password cracking (Crumpacker, 2009).

Current smart phones are sophisticated computing platforms, capable of hosting and com-

municating with a multitude of sensors. Shared, or participatory, sensing (Trossen &

Pavel, 2005; Burke et al., 2006; Kansal et al., 2007; Kansal & Zhao, 2007) is a paradigm

that exploits the proliferation of such devices to construct large-scale cooperative sensor

systems – a virtual version of participatory urbanism (Paulos et al., 2007). SenseWeb5

(Kansal et al., 2007) is an example of such a system, whose goal is to enable applications

based on participatory sensing via mobile devices. Usage examples include pollution

particle count (Burke et al., 2006), air quality monitoring (Paulos et al., 2007), environ-

mental impact (Mun et al., 2009), environmental temperature contour mapping (Kansal et

al., 2007), detection of radioactive material (Venere & Gardner, 2008) and even grocery

bargain hunting (Deng & Cox, 2009).

1 www.wunderground.com
2 https://pachube.com
3 http://setiathome.ssl.berkeley.edu
4 http://folding.stanford.edu
5 http://research.microsoft.com/en-us/projects/senseweb
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The Internet of Things

The Internet of Things (IoT) (Gershenfeld et al., 2004; Ashton, 2009) is a concept, rather

than a paradigm at this point in time, referring to the expected metamorphosis of col-

lections of diverse artifacts into a networked whole – a pervasive “ambient” network of

devices. In the vision of IoT, commonplace artifacts and devices, and even persons, will

have a networked presence – a virtual representation (Stajano & Anderson, 1999).

This move towards a pervasively connected world is currently in its infancy. However, we

may surely expect numerous new applications to be enabled by such technology, many of

which are bound to be based on the production, sharing and processing of data, and hence,

enabled to a large extent by scalable aggregation. For instance, we can consider a the

concept of a smart home in which networked utilities metering devices which interact with

environmental sensors and even the inhabitants (Gershenfeld et al., 2004; Sundmaeker et

al., 2010; Fleisch, 2010).

2.2 Scalability

Current networked systems are growing in size and scope. In case of the Internet, the

growth is such that IPv4 address space is in practice depleted, even with the stop-gap

measure of Network Address Translation (NAT) (Lagerholm, 2012; Huston, 2012). New

trends and paradigms, such as sensor networking, shared and cooperative sensing, indus-

trial automation and control systems and the concept of the Internet of Things serve as a

preview into a new world in which large and heterogeneous networked systems combine

to provide us with unprecedented riches in terms of information, as well as enabling new

and unforeseen applications. However, the sheer scale of current and future networked

systems raises the issue of scalability – how a system is able to cope with size expansion

in terms of resource usage bottlenecks.

In distributed systems theory, we generally define scalability with respect to the asymp-

totic relationship of several performance metrics and system size (Peleg, 2000, Ch. 2.2):

Time complexity is the time required to execute a distributed algorithm to completion.

Processing and communications delays contribute to the time complexity.

Space complexity is the maximum number of bits required by the execution of a dis-

tributed algorithm by any node.

Message complexity is the overall number of messages generated for one execution of a

distributed algorithm.
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Figure 2.1: A flow monitoring system. The aggregate data stream is monitored by a probe that in turn stores

processed information in a database. Network management stations can query the database to obtain an

approximate view of the network state.

Figure 2.2: SNMP (Case et al., 1990) polling operation. A central management station queries a number

of managed devices in a round-robin fashion. Intermediary nodes, for instance routers, are not shown.

In classical distributed systems theory, researchers commonly rate algorithms in terms

of their overall complexity. A more practical systems-oriented view is to consider worst

and average case complexity per-node and per-link. For instance, the node and link con-

gestion metric (H. Chan et al., 2006) is directly derived from the definition of message

complexity but relates to the maximum load which can be experienced by any node in a

system. The complexity of two types of commonly used aggregation systems is discussed

in Examples 2.1 and 2.2.

Example 2.1 (Scalability of flow monitoring).

Flow monitoring systems view the aggregate data flow in a subnet, as shown in Fig-

ure 2.1. Hence, data collection is straight-forward and time complexity is low. How-

ever, the processing demands on the collected data are considerable. Flow monitoring

depends on relatively few heavily loaded monitors. Hence, the memory (space com-

plexity) and processing power required to monitor a flow directly impacts the system

scalability (Cooke et al., 2006). Message complexity is proportional to the granularity

and frequency of updates from flow monitors to the management infrastructure.
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Example 2.2 (Scalability of centralized monitoring systems).

Consider a monitoring system in which one querier polls a population of managed

nodes in a round-robin fashion, as shown in a simplified view in Figure 2.2. The

polling operation implies end-to-end communications between the management station

and each managed node. Hence, the time required to collect one complete aggregate

result scales linearly with the system size. The end-to-end polling operation causes an

imbalance in link utilization, as the expected number of messages related to the man-

agement protocol increases exponentially with decreased distance to the querier. This

imbalance in link utilization translates directly to congestion potential in the vicinity

of the querier.

2.3 In-Network Aggregation

Current aggregation practices, for instance those outlined in Examples 2.1 and 2.2, have

potentially serious scalability implications, as noted for instance by Keshav (2006). Flow

probes are a bottleneck in terms of processing power and memory usage (time and space

complexity), while centralized polling introduces an imbalance in network link loading

(congestion potential) as well as linear scaling of system polling time (time complexity).

Alternative solutions must be considered for efficient aggregation in very large networked

systems.

In resource constrained systems, such as wireless sensor networks, the imbalance of link

utilization has potentially serious consequences for the system lifetime and usability. Con-

sider a system of wireless battery powered nodes that implement a scheme similar to

SNMP polling. The implications are that the more heavily loaded nodes closest to the

sink (querier) can be expected to run out of power the quickest. Hence, the most criti-

cal nodes may be expected to fail long before the usable battery power of the majority

of the nodes is exhausted. The problem is exacerbated by the expected sparsity of alter-

native communications path due to the limited radio range of such devices. To counter

the problems of uneven resource expenditure, sensor network research has from the very

beginning incorporated in-network computing – a paradigm in which the computational

load involved in performing the aggregation is spread across the monitored system, lead-

ing to more even resource expenditure and messaging loads (Intanagonwiwat et al., 2000;

Madden et al., 2002a; Rajagopalan & Varshney, 2006).

While most prominent in the field of sensor networks, distributed approaches have also

been considered for monitoring in more traditional systems. An extensive body of work

focuses on the utilization of in-network aggregation for monitoring of computer networks,
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Figure 2.3: Sample system diagram. Nodes si provide updates based on local inputs and processed by

intermediary aggregators aj . A spanning-tree overlay is shown (bold lines) on top of the underlying com-

munications graph G. A heterogeneous network is shown in which data providers, e.g. sensors, and aggre-

gators are distinct node types.

that is, as an alternative to SNMP and flow monitoring (Keshav, 2006; Stadler et al.,

2008).

2.3.1 An Example System Model

Let us begin by outlining a system model for a distributed aggregation system, similar

to the ones used for the remainder of this dissertation. We consider a dynamic net-

worked system, which can be visualized as a dynamically evolving communications graph

G(t) = (V (t),E(t)). V (t) is the set of nodes (vertices) at time t, while E(t) represents

links (edges) in the graph G(t). We often leave out the t parameter for brevity; dy-

namism is implicit in the work presented in this dissertation, unless otherwise noted. Dy-

namism in this context refers to networks whose membership and topology may change

over time.

An aggregation algorithm is executed over the networked system, in which a small group

of queriers Q learns the aggregate state of some group S of data providers with respect to

a set of local inputs. In some instances, a set A of aggregators receives inputs from one or

more nodes and provides (partial) aggregate outputs. We will call aggregation of this type

in-network aggregation. An example of a tree-based in-network aggregation system is

shown in Figure 2.3. An aggregation overlay V ′ = Q∪S ∪A is composed of the sets of

queriers Q, data providers S and aggregators A. The set of queriers is usually a minority

of the nodes in V ′ (we assume |Q| = 1 unless otherwise noted). The aggregation overlay

spans some subset of nodes in a connected component of the graph G that includes the

set of queriers.
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Figure 2.4: Execution of a distributed aggregation function. Inputs Ii are aggregated in-network by the

repeated application of a function f . The intermediary results in each stage are called partial aggregates.

An example is shown in Figure 2.3. The network shown is a heterogeneous aggregation

network, in which special nodes, perhaps more powerful ones, function as aggregators.

The specialization of participating nodes imposes limits on the possible configurations

of aggregation overlays. Homogeneous networks are a common modeling assumption,

for instance in wireless sensor networks, in which participating nodes simultaneously

function as data providers and aggregators. Since nodes in homogeneous systems have

equivalent capabilities, they can self-organize more freely, implying a greater range of

possible network configurations.

2.3.2 The Aggregation Function

An aggregation function y = f(x1, . . . , xk) takes a vector or multi-set of inputs x and pro-

duces an output y, s.t. |y| < |x|. Distributed aggregation algorithms use an aggregation

function as the local component of a distributed function. In the most general case, we

cannot make assumption regarding the network structure or the execution order. Hence,

we require aggregation functions employed in such networks to be both commutative and

associative. An example of aggregate computation in a distributed aggregation network

is

y = f(I1, f(I2, I3), f(I4, f(I5, I6)))

where Ii is a set of local inputs of a node i. This particular execution corresponds to the

example shown in Figure 2.4. The intermediary results, for instance f(I5, I6), are called

partial aggregates. Each node in a distributed aggregation network operates on its own

inputs (if any) and those contributed by peers, and produces a partial aggregate output to

be incorporated in future computations. For simplicity, the aggregate over such a system

may be written as f(I), where I is the set of all local inputs in a distributed system.
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Figure 2.5: Observations of an environment. A number of observers view a potentially unique aspect of a

common environment.

A local input is an observation potentially unique to a participant in a distributed system.

We can say that the goal of a distributed aggregation algorithm is to observe the state

of some system, the environment. Each local input represents an unique view on this

environment, as illustrated in Figure 2.5. We define the concept of an environment broadly

as any system that a contributing node can observe. Examples include local state of

managed nodes in network monitoring applications (Stadler et al., 2008), environmental

variables (Yao & Gehrke, 2002) and pollution particle count (Paulos et al., 2007).

Examples of distributed aggregation functions include scalar functions, such as SUM (see

Example 2.3), COUNT, MAX, MIN, AVERAGE and MEDIAN. More complex functions, such as

merging of video streams (Y. Liu & Das, 2006), histograms (Jurca & Stadler, 2009) and

top-k aggregates (Chen & Min, 2010) can also be computed. The PACK aggregation func-

tion is presented in Example 2.4. PACK is a practical aggregation function which can

be used to compress information in networked systems, with the property that individ-

ual aggregate inputs are recoverable (expandable) in the sense that the aggregate can be

expanded into a representation of the original contributions. In contrast, aggregation func-

tions such as SUM (Example 2.3) and COUNT are non-recoverable (non-expandable), as the

the original contributions are lost except for their aggregate representation.



Kristján Valur Jónsson 19

Example 2.3 (The SUM function).

The function SUM(m) takes a set of update messages

m = {m1 = ⟨x1⟩, . . . ,mk = ⟨xk⟩}

where xi is a scalar quantity, and computes
∑k

i=1 xi. In the in-network aggregation

case, we can execute the function iteratively over the local inputs. For example, let us

compute SUM over the graph shown in Figure 2.4:

x1 + x2 + x3 + x4 + x5 + x6 = SUM(x1, SUM(x2, x3), SUM(x4, SUM(x5, x6)))

SUM is an example of a non-recoverable (non-expandable) aggregation function, as

individual inputs cannot be retrieved from the computed aggregate.

Example 2.4 (The PACK function).

The function PACK(m) takes a set of update messages, each consisting of one or more

samples

M = {m1 = ⟨x1⟩, . . . ,mk = ⟨xk⟩}

and produces a single update message

m = ⟨x11, . . . , xkj⟩

as output, where received contributions are concatenated to produce the new partial

aggregate. PACK can for instance be applied to use network packets more efficiently.

For instance, a system which produces updates that are considerably smaller than the

minimum transmitted packet size benefits from packing as many such fragments into

a single network packet, rather than performing simple routing. This is an example of

recoverable (expandable) aggregation, as individual inputs can be retrieved from the

aggregate. However, PACK is not scalable, as message expansion is inevitable.

2.3.3 Aggregation Based on Spanning-tree Overlays

We will focus on the class of tree-based aggregation protocols in this dissertation. Al-

ternative aggregation approaches include those based on gossiping (Kempe et al., 2003;

Jelasity et al., 2005) and consensus propagation (Moallemi & Van Roy, 2006; Aurell &

Pfitzner, 2009), which is based on the principles of belief propagation (Yedidia et al.,

2002).
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2.3.3.1 Broadcast/Convergecast Protocols

Let us begin by considering a synchronized aggregation protocol, along the lines of the

broadcast/convergecast protocol (Peleg, 2000, Ch. 3); a more concrete example in the

context of network management is the ECHO protocol (Lim & Stadler, 2001; Adam et

al., 2005). We can view the function of this class of algorithms as a sort of distributed

polling – a one-shot query operation. Madden et al. (2002a, 2002b) and Yao and Gehrke

(2003) consider SQL-like queries in the more application-specific domain of sensor net-

working.

We use the AVERAGE function (composed of SUM and COUNT) as our working example. A

broadcast/convergecast protocol is executed under a synchronous lossless model, akin to

the LOCAL model (Peleg, 2000, pp. 27):

Broadcast: The querier q initiates the execution by broadcasting a query message, for

instance ⟨QUERY,AVERAGE{var, ∗}⟩ (average over variable var over the entire

system), on all incident edges. Receiving nodes forward the message to their neigh-

bors until the network edge is reached, at which point a convergecast phase is ini-

tiated. The initial broadcast may propagate over an already established spanning-

tree overlay, for instance one established with the Spanning Tree Protocol (STP)

(Perlman, 1985). Alternatively, flooding (Peleg, 2000, pp. 33) may be used to build

node relations simultaneously with the query distribution.

Convergecast: Partial aggregate updates are forwarded progressively towards the querier,

as shown in Figure 2.6. A leaf node si generates an update message mt
si

= ⟨I tsi⟩

at time t and sends to its parent in the tree. An interior aggregator node aj , that re-

ceives one or more update messages {mt
1, . . . ,m

t
k}, computes a partial aggregate

yt+1
j = f(I t+1;mt

1, . . . ,m
t
k) over its local input I (if any) at time t + 1 and update

messages received from contributing peers. An update message mt+1
a = ⟨yt+1

a ⟩ is

then sent upstream to the parent. This process continues iteratively until the querier

produces an aggregate result in the final round by combining the received partial

aggregates.

Efficiency. The message complexity of flooding under the synchronous model isO(|E|).

For the convergecast phase, exactly one message traverses each edge in the spanning tree,

giving a message complexity of |E|. Hence, the convergecast algorithm is highly efficient,

assuming an established spanning tree overlay. Further, the per-edge messaging load is

of constant order across the system, implying that the congestion potential of any node

is low. Contrast the expected ∆r messages received by the root node in a convergecast
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Figure 2.6: A fragment of an aggregation tree. Aggregation node c receives update messages ma = ⟨ya⟩
and mb = ⟨yb⟩ from children (downstream nodes) a and b. Local inputs are Ia, Ib and Ic. Node c computes

yc = f(Ic, ya, yb) and forwards message mc = ⟨yc⟩ to the upstream node, its parent in the tree.

algorithm (where ∆r is the number of incident edges) to the |V | messages received per

round in centralized polling. Time complexity of the broadcast/flooding and convergecast

phases is O(D), the diameter of G, logarithmic in the system size for practical networks.

Contrast this with the O(|V |) time complexity of centralized polling schemes.

2.3.3.2 Continuous Monitoring Protocols

A query/response protocol is efficient in case we want to obtain a snapshot of the state

of a system. However, the rate of updates is determined by the polling frequency of

the querier. Let us now consider the case in which we have nodes on independent and

asynchronous update schedules, for instance in the case where local updates are triggered

by relatively infrequent events.

The Generic Aggregation Protocol (GAP) (Dam & Stadler, 2005) is designed for con-

tinuous monitoring in a dynamic network. Building upon a self-stabilizing algorithm

for distributed spanning-tree construction (S. Dolev et al., 1993), GAP nodes use a dy-

namically maintained overlay to periodically send partial aggregates based on local state

observations to the current parent. The parent in turn performs in-network aggregation,

incorporating the most recent cached partial aggregates, received from its children, into

its current state using a local aggregation function. A state update is submitted to the

parent in the tree after a rate limitation delay. This process continues until the updates

reach the root of the tree, producing a fast aggregate approximation of the global system

state. The protocol is efficient in terms of time and message complexity when compared

to centralized monitoring alternatives. It also dynamically adapts to changes in topology

at the rate at which neighbor discovery and failure detection is handled in the underlying

networking layers.
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GAP is an event-driven asynchronous protocol. Hence, the concept of rounds does not

apply as in the synchronous case considered earlier. However, the protocol guarantees that

any update produced by a node u at time t will be delivered to the querier no later than

time t+du ·δ, where du is the current distance of the node u from q in terms of the number

of hops and δ is a rate limitation delay. The length of the rate limiting delay determines

the efficiency of the protocol: a relatively small δ causes the protocol performance to

degenerate to that of simple routing, that is, an update is in all probability triggered by

each received one, whereas a longer delay increases the probability of a partial aggregate

being constructed by combining several contributions. A balance must be struck between

the timeliness (accuracy) of the aggregate and the edge congestion potential. A-GAP

(Gonzalez Prieto & Stadler, 2007) extends GAP by adding accuracy objectives, where

heuristics are employed to control the rate of updates for an acceptable estimation error.

TCA-GAP (Wuhib et al., 2008) is a further refinement of GAP that investigates efficient

aggregation based on threshold crossing alerts.

We discuss the GAP protocol further in Chapter 5 and suggest modifications to increase

its resilience to malicious events.

2.3.4 Multi-path Aggregation

Consider a tree-based aggregation network, as described by Madden et al. (2002b) and

Adam et al. (2005). The accuracy of the aggregate produced depends on the reliability

of the system – events such as routing faults (Karlof & Wagner, 2003) and node churn

(Stutzbach & Rejaie, 2006) increase the uncertainty of the aggregate as a valid estimate

of the real global state of the system (Madden et al., 2002b; Zhao et al., 2003; Considine

et al., 2004; Bawa et al., 2007). Hence, the low messaging overhead associated with

tree-based aggregation protocols may also be considered a liability in terms of accuracy.

Reliable transport protocols (Wan et al., 2004; Stann & Heidemann, 2003; Kosanović &

Stojčev, 2008) may help to mitigate the problem, as may protocols designed for dynamic

systems, such as GAP (Dam & Stadler, 2005).

Taking advantage of redundant paths available in a network is a one approach to increas-

ing the robustness of a networked system. If we forward a copy of a message on multiple

paths, then the probability of delivery to the intended recipient is increased. However, the

resiliency gained comes at the expense of increased message complexity, as several copies

of each message are transmitted. The construction of robust forwarding paths also com-

plicates such protocols. Forwarding paths should be as ideally be independent to ensure

that a fault in a single node affects the minimum number of nodes. A practical solution
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for robust multi-path forwarding is the braided paths concept suggested by Ganesan et al.

(2001).

Multi-path aggregation proposals include the Rings (Roy, 2008) and Wildfire (Bawa et

al., 2007) protocols. Such protocols, by definition, send multiple copies of messages.

Hence, we are faced with the problem of multiple inclusion, or double counting (Keshav,

2006): naively aggregating over all received messages inevitably causes inflation in the

overall aggregate. A trivial (but unscalable in the general case) approach is to carry suf-

ficient identifying information in each packet to enable filtering of duplicates. A form

of order and duplicate insensitive updates can be constructed, which in principle elim-

inates the double counting problem. The probabilistic counting scheme of Flajolet and

Martin (1985) has been used to overcome the double counting problem in aggregation.

(Garofalakis et al., 2007; Nath et al., 2008). However, probabilistic counting schemes are

limited to scalars or other simple data types and the form of updates must be tailored to the

aggregation function in use. Further, the estimation error associated with the probabilistic

counting method may be as large as 33% (Keshav, 2006). Kempe’s push synopses (2003)

can also be applied to overcome the double counting problem but becomes problematic

when we allow for node failures and message corruption in our system model.

2.4 Security of Distributed Systems

Security incidents have been known since the advent of computing systems. The earliest

examples were often mere pranks and attempts to gain access to exclusive computing

resources (Sterling, 1993; Levy, 2001). However, attacks have become ever more serious

as more vital resources move on-line. Examples of cybercrime for financial gain, as well

as attacks motivated by industrial or military concerns, are well documented and seem to

be on the rise (Fisher, 2010; McAfee Labs, 2012).

Security is a vital property for a networked computing systems. Yet, the current state of

the field is far from acceptable. In practical terms, most if not all computing platforms

in a distributed system are currently vulnerable to a plethora of threats (Sophos, 2012;

OWASP, 2012). The challenges stem largely from the conflicting goals of cost, features

and usability versus security and robustness.

Systems designers often choose to ignore the difficult issue of node compromise, some-

times seeking justification in the controversial method of security-through-obscurity. For

instance, industrial control systems have been considered immune to corruption owing to

their relatively obscure systems, compared to the Internet at large, and specialized, pro-
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prietary networks (Synergist SCADA, 2012). However, such assumptions are challenged

by the recent Stuxnet worm (IEEE Comp., 2010; Matrosov et al., 2010) that targeted in-

dustrial control systems, as well as the trend towards integrating industrial and business

networks (Panetto & Molina, 2008). Historically, motes in wireless sensor networks have

been considered inherently vulnerable due to their low cost (Shi & Perrig, 2004). De-

signers of such systems commonly assume motes, and the environment they are placed

in, to be benign, an assumption that must be challenged as sensor networks become more

widely deployed and serve more critical purposes.

Let us now briefly review the field of distributed systems security, touching upon some of

the more important topics.

2.4.1 Vectors of Attack for Node Corruption

Several vectors of node corruption can be considered, for instance

• An adversary may corrupt individual nodes by hacking them remotely, inserting

viruses, corrupt via worms or by gaining physical access. Many of these are well-

known from hacker exploits over the past decades, but opportunities for such at-

tacks will remain for the foreseeable future. Physical access is a real problem in

many cases, such as in distributed measurement networks with accessible nodes,

for instance sensor networks due to the general assumption of inherently vulnera-

ble low-cost nodes (Shi & Perrig, 2004).

• An adversary may insert new nodes under his control. For, example the adversary

may join a cooperative measurement network several times with different identities.

In the case of sensor networks, the adversary may buy or steal nodes, modify their

code and insert into a network (Parno et al., 2005).

• An adversary may attempt to escalate his influence by simulating a relatively large

number of nodes on a few higher capacity platforms. This is known as the Sybil

attack (Douceur, 2002). The simulated identities are then directed to attack the

system in a coordinated fashion, thereby potentially increasing the influence of the

attacker.

• An adversary can attack the sensing mechanisms itself, e.g. physically heat a ther-

mometer or bend the arm of a float in a water level meter. Attacks of this class have

been called process-of-measurement attacks (Trappe et al., 2005; Zug et al., 2007).
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In this dissertation, we consider security issues stemming from node compromise of any

sort, apart from external influences, such as process-of-measurement attacks.

2.4.2 Security Objectives

Systems security is often analyzed in terms of a set of objectives, including the follow-

ing:

Confidentiality refers to the property of data secrecy. Many applications require inputs

and data to be kept confidential, that is, hidden from unauthorized users. This is

a fundamental problem in computer security, but one which is readily solved by

symmetric encryption and decryption primitives under the assumption of securely

shared keys.

Integrity refers to the wholeness of data, that is, the trust we can place in its authenticity.

A classical problem is ensuring that data in transit from node a to node b arrives

unmodified. The primary mechanisms used to ensure integrity are symmetric Mes-

sage Authentication Codes (MACs), cryptographic hash functions, and asymmetric

digital signature algorithms. We elaborate on the property of integrity as it applies

to aggregation in Chapter 3.

Availability refers to the ability of the system to carry out its task without interruption

at all times. For instance, denial-of-service attacks, which cause undue expenditure

of communications, processing and memory resources, reduce the availability of a

system. Jamming attacks against wireless networks also interfere with communi-

cations (Wood et al., 2003; Perrig et al., 2004). Wireless sensor networks, whose

function depends on limited power resources, can be devastated by attacks which

cause motes to expend more communications or processing resources than needed

by the proper protocol (Roosta et al., 2006). Resource expenditure in turn depletes

the limited battery power of resource constrained nodes.

Privacy is a concept related to confidentiality. However, the crucial difference is that data

private to a party a is never disclosed to any other party. Privacy is the fundamental

objective of multi-party computation (MPC) protocols (Maurer, 2006).

We limit our discussion in this dissertation to the integrity and confidentiality objectives

in the context of in-network aggregation.
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2.4.3 The Adversary and Adversarial modeling

We will use the term adversary, common in the cryptographic literature, for our oppo-

nents, rather than attacker, hacker or cracker more commonly used in network security

research. Unless otherwise noted, we will talk about a single adversary corrupting a num-

ber of nodes in a system, which are henceforth colluding to further the adversarial goals.

A threshold t for the number of “traitors” is commonly specified as the amount of corrupt

nodes that can be tolerated while maintaining the specified security goals.

Adversarial models, that is concrete assumptions about capabilities and intentions of ad-

versaries, are fundamental in order to be able to reason about security properties of a sys-

tem. Properties, topologies and security requirements of systems differ so that no single

model can fit all purposes. Let us nevertheless briefly discuss some commonalities.

The broadest categorization of adversaries is internal and external. External adversaries,

outsiders, participate in the system in some capacity, for instance as routers, but are not

part of the system. Hence, outsiders do not have access to system secrets, such as cryp-

tographic keys. Their goals include key discovery for eavesdropping on communications,

as well as crippling the network by jamming and similar means. The outsider can be

assumed to be neutralized with respect to his ability to eavesdrop (confidentiality) on or

modify (integrity) communications by the assumption secure channels, i.e. ones in which

the confidentiality and integrity are cryptographically ensured by shared keys. Examples

include TLS (Dierks & Rescorla, 2008) for traditional networked systems and the alterna-

tives proposed by Perrig et al. (2002) and Karlof et al. (2004) for sensor network motes.

Secure channels prevent an outsider from modifying messages (within computational se-

curity bounds). However, such mechanisms give no guarantees of delivery, nor do they

protect against the insider adversary, which is our primary focus.

Internal adversaries, insiders, are more powerful than the outsider. They are members of

the network and therefore possess a subset of its secrets and are able to disturb and modify

communications more stealthily than the outsider. Once a node participating in the system

is corrupted, it is considered under the control of the insider adversary. Note that secure

channels, as discussed above, give no security against the insider adversary.

We focus on the insider adversary in this dissertation. In particular, we work from the

assumption of the existence of a stealthy insider (Perrig et al., 2007), that is, one that

deviates from the protocol in an attempt to bias the aggregate computation in his favor,

while at the same time remaining undetected for an extended period of time. Contrast the

behavior of the stealthy insider to “noisy” availability attacks, such as denial-of-service,

which are relatively easy to detect, although not straight-forward to stop or prevent.
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2.4.3.1 Capabilities

The non-adaptive, or static, adversary corrupts a number of nodes at the start of the com-

putation, while the more powerful adaptive one can corrupt new nodes during execution

of the protocol. A threshold is frequently specified as the tolerance of a protocol against

adversarial corruption, that is, the number of corrupt nodes which the protocol in question

tolerates without reduction in security (Maurer, 2006).

A passive adversary can corrupt some number of nodes and learn their internal secrets,

but not alter their protocol. Hence, the passive adversary, also called semi-honest or

honest-but-curious (Goldreich, 2004, pp. 603), may eavesdrop on communications and

collect local inputs, but not actively modify messages. In contrast, the active adversary

can behave arbitrarily, modifying messages as well as eavesdropping.

A system model may have several classes of corrupt nodes in terms of their capabili-

ties. For instance, a distinction of mote-class and laptop-class adversaries is common

in the sensor network literature (Roosta et al., 2006). The former has little resources

available, essentially the same as any other member of the network. On the other hand,

the laptop-class adversary has considerably more resources available in terms of battery

power, computing power and memory. A more capable adversary may be able to break

simple encryption and launch Sybil attacks. A node with a more powerful radio than the

general population can use its superior capabilities to compromise the network, for in-

stance modify the network topology by creating virtual channels and jam large segments

(Karlof & Wagner, 2003; Wood et al., 2003).

2.4.3.2 Fault Models

Adversarial actions are often analyzed with the tools of systems reliability theory. The

simplest fault model is the crash failure one, under which nodes are assumed to fail with-

out side effects and stay inactive for the remainder of the protocol execution. This failure

model can for instance be applied to sensor networks, in which nodes fail eventually due

to battery power exhaustion.

The Byzantine model (Castro & Liskov, 1999) is a more realistic model, commonly as-

sumed in systems analysis. In terms of security, a Byzantine adversary is one which may

perform arbitrarily, including sending conflicting messages to its individual neighbors –

also known as equivocation (Levin et al., 2009). Byzantine nodes can also fail arbitrarily

and provide arbitrary outputs. In contrast to the crash failure model, Byzantine nodes can
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appear to crash or malfunction temporarily with regards to some of their neighbors and

be resurrected at any time.

The rational adversary deviates from the protocol at will, but does so to maximize his

own utility (Shneidman & Parkes, 2004; Nielson et al., 2005). In contrast, altruistic

nodes always follow the protocol, even if the logical (and selfish) option is to deviate

(Aiyer et al., 2005).

2.5 Trusted Systems

Trusted systems theory was formalized in the 1970s in an effort to build high assurance

computing systems with definable and provable security goals (Tasker, 1981; TCSEC,

1985), based on the principles put forth in the seminal paper of Lampson (1974).

Central to the concept of trusted systems is the Trusted Computing Base (TCB) that de-

fines the “security perimeter” of a trusted system (TCSEC, 1985, pp. 66). Specifically, the

TCB of a trusted system is the collection of all hardware, firmware and software critical

to its integrity. If any one component of the TCB is compromised then the security of the

entire system must be considered broken.

Clearly defining the concept of a TCB has proven to be a hard task, one which is still not

completed today (Gebhardt et al., 2010). The essential task of verifying the correctness

of a TCB is even more challenging. Yet, the concepts and lessons learned from the pi-

oneering early work remain cornerstones of modern systems security. In particular, the

modularity concept, minimal scope, and clearly defined interfaces are the only known

method to make verification of TCB functionality tractable to some degree.

One of the fundamental constructs of trusted systems theory is the Reference Monitor

(RM). A reference monitor is a trusted always-on device that mediates requests into the

TCB. The properties of the RM are given in Definition 2.5.

The reference monitor concept, introduced by J. P. Anderson (1972), was the culmination

of work on systems integrity by, amongst others, Lampson (1969), Graham and Denning

(1971) and Wilkes and Needham (1979). The hardware assisted implementations of refer-

ence monitors have been called security kernel (Ames, 1981), often a construct combining

memory virtualization and a restricted set of system calls, designed to protect the integrity

of its TCB.
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Definition 2.5 (Reference monitor (TCSEC, 1985, pp. 58)).

(i) Always-on mediation: The RM must always be invoked and mediate all request to

the TCB to enforce the security policy.

(ii) Physical security: The physical integrity of a RM must be ensured, for instance by

tamper-proofing.

(iii) Verification of correctness: The correctness of a RM must be ensured. In practice,

this means that the set of operations and overall code size must be small enough so

that comprehensive verification of its compliance with stated security goals can be

carried out.

Trusted Computing Group. Trusted computing (Challener et al., 2008) is a concept

promoted by the Trusted Computing Group (TCG)6. Central to that concept is a trusted

device, the Trusted Platform Module (TPM) (Trusted Computing Group, 2011), used

to build a TCB. The TPM is implemented as a tamper-resistant chip integrated into the

hosting platform. A software stack running in unprotected user space utilizes the secure

chip to perform the platform security functions. Broadly, the TPM provides mechanisms

to ensure machine security (Dell Inc., 2004), that is, the integrity and authenticity of a

computing platform. Mechanisms are provided for tasks such as storage and generation of

cryptographic keys, hashing, attestation of machine state and random number generation.

Three trusted computing primitives are provided by the TPM (Challener et al., 2008;

Saroiu & Wolman, 2010):

Remote attestation enables a remote entity with the ability to verify that a certain hard-

ware configuration of a machine and that a certain combination of software and

firmware was instantiated.

Sealed storage enables storage of sensitive data in unprotected memory, binding the data

to a particular TPM and software configuration.

Secure boot ensures that a machine can only boot a certain configuration of software for

a given hardware configuration.

The TPM concept is powerful but is not without criticism, for instance potentially infring-

ing on personal liberties (Stajano, 2003; R. Anderson, 2004; Stallman, 2007). The in-

tegrity of the TPM device itself has also been called into question. For instance, Kursawe

et al. (2005) take advantage of an implementation weakness to execute a passive attack

6 http://www.trustedcomputinggroup.org/
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against a TPM module. Further, current implementations of TPMs are anything but mini-

mal, which undermines the verifiability property that trusted devices must have. A further

concern is the origin of the chips and the trust one can place in the manufacturer (Simha

et al., 2006; Kursawe, 2011; Schneier, 2012).
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Chapter 3

Data Source Integrity

The integrity of source data is one of the fundamental properties of distributed measure-

ment systems, such as the aggregation systems we consider in this dissertation. For in-

stance, in the case of networked sensors, how can we ascertain that a measurement re-

ported by a sensor is a truthful representation of its view on the environment? Focusing

on a single (honest) aggregator model, we investigate whether the aggregation process

can be secured in the general case of arbitrary data types, aggregation functions and in

dynamic networks, while at the same time giving sufficiently strong integrity guarantees.

Further, we require the security guarantees to be achievable without placing undue over-

head on the underlying aggregation process. In our assessment, such a level of security

is infeasible, unless one assumes some means of establishing a basis of trust at the sen-

sor itself: we need to establish the integrity of the sensor data as soon as possible in the

processing chain in order to ensure the integrity of the overall aggregation process.

Several integrity preservation mechanisms that apply to the single trusted aggregator

model have been proposed and a selection is reviewed in this chapter. However, none

fulfill our objectives of simultaneously achieving strong security guarantees and low over-

head. Hence, we propose an alternative approach based on the principles of trusted sys-

tems (TCSEC, 1985) to construct a trusted sensor – a verifiably correct, tamper-proof

smart sensor (Breckenridge, 1980) that streams verifiably correct updates to authorized

recipients. The security guarantees are based on the concept of embedding the security

mechanisms at the earliest possible point in the sensor chain: at the sensor “head” itself.

This allows us to construct a secure measurement network of general-purpose networked

observation platforms, for instance, wireless sensor nodes, routers or commodity PCs in

a collaborative sensing system. We present a comprehensive client/server-based secure

measurement system, TSense, based on the concept of trusted sensors in conjunction with
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Figure 3.1: Overview of a networked sensing system. A sensing node views its environment via a transducer,

whose output is made available in the form of discrete updates to a remote recipient. The sensing node is

composed of sub-systems, such as analog to digital conversion, signal conditioning and networking, any of

which may be under adversarial control.

an implicitly trusted support architecture. Our system design is supported by a proof-of-

concept prototype.

The work is described here has been published in part in Rúnarsson, Kristinsson, and Jóns-

son (2010), Jónsson and Vigfússon (2011), Jónsson and Vigfússon (2012a) and Jónsson,

Palmskog, and Vigfússon (2012). The sensor prototyping project was supported by a Stu-

dent Innovations Fund grant from Rannís, the Icelandic Centre for Research, and carried

out in the summer 2010.

3.1 Defining Integrity

Let us begin by delving into the subject of integrity. Beginning with the most generic of

definitions, integrity is

(i) The state of being unimpaired; soundness.

(ii) The quality or condition of being whole or undivided; completeness.

The American Heritage c⃝ Dictionary of the English Language.

Searching further, we have that “applied to information, integrity is the representational

faithfulness of the information to the condition or subject matter being represented by

the information” (Boritz, 2005), which brings us closer to the goal of suitably defin-

ing integrity as applied to distributed aggregation. Boritz goes on to define information

integrity in terms of accuracy/correctness, completeness, currency/timeliness and valid-

ity/authorization. We focus on the correctness aspect of information integrity in this chap-

ter, extending the discussion to the property of completeness in Chapter 5.
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Integrity of sensing. In this chapter, we are concerned with the concrete problem of

being able to trust measurements provided by an array of networked sensors. We re-

quire some form of assurance that the received information is a faithful and unmodified

representation of the view of sensors (perhaps in aggregate) on some environment un-

der observation, as discussed in Section 2.3.2. From the perspective of the recipient, we

must consider the following vectors of attack on the data produced by a networked sensor

system as shown in Figure 3.1:

(i) A corrupt agent in the environment can execute process-of-measurement attacks,

modifying the view of the sensor node on its environment (Trappe et al., 2005; Zug

et al., 2007).

(ii) A corrupt sensor node can modify the representation of the observed view at any

point in the local processing chain and choose at will if and at which times update

messages are generated. Attacks of this sort that are carried out by members of the

system are classified as insider attacks.

(iii) Intermediary parties, for instance routers, on the network path from sensor to recip-

ient can drop, corrupt, reorder or delay messages. Attacks of this sort are classified

as outsider attacks.

We explicitly exclude process-of-measurement attacks in this dissertation and focus on

the latter two, limiting our attention to the problem of establishing and preserving mes-

sage integrity in the communications chain from sensor to recipient, as stated in Defini-

tions 3.1.

Definition 3.1 (Integrity of sensing). We define a system of networked sensors, in which

each device s has an unique view ωE
s of some observable phenomena in an environment

E . An honest representation ω̄E
s of a sensor view is the most accurate representation of

ωE
s accounting for non-malicious effects, such as transducer inaccuracy and quantization

errors. A representation of the observation of a sensor is made available to recipients as

an update message ms,t = ⟨ω̄
E
s,t⟩ at time t.

The problem of maintaining integrity of sensing is to ensure that the reported observations

are consistent with the local representation of the sensor view: for a reported observation

ms,t = ⟨ω̄s,t⟩ received as m′
s,t = ⟨x⟩ by a node v, the integrity of the observation can be

considered intact if x can be proven to be identical to ω̄E
s,t.
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Outsider attacks can be countered in terms of integrity of data by standard cryptographic

primitives, as outlined in Example 3.2. However, the corrupt insider problem is difficult,

as the corrupt party is a legitimate data producer in the system. In terms of Example 3.2,

the insider must be assumed to hold copies of a subset of cryptographic keys, and hence, to

be able to alter, manufacture, drop or delay updates at will. Message authentication codes

or digital signatures do not solve this problem. Furthermore, by definition of sensing,

such malfeasance cannot be positively identified, since each sensor has an unique view on

the environment.

Example 3.2 (Protecting message integrity with MAC).

Node a produces an update y to be sent to a communicating partner b. a computes a

digest, or tag, over the contents of the message using a MAC1 function: t = TK(y),

where K is a symmetric cryptographic key shared by a and b. A message m = ⟨y ∥ t⟩

is produced and sent to b, composed of the original (plaintext) message y concatenated

with the tag. A message m′ = ⟨y′ ∥ t′⟩ received by b can be considered an authentic

representation of the original one if TK(y′) = t′, contingent upon the computational

infeasibility of an adversary forging the tag t′ for altered message contents y′.

In this chapter, we will focus on the following aspects of integrity from the perspective of

systems security:

Correctness – the property that the messages received are truthful representations of

messages sent.

Completeness – the property that the messages sent are delivered to the intended recip-

ient.

Authenticity – the property that the messages received can be attributed to a particular

contributor.

We neglect several important aspects of integrity, as defined by Boritz (2005). For, in-

stance, we do not address timeliness, which is a challenge in any networked system due

to unpredictable delays. Further, node churn, a fact of life in all dynamic networked sys-

tems, causes considerable uncertainty in message delivery. Bawa et al. (2007) discuss

the query semantics of sensor networks in the presence of faults. Likewise, we do not

consider the granularity and dynamic range of the sensor signal, assuming that an honest

sensor always provides the most accurate representation of a sensor view. Update mes-

sages provided by networked sensors are the local inputs to the aggregate computation, as

1 Message Authentication Code
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discussed in Section 2.3.2. An honest sensing node provides an update message consistent

with the actual observation, while a corrupt one can deviate arbitrarily.

3.1.1 Correctness and completeness

The integrity sub-goals of correctness and completeness are defined by Narasimha and

Tsudik (2006) in the context of outsourced databases. We restate the definitions in terms

of aggregation in networked systems as Definitions 3.3 and 3.4. Both definitions assume

a synchronous convergecast model in an arbitrary network graph. A subset of honest data

providers simultaneously release update messages at T0 (the first round of the protocol)

that are eventually received by a single recipient, the querier q, who computes an aggre-

gate yq. The adversarial model allows Byzantine failures, that is arbitrary deviations from

the protocol, by some corrupt subset of data providers and all intermediary nodes (e.g.

routers), while the querier is considered implicitly honest.

Definition 3.3 (Correct aggregation (synchronous)).

We define a communications graph G = (V ,E). A subset of data producers S ⊂ V hold

local inputs I and release (synchronously) a set of update messages M = {m1, . . . ,mk}

at time zero, destined for a querier q. An arbitrary number of intermediary nodes forward

the messages to q. Messages m ∈M are tuples (v, I0v ).

Let I ′ be the view that q has on the system at time T when some M ′ update messages

have been received. The aggregate yq = f(I ′) can be considered correct at time T if

∀m′ = (v′, I ′) ∈M ′ ∃m = (v, I0v ) ∈M s.t. v = v′ ∧ I0v = I ′.

Definition 3.4 (Complete aggregation (synchronous)).

We define a communications graph G = (V ,E). A subset of data producers S ⊂ V hold

local inputs I and release (synchronously) a set of update messages M = {m1, . . . ,mk}

at time zero, destined for a querier q. An arbitrary number of intermediary nodes forward

the messages to q. Messages m ∈M are tuples (v, I0v ).

Let I ′ be the view that q has on the system at time T when some M ′ update messages

have been received. The aggregate yq = f(I ′) can be considered complete at time T if

∀m ∈M ∃m′ ∈M ′ s.t. v = v′.
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(a) (b)

Figure 3.2: A client/server measurement system in which data providers (sensors) provide observations

to a collector (querier) over some arbitrary communications graph. Figure (a) shows a small network

consisting of a querier (collector), six sensing nodes (S1 . . . S6) and four routers (outsiders). Figure (b)

shows the aggregation overlay formed over the network of insiders.

The correctness objective states that all data eventually included in an aggregate computed

by the querier must be unaltered aggregate representations of authentic local inputs. How-

ever, arbitrarily many update messages may be dropped in the network. On the other hand,

the completeness objective states that all updates based on local observations released by

data providers must be delivered to the querier, but the correctness of individual members

of the set delivered to the querier is not addressed. We can quantify completeness, for

instance, as the ratio of transmitted to received packages. However, this ratio is only ob-

servable in an ideal system, where an omniscient observer can count both messages sent

and received.

Ideally, we want the aggregate to be both correct and complete. However, this ideal is

a difficult. Data source correctness is a difficult goal in itself, as we discuss further in

this chapter. Completeness is impossible to guarantee in practice, as we discuss further in

Chapter 5.

3.2 Aggregation in the Single Aggregator Model

Let us now progress towards a solution for trustworthy sensing. We focus on a simple

single aggregator model in this chapter – a classical client/server architecture, as shown

in Figure 3.2 and described in Definition 3.5. A similar aggregation model is presented

by Wagner (2004). The single aggregator model is conceptually simple, yet widely appli-

cable, for instance in centralized network monitoring (e.g. SNMP polling), cloud-based
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sensing services (e.g. Pachube2) and the relatively new paradigm of shared sensing via

mobile devices (Kansal et al., 2007).

We assume the existence of an adversary that can corrupt a subset of the data providers

and direct them to modify the data on which the aggregate computation is based. One

may ask to what end such attacks may be carried out. Indeed, the integrity requirements

of an aggregation process must be considered in the context of the consuming application

and its operators. Our opinion is that the only applications which can tolerate arbitrary

inputs, and thus arbitrary aggregates, are trivial ones suitable only for the most basic of

tasks. Consider an important shared or cooperative sensing application, for instance the

cooperative radiation monitoring application described by Venere and Gardner (2008).

Trustworthy data with the minimum of false positives is required for such an application.

We also want to have access to as much data as possible, implying a large user base.

However, the price we pay is in terms of security, as establishing personal trust with

individual users becomes increasingly more difficult as the user base grows.

Note that the terms “sensor” or “sensing node” do not imply that the nodes in question

are wireless sensor network motes. In fact, any type of platform that provides data is a

sensing node for the purposes of the following discussion. Henceforth, we will use the

generic term data provider for such a node.

Definition 3.5 (Single honest aggregator model). For an arbitrary communications graph

G = (V,E), we define an aggregation overlay G′ = (V′,E′), a single connected com-

ponent s.t. V′ ⊆ V and E
′ ⊆ E. The aggregation overlay is composed of a set of data

providers S ⊂ V and a single querier q. Each data provider has a path (si, q) to the

querier, perhaps a virtual one spanning several nodes in the underlying network graph.

Nodes v′ ∈ V
′ are defined as insiders, that is, members of the aggregation network, while

V \ V′ are outsiders. Any data provider may be corrupted by the adversary, while the

querier is considered inherently trusted and incorruptible.

3.2.1 Aggregation model

The querier receives a set of update messages M
t,τ from some subset of sensing nodes

S
′ ⊆ S within some window of time [t, t+ τ). Each update message is composed of one

or more local inputs, mi = ⟨Ii1, . . . , IiN⟩, produced by a single node in S
′. An aggregate

yt = f(Mt,τ ) is computed over the contributions by the recipient q. A simple example

2 http://www.pachube.com
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is the SUM aggregation function: for contributions [m1, . . . ,mk] received in [t, t + τ), the

aggregate is

ytq =
k∑

i=1

mk =
k∑

i=1

|mk|∑

j=1

Iij

Note that the work described in this chapter is not restricted to scalar data types or aggre-

gation functions. Rather, we consider the general case of any source data types and any

computable function.

The model supports asynchronous querying (one-shot) pull and push models of data de-

livery, as discussed in Section 2.3. In a push-based data delivery scheme, each node

operates on an independent schedule (perhaps loosely synchronized) or delivers updates

in response to local events.

3.2.2 Adversarial Model

The adversarial goal is to stealthily (Przydatek et al., 2003) induce the querier to accept

biased aggregate results. The adversary can direct corrupt data providers to produce faulty

reports – to omit or modify true readings, as well as manufacture arbitrary ones. The sens-

ing nodes may be operated by entities whose goals run contrary to those of the collector

operator. Hence, we assume the sensing nodes can be literally in the hands of an adver-

sary, who can corrupt any aspect of their hardware, firmware or software in order to carry

out stealthy attack against the aggregate computation.

The querier is considered implicitly honest and incorruptible, while other nodes can be

corrupted by the adversary. The trust in the querier is based on the fact that it is the

originator of queries and consumer of aggregate data. Hence, any malicious manipulation

of the aggregate by the collector must be considered contrary to its objectives.

We restrict the set of insiders to the set of sensors and the single querier, which can be

accomplished in a straight-forward manner by assuming the use of standard cryptographic

primitives and a set of pre-shared keys amongst insiders. All other nodes, for instance

the routers in Figure 3.2(a), are classified as outsiders and may be disregarded in the

analysis.

We restrict our work to the security objective of data integrity and disregard other impor-

tant objectives such privacy. Data confidentiality is not an explicit goal of this work but

may nevertheless be included at a small added cost in terms of processing and message

size. We do not consider availability attacks, such as routing and DoS attacks, because

they run counter to the goals of the stealthy adversary as defined above. We further ignore
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process-of-measurement attacks in which the sensing process itself is attacked, restricting

our attention to network or host-based attacks on the measurement process in the commu-

nications path from sensor transducers to the querier, as shown in Figure 3.1.

3.2.3 Vulnerabilities

3.2.3.1 Correctness

The correctness of the aggregate under the adversarial model stated, depends primarily

on the robustness, or resiliency, of the aggregation process against malicious manufacture

or modification of the local inputs. The resiliency of aggregation functions is analyzed

by Wagner (2004). Briefly, resilient aggregation refers to the problem of aggregation in a

system where the adversary can modify the local inputs of individual nodes. In a single

aggregator model the integrity of messages in transit can be ensured by encryption and

authentication. On the other hand, local readings can be arbitrarily modified by corrupt

insiders. Wagner provides a mathematical framework for formally evaluating the security

of several common aggregation functions in a single aggregator model, analogous to Def-

inition 3.5. The conclusions of his work are that many common aggregation functions,

such as SUM, AVERAGE (see Example 3.6), MAX and MIN, are inherently insecure. Hence,

arbitrary bias can be introduced by even a single corrupt data provider. Wagner’s results

are extended to TOP−K aggregation in Example 3.7.

Example 3.6 (Resiliency of AVERAGE (Wagner, 2004)).

An average is computed as

y = AVERAGE(x1, . . . , xn) = (x1 + · · ·+ xn)/n

where n is the number of observations provided. Assume a single corrupt node under

adversarial control, si ∈ S , reports a falsified value x∗
i . An aggregate

y∗ = AVERAGE(x1, . . . , x
∗
i , . . . , xn)

= (x1 + · · ·+ x∗
i + · · ·+ xn)/n

= y + (x∗
i − xi)/n

is computed. If the adversary can choose x∗
i = xi + σ freely, then an overall bias

y∗ = y + δ can be introduced by choosing σ = δn.
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Example 3.7 (Resiliency of TOP−K−WEIGHTED).

Consider the TOP−K−WEIGHTED aggregation function (Jónsson, Palmskog, & Vigfússon,

2012), which can be decomposed as follows:

a
′ = TRUNCk(SORT(MERGE(a1, . . . , ax)))

A number of weighted observations (υ, w) are merged, creating a proper set over iden-

tifiers υ. The resulting set is then sorted and the first k tuples returned. Let us consider

an application in which contributions are merged by summation: all weights w for

tuples tagged with the same identifier υ are summed, creating a single tuple (υ, w′).

By extension of Wagner’s (2004) result for SUM, we conclude that a merge function

based on summation is inherently insecure. The same applies for other inherently

vulnerable functions, such as MIN and MAX that may be used to compute the weight for

some applications. The outcome of the outer two functions depends on the computed

weights. Hence, their results are trivially influenced via an insecure merge function.

We conclude that TOP−K−WEIGHTED must be considered as insecure in Wagner’s model

as the MERGE function w.r.t. the ordering, and hence top-k ranked data.

3.2.3.2 Completeness

Completeness, as specified in Definition 3.4, is hard to guarantee in general, as discussed

further in Chapter 5. Let us briefly consider the problem in terms of the single aggregator

model.

Each observation node has initially a path to the querier and is able to communicate.

However, link faults, corrupt insiders and outsiders can impact message delivery. We

can counter intermittent faults by reliable transfer protocols. Let us simplify the problem

by considering only message drops by corrupt insiders in a synchronous network model.

At some point in time, the adversary controls some t data providers. Let us assume the

corrupt nodes are prevented from modifying messages. However, we must assume the

adversary controls the communications channels via his control of the corrupt nodes and

can influence message delivery. A reliability layer does not help in this case, since the

corrupt host can drop messages before being submitted to the networking protocol. The

maximum impact the adversary can have in terms of Definition 3.4 is to direct each of the

t corrupt nodes to drop their update messages in each round. Hence, in a single aggregator

model, as considered in this chapter, the maximum impact an adversary can have in terms

of completeness is to drop t messages out of expected |V′| in each round.



Kristján Valur Jónsson 41

3.2.4 Establishing Integrity

Accurate and trustworthy information is the primary product of a networked measurement

system. Hence, we believe that addressing the subject of data integrity is an important task

and one to which we devote the remainder of this chapter. Our second goal is efficiency,

as networked measurement systems are capable of generating high volumes of traffic.

Scalability issues preclude us from adding arbitrarily expensive security protocols to the

operational demands. Hence, our goal is to increase the security level of a networked

measurement system, while imposing minimum overhead on top of the underlying mea-

surement and aggregation protocol stack. The trivial solution is to unconditionally trust

each data provider. However, as discussed previously, this is not an option for systems

that are expected to deliver trustworthy data. Let us begin by considering means of guar-

anteeing integrity preserving aggregation.

3.2.4.1 Increasing Aggregate Resiliency

The severity of the bias introduced depends on the resiliency of the aggregation func-

tion, as discussed by Wagner (2004). For instance, the MEDIAN is inherently more resilient

than the MEAN. However, the two are not interchangeable but for some subset of applica-

tions. Secure median aggregation has been considered, for instance by Roy et al. (2008).

Wagner suggests a number of measures to increase the resiliency of insecure aggregation

functions. The most generally applicable one (which Wagner considers naive) is trun-

cation of local inputs, which limits the possible bias which an adversary can introduce.

However, the drawback is a loss of dynamic range in the local input, more so as we restrict

the bounds on the adversary. Truncation is used by e.g. H. Chan et al. (2006) to upper

bound the bias an adversary can introduce. Applying domain knowledge, for instance

eliminating outliers based on the past history of inputs, is a more flexible method of input

sanitation (Buttyán et al., 2006). However, methods of this sort are only applicable to

measurements of the “normal” system state and automatically exclude the outliers that

are of interest for many applications.

3.2.4.2 Hardening Nodes

Let us now assume we can harden each member to be invulnerable to node compromise

and simultaneously ensure that the protocol is unconditionally observed. As before, we

assume outsiders are excluded by secure channels connecting each pair of nodes. Such a

system allows us to claim correct overall aggregation: each data provider delivers correct
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updates and the updates received by the querier are correctly processed by virtue of a-

priori trust relations with each participant. Secure channels allow us to assume correct

delivery of update messages between trusted parties.

The act of securing an entire distributed system is easier said than done. In practical terms,

most if not all computing platforms in a distributed system are currently vulnerable to a

plethora of threats, as discussed in Section 2.4. Recall that secure channels are of little

additional use once a node has been corrupted, considering the objective of our stealthy

adversary. Hence, the brute-force approach of securing each participating node in an

aggregation network is bound not only to be expensive in terms of resources, but also

ultimately futile, given the current state of computing technology.

3.2.4.3 Hardening the Essential Functionality

The field of trusted systems theory (J. P. Anderson, 1972; TCSEC, 1985) provides us with

a potential solution. Let us decompose the functionality of a sensing node, as depicted

in Figure 3.1 into that essential and non-essential to the goal of guaranteeing aggregate

integrity. All sensing and processing functionality that can influence the correctness of

the observations must be considered essential if we want to prevent an adversary from

introducing bias. However the task of transferring data can be considered non-essential

with regards to the objective of correctness, if we can assume integrity preserving trans-

port mechanisms, such as discussed in Example 3.2, between the components that provide

essential functionality. Given this, the majority of node services can be untrusted, which

significantly simplifies the task of constructing a trusted sensing node.

Given that we succeed in proving the invulnerability and correctness of the essential func-

tionality of sensing and provide integrity guarantees over the signal path, we can claim

to have solved the integrity of sensing problem, as stated in Definition 3.1, in terms of

aggregate correctness.

3.3 Trusted Sensor

Let us now progress towards the goal stated in the previous section of securing the essen-

tial functionality of sensing. To this end, we define a trusted sensor – a tamper-resistant

smart sensor (Breckenridge, 1980), further described in Definitions 3.8 and 3.9, and

shown schematically in Figure 3.3(a). The vision is for the trusted sensor to be a perma-

nently sealed “black box”, whose functionality can be unconditionally trusted. However,
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(a) (b)

Figure 3.3: Trusted sensor: (a) Schematic of a trusted sensor with a USB-connector, (b) Sample pinout

diagram. Bold outlines indicate tamper-proof enclosures.

in the event of breaches, the device is rendered inoperable and in such a condition that its

internal secrets cannot be extracted. The requirements for a trusted sensor closely resem-

ble those of the reference monitor construct (see Definition 2.5) from the trusted systems

literature (TCSEC, 1985). Physical integrity is ensured by tamper-resistant packaging,

while the correctness of functionality and interface is ensured by rigorous specification

and verification procedures. Integrity of communications (and optionally secrecy) is en-

sured via an integral cryptographic processor and the establishment of secure channels

between mutually trusted parties.

The trusted sensor solution enables us to guarantee data integrity at the earliest possible

stage in the measurement and aggregation process – at the sensor “head” itself – providing

strong data source integrity guarantees in terms of correctness over the end-to-end signal

path, as shown in Figure 3.1.

Our vision is for a trusted sensor to be a minimal device in terms of computational and

communications resources. In particular, we envision such devices to have a rudimentary

communications capabilities, limited to the IPC3 mechanisms provided by the hosting

nodes. The sensor interface exposes a limited set of functions and must be well secured,

as stated in Definition 3.8. Hence, a trusted sensor operates in a close symbiotic relation-

ship with its host and the inherently untrusted hosting node still plays an important role

in the routing protocol, including handling routing and communication. Our prototype,

described in Section 3.5, uses a rudimentary serial interface and can hence have a pin-out

as simple as the one shown in Figure 3.3(b).

Given the fact that the trusted sensor is inspired by the reference monitor construct,

it is logical to view its integration into a host platform as an extension of the latter’s

trusted computing base (TCB, see Section 2.5), encompassing the essential functionality

of trusted sensing.

3 Inter-Process Communications
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Definition 3.8 (Trusted module). A trusted module is a dedicated hardware device,

whose internal operations and secrets, such as private cryptographic keys, are protected

within a tamper-resistant enclosure. A trusted module implements a set of operations and

exposes an interface, both of which must be well defined in terms of security, function-

ality and semantics, verified as correct and attested to by a trusted agency. Further, the

trusted module provides always-on mediation of all incoming and outgoing communi-

cations. Each trusted module is uniquely identified by a globally unique identity tuple

consisting of public and private identities. Attestation of a trusted agency on the identity

tuple serves as a proof of membership in a particular group of trusted devices.

Definition 3.9. A trusted sensor is a trusted module (Definition 3.8) that views an envi-

ronment and produces a corresponding cryptographically unmodifiable stream of update

messages to peers in the same or overlapping group of trusted devices.

The family of trusted devices, which the trusted sensor belongs to, includes devices such

as some SmartCards (Rankl & Effing, 2001) and RFID tags (Thornton et al., 2006).

Trusted devices have been applied in a range of situations, for instance, to solve the fair

exchange problem (Avoine & Vaudenay, 2003; Dashti, 2009), to provide secure storage

primitives (Levin et al., 2009) and in secure multi-party computation (Fort et al., 2006).

Trusted sensors have been considered recently by several authors (Dua et al., 2009; Saroiu

& Wolman, 2010; Winkler & Rinner, 2011). The projects cited all implement trusted sens-

ing in a similar manner to our proposed solution, but with the exception that trust is based

on a Trusted Platform Module (TPM). In contrast, we propose to integrate dedicated min-

imal line-speed security logic in the sensors, rather than using a TPM, since the current

generation of TPMs is bloated in terms of functionality and provides slow cryptographic

operations (Kursawe, 2011). We believe our approach of a dedicated and minimal sensor

device is more prudent and in the spirit of the original concepts of trusted systems.

3.3.1 Requirements

Let us now consider the requirements for a trusted sensor device. The primary require-

ment relates to the integrity guarantees of the trusted sensor: a recipient that receives

updates produced by an untrusted sensing node hosting a trusted sensor can verify the

authenticity of the updates. Hence, given that we can unconditionally trust the trusted
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sensor device, we can unconditionally trust that the updates produced are consistent with

a correct representation of the sensor view on its environment.

Achieving this goal requires a number of intermediary steps, which can be derived from

Definitions 3.8, 3.9 and 2.5: A trusted sensor:

(i) is uniquely identifiable and can be positively authenticated by a communicating

party as part of the same or overlapping groups of trust,

(ii) is well-defined in terms of functionality and security by a clear and concise specifi-

cation,

(iii) is verifiable as complying with functionality and security specifications,

(iv) provides physical protection by means of tamper-resistant packaging,

(v) provides always-on mediation of all data passing through its communications inter-

face:

a) only accepts inputs allowed by the security specification,

b) only provides outputs which leak no secrets, as defined by the security specifica-

tion,

c) only provides outputs (data updates) verifiable as correct and destined for trusted

peers.

Let us now consider means of achieving the goals stated.

3.3.1.1 Identity and Device Authentication

Each trusted sensor is uniquely identified by an identity tuple (idpub, idpriv) assigned at

time of construction by the manufacturer. The public identity idpub can be freely disclosed,

while the private one must never be revealed. A globally unique and verifiable identity is

a prerequisite for preventing Sybil (Douceur, 2002) and cloning attacks, while a private

identity (cryptographic key) is required to establish trust relations with peer nodes. We

assume the secret identity is symmetric cryptographic key in our prototype, as discussed

later on, but an asymmetric key may also be used.

3.3.1.2 Specification, Verification and Certification

Providing a complete and concise specification is the first step towards constructing a

trusted device. A rigorous specification covers all aspects of the functionality of the
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trusted device, as well as its security requirements. The specification can be of any form

that unambiguously describes the functionality of the device in terms of its operational

semantics. Some variant of structural operational semantics (Aceto et al., 2001; Plotkin,

2004) may for instance be used to construct a rigorous specification.

Implementing a device in accordance with the stated requirements is a straight-forward

exercise in software and hardware engineering. However, upon completion of the task, we

need to verify the correctness of the implementation. Strong trust requires a formal ver-

ification procedure (Aceto et al., 2007), carried out by some trusted party, which proves

that all aspects of the implementation are in agreement with the specification. The man-

ufacturer and verification/certification party are assumed to be trusted for the purposes of

this work; we do not consider the untrusted manufacturer problem (Simha et al., 2006). In

practice, the integrity of the hardware on which the software and firmware is placed must

be rigorously assessed, as demonstrated by a recent account of a “back-door” in FPGA

chips (Schneier, 2012).

Verifiability implies minimality in terms of the scale of code and circuitry, as well as

implemented functionality. While formal verification methods are progressing rapidly,

the ultimate goal of verifying arbitrarily large systems is still out of reach. However, the

task of verifying a specialized device with a small set of functionality may be considered

practical.

If a device is found to comply with the specifications, the verifying party affixes a verifi-

able attestation of authenticity. A digital signature over the identity tuple may for instance

be considered a verifiable attestation to the fact that the unit complies with the published

operational and security specifications. Any party that communicates with a trusted sen-

sor can query and receive its public identity and certification information and submit to

the signer (root of trust) for verification. In our prototype, we use the possession of a

symmetric cryptographic key as implicit proof of authenticity, that is, the act of generat-

ing a symmetric key and installation in a trusted device is considered sufficient proof of

authenticity. The identification and certification can be carried out by writing the identity

tuple to a special memory location in the sensor device and then physically detaching the

programming interface, e.g. sawing it off or blowing a set of fuses (Rankl & Effing, 2001)

prior to the application of tamper-resistant packaging.

3.3.1.3 Tamper-resistance.

A verified device can be considered as having been constructed in accordance to a rigorous

specification and verified as semantically compliant. However, the security guarantees
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(a) A schematic representation (b) Cross-section of a coating
PUF

Figure 3.4: A Physically Unclonable Function (PUF) implemented by randomly doping a coating layer

(Tuyls et al., 2006).

are void if the adversary is able to pry open captured devices, alter their functionality or

extract secrets. Transient secrets may be extracted by means such as the cold-boot attacks

against RAM chips (Halderman et al., 2008), while permanent secrets can be extracted by

carefully examining hardware in a powered-off state. Exposed pins or buses on otherwise

trusted devices can reveal internal device secrets (Kursawe et al., 2005).

To counter the possibility of leakage of secrets, we must consider the issue of tamper-

resistance. A trusted device should be physically protected so that a breach takes consid-

erable expenditure in terms of time and resources and (ideally) renders the device inoper-

able. Protecting the sensor device by a strong sealed enclosure is a reasonable first step.

However, a determined adversary could attempt to drill holes through the enclosure and

insert micro probes to extract secrets. Such attacks can be countered by embedding of

screening layers, that short out the chip in the event of a physical breach.

A further level of protection can be provided by so called Physically Unclonable Func-

tions (PUF) (Gassend et al., 2002; Tuyls & Batina, 2006). A PUF is a hardware feature

sufficiently unique to be used as a physical one-way function. Combined with challenge-

response authentication protocols, PUFs provide strong guarantees of device integrity.

Several classes of PUFs have been proposed. One class is coating-based PUFs, which are

based on random doping of a dedicated layer on top of the sensor processor with dielec-

tric particles (Tuyls et al., 2006), as shown in Figure 3.4. Excitation of this layer ideally

produces uncorrelated measurable values, thereby serving as a physical one-way function

that can be integrated into challenge-response authentication protocols.
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Tamper-resistance is not a trivial issue, as shown by various attacks against supposedly

tamper-proof devices (R. Anderson & Kuhn, 1996, 1997), but one that is vital to the

goal of constructing a trusted sensor device. However, we will not delve further into the

nuances of tamper-resistance in this work.

3.3.1.4 Complete Mediation and Communications Security.

The trusted sensor must provide complete mediation of all instructions and data that

crosses its interface. Hence, the trusted sensor is analogous to the reference monitor

construct discussed previously. The verification procedure should ensure that the instruc-

tion set of the device is well-defined and the adversary cannot exploit it to extract secrets

from the device. Further, the sensor interface must not allow any instructions that could

leave it in an unsafe state.

The integrity of submitted updates must be protected. To this end, trusted sensors must

only communicate with trusted peers with whom they are able to establish secure chan-

nels. In the single aggregator case, the common trusted peer is the querier. Commu-

nications over secure channels must be protected against modification, for instance by

application of a MAC tag. While integrity is the primary security objective of the trusted

sensor, confidentiality can be ensured at a small cost by encrypting communications with

a shared symmetric key, independent of the one used to generate the tag.

The trustworthiness guarantees provided by a trusted sensor can only be considered mean-

ingful when providing measurements to a trusted peer. Hence, we assume the trusted sen-

sor will only provide output once it has established relations with a trusted recipient. This

rule can conceivably be relaxed, allowing trusted sensors to operate as generic sensors

providing data to untrusted recipients. However, no guarantees can be stated with regards

to the correctness of the output in this mode of operation.

3.3.2 Security

Let us assume a specification has been written that describes the semantics of the trusted

sensor device precisely. Further, we assume a rigorous security specification defines all

allowable inputs and under which condition corresponding outputs are produced. Given

such a specifications, absolute verification of functionality against security requirements

is conceivable, although difficult given the current state of formal verification meth-

ods.
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Let us now assume a verification result is available, stating that a device design is com-

pliant with both operational and security specifications. Given that the manufacturer is

trusted, the verified design can be translated into hardware and embedded firmware. Fur-

ther, given that the design of hardware and firmware is a perfect representation of the spec-

ification, the resulting device is as secure as the accuracy of the specifications. Hence, we

can state that (ideally) the circuitry and code is compliant with the security specifications

for all conceivable inputs.

We assume perfect tamper-resistance that leaves the sensor device inoperable in the event

of any sort of breach. Hence, the adversary does not gain control over a compromised

device. However, the adversary can conceivably extract secrets or residues of secrets

from the sensor hardware and/or firmware after a breach. We propose to add a layer

of difficulty by incorporating a Physically Unclonable Function (PUF) into the tamper-

resistant packaging, guaranteeing that breaches will be revealed. Authentication with

PUFs is discussed further in Section 3.4.3.

A tamper-proof sensor, whose functionality is guaranteed to be correct, allows us to ful-

fill the primary security goal stated earlier in this chapter, that only observations based

on faithful representations of views on the environment are produced. Further, each con-

tributed observation can be attributed to a particular sensor and its authenticity can be

verified.

3.4 TSense: A Secure Measurement System

We will now describe a particular design for a trusted sensing system as a test-case for

integration of trusted sensor devices into a cohesive distributed aggregation system. A

proof-of-concept prototype implementation is described in Section 3.5.

3.4.1 System Overview

The system design presented here is a centralized (client/server) architecture, as shown

in Figure 3.5. We consider a distributed version of TSense in Chapter 4. Observation

nodes si indicated as thermometer symbols, provide verifiably correct measurements to

a network of collectors (C1 . . . C6 in the example) by virtue of hosting trusted sensors.

This system model deviates from the single aggregator model, discussed in Section 3.2,

in that the querier can be a distributed structure of trusted collectors. Each sensing node

si is a generic untrusted hosting platform, hosting one or more trusted sensor modules σij ,
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Figure 3.5: TSense system overview. A number of observation nodes equipped with trusted sensors commu-

nicate with a trusted infrastructure (secure subnet), consisting of a number of collectors and an authentica-

tor. Secure channels are indicated by bold lines, while channels potentially under adversarial control are

shown as dash-dot lines. The secure subnet, indicated by a cloud symbol, is considered implicitly trusted.

as shown in the blow-ups in Figure 3.5. Any type of hosting platform with networking

capabilities can be considered. For example, we show a laptop and a programmable logic

controller (PLC) functioning as observation nodes in the figure.

The channels between trusted sensors, untrusted hosts and collector must be considered

under adversarial control. However, protocols (described in Section 3.4.3) establish pair-

wise secure channels σij ⇔ Ck between individual trusted sensors and a collector. An

authentication service A provides authentication services and mediates the establishment

of the shared cryptographic keys that facilitate the establishment of trusted channels. The

key used for the initial key establishment is the permanent secret device key, which is

shared pairwise between each individual sensor and the authenticator.

We call the network bounded by the cloud in Figure 3.5 the trusted infrastructure. This

network consists of one or more servers in the roles of queriers (collectors) and a sin-

gle authenticator. Each such server must be assumed to be specially hardened and well

protected. In particular, the authenticator, which holds the cryptographic keys for the

entire system, should be well protected. The trusted infrastructure is assumed to be inter-

connected by trusted channels, using mechanisms such as SSL/TLS (Dierks & Rescorla,

2008). Sensing nodes can establish communications with any collector to which they

have a path. However, the system must ensure that no sensor identity takes part in mul-

tiple pairings simultaneously. This precaution is necessary in order to limit the impact

of a cloned sensor in case of a breach. A Distributed Hash Table (DHT) (Stoica et al.,

2003) implemented over the subnet of queriers (collectors) can for instance provide the

necessary lookup capabilities.
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3.4.2 Security objectives and Adversarial Model

The primary security objectives for TSense are as follows:

(i) Provide guarantees of verifiably correct sensor observations.

(ii) Provide the property of graceful degradation of security in the event of key capture.

The first objective is met by the combination of a trusted sensor with secure protocols,

as described in Sections 3.3 and 3.4.3. The second property of graceful degradation of

security is important for distributed systems. In essence, we can claim that a system

has the property of graceful degradation if the compromise of each individual device

reduces the overall security level of the system by some quantifiable amount, rather than

failing catastrophically. For example, a sensor network in which communications security

depends on a single globally shared key is bound to fail catastrophically if that key is ever

revealed.

Given the assumption of a layer of trusted devices connected by secure channels, we

can amend the adversarial model of Section 3.2.2. The participants in the measure-

ment network are classified as trusted and untrusted. The trusted sensors and the col-

lector/authenticator infrastructure are considered trusted elements, while all other partici-

pants are untrusted. We abstract the untrusted elements of the measurement network into

the pool of untrusted outsiders, i.e. routers and the like, which are not part of the net-

work. Since the untrusted clients carry the channels, we can classify all attacks against

protocols as attacks on the channels. Hence, the revised adversarial model is compara-

ble to the Dolev-Yao model (D. Dolev & Yao, 1983), confining adversarial actions to the

channels.

3.4.3 TSense Protocols

We have so far described two classes of trusted entities, sensors and collectors. Now,

we need to establish a trusted relationship between the two to form a cohesive trusted

measurement system. This is accomplished by means of cryptographic protocols, outlined

in Figure 3.6 and described in the following sections.

3.4.3.1 Entity Authentication and Session Key Establishment

We begin by describing the authentication and key negotiation protocols that facilitate

the establishment of secure channels between trusted sensors and collectors. Each trusted
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Figure 3.6: Overview of trusted sensor protocols. Messages are sequentially numbered. Untrusted intra-

node channels are indicated by dot-dash lines, untrusted external channels as dashed and trusted channels

as solid lines.

sensor is uniquely identified by an identity tuple, as described in Definition 3.8, assigned

at time of construction by the manufacturer. Our prototype design uses a symmetric secret

key KAσ, shared pairwise between sensor σ and a trusted third party (TTP), the authen-

tication server A in Figure 3.5, as the secret device identity. The key KAσ serves as an

implicit proof of device correctness, as well as being used in the initial authentication

step upon insertion of a sensor into a trusted aggregation network. The key is gener-

ated by the configuring entity and permanently embedded into the device, as described in

Section 3.3.1.

The authentication protocol uses the shared secret KAσ to securely establish a symmetric

session key KCσ, shared pairwise between a sensor σ and collector. The session key is in

turn used to establish and periodically refresh a transport key KT , again shared pairwise

between sensor and collector.

The protocol is a variant of the Needham-Schroeder symmetric trusted third party proto-

col, adapted to suit the application (Needham & Schroeder, 1978, 1987), (Schneier, 1996,

pp. 58), Menezes et al. (1996, pp. 502). A symmetric TTP protocol of this sort is a logical

choice for the proposed centralized system. The protocol assumes the existence of an

untrusted application agent s, running on the hosting node, that bootstraps the protocol.

We split the protocol into two phases, the first being a mutual authentication and session

key establishment protocol.
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Message 1:

s→ σ : ⟨IDENTIFY⟩

• An untrusted aggregation agent running on the observation node, represented by en-

tity s, requests an identity packet from its hosted trusted sensor in order to bootstrap

the authentication process.

Messages 2,3 and 4:

σ → s→ C ⇒ A : ⟨AUTH1, σ, EAσ(σ,Nσ)⟩

• σ responds with a message containing its public identity and an encryption over the

id and a nonce Nσ. The permanent private device key KAσ is used. The message

is routed from σ to A, treating both s and C, as well as any intermediary nodes, as

outsiders, as none hold KAσ.

• A looks up the encryption key K for the identity σ in its key database and decrypts

σ′ and N ′
σ. A then verifies σ = σ′. A match of decrypted information against

unencrypted information and stored state is considered a sufficient proof that σ

holds the key KAσ, and hence as an implicit proof of the identity of the sensor

device and its membership in the group of trusted devices.

Message 5:

A⇒ C : ⟨AUTH2, σ, RCσ, EAσ(σ,C,Nσ, RCσ)⟩

• A generates a random number RCσ which is the key material to be used by σ and C

later on in the protocol to establish session keys. The key material should preferably

be of length equal to that of a cryptographic key in the system and generated by a

cryptographically secure (high entropy) random number generator.

• A prepares an authentication packet EAσ(σ,C,Nσ, RCσ). This packet is encrypted

with the permanent device key KAσ, and hence, assumed to be readable only by A

and σ by the assumption of the exclusivity of the key.

• A sends a message to C, containing the key material, the public identity of the sen-

sor and the encrypted authentication packet. Communications security is implicit

in this step by the assumption of a trusted A⇔ C channel.

• C derives a session key set KCσ = KDF (RCσ) for the identity σ.
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Messages 6 and 7:

C → S → σ : ⟨AUTH3, σ, EAσ(σ,C,Nσ, RCσ)⟩

• C forwards the authentication packet to σ. Note that C does not hold the key KAσ

and is hence unable to modify the packet.

• σ decrypts (σ′, C,N ′
σ, RCσ) and verifies σ = σ′, Nσ = N ′

σ. The proper encryption

proves implicitly to σ that the provider of the key material is a trusted authority in

the system by the assumption of exclusivity of the key KAσ.

• σ derives a session key KCσ = KDF (RCσ) and stores for the identity C.

3.4.3.2 Session Key Confirmation and Transport Key Establishment

Upon establishment of the shared session key, the sensor and collector execute phase

two of the authentication protocol, based on the key confirmation phase of the Needham-

Schroeder protocol, to establish an initial transport key. This phase also serves to confirm

the newly established session key.

Messages 8 and 9:

σ → s→ C : ⟨REKEY, σ, ECσ(σ,C,N
′
σ)⟩

• σ initiates the protocol by sending C an encryption, using the newly established

session key KCσ, over the identity of the two trusted peers and a fresh nonce N ′
σ.

• C looks up a session key K for the identity σ and decrypts (σ′, C ′, Nσ) and verifies

σ = σ′, C = C ′. C stores Nσ and compares against stored values. The proper

decryption of the message payload proves to C that σ holds the correct session key.

Hence, C can implicitly accept that σ is a member of the group of trusted devices.

• C picks a random number RT and derives transport keys KT = KDF (RT ). The

key material RT should be of sufficient length for the security level required and

generated by a cryptographically secure random source.

Messages 10 and 11:

C → S → σ : ⟨NEWKEY, ECσ(C, σ,N
′
σ − 1, RT )⟩

• C sends the key material RT to σ, along with a predictably related nonce.

• σ decrypts (C ′, σ′, N ′′
σ , R) using the current session key KCσ and verifies C ′ = C

(against the current state), σ = σ′, N ′′
σ = N ′

σ − 1. Proper verification confirms to σ

that C holds the same session key.
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• σ derives transport keys KT = KDF (RT ).

This protocol can be executed as often as needed to maintain the freshness of the transport

keys, as the proper practice for cryptographic protocols is to limit the lifetime of keys to

minimize the threat of compromise.

3.4.3.3 Data Transport Protocol

The third protocol is a transport protocol, leveraging fast symmetric authenticating en-

cryption with the transport key pair KT to secure the integrity and secrecy of the trans-

mitted data against active and passive attackers. Note that in all cases, we assume K to be

a key pair, consisting of a key for encryption and an independent one for authentication,

in keeping with the key separation principle (Gligoroski et al., 2008),(Barker et al., 2007,

sec. 5.2).

Data format. The format of the data is not of primary importance in the transport pro-

tocol, but two example formats can be given as follows:

1. σ creates a data vector of the form:

D = [tσ ∥ lD ∥ m1 ∥ · · · ∥ mk]

where tσ is a timestamp of the first observation, mi are observations and lD = k.

2. Alternatively, each observation can be timestamped as

D = [lD ∥ {t1,m1} ∥ {t2,m2} ∥ · · · ∥ {tk,mk}]

Data transfer. Data transfer is a straight-forward application of authenticating encryp-

tion over a data vector D, given a shared transport key KT . The data to be contributed by

a sensor σ is packed into a transport message and routed to C through s:

σ → s→ C : ⟨DATA, σ, cσ, lE , ĒT (σ, cσ,D)⟩

• σ encrypts a message consisting of its identity σ, a monotonically increasing counter

cσ and the data vector D. An authenticating encryption function Ē is used with a

transport key set KT . The public node identity, counter and the length of the ci-

phertext lE is sent in plaintext.
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• C looks up the current transport key KT for the pairing (C, σ), decrypts and verifies

the message. C stores the data vector as a contribution of σ to the aggregate compu-

tation if the message is verified as authentic. Otherwise, the message is discarded.

Authenticating encryption. The authentication and key exchange protocols do not re-

quire explicit authentication of messages as proper decryption of well specified message

fields was assumed to be a sufficient proof of authenticity. Such assumptions no longer

hold in the case of data transfer. Hence, we need to add explicit authentication of mes-

sages to the protocol. Several implicitly authenticating modes of operation exist for block

ciphers, including the Offset Counter Mode (OCB) (Rogaway et al., 2003) and Galois

Counter Mode (GCM) (Dworkin, 2007). We leave the choice of method of authentica-

tion open and assume the more generic compositions for symmetric block ciphers and

MACs discussed by Bellare and Namprempre (2007). The strongest of the compositions

analyzed is Encrypt-then-MAC (EtM)

ĒK(M) = C ∥ Tm(C), C = Ee(M)

where K = (Ke, Km) is a pair of independently derived keys for encryption and MAC,

M is the plaintext message and C is the ciphertext. Note that the tag can be truncated to

any number of bits which gives an acceptable level of security.

Small update messages whose data vectors are of a size much smaller than the block

length (in case of block ciphers) may be optimized by including the tag in the encryption,

that is, use an MAC-then-Encrypt (MtE) composition of the form

⟨DATA, σ, cσ, lE , ET (σ, cσ,D, TT (σ, cσ,D))⟩

Mode of operation. We assume a block cipher for the following discussion. Our pro-

totype is based on the AES block cipher, but other secure ciphers can be used as well.

Block ciphers are operated in several modes of operation. The simplest is the Electronic

Code Book (ECB) mode, under which each block of plaintext is independently encrypted

by repeated application of the cipher algorithm under a single static key. ECB mode is

the simplest but also most insecure mode of operation. One of the disadvantages of ECB

is that a repeating plaintext encrypts to predictably repeating ciphtertext. This immedi-

ately leaks information to the adversary – that the source data is repeating. A more secure

mode of operation should be chosen to ensure unpredictability in the generated cipher-

text. For instance, the Cipher Block Chaining (CBC) mode of operation (Dworkin, 2001)

ensures variability by “feeding” the previous ciphertext block into the encryption of the
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next one:

Ci = EK(Pi ⊕ Ci−1)

where Pi are plaintext blocks and Ci are the corresponding ciphertext blocks. The first ci-

phertext block C0 is an initialization vector (IV), which for CBC must be unpredictable to

ensure that a sequence of ciphertext blocks is always unique, even for static plaintext. An

acceptable method of generating an unpredictable IV is to encrypt or MAC a non-secret

nonce, which may be a monotonically increasing counter (Dworkin, 2001, Appendix C).

Hence, we can use the plaintext counter cσ as a nonce source, encrypting under the trans-

port key to generate the IV.

Authentication vs. authenticating encryption. We assume authenticating encryption

in the TSense system design, even though authentication suffices for our primary objec-

tive of ensuring data integrity. Encryption comes at a small cost in terms of memory and

processing costs, as well as some message expansion in the case of block ciphers. How-

ever, encryption buys us the property of confidentiality, which may be important for some

applications. Further, as we explore in Chapter 5, encryption reduces the adversary’s abil-

ity to make intelligent dropping decisions, thereby reducing his effectiveness in attacking

the completeness of the aggregation process.

3.4.3.4 Authentication Incorporating Physically Unclonable Functions

The correctness guarantees provided by the TSense system depend on the assumption of

sensor invulnerability. However, we must consider the eventuality of a resourceful ad-

versary gaining access, despite any level of physical protection. Even assuming a trusted

sensor device is rendered inoperable by tampering, we cannot rule out the possibility of

extraction of secret device data, as discussed in Section 3.3.1. In case of such a breach, the

adversary has sufficient information to simulate the corresponding device, as algorithms

are not assumed to be secret. We can argue for the expenditure of time and resources to

be prohibitive in terms of the adversary ever gaining the upper hand in terms of the num-

ber of devices compromised. Nevertheless, as discussed in Section 3.2.3, an adversary

controlling even a single device is in a position to arbitrarily influence the aggregate com-

putation. Hence, simulation of a single device represents a failure in terms of our primary

objective of aggregate correctness.

Clearly, we must limit the possibility of sensor simulation in the eventuality of secret

key extraction. Physically unclonable functions (PUF) present a potential solution to the

problem, unequivocally linking the physical protection and cryptographic properties of
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the sensor device, as discussed further in Section 3.3.1. PUFs can be viewed as a crypto-

graphically secure keyed hash function, unique to the device. The configuring party (the

trusted manufacturer) for device v issues a set of i challenges and harvests the responses,

rv,i = PUF(cv,i). This series represents (with high probability) a unique fingerprint for the

device v. The probability that an adversary can guess a response to a particular challenge

is ideally 1/2lR , where lR is the bit length of the response expected, given that challenges

and responses are uncorrelated.

Let us assume we have a PUF that is integral to the physical protection of the trusted

device, for instance a coating PUF (Tuyls et al., 2006) and the function is destroyed by

any tampering that can result in the extraction of secret device keys. Further, we assume

the PUF is ideal in the sense that it always provides an output consistent with its input,

but without any correlation between input and output bits. In other words, we assume the

PUF is a random oracle (Bellare & Rogaway, 1993).

Let us now amend the authentication protocol described previously to incorporate a PUF.

The first steps are identical to the previous protocol but a challenge/response step is in-

serted between messages 4 and 5.

Message 4a:

A⇒ C → S → σ : ⟨EAσ(cAσ, NA)⟩

A routes a challenge to σ end-to-end encrypted under the permanent device key Kaσ. A

nonce is included to ensure ciphertext unpredictability in case of challenge reuse.

Message 4b:

σ → S → C ⇒ A : ⟨EAσ(rAσ, NA − 1)⟩

σ computes rσ = PUF (cA) and sends to A, which compares rσ to its stored C/R pairs

for σ. A breaks off contact if verification fails, preventing the key material (Message 5)

from being delivered.

Given a secure PUF integral with the tamper-resistance measures applied to the trusted

sensor device, we can claim that the probability of successfully simulating a sensor, in

the event the adversary is able to extract the secret device key, is negligible. Hence, the

primary security goal of correctness can be guaranteed if we can assume the existence of

a perfect PUF integrated into the tamper-resistant packaging of the trusted sensor.
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3.4.3.5 Protocol Verification

The correctness of cryptographic protocols is of great importance but at the same time

difficult to prove. Traditionally, protocols have been considered sufficiently strong af-

ter having been cryptanalyzed extensively for a number of years. That is, if no efficient

attacks are discovered, we can consider a protocol adequate for the time being. The pro-

tocols presented in this work are both relatively simple and based on existing protocols

that are believed to be sufficiently strong. However, the slightest modifications of crypto-

graphic protocols can have severe implications in terms of their strength against possible

attacks. Hence, verification is required, even for seemingly simple protocols, such as

ours.

We turn to formal verification tools to prove the correctness of the protocols. Both the

tool-sets Avispa (Avispa Project, 2012) and ProVerif (Blanchet, 2009, 2012) were consid-

ered.

The full authentication protocol has been modeled in ProVerif (Kristinsson, 2013). Queries

show that no secrets are leaked, given the secrecy of the key KAσ. The version of the pro-

tocol with PUF challenges has also been modeled. In the analysis, we assume the key

KAσ has been revealed. The PUF is modeled in ProVerif as a perfect keyed hash func-

tion. This key corresponds to the physical features in our proposed protocol. As would

be expected, ProVerif queries indicate that the adversary is not able to respond correctly

to a challenge, unless this key (the physical feature) is intact. The results for the main

authentication protocol were independently validated by Avispa modeling and analysis

(Tryggvason, 2012).

3.4.4 Security of TSense

The security goals of the TSense system are met by the combination of trusted mod-

ules and secure protocols. A trusted module is secure in isolation, as discussed in Sec-

tion 3.3.2, by virtue of (assumed) verified compliance with a stated specification and

physical hardening.

The security of the protocols depends on their design and implementation, as well as the

security of the underlying cryptographic primitives. The security guarantees of ciphers

and MAC functions are generally computational, implying that the overall integrity of

the system depends on the key length and the implied difficulty of an exhaustive search.

This of course assumes a secure primitive, i.e. one for which no efficient attacks are

known.
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3.4.4.1 Authentication Protocol

We base our authentication protocol on a known design which has been extensively crypt-

analyzed for a number of years (Needham & Schroeder, 1978; Denning & Sacco, 1981;

Needham & Schroeder, 1987) and is used with modifications as the basis for the Ker-

beros protocol (Neuman & Ts’o, 1994). Unlike Needham-Schroeder, our authentication

protocol is bootstrapped by an outsider, the untrusted application agent s executing on the

sensing node. However, its involvement is limited to sending the first bootstrap message

and thereafter acting as a router for encrypted communications. After the first message,

its role is comparable to any intermediary node in a Needham-Schroeder or Kerberos ex-

change. Instead of communicating directly with the authentication server, the sensor goes

through a proxy, the collector C, which also happens to be its intended communicating

party. However, C is treated like an outsider for the initial phases of the protocol; the

initial exchange is end-to-end secure between σ and A.

Replay attacks. The original Needham-Schroeder protocol was vulnerable to replay at-

tacks (Denning & Sacco, 1981), which can be fixed by using nonces and/or timestamps

(Needham & Schroeder, 1987). We use nonces in our protocols to counter replay at-

tacks. Using timers to guarantee freshness is problematic in our case, as the sensor relies

on the untrusted client to set its time. Instead, we use randomly initialized monotoni-

cally increasing counters in our tsensor prototype as client-side nonce sources. The

nonces also provide variability in the encrypted payload, thereby increasing the difficulty

of cryptanalyzing the protocols.

Authenticity of messages. Messages in the authentication protocol are solely encrypted,

not authenticated. We assume the implicit authentication based on verifiably correct de-

cryption of protocol packets is sufficient to ascertain the authenticity of the exchange.

Discovery of keys. The permanent secret key KAσ of the sensor identification tuple is

never released in any form by the sensor, but solely used to encrypt the (σ,Nσ) tuple in the

initial sensor message and the delivered session key KSσ at the end of the first authentica-

tion phase. Extracting KAσ by observing messages must be considered computationally

infeasible, given that the nonce causes payloads to appear random, assuming a strong en-

cryption algorithm. Note that even C, the trusted recipient, is treated as an outsider for

the first phase of the authentication protocol. Given the infeasibility of extracting KAσ,

the delivery of the session key KSσ at the end of the first authentication phase must be
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considered secure. Likewise, the delivery of the transport key material at the end of the

second phase is secure, given the secrecy of KSσ. In the event the session key is revealed,

it can be used for the current session but cannot be re-used for future sessions, since both

sensors and collectors require fresh keys per session.

The Man-in-the-Middle (MitM) attack a classical one in distributed systems: the adversary

places a corrupt node between two legitimate entities, intercepting and even modifying

their communications. By definition, the TSense system contains a number of untrusted

entities in the messaging chain, the observation nodes. However, assuming discovery of

keys KAσ and KCσ is infeasible, precludes the untrusted agent s from mounting a MitM

attack. The work involved is no easier for nodes that are not proper members of the system

(outsiders).

3.4.4.2 Transport Protocol

The transport protocol is a straight-forward application of authenticating encryption. We

assume the generic encrypt-then-MAC composition as described by Bellare and Nam-

prempre (2007). The strength of the protocol depends on the cipher and MAC function

used and the composition of the two.

Discovery of KT . A considerable bulk of data transport messages can be expected to be

delivered for each instance of the key KT . Hence, the adversary may attempt to eavesdrop

on this exchange and attempt to uncover the key by analyzing captured ciphertext. The

probability of such an attack succeeding depends on the strength of the underlying cryp-

tographic primitives and protocols. In our simple data transfer protocol, the adversary can

conceivably mount a known plaintext attack, since the public identity of the sensor is the

first field in the encrypted message. However, the difficulty of this attack is comparable

to that of an exhaustive key search, given a secure encryption primitive and mode of op-

eration. The security of the basic transport protocol can be increased by adding a random

number of random bits to the front and back ends of the message prior to encryption

ĒT (r1 ∥ # ∥ (σ, cσ,D) ∥ # ∥ r2)

where # is a marker, enabling the random bits to be stripped off once the plaintext is

known. The last block of the message is further padded by random bits r2.

In the event a transport key is revealed, the adversary can read and modify messages.

However, the transport key has a limited lifetime, requiring periodic re-keying operations.
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Hence, the adversarial advantage gained in the unlikely event of transport key compromise

is limited.

The adversary is precluded (within computational bounds) from forging messages, as long

as the authentication key of the transport key set remains secret. The authenticity guar-

antees achievable depend on the strength of the algorithms, as well as their composition,

used to encrypt and authenticate the message.

Transport message payload is encrypted and extraction of information must be considered

infeasible, given the assumption of secrecy of KT . Assuming an Encrypt-then-MAC

(EtM) composition of strong encryption and tagging primitives, the forging of messages

is considered computationally infeasible (Bellare & Namprempre, 2007).

3.4.4.3 PUF Authentication

Let us assume the PUF function is a random oracle (Bellare & Rogaway, 1993). For ev-

ery query with a new input value, the random oracle generates a fresh cryptographically

secure random number, stores it in a table and outputs the corresponding bits. For subse-

quent inputs that have been encountered before, the random oracle responds by returning

the stored value. Hence, a random oracle maps every conceivable input to a particular

cryptographically secure random response in its output domain.

The difficulty of simulating a sensor increases in proportion to the probability of forging

a response without having access to the PUF, which we assume is destroyed as part of

the tampering operation. Given a PUF that behaves like a random oracle, the probability

of forging a response to a query is 1/2lR . For a moderate set of challenges and a large

enough response (in bits), the probability of guessing the response must be considered

small. However, the adversary can try phases multiple times in the protocol given. The

difficulty of guessing or brute-forcing responses to challenges can be increased by by

introducing a significant delay in case of failed challenge/response exchanges, as is the

current practice in protecting computer systems against password guessing. A further

protection step can be added in which the authentication server caps the number of tries

k, thereby upper-bounding the probability of guessing a challenge, k/2lR . The adversary

may attempt to observe a number of authentication exchanges in an effort to uncover the

set of challenge/response pairs. However, in the protocol given, both challenges and re-

sponses are encrypted by the secret key KAσ. We base the security of the PUF-augmented

authentication protocol on the assumption that the PUF is disrupted in the event this key

is revealed. Hence, the adversary can never observe responses, although challenges are

readable if the adversary is in possession of KAσ.
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3.4.4.4 Protocol Interruptions.

The reliance on untrusted services for discovery and trusted connection mediation exposes

a potential vector of attack – that of choosing to ignore trusted devices or disrupt commu-

nications between them. However, ignoring trusted devices accomplishes little except to

exclude the node in question from the overlay, which can be interpreted as an availability

attack against compromised nodes. Likewise, disruption of the authentication and/or ini-

tial re-keying protocols does not increase adversarial influence over the aggregate, since

sensors remain inert until the initialization is complete. No effort is made towards secur-

ing the system against disruption of this sort or indeed other availability attacks. However,

this is a reasonable choice in light of our stated security goal of ensuring correct aggrega-

tion. If corrupt nodes contribute data, then it must be correct. Corrupt nodes that choose

to deviate from the protocol do so in isolation and do not accomplish anything beyond

excluding their own contributions.

3.5 Prototype Implementation

We support the TSense system design by a proof-of-concept prototype (Rúnarsson et al.,

2010). The code is released under an open-source license and available at http://

code.google.com/p/tsense.

3.5.1 Prototype Components

3.5.1.1 tsensor – Trusted Sensor

The trusted sensor prototype, tsensor, is a USB dongle with temperature and luminos-

ity sensors, powered off the USB bus. A picture of the prototype is shown in Figure 3.7.

A simple sensing array of a thermistor and photo-resistor was constructed for the proto-

type but more sophisticated transducer arrays can be envisaged for future work. We base

our implementation on a commercially available embedded systems processor, the Atmel

ATmega328 (Atmel, 2010). For ease of prototyping, we used the Arduino Duemilanovae

(Arduino, 2009) experimentation board as our development platform.

The ATmega328 is a RISC-based microprocessor, intended for embedded systems and

capable of running at up to 20 MHz. It has on-board 32K of Flash program memory, 2K of

RAM and a 1K EEPROM. Several analog and digital inputs and outputs are provided. The

Duemilanove board comes with an ATmega328 in a 28-pin DIL package and includes all
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Figure 3.7: The trusted sensor prototype. A sensor interface board is connected to the Arduino experimen-

tation board. USB cable connects the Arduino board to a laptop computer (not shown) acting as a host

platform.

the peripherals necessary for running the CPU. Additionally, a USB-to-serial converter is

provided, allowing the board to be connected directly to a host computer for programming

and data delivery.

The security properties of the TSense system depend on the strength of the implemented

cryptographic primitives and protocols. We use the industry-standard symmetric AES

block cipher (Daemen & Rijmen, 2000; FIPS, 2001) with 128-bit keys (shared pairwise

between individual sensors and the authentication service) in CBC-mode (Dworkin, 2001)

for encryption. The CMAC (Dworkin, 2005) algorithm, based on the AES block cipher,

is used for authentication. Hence, only a single cryptographic base primitive needed to be

implemented, conserving program memory space on the ATmega processor.

We designed the cryptographic library to be re-usable on the various system components.

Concretely, the same implementation of AES in CBC mode and CMAC compiles for the

ATmega328 on the tsensor and for 32- and 64-bit Intel/AMD platforms for the sink-

and authentication servers under Linux and OS-X/BSD. A version of the cryptographic li-

brary for the Arduino platform is available as an independent open-source project4.

The tsensor prototype is written in about 1400 lines of code (SLOC) in a C++ variant

developed for the Arduino platform. The cryptographic library, which is shared between

the tsensor and server platforms, accounts for estimated 880 SLOC thereof. The com-

piled tsensor binary is 14.5KB and the executing code uses approximately 900 bytes

of RAM, including measurement and processing buffers.

4 https://github.com/kristjanvj/ACrypto
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3.5.1.2 tsclient – Untrusted Client-side Agent

The observation node that hosts the tsensor, is the untrusted and corruptible entity in

our system model. In our prototype, the observation node is a networked laptop computer,

hosting an USB-connected tsensor. A small script, tsclient, is required to provide

the untrusted client with the ability to interface with a hosted tsensor and communicate

with the sink server.

tsclient is written in Python (v. 2.6), using the serial and socket libraries. No attempt

is made to secure the script, which is readable and modifiable by any process and user

having access to the hosting node. This is consistent with the system security goals: no

tampering by the adversary, including modifying or replacing tsclient, should reduce

the overall security of the system.

3.5.1.3 Trusted Infrastructure

The trusted infrastructure (see Figure 3.5) in our prototype consists of two Unix dae-

mon services, a singe collector (sink) server (tssinkd) and an authentication server

(tsauthd). The collector daemon acts as an authentication gateway for the population

of clients in addition to collecting and recording submitted measurements. The authenti-

cator authenticates clients (or rather their hosted tsensors) and generates key material

for session keys. Our prototype system consists of two virtual machines running Ubuntu

Linux 10.04.1 LTS (2.6.32-24). The trusted servers communicate securely over a per-

request TLS tunnel, implemented using OpenSSL5, with mutual authentication via x.509

certificates.

Both daemons are written in C++. Forking is used to service incoming requests on a per

client basis. A persistence layer, based on MySQL, is used to store per-sensor parameters,

such as current session and encryption keys. The cryptographic library used in the server

code is the same as used in the tsensor prototype.

No attempt was made to secure the trusted infrastructure components in the prototype.

Future implementations should address security issues, such as buffer overflow vulnera-

bilities. For the time being, the two servers considered implicitly trusted and invulnerable

in accordance with the adversarial model.
5 http://openssl.org
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3.5.2 Performance of cryptographic primitives

3.5.2.1 AES Encryption and Decryption in CBC-Mode on Arduino

The precise timing instruction micros6 was used to time successive encryption and de-

cryption operations on randomly generated data of one to several blocks in length, as

shown in Table 3.1. An Arduino Duemilanovae board with an ATmega328 running at

16MHz was used for the test. Briefly, the results were that our implementation achieves

an average throughput of 1213 blocks/sec for encryption and 592 blocks/sec for decryp-

tion on the Arduino. The performance difference between encryption and decryption

operations is most likely due to the more complex AES mixColumns transformations

required for decryption and can be addressed by future optimizations. Given the expected

small demands in terms of messaging frequency and size on individual sensors, we con-

clude that the performance of the AES cipher on the Arduino platform is sufficient to

deliver a reasonable rate of updates securely. Future optimizations of the protocol, specif-

ically for the target platform, may yield higher throughput. AES may also be efficiently

implemented in hardware if further performance enhancements are required.

Comparison with the XTEA block cipher. We implemented the XTEA (Needham &

Wheeler, 1997) block cipher on the Arduino in order to compare its performance with the

more complex AES-128. XTEA is designed to be an efficient and secure block cipher

on resource constrained systems. The XTEA implementation on the Arduino is done in a

total of 16 lines of C++ code. The test was performed in the same manner as that for our

AES implementation. The results were a throughput of 1316 blocks/sec for encryption

and 1574 blocks/sec for decryption. The recommended 32 rounds were used for both op-

erations. We conclude that our AES implementation compares favorably with the XTEA

one, given that the XTEA test operated in the simpler ECB mode and has a shorter block

length of 64 bits. Accounting for the differing block length shows acceptable throughput

for our AES implementation, as shown in Table 3.1.

Encrypt Decrypt
(blocks/sec) (Kbytes/sec) (blocks/sec) (Kbytes/sec)

AES 1213 19.0 592 9.3
XTEA 1316 10.3 1574 12.3

Table 3.1: Comparison of AES and XTEA performance on the Arduino platform (ATmega328 at 16MHz).

Note that AES has a block length of 16 bytes compared to the shorter 8 byte block length of XTEA.

6 http://arduino.cc/en/Reference/Micros
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3.5.2.2 AES Encryption and Decryption in CBC-Mode on Intel-based Platforms

The same cryptographic library code as timed on the Arduino platform was compiled in

a test framework on a 32-bit Intel laptop with a Centrino Dual CPU, each core running

at 1GHz, with 4MB L2 cache; only one core of the CPU was used in the test. The test

machine ran Ubuntu Linux 9.10 (kernel 2.6.31-22). Chunks of random data, from 1 to

256 blocks at 16 bytes each, were generated, encrypted and decrypted. The encryption

and decryption operations were timed using the C gettimeofday function, each mea-

surement averaged over several repetitions. A separate test using the Unix time7 utility

was also conducted. An average throughput of 2.7 Mbytes/sec was observed in the test

framework.

Our test servers achieved an average throughput of 4.3 MBytes/sec running the same test.

The test servers are 32-bit virtual machines running Ubuntu Linux 10.04.1 LTS (2.6.32-

24). The single CPU runs at 1995 MHz and has a 4MB L2 cache. The performance of

the collectors versus the potential throughput of sensors indicates that a collector in the

current implementation can service at least a hundred continuously transmitting sensors.

Sensors are more likely to produce updates in intermittent short messages, implying that

the practical ratio of sensors to a collector are several hundred.

The AES implementation used in this project is byte oriented and close to the original

published pseudo code (FIPS, 2001). Using a more efficient 32-bit table-based algo-

rithm (Daemen & Rijmen, 1999) would be expected to perform considerably better. A

comparison of byte-oriented versus table-based AES implementations indicates that the

performance increase can be at least fourfold.

3.5.3 tsensor Memory Footprint

Code size is quite important on a small device, such as the ATmega processor. Our com-

piled tsensor code binary is currently 14.5 KB of the total available program memory

(flash) of 32KB. The AES test code binary, used for the timing tests in Section 3.5.2.1,

is approximately 11 KB, while the XTEA test code binary is approximately 7 KB. Most

of the difference in binary size between the two tests is due to the more complex AES

algorithm. However, a size difference of less than factor two is quite acceptable, in our

opinion, for the stronger AES block cipher. Note also that our full tsensor implementa-

tion with the AES block cipher currently occupies less than 50% of the available program

memory of the ATmega328.

7 http://unixhelp.ed.ac.uk/CGI/man-cgi?time
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RAM memory usage is critical on a resource constrained device. Unfortunately, there are

currently no methods to accurately measure the RAM use in the current Arduino library.

However, we can estimate the amount of free RAM by the difference between the heap

and stack pointers. A serial API command for reporting the free RAM is included in the

current tsensor prototype version. At start-up, the free RAM is reported as 1638 bytes,

some of which is used by the controller itself and the Arduino boot loader. After full

initialization, key expansion and allocation of a 20 byte measurement buffer, the available

RAM is reported as 734 bytes. RAM use can be improved, for example by expanding

keys only as needed – AES-128 uses a key schedule of ten 16-byte keys, derived from the

original 16 byte one. The current prototype caches all keys in an expanded form, which

requires 320 bytes of RAM. Expanding the seldom used session key on demand would

therefore free up considerable RAM.

3.5.4 Cost of Materials and Production Sensor Size

We base our sensor prototype on a typical general purpose microprocessor, the Atmel

ATmega series, commonly used in embedded applications. Our prototype is essentially

a software implementation on a ready-made experimentation board, the Arduino Duemi-

lanovae. The cost of the Duemilanovae board was $29.95 (+ shipping and import costs)

from http://www.sparkfun.com in September 2010. An Atmel ATmega328 was

available at that time for $4.40 in quantities of 100+ from Sparkfun. The cost of sensors

varies according to their sophistications, but the NTC thermistor and photo-resistor used

in our project cost less than $2 a piece in individual units.

Production sensors would use a much smaller custom PCB and a surface mount version

of the processor. Estimated size for a production unit is less than 2x2 cm, using a surface

mount ATmega328 package. Even smaller sizes can be achieved using custom ICs, as

demonstrated by the tiny but sophisticated processors found on current SmartCards (Rankl

& Effing, 2001; Finkenzeller, 1999). The size of the final package depends on the type of

sensor and the hardening to be applied, but we can conclude that it is certainly practical

to manufacture a reasonably small fully enclosed trusted sensor. Further, the production

cost would be expected to be dominated by the sensing element and packaging. Tamper-

resistant packaging will add to the cost of a trusted sensor device but can be expected to

be on the order of the cost of manufacture of environmentally sealed sensors.
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3.5.5 Security

3.5.5.1 Physical Security

We do not address physical security in the prototype, as can readily be seen from Fig-

ure 3.3. The non-trivial issues regarding tamper-resistance (R. Anderson & Kuhn, 1996,

1997) as well as active and passive probing of the device interface (Kursawe et al., 2005)

are reserved for future work.

3.5.5.2 Cryptographic Primitives.

We picked strong and currently industry-standard cryptographic primitives for the con-

struction of our protocols, which are based on known protocols whose properties have

been analyzed, both analytically and cryptanalytically, for a number of years. However,

the strength of the cryptographic protocols as such was not the main objective of this

prototype; rather, our intent was to construct a proof-of-concept – a complete working

system. A production version of the proposed system would require more thorough de-

velopment of protocols, implementation and cryptanalysis.

AES-128 is at first glance the weakest of the three official AES algorithms as it has the

shortest key length (128 bits) and the fewest number of rounds (ten). However, there are

currently no known attacks against AES-128 that achieve significantly better performance

than an exhaustive key search (Biryukov et al., 2009; Schneier, 2009). All variants of AES

are listed as unbroken on Cryptolounge8. Attacks against reduced round variants of AES

exist, such as the super SBOX attack (Gilbert & Peyrin, 2009) against 8-round AES-128.

Biryukov et al. (2009) present a number of practical (in terms of complexity) attacks

against 9- and 10-round AES-256, the variant with the longest key. However, these at-

tacks are nowhere close to breaking full strength AES. Ferguson et al. (2000) also present

cryptanalysis and attacks against reduced rounds AES variants and raise concerns regard-

ing weaknesses in the key schedule of the supposedly strongest variant, AES-256.

The CMAC authentication primitive is apparently still quite strong and its status is un-

broken on Cryptolounge, although the analysis is not quite up to date9. The strength

of CMAC depends largely on the underlying block cipher, in our case AES-128. It is

reasonable to assume that CMAC remains strong as long as AES-128 does so.

8 http://www.cryptolounge.org/wiki/AES
9 http://www.cryptolounge.org/wiki/CMAC
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We have also designed our protocols for cipher independence: even if one of the primitives

would be found to be insecure, another block cipher or MAC primitive can be substituted.

Increasing the security margin may be as simple as increasing the number of rounds for

the block cipher.

3.5.5.3 Side-channel Attacks

Hardware and implementation related weaknesses, also known under the umbrella term

of side-channel attacks, are often exploited as a back door for attacking a secure cryp-

tographic algorithm. We did not consider side-band attacks of any kind in our prototype

implementation. Nevertheless, this is an important topic for any secure device, such as

our tsensor, and will be discussed briefly.

Cache timing attacks (Bonneau & Mironov, 2006) are an example of side-channel attacks,

in which timing of the execution of the cryptographic operation is used to deduce parts of

the key. Such attacks have e.g. been proven effective against some AES implementations.

Cache timing attacks are defeated by implementations which have guaranteed constant

running time for all operations. A naive method of achieving this is to add delays or idle

loops in the implementations of cryptographic algorithms, guaranteeing nearly constant

execution time on any input and key. A better approach is to use bit-slicing, that is, imple-

ment cryptographic operations in a bit-parallel manner, which produces nearly constant

running time implementations of cryptographic algorithms (Scheibelhofer, 2007).

Differential power analysis – passively monitoring and analyzing the power consumption

of hardware during cryptographic operations – is another effective side-channel attack

(Kocher et al., 1999; McEvoy et al., 2007). This attack is particularly relevant to tamper-

proof devices, since it may reveal bits of information to a passive attacker. An effective

defense against simple power analysis attacks is to produce code or hardware that guaran-

tees nearly constant power consumption. The more powerful differential power analysis

methods require more sophisticated means, such as introducing noise or non-linearity into

the cryptographic operations (Kocher et al., 1999).

An attack can be mounted by exploiting known properties of the padding applied to block

ciphers, that is, the bytes that are added to fill the last block. A Padding Oracle At-

tack against block ciphers in CBC-mode is described by Vaudenay (2002) and developed

further for attacks against cryptographic hardware by Bardou et al. (2012). This is a po-

tential side-channel attack that must be investigated further for production versions of

trusted devices. It is based on the predictability of padding bits, e.g. as standardized in

RFC 5652 (Housley, 2009), and harvesting of error messages caused by deliberately in-
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correct padding. An efficient attack can be mounted, given access to a padding oracle

that returns true only if the padding of a message is valid. In particular, the attack applies

to devices, such as smart cards, that are literally in the hands of the adversary.

3.6 Concluding Remarks

We discussed the problem of trusted sensing in a single aggregator setting, in which the

sensing nodes can be corrupt. We proposed a solution based on the principles of trusted

systems, consisting of tamper-proof trusted sensor modules, a set of protocols and trusted

infrastructure components. Together, these components form a trusted client/server-based

measurement network that in turn guarantee (within computational bounds) safe data de-

livery from the tamper-proof sensor to a trusted collector.

We described an open-source proof-of-concept prototype implementation of our system,

based on symmetric cryptographic primitives and a trusted third party authentication ser-

vice. Our cryptographic code is cross-platform, compiling on both Arduino and Linux

platforms and has been released into the public domain as an Arduino library. Although

our prototype is limited in several ways, we find it to be a reasonable stepping-stone to-

wards the implementation of a trusted sensor. Possible future work includes construction

of a tamper-resistant prototype. Miniaturization may be achieved by using a custom se-

curity chip akin to SmartCard or RFID processors, which are currently up to the task in

terms of size, cost and processing power. Further developments also include development

of a version based on asymmetric cryptographic primitives in an effort to decrease the

reliance on trusted infrastructure services.
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Chapter 4

Trusted Aggregation

Aggregation systems that perform function evaluation in-network (see Section 2.3) are

an important topic of research because of their inherent scalability. Hence, we need to

extend the trusted centralized model from Chapter 3 to a fully distributed one, which

is the topic of the present chapter. Guaranteeing integrity in a hierarchical aggregation

model where any node can be corrupted is a hard but essential task, as the integrity of

aggregate data is of primary importance in such a system. We show that this problem

can be solved, provided that the data source integrity guarantees presented in the previous

chapter hold. A relatively straight-forward, yet low impact, approach to this goal is to

extend the trusted sensor concept to a trusted aggregation module, in which the essential

functionality of correct function evaluation is protected. We consider this solution in this

chapter and present an extension of the system design from Chapter 3.

The material presented in this chapter has been previously published in part by Rúnarsson,

Kristinsson, and Jónsson (2010), Jónsson and Vigfússon (2011), Jónsson, Palmskog, and

Vigfússon (2012), Jónsson and Vigfússon (2012a) and Jónsson and Vigfússon (2012b).

4.1 Implications of Corrupt Aggregators

Let us begin by extending our analysis from the previous chapter, allowing for the possi-

bility of aggregator node corruption. We begin by considering the impact of aggregator

node corruption in a single aggregator model before extending the discussion to a hierar-

chical one.
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(a) (b)

Figure 4.1: Single corruptible aggregator system. Aggregator corruption is indicated by scull-and-

crossbones. A single corruptible aggregator node collects and processes contributions from a system of

sensing nodes before submitting the result to an inherently trusted querier. Figure (b) shows the aggrega-

tion overlay, excluding outsiders.

4.1.1 Single Corruptible Aggregator Model

We previously formulated the single (honest) aggregator model in Definition 3.5. In this

model, the corruptible parties are the data providers, while the aggregator was considered

inherently trusted by virtue of being the consumer of the produced aggregate data. Let us

begin by extending this model to a single corruptible aggregator model in Definition 4.1.

As shown in Figure 4.1, the network consists of several sensing nodes (data providers)

that feed update messages to a singe aggregator, which in turn executes an aggregation

function and sends the resulting updates to a querier. A similar model is commonly en-

countered in the sensor networks literature, e.g. by Perrig et al. (2007), who define a base

station in the sensor network as the vulnerable aggregator and a remote invulnerable home

server as the trusted party (querier in our model).

Definition 4.1 (Single corruptible aggregator model).

For a communications graph G = (V ,E), we define an aggregation overlay G′ =

(V ′,E′) spanning a single connected component of G. The aggregation overlay is com-

posed of the nodes {q, a}∪S, which we collectively call insiders, that is, formal members

of the system. The members are a set of data providers S, a single aggregator a and a

single querier q. The querier q is considered inherently trusted by virtue of being the con-

sumer of the information produced. However, the aggregator a is considered corruptible

and can deviate arbitrarily from the protocol.

For each s ∈ S, we have paths (s, a) and (a, q), perhaps spanning several nodes in the set

of outsiders, V \V′. Outsiders are not expected to participate in the protocol in any role

other than routing.
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4.1.1.1 Implications of Aggregator Corruption

We previously discussed the impact of untrusted data sources on the aggregate integrity

in terms of the resiliency of aggregation functions and found the bias that even a single

corrupt data source can introduce to be unacceptable (see Section 3.2.3). In the case of

aggregator corruption under the model of Definition 4.1, the adversary has an advantage

due to the fact that a single node compromise yields control over the entire aggregation

network. Let us consider the relative power that the adversary can wield under the two

models in the case of the AVERAGE function by means of Examples 3.6 and 4.2.

Example 4.2 (Resiliency of AVERAGE – corrupt aggregator).

An average is computed as y = f(x1, . . . , xn) = (x1 + · · · + xn)/n, where n is the

number of observations provided, under a single corrupt aggregator model. We assume

all data providers honestly contribute their local inputs to the aggregator. However, the

aggregator biases some some k contributions by σ as x∗
i = xi + σ:

y∗ = (x1 + · · ·+ {x
∗
i + . . . , x∗

i+k}+ · · ·+ xn)/n = y + kσ/n

is computed. Hence the implication of allowing the adversary to choose σ freely is a

bias of δ = kσ/n introduced in the aggregate computation.

Intuitively, the adversary that is able to corrupt aggregators appears more powerful. How-

ever, that is not necessarily the case. Comparing Examples 3.6 and 4.2, we note that the

two adversaries are of comparable strength when considering inherently insecure aggre-

gation functions, such as AVERAGE. The adversary that is only capable of corrupting data

providers can given some expenditure of work corrupt k sensors. The adversary that is

able to corrupt an aggregator can match the effects of k colluding corrupt sensors by just

one compromise. However, the latter is no stronger in the case of inherently insecure

functions, since the former is capable of introducing arbitrary bias via even a single cor-

rupt node. Considering more robust functions, such as COUNT, we see that the adversary

that can corrupt aggregators is more powerful. In the honest aggregator case, COUNT can

be secured by enforcing an input of zero or one from each contributor. However, once

the aggregator has been corrupted, we can make no such assumptions. Hence, we must

conclude that the adversary that can corrupt aggregators is more powerful, both in terms

of the amount of work required as well as the achievable bias.
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4.1.1.2 Securing the Single Aggregator Model

Let us now consider means of securing the aggregate computation or at least bounding

the impact an adversary can have in the single corruptible aggregator model.

Message authentication. The assumption of data provided by a trusted sensor gives

the querier in Chapter 3 the ability to assess the authenticity of individual contributions

prior to aggregate computation. However, source verifiability of this sort under the single

corrupt aggregator model is only achievable by simple means if we limit the functionality

of the aggregator to routing or computing the PACK function (see Example 2.4). In the case

of PACK, the querier can employ a MAC or digital signature scheme with pre-shared keys

to verify the correctness of inputs, as shown in Example 4.3. However, the functionality of

the aggregator is severely restricted in this case. Enabling similar verifiability over a more

complex aggregate computed by an untrusted aggregator may be achieved by some form

of MAC or signature aggregation (Boneh et al., 2003; Mykletun et al., 2004; A.-F. Chan &

Castelluccia, 2008; Katz & Lindell, 2008). However, to the best of our knowledge, such

schemes involve considerable message expansion and are not applicable to the general

aggregation case considered in this dissertation.

Example 4.3 (Aggregation over authenticated inputs).

A set of honest data providers s1, . . . , sk release update messages m1, . . . ,mk syn-

chronously in round 1. Messages are of the form mi = ⟨i, Ii, Ti(Ii)⟩, where i is an

unique data provider identifier, Ii is the contributed local input and τi = TK(Ii) is a

MAC computed over Ii using a key K shared between data provider si and querier

q. The aggregator submits ma = PACK(m1, . . . ,mk) to the querier q in round 2. Each

contribution in the aggregate received by q can be attributed to a particular contributor.

Hence, the recipient can verify the overall correctness of the aggregate.

Range limitation and input validation. The set of solutions suggested by Wagner

(2004) in the single (honest) aggregator model apply to some extent in the corrupt ag-

gregator case. Consider for instance truncation. We can impose bounds on the allowable

range of values that local inputs can take and, hence, apply equivalent bounds on the

output. However, truncation only succeeds in bounding the adversarial influence and is

contingent on |S| being known, as an adversary that is able to lie about the system size

can introduce arbitrary bias, despite input range limitations. In practical terms, acceptable

limitations of adversarial influence, even in the known |S| case, will affect the dynamic

range of the local inputs, which may be unacceptable for many applications.
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Eliminating equivocation. The ability to provide an output inconsistent with the corre-

sponding inputs lies at the heart of the corrupt aggregator problem. This behavior is also

known as equivocation (Levin et al., 2009) – the act of providing conflicting information

to peers, as shown in Example 4.4. Eliminating the adversaries’ ability to equivocate, that

is, force aggregators to produce an output consistent with a set of inputs and a particular

aggregation function, is not a trivial task.

Let us first consider how the ability to equivocate can be eliminated or at least reduced

from the perspective of the querier q. In order to remove the potential for equivocation

completely, the querier must be able to view all inputs and outputs, which trivially negates

the purpose of an intermediary corruptible aggregator. This is analogous to the case con-

sidered in Example 4.3. Probabilistic guarantees can be achieved using protocols that

check the consistency of an output for a subset of inputs. For instance, Perrig et al. (2007)

propose an interactive proof protocol which allows the querier to probabilistically verify

the actions of the aggregator with adjustable efficiency versus accuracy trade-off. How-

ever, this protocol still requires knowledge of the contributing population, which may not

be an option in dynamic distributed systems. The problem becomes even more difficult if

both data source and aggregation nodes can be corrupt.

We can also consider non-equivocation from the perspective of data providers. Empow-

ering individual data contributors under the single corruptible aggregator model with the

ability to check the aggregator output against their contribution eliminates the adversaries

ability to stealthily equivocate. Schemes based on exploiting opportunistic overhearing

can achieve this goal to some degree (Bekara et al., 2007). However, such schemes depend

on being able to overhear messages, an assumption that we try to avoid, and unavoidably

incur considerable per-node work in terms of storage, computing and communications

resources. Furthermore, an absolute guarantee of non-equivocation requires knowledge

of all messages in the aggregators neighborhood to be available to all contributors, which

is an impractical proposition.

Example 4.4 (Equivocation).

A single corrupt aggregator â receives inputs I = {I1, I2, I3} from nodes S = {s1, s2, s3},

all assumed to be honest. A synchronous protocol is assumed in which all inputs are re-

leased simultaneously in round 1. The protocol dictates that a function y = f(I1, I2, I3)

should be computed at the end of round 1 and an update message m = ⟨y⟩ sent to the

querier in round 2. Instead, the corrupt aggregator provides an output m∗ = ⟨y∗⟩,

which is inconsistent with the set of inputs, for instance y = f(∅) or y = f(c · I1),

where c is some scalar constant.
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Figure 4.2: Hierarchical aggregation over a spanning tree overlay. A distributed function is computed

by a convergecast originated by data providers and culminating with an aggregate being computed by the

querier (root of the spanning tree). Intermediary nodes that serve as aggregators can provide local inputs,

as indicated in the figure by the symbolic representation of sensing and aggregation functionalities.

Let us assume nodes s ∈ S have knowledge of each other’s inputs but not of m∗

produced by â. We amend the protocol and require â to broadcast the update m∗ in an

effort to enable s ∈ S to verify their contributions. The corrupt â responds by sending

m = ⟨y⟩ to s ∈ S, while still sending m∗ = ⟨y∗⟩ to the querier.

4.1.2 Hierarchical Aggregation Model with Corruptible Aggregators

Let us now extend the discussion to a distributed aggregation model in which a number

of aggregators cooperatively compute the aggregate in-network by the repeated applica-

tion of an aggregation function. We limit the present discussion to a hierarchical model

in which interior nodes in a spanning-tree aggregation overlay compute the aggregation

function, as described in Section 2.3.3. An aggregation network of this type is shown in

Figure 4.2.

We define a tree-based hierarchical model more precisely in Definition 4.5, in essence

applying Definition 4.1 repeatedly over a spanning-tree graph in which data providers are

leafs and interior nodes are aggregators. Note that the model allows for a homogeneous

population of nodes in which each node can function both as a data provider and aggre-

gator, in which case we define the local inputs of nodes as virtual leafs, while the nodes

themselves are defined as interior vertices in the tree. A similar tree-based model is de-

fined by H. Chan et al. (2006) in the context of static network graphs over wireless sensor

networks. This model can be easily adapted to heterogeneous models, such as the one

depicted in Figure 2.3.
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Definition 4.5 (Hierarchical corruptible aggregator model).

Let us extend Definition 4.1 and define an overlay T ′ = (V ′,E′) on the graph G. The

graph T ′ is a spanning tree over insiders V ′ = {q} ∪ A ∪ S that belong to a single

connected component of G. Let us call T ′ the aggregation tree. The local inputs in S are

the leafs of T ′, while interior vertices are aggregators in A. All nodes in V ′, except q, are

considered vulnerable to node compromise.

4.1.2.1 Adversarial Model

As before, the primary adversarial goal is to induce the querier to accept biased aggregate

results. The adversary gains influence by corrupting one or more insiders. We initially

assume the corruption to be limited to a subset of aggregators. The querier is consid-

ered implicitly honest as the originator of queries and the sole consumer of aggregate

results.

Recall our earlier discussion on the power of the insider adversary: briefly, a corrupt

member of the system is in complete control of all node services and can manipulate the

protocol to further the adversarial goals. A Byzantine failure model is assumed, enabling

corrupt nodes to arbitrarily deviate from the protocol. Pairwise cryptographic channels

offer no protection in the case of insider corruption. We assume the adversary is stealthy

(Perrig et al., 2007), that is, manipulates the protocol to produce maximum bias, while at

the same time evading detection. Hence, “noisy” attacks, such as denial-of-service and

other availability attacks, are disregarded.

4.1.2.2 Implications of Aggregator Corruption

Let us now extend our earlier discussion on the power of the adversary in the single cor-

rupt aggregator model to the hierarchical one. Of the two, the adversary in the single

aggregator model is more powerful, in the sense that it achieves the position to introduce

arbitrary bias by just a single node compromise. In contrast, the adversary in the hierar-

chical model has to corrupt several strategically placed nodes in order to achieve the same

power. However, both adversaries are in a position to arbitrarily influence inherently in-

secure (Wagner, 2004) aggregation functions with just a single node compromise.

The adversary in the hierarchical case controls a subset the aggregator population with

a single compromise. The extent of his influence is the entire subtree of the corrupt
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(a) (b)

Figure 4.3: Web site popularity assessed by distributed in-network aggregation over an n-ary tree with

∆ = 3, h = 3. Expected 15% of nodes are corrupted at the beginning of the simulation. (a) Unrestricted

adversary, error bars show 95% confidence intervals. (b) Adversary restricted to drop attacks (error bars

omitted for clarity). Insert shows expanded view centered around the measurement for site 24.

aggregator. We can say that the adversary wields power inversely proportional to the

level of the corrupt aggregator in the aggregation tree, as shown in Example 4.6. Note

that the power of the adversary in the example is equivalent for all three cases if σ can

be chosen freely. However, range limitation and input validation can limit the power of

the hierarchical adversary in proportion to its position. Corruption of more aggregators

increases the influence of the adversary to a larger subgraph, which we may view as a

forest of corrupt aggregation trees.

Example 4.6 (Resiliency of AVERAGE – hierarchical corrupt aggregator).

Consider an aggregation tree which is a perfect binary tree of height h = 5. An

aggregator at l = 1 is corrupted, resulting in the adversary controlling a binary subtree

of height h = 4, 31 nodes. Matching the bias introduced in the case of a single corrupt

aggregator (see Example 4.2) requires σ′ = 62/31σ = 2σ. Now, consider the case of a

single compromised aggregator at l = 4 that controls a binary subtree of height h = 1,

3 nodes. In this case, the adversary needs σ′ = 62/3σ to match the influence wielded

in the single aggregator case.

The effects of the unrestricted adversary. Quantifying the effects of the unrestricted

adversary is by definition impossible, but let us consider a small case study that demon-

strates the hazards of ignoring this threat (Jónsson, Palmskog, & Vigfússon, 2012). The

TOP−K aggregation function (see Example 3.7) is trivially vulnerable to re-ordering and
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removal of contributions by corrupt aggregators, as demonstrated in the following exper-

iment.

Let us consider a hypothetical distributed system that assesses the global popularity of

Web sites by aggregating over user domains (counting outgoing requests). Each con-

tributing domain outputs the current weighted ranking of the local aggregate of outgoing

requests. This local aggregate is the local input into a distributed aggregation function,

whose local component is the TOP−K−WEIGHTED function. This method can be considered

as an alternative to the currently predominant privacy-invasive practice of using browser-

based trackers and tracking services (Krishnamurthy & Wills, 2006). A similar distributed

query operation is discussed by Palmskog et al. (2010).

In the simulation scenario, N nodes, representing Web portals, are initially created and

assigned randomly generated web site usage statistics over some m = N (µ, σ) visits. We

assume that hits to Web sites follow a power-law distribution, ranking sites in expected

descending order according to the probability density function p(i, α) ∝ i−α, where i ∈ N

is both the website ID and its expected rank, and α is a parameter of the distribution. Web

site popularity rankings, as well as a plethora of other network phenomena, have been

shown to follow a power-law distribution (Adamic & Huberman, 2002).

We begin by considering an unrestricted adversary that corrupts a number of nodes in a

static a small n-ary tree (∆ = 3, h = 3). A single one-shot query with k = 10 is issued

by the root with the objective of obtaining the global aggregate access counts for the top

ten Web sites. The local state of each node is initialized at startup of each run using

⌈N (10000, 2500)⌉ web requests, the target of each being randomly selected according to

a power-law distribution with α = 1.0. We average 50 independent simulation runs to

produce the result.

The objective of the adversary in this experiment is to falsely promote the low ranking

sites 22, 24 and 26. An expected 15% of nodes, excluding the root, are corrupted at the

start of the simulation and execute a local corruption function, in this case

wi = fC(a) = N (γ · w1, ϱ · w1)

where the weight of a falsely promoted site i is drawn from a normal distribution centered

around the weight of the currently highest ranked site. Figure 4.3(a) shows the results

for γ = 1 and ϱ = 1/3. In the first experiment, we let the corrupt nodes modify only

local observations, while also modifying the aggregate computation in the second one.

The unmodified aggregate is shown as a baseline reference and follows a power-law over

several orders of magnitude. Observe that the attack on the aggregate computation is the
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more effective of the two for the chosen parameters, as would be expected. However,

arbitrary bias can be introduced by either method due to the inherent insecurity of TOP−K.

Note that the querier has no way of disputing the aggregate result. Even statistical com-

parisons with previous runs must be considered inconclusive since transient effects, such

as flash crowds (Barford et al., 2002), might well introduce legitimate bias in current or

past results.

We now restrict the capability of corrupt to dropping packets, simulating the introduction

of trusted devices, which is the subject of this chapter. Two such cases are shown in

Figure 4.3(b). In the first case considered, the adversary directs the corrupt nodes to

discard all aggregate updates. In the second case, we assume that the corrupt nodes can

view, but not modify, partial aggregates. This enables the corrupt nodes to mount a more

intelligent attack. We consider an attack in which the adversary drops all packets other

than those containing a measurement for site 24. Neither attack is particularly effective

in influencing the ranking, although the intelligent dropper manages to introduce a small

bias, as can be seen in the enlarged view. This small experiment serves to demonstrate the

effectiveness of restricting the capabilities of the adversary, in this case, forcing corrupt

nodes to contribute either none or correct updates.

4.1.2.3 Securing In-Network Aggregation

We have already reviewed a selection of approaches to limit the power of the adversary

in the single aggregator case. Let us now continue our discussion of means to secure

the aggregator functionality, this time focusing on the distributed model. The task of

providing integrity guarantees is no easier in the in-network aggregation case than in the

single aggregator one. For instance, in a dynamic network, in which associations can

change continuously, an honest aggregator has an even vaguer notion of the number of

contributors or the actual configuration of the network at any given time.

The in-network aggregation case can be viewed as a repeated application of a single ag-

gregator. Hence, solutions which work in the single aggregator case do in principle work

in the distributed as well, although coordination becomes more difficult. We can con-

sider end-to-end authentication of individual updates. However, the implied limitations

on the functionality of the aggregators is contrary to our overall goal of efficient aggre-

gation. Input range limitation and validation can only bound the bias that the adversary

can achieve, but not eliminate it. As discussed previously, limiting the range of inputs is

bound to negatively impact the dynamic range of the system. Further, measures of this

sort are of limited use against an adversary that can falsify the number of contributions.
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A more sophisticated form of validation is based on modeling of perceived “normal” in-

puts, for instance, obtained by observing the system and compiling models of expected

input distributions. Models can be applied to enable honest aggregators to eliminate con-

tributions of dishonest data providers by filtering out perceived outliers (Buttyán et al.,

2006). However, it is less obvious if this technique can be applied in the case of corrupt

aggregators. Furthermore, methods based on removing outliers are counter-productive in

the case where we are specifically monitoring for abnormalities, such as forest fires (Yu

et al., 2005; Doolin & Sitar, 2005) or radiation spikes (Barbarán et al., 2007; Venere &

Gardner, 2008).

The key to solving the problem of the corrupt in-network aggregator is to eliminate its

ability to equivocate, which is no less difficult than under the single corrupt aggregator

model. To positively identify equivocation by a neighbor, a honest peer needs access to all

its inputs and outputs and the ability to independently verify its actions. Even if possible,

this scheme would be contrary to the efficiency goals that make distributed aggregation

attractive in the first place from an efficiency standpoint. A second problem is the dis-

tribution of information in an efficient manner. Overhearing may be exploited in some

instances, but more robust protocols are required in the general case. Intuitively, such

protocols can easily negate the efficiency gains of distributed aggregation schemes.

H. Chan et al. (2006) describe a protocol, that can guarantee upper bounds on adversarial

modifications using only hashes. This protocol is also known as the hash tree (HT) proto-

col (H. Chan, 2009). Building on a aggregate-commit-prove approach (Przydatek et al.,

2003), they describe a scheme in which a distributed Merkle tree is iteratively constructed

by transmission of verifiable commitments between nodes. The verifiable commitments

are similar to verification objects, as described by Narasimha and Tsudik (2006). They

are composed of compact hashes, typically logarithmic in the size of data contributors.

The hashes enable nodes to verify the actions of their upstream aggregators. The distri-

bution of verification objects comes at a cost, as expected, but with optimizations incurs

a sub-linear O(∆ log2n) per-node overhead, later improved to O(∆ log n) by Frikken

and Dougherty (2008). The security guarantees bound the total adversarial actions of all

corrupt aggregators to SL ≤ S ≤ (SL + µr), where SL is the sum of legitimate inputs,

µ is the total number of corrupt aggregators and r is an upper bound on the input range

of data providers. Note that the input range is bounded, which affects the dynamic range

of the system (Wagner, 2004). The HT-protocol is a promising solution to the problem

of bounding adversarial bias in a system of untrusted nodes. However, it is limited in

several aspects with regards to our previously stated goals of secure aggregation in the

general case. They consider specific scalar aggregation functions, namely ones which can

be derived from SUM and their protocol is limited to tree-based aggregation protocols. In
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contrast, the solutions that we discuss later on are in principle capable of securing ar-

bitrary aggregation protocols and data types. Another drawback of the HT-protocol is

that the security guarantees are an all-or-nothing proposition: a trivial stealthy availability

attack against the protocol can be mounted by a corrupt node that performs its actions

correctly in all aspects apart from flipping a single bit in the verification phase, thereby

forcing the querier to discard an entire aggregate. However, this vulnerability can be mit-

igated by protocols which search out and eliminate misbehaving nodes (Haghani et al.,

2007).

Eventual detection of equivocation can be guaranteed, for instance by requiring nodes to

keep unmodifiable logs (Chun et al., 2007; Levin et al., 2009) of all received inputs and

contributed outputs. Given such logs, a global algorithm can be executed by a trusted en-

tity, identifying inconsistencies. However, the work required to guarantee fast detection

converges to that of aggregation under the single trusted aggregator model. We briefly

explored means of reducing this work by means of auditing a random sample of the node

population per protocol round (Jónsson & Dam, 2010). However, the trade-off between

speed of detection and the amount of work required by trusted entities is problematic:

for fast detection, the work required converges to that of a central trusted aggregation

model. On a similar note, accountability systems (Haeberlen et al., 2007; Ho et al., 2008)

can be used to increase the reliability of distributed systems. For instance, PeerReview

(Haeberlen et al., 2007) guarantees that Byzantine faults are eventually traced to the cul-

prit. However, protocols of this type are prohibitively expensive for the special case of

detecting misbehavior in an arbitrary aggregation system.

4.2 Hierarchical TSense

In contrast to the previous work, some of which is outlined in the previous sections, we

search for strong integrity guarantees on the correctness of the computed aggregate. We

limit our work in this chapter to the objective of correctness and postpone discussion of

the complimentary objective of completeness until Chapter 5.

The proposed solution is based on the principle of enforcing non-equivocation by means

of a system of trusted data sources and trusted aggregators, interconnected via pairwise se-

cure channels. However, in contrast to the approaches outlined in the previous section, the

proposed solution imposes low and constant messaging overhead and requires no central

coordination. We base our concept on the observation that an aggregator can be viewed

as an extension of a trusted data source: a device that receives trusted inputs, performs
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secure function evaluation and provides trusted output. In fact, the task of enforcing in-

put/output consistency turns out to be easier in some respects, since an aggregator does

not have to contend with the problems of process-of-measurement attacks (Trappe et al.,

2005).

The population of participating nodes can be homogeneous with regards to their partic-

ipation in the aggregation protocol, meaning that each node is able to contribute local

inputs as well as provide partial aggregates based on contributions received from peers.

We call the general population observation nodes but assume the existence of a trusted

infrastructure, consisting of at least a single trusted querier. Observation nodes form a

single tree overlay with the querier q as root. The tree spans the connected component of

the underlying graph that contains q.

We assume the same network and adversarial model as for the preceding discussion, in

which the observation nodes are corruptible insiders. We will not delve into availability

attacks, such as jamming or denial-of-service, because they contradict the objectives of

our stealthy adversary. In the same vein, we disregard attacks against node discovery

and routing: we assume that the stealthy adversary executes the protocol correctly in all

aspects other than attempting to manipulate the aggregate computation. We restrict this

work to network or host-based attacks on the measurement process in the communications

path (see Figure 3.1). Hence, process-of-measurement attacks are excluded.

4.2.1 Design Objectives

Our goal is to support arbitrary dynamic systems, hence ruling out (in practical terms)

corroboration schemes, such as proposed by H. Chan et al. (2006). This also rules out

opportunistic schemes, such as those based on overheard radio transmissions. Further,

we require our solution to be efficient, ideally imposing constant overhead on top of the

underlying aggregation protocol stack. Hence, we are mindful of the complexity imposed

by algorithmic approaches which may easily negate the performance gains which make

distributed aggregation protocols attractive in the first place.

The assumption of scalar inputs and a limited set of aggregation functions is a common

thread in a large body of the previous in-network aggregation work. We find this limiting,

as more complex inputs and aggregation functions may be expected in future applications,

e.g. involving multi-sensor fusion (Hall & Llinas, 1997). Hence, our goal is to support

arbitrary inputs as well as arbitrary aggregation functions.
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We focus on tree-based aggregation protocols. However, the ability to choose aggregation

protocols, for instance ones based on gossiping (Kempe et al., 2003; Jelasity et al., 2005;

Wuhib et al., 2007) or consensus propagation (Moallemi & Van Roy, 2006; Aurell &

Pfitzner, 2009) provides the systems designer with greater flexibility. Hence, our design

objectives include the ability to support secure aggregation in general, regardless of the

underlying aggregation protocol.

4.2.1.1 Security Objectives

The primary security objective of the system is to guarantee correct aggregation in the

sense of Definition 3.3. Ideally, any system should be invulnerable to adversarial corrup-

tion and influence. This goal is difficult to achieve in practice. In the approach described

in this chapter, we assume any observation node can be corrupted but rely on trusted sys-

tems principles to deny the adversary the ability to forge or modify (i) local inputs and (ii)

aggregator inputs and outputs.

As in Chapter 3, the overall security of the system depends on the correctness and physical

resiliency of the individual trusted components, as well as the security of communications

protocols. However, perfect tamper-resistance is difficult to achieve in practice, so it is

prudent to assume the adversary can breach trusted modules, given sufficient time and

resources. Hence, we must insist on the property of graceful degradation: in the event of

a trusted module breach, the level of security provided should be decreased, rather than

the entire system failing catastrophically.

4.2.2 Essential Functionality

As discussed in Chapter 3, a trivial but generally impractical solution is to harden the

entire observation node. Instead, we propose to secure the bare minimum of functionality

– the essential functionality of aggregation. This includes the following:

(i) The provision of correct inputs. Trusted sensors, as described in Chapter 3, fulfill

this objective.

(ii) Correct function evaluation. The ability to trust that the inputs are properly repre-

sented in partial aggregates is critical to the overall integrity guarantees. Hence, the

local part of the distributed aggregation function should be protected. This is the

functionality assigned to trusted aggregators, as further described in this chapter.
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(iii) Correct communications. This includes the ability to verify inputs received from

peers as well as to ensure that contributions reach the intended recipients. Hence,

the essential functionality must include verifiability of both sender identity and con-

tributed data (local inputs and partial aggregate contributions).

4.2.3 Trusted Aggregator

A trusted sensor was introduced in Chapter 3 – a construct that solves the integrity prob-

lem with regards to correctness in the single honest aggregator model (Definition 3.5).

We apply the same principles to the task of securing the action of aggregation, i.e. ensur-

ing correct function evaluation. To do so, we extend Definition 3.8 to a dedicated trusted

aggregator module.

Definition 4.7. A trusted aggregator is a trusted module that accepts update messages

from trusted peers, i.e. trusted sensors or other trusted aggregators. The aggregator applies

an aggregation function over the inputs received during some window of time, producing

a new cryptographically unmodifiable output in the form of update messages to trusted

peers. The aggregator only accepts inputs from and provides output to peers in the same

or overlapping group of trusted devices. Furthermore, only inputs verified as correct are

accepted.

Implementing the trusted aggregator in a manner analogous to that of the trusted sensor

is the simplest and most secure option. In this case, the trusted aggregator is a dedicated

hardware device that performs the essential functionality of correct function evaluation

(Jónsson & Vigfússon, 2011). Inputs are accepted from any number of trusted contrib-

utors (trusted sensors or aggregator peers) whose contributions can be verified. A hard-

coded aggregation function is executed over the inputs and a consistent output provided.

As in the case of the trusted sensor, the trusted aggregator operates in a symbiotic rela-

tionship with the untrusted hosting node (observation node), which is assumed to provide

a number of services such as IPC communications and networking services.

A more flexible solution can be envisaged in which a number of aggregation functions

are programmed into the aggregator, allowing more flexible queries to be executed. This

concept can be extended to a device which can be reprogrammed on-the-fly by trusted

parties. Given a mechanism for verifying and distributing trusted code, the aggregation

functionality could even be entrusted to a secure execution environment running on the

observation node, for instance a trusted hypervisor as described by Gummadi et al. (2009)
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and Gehrmann et al. (2011). However, we will confine our discussion in this dissertation

to a hardware implementation with a single hard-coded aggregation function.

4.2.3.1 Requirements

The requirements for a trusted aggregator are in essence the same as for a trusted sensor.

Refer to Section 3.3 for further details.

Identity and device authentication. A trusted aggregator needs to be able to enter

into secure relations with peers, both trusted sensors and aggregators. Hence, a unique

identity is essential along with the ability to identify peers as members of the same (or

overlapping) groups of trust.

Specification, verification and certification of functionality. The evaluation of the ag-

gregation function is the core functionality of the trusted aggregator and must be included

in the specification and verification procedures. Certification is analogous to that of the

trusted sensor.

Tamper-resistance. Tamper-resistance is essential in protecting the integrity of the trusted

aggregator. Tamper-resistance is a non-trivial but conceptually simple procedure in the

case of a dedicated hardware device, analogous to the protection assumed for a trusted

sensor. However, protecting the integrity of a virtual construct such as a trusted hypervi-

sor is a more difficult task, but one that is outside the scope of this dissertation.

Complete mediation and communications security. The communications facilities of

a trusted aggregator module can be as simple as that of a trusted sensor and a rudimentary

serial interface is sufficient. As in the trusted sensing case, no inputs should be received

from parties other than those which have been verified as belonging to the same (or over-

lapping) group of trusted devices.

4.2.3.2 Transitive Trust Establishment.

The property of transitive trust is central to the overall security guarantees that the trusted

sensor adds to a distributed aggregation system. Let us begin by considering an aggregator

a that interfaces with a single sensor s, both hosted by the same untrusted observation
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node. The two nodes enter into a trust relationship, which we can indicate as s⇔ a. The

aggregator a in turn enters into a trust relationship with an aggregator a′, hosted by a peer

observation node, s.t. a⇔ a′. The secure channels, denoted as⇔, indicate that the nodes

in question have verified each others membership in a mutual trust group and established

the shared keys necessary to communicate securely.

The trusted sensor produces verifiable update messages of the form ms,t = ⟨ys,t ∥ τs,t⟩,

where τs,t is an authenticity tag, such as a MAC or digital signature, and t is a timestamp.

Assuming a MAC, τs,t = Tsa(ys,t), using a symmetric cryptographic key Ksa shared

pairwise between s and a. Given a shared key Ksa, a can accept the received m′
s,t =

⟨y′s,t ∥ τ
′
s,t⟩ as correct if τ ′s,t = Tsa(y

′
s,t).

In turn, a produces an output ma,t+1 = ⟨ya,t+1 ∥ τa,t+1⟩ (assuming a synchronous proto-

col), verifiable by a trusted upstream peer a′ assuming a shared key. The original authen-

ticity verification tags do not need to be forwarded to a′, as it is sufficient for an a′ that

trusts a to receive its authenticated partial aggregate in order to trust the entire aggregation

process up to that point.

We can say that if a trusts s and receives its updates and a′ trusts a and receives its updates,

then a′ trusts s by transitive extension of the (a′, a) trust relations. This property extends

transitively over the trusted aggregation overlay from leafs to root.

More formally, we define a relation u 7→ v as v trusts u (or v is willing to accept inputs

from u) and U
∗
7→ v as v trusts all members of a set U . The trust relation is transitive

by our earlier (informal) argument in terms of correctness: verifiability of source data

implies correct inputs and trusted function evaluation implies a correct output. Hence, in

terms of aggregate correctness, we can state the transitivity property

if u 7→ v and v 7→ w then u 7→ w

if U
∗
7→ v and v 7→ w then U

∗
7→ w

In our system model, we can have a one-to-one or many-to-one relation between co-

located sensor and aggregator, si,j
∗
7→ ai for an observation node i hosting j sensors.

Aggregators provide updates to exactly one upstream peer. However, aggregators (by

definition) receive inputs from one or more aggregator peers, giving A′ ∗
7→ a, where

A′ ⊂ A. The entire aggregation tree can be represented by such relations for all pairwise

trust relations. Hence, the trusted aggregation overlay provides transitive trust from leafs

(data sources) to the root (querier).



90 The Security Properties of In-Network Aggregation

Figure 4.4: Observation node schematic. Trusted modules and channels are shown in bold. Untrusted

services utilized by the aggregation process are indicated by the cogwheel and network interface card

symbols.

4.2.4 Trusted Observation Node

As stated before, observation nodes are inherently untrustworthy. Examples include com-

modity PCs or mobile phones operated by individuals in a shared sensing application, un-

hardened motes in a wireless sensor network and general-purpose PLCs in an industrial

control application. We assume the adversary has access to the devices (local or remote)

and can influence a number of services critical to the task of secure aggregation. Instead

of attempting the difficult and likely futile task of hardening the observation node in its en-

tirety, we propose an approach in which the essential functionality is delegated to trusted

modules, trusted sensors (Section 3.3) and trusted aggregators (Section 4.2.3).

A simplified schematic of an observation node is shown in Figure 4.4. A single trusted

sensor and an aggregator (indicated by bold outlines) are hosted by an otherwise untrusted

observation node. Untrusted platform services used by the aggregation process are indi-

cated by a cogwheel. Such services include peer discovery, routing and storage. As in the

TSense design presented in Chapter 3, we assume the existence of an untrusted software

agent executing on the observation node that handles overall protocol management, in-

cluding node discovery and bootstrapping of trust relations. Networking facilities are also

considered untrusted, as the adversary must be assumed to have extensive opportunities

to compromise the device and even add external redirection and rewriting proxies.

Secure protocols, described in Section 4.2.5, establish secure channels between trusted

modules. In Figure 4.4, the trusted sensor and aggregator hosted by the observation node

have established a secure intra-node channel. Further, the trusted aggregator has estab-

lished a secure inter-node channel to a peer aggregator. Hence, we can view the aggrega-

tors as trusted proxies for the observation node in a trusted aggregation overlay, as shown

in Figure 4.5, in which trusted sensors are the leafs and trusted aggregators are the interior

vertices of a spanning tree. Given that the assumptions of sensor and aggregator integrity

hold, we can trust the aggregate results by the property of transitive trust, even though the

hosting observation node is fully compromised.
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Figure 4.5: Secure aggregation network. Trusted devices, hosted by vulnerable platforms (observation

nodes), form a trusted aggregation overlay. Pairwise secure channels between trusted devices form a span-

ning tree over trusted devices, embedded in the underlying communications graph, in which trusted sensors

are leafs and trusted aggregators interior vertices.

4.2.4.1 Revised Adversarial Model

As in Chapter 3, we can apply the classical Dolev-Yao model, considering the trusted

entities (sensors and aggregators) to be trusted, while the adversary is in control of the

channels. The trusted overlay in essence relegates the untrusted observation node to the

role of an outsider with regards to the sensing and aggregation functionality. The obser-

vation nodes are not members of the trusted aggregation overlay, despite hosting trusted

modules and initiating their insertion into the system. Hence, we can amend the adver-

sarial model for ease of analysis. Under the revised model, insiders are strictly trusted

modules and trust relations are pairwise. The communications services of the hosting

platform, the observation node, give the adversary control over the channel, including

delivery, delay and reordering of messages. However, pairwise trusted relations prevent

the adversary (at least within computational security bounds) from being able to manip-

ulate the message content, that is, the correctness of delivered messages. If encryption is

applied in data transfer, the adversary loses the ability to read messages.

4.2.5 Protocols

Protocols are the glue that assembles a collection of disjoint trusted modules into a cohe-

sive trusted aggregation system. In this section, we focus on the task of mutual authentica-

tion and establishment of the shared keys necessary to guarantee secure communications.

Establishment of shared keys is one of the classical problems in secure distributed sys-

tems, as discussed in the context of sensor network security by Perrig et al. (2004). A

naive key distribution solution, yet one which has been widely employed, is to create

one master symmetric secret key K and installing on all members of a network. All
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nodes which hold K are considered insiders and can communicate securely, that is, un-

til an adversary breaks K or corrupts one of the nodes, at which point the security of

the entire system fails catastrophically. A more promising approach is probabilistic key

pre-distribution schemes (Eschenauer & Gligor, 2002; H. Chan et al., 2003; D. Liu &

Ning, 2003; Du et al., 2005) in which each node holds a sub-set of the total pool of secret

symmetric keys, hence, with some probability being able to communicate with any given

peer. In such schemes, compromise of a single node reveals only a subset of the total pool

of secret keys.

We prefer to avoid distribution of keys beyond the bare minimum. Hence, protocols for

entity authentication and key establishment are needed. We consider both a trusted-third

party solution, that limits sharing of secrets to exactly two parties (a trusted node and

an authentication service), and an asymmetric protocol that requires no sharing of secret

keys.

4.2.5.1 Symmetric Authentication Protocol

Symmetric trusted-third-party (TTP) protocols, such as Needham-Schroeder (1978, 1987)

use a mutually trusted service to mediate the establishment of trust relations. This is

straight-forward in the single aggregator case, as considered in Chapter 3, where the au-

thenticator serving as a TTP was in essence co-located with the single querier. The weak

point of TTP systems is the distribution of secret keys, which creates problems in terms

of secrecy in transfer, key renewal and key revocation. Further, a TTP service is a single

point of failure, which is problematic from a systems reliability standpoint. However,

symmetric keys are relatively small and the cryptographic primitives involved in such

protocols fast, both of which are positive properties, especially for resource constrained

systems. Hence, we begin by considering a symmetric TTP protocol, based on the proto-

col discussed in Section 3.4.3. As before, we assume each trusted device has a permanent

identity tuple (v,KAv), consisting of a public identity v and a private symmetric key KAv

which is shared only with the authentication server A (the TTP in the protocol). A fresh

secret key is generated for each trusted device and can be viewed as a verifiable attestation

of authenticity and membership in the group of trusted devices.

A schematic diagram representing the protocol message exchange in the inter-node case

(between two aggregators) is shown in Figures 4.6 and 4.7. Two trusted aggregators

a1 and a2 are hosted by untrusted observation nodes S1 and S2, respectively. A trusted

authentication server A serves as a trusted third party. We assume the existence of an au-
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Figure 4.6: A partial aggregation tree, showing querier q and two observation nodes S1 and S2, hosting

(respectively) trusted aggregators a1 and a2. Untrusted channels in the aggregation tree are indicated

by dotted lines. Authentication infrastructure composed of an gateway G and authenticator A is shown.

Reachability of the authentication infrastructure is assumed (by the reachability of q) and channels are

omitted for clarity. Messages in the entity authentication and session key establishment phase are shown.

Figure 4.7: A partial aggregation tree. Messages in the key confirmation and transport key exchange

protocol are shown.

thentication gateway G to shield A against direct access. In practice, G can be co-located

with q as was the case for the TSense prototype system, described in Chapter 3.

4.2.5.1.1 Mutual authentication and session key establishment. The protocol is ini-

tiated by an untrusted agent (in our case S1) whose trusted aggregator has already joined

the trusted aggregation overlay.

Initiating event: S1 discovers S2. If S1 hosts an aggregator which is already part of the

trusted overlay, then it initiates the protocol. Otherwise, it caches S2 and waits.

Message 1:

S1 → a1 : ⟨S2⟩

• S1 bootstraps the protocol by notifying its trusted aggregator of the existence of S2.

The identity S2 is a public identity, such as a MAC or IP address, of the observation

node, not its trusted modules.
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Message 2:

a1 → S1 : ⟨Aa1a2⟩

• a1 sets up provisional state for S2, storing the nonce for later reference. The provi-

sional state times out if the protocol remains incomplete after a period of time.

• a1 constructs an authentication tokenAa1a2 = EAa1(S2, Na1a2) and sends to its host

S1. The key used is the permanent device secret key KAa1 , held only by a1 and A,

rendering Aa1a2 unreadable by any party except a1 and A.

Messages 3 and 4:

S1 → S2 → a2 : ⟨INVITE, S1, a1,Aa1a2⟩

• S1 sends a connection invite message to S2 which forwards it to its trusted aggre-

gator a2. The newly generated authentication token Aa1a2 is included.

• a2 sets up a provisional state for (S1, a1), storing Aa1a2 and a fresh nonce Na2 . The

provisional state times out if the protocol remains incomplete after a period of time.

Messages 5 and 6:

a2 → S2 → · · · → G⇒ A : ⟨AUTH, a2, EAa2(a2, a1, S2, S1, Na2 ,Aa1a2)⟩

• a2 sends an authentication message to A. The authentication message includes the

identities of the trusted modules and their hosts, the nonce Na2 and the authentica-

tion token from a1. The message must be routed through its host S2. Otherwise, the

routing path can be arbitrary, with the role of untrusted nodes limited to routing.

• A verifies the mapping (S1, a1) and stores (S2, a2). Implicit entity authentication

is accomplished by the verification of encrypted information against unencrypted

information and stored state. A also decrypts the authentication packet Aa1a2 and

checks its nonce for freshness against its stored state. It also verifies that Aa1a2 is

valid for the sender S2. Finally, A generates a fresh random number R that will

be used by a1 and a2 (independently) to derive a new session key set for the a1a2

association; the key material is not kept by A after being sent off.

Messages 7, 8, 9 and 10:

A⇒ G→ · · · → S1 → a1 : ⟨AUTH, EAa1(a1, a2, Na1 , R)⟩

A⇒ G→ · · · → S2 → a2 : ⟨AUTH, EAa2(a2, a1, Na2 , R)⟩

• A routes a pair of messages independently to the trusted peers a1 and a2. The

routing path can be arbitrary, with any nodes on the path between A and S∗ acting
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as routers. The messages contain the identities of the pair, their respective nonces

and fresh key material R. The payload of both messages is encrypted by the secret

device keys KAa∗ and hence cannot be read by any party other than the intended

recipient a∗.

• The untrusted intermediaries S∗ forward the messages to their respective trusted

aggregators a∗.

• a1, a2 decrypt the messages and verify the enclosed peer identities and nonces

against their internal state.

The first stage of the protocol is complete at this point and a provisional session state set

up for the a1a2 association by both nodes, storing Ka1a2 = KDF(R) as a session key,

where KDF() is a key derivation function.

Alternatively, the authentication server can route the key material for a2 through a1. In

this case, we can view a1 as fulfilling the role of the collector in the protocol described in

Section 3.4.3, that is, one of an authentication proxy whose trust is limited.

Key confirmation and transport key establishment. The trusted aggregators a1 and

a2 initiate a key confirmation and transport key establishment phase upon establishment

of the session key. Either node can initiate the exchange, but logical choice is for the

inviter a1 to begin as described below.

Messages 11, 12 and 13:

a1 → S1 → S2 → a2 : ⟨REKEY, a1, Ea1a2(a1, a2, N
′
a1
)⟩

• a1 sends a re-key message to a2 (routed through untrusted hosts S1 and S2), contain-

ing the identities of the trusted peers and a fresh nonce. The message is encrypted

by the new session key Ka1a2 , and hence, only readable by a1 and a2.

• a2 looks up the session key for a1, decrypts and verifies the message. a2 generates a

fresh random number R and derives transport key set KT = KDF(R) for the a1, a2

association. KT is stored in the state for a1, along with an expiration timestamp.

Messages 14, 15 and 16:

a2 → S2 → S1 → a1 : ⟨NEWKEY, a2, Ea1a2(a2, a1, N
′
a1
− 1, R)⟩

• a2 sends an encryption under the session key of the identities of the nodes (re-

versed), a related nonce (in this case, the original nonce decremented by one) and

the random number R used as key material.
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• a1 looks up the session key for the (a1, a2) pairing and decrypts the message. The

identities of the trusted nodes and the nonce are checked against the internal state

for the pairing and a transport key set KT = KDF(R) derived.

It is a good practice in cryptographic protocols to replace keys well before the adversary

can collect enough information to mount analysis attacks. Hence, the re-keying protocol

can be executed as often as needed.

One of the fundamental problems in practical applications of cryptographic algorithms is

generation of high entropy random values. This can be accomplished on more capable

computing platforms using dedicated high entropy sources, such as /dev/random on

Unix platforms. However, good random sources may be scarce and difficult to construct

on resource constrained devices, such as trusted sensors and aggregators (Kristinsson,

2011). This presents a problem in the protocols described above that depend on key

material being generated and exchanged between two such nodes. In contrast, the much

more capable aggregator generated and delivered key material in the system described in

Chapter 3.

Pre-association of co-located devices. The authentication protocol described above

can be used with minor modifications in the association of co-located sensors and ag-

gregators, that is, for intra-node authentication. The protocol will in fact be similar to

the symmetric TTP protocol of Section 3.4.3 with an authenticated aggregator taking the

place of the collector. The process of authenticating co-located sensors and aggregators

on every bootstrap of the observation node is wasteful in terms of messaging if the local

configuration can be assumed to be static. However, persistent session keys may be used

to reduce the overhead. In this case, the trusted devices maintain the last session key and

require only a local handshake process to establish new transport keys. The impact of

a persistent session key on security must be weighted against the economy of reduced

messaging. However, if the session key is of comparable strength to the permanent device

key, then we may assume that security of the exchange of pre-authenticated devices is

similar to that of establishing a new session key on each observation node bootstrap. If

necessary, the session key can be replaced at any time by any of the co-located trusted

nodes, perhaps after a certain number of bootstraps.

Authentication in query distribution phase. A hierarchical aggregation protocol may

include a query setup phase based on flooding of parameters, as described in Section 2.3.3.

We can easily integrate the authentication phase into the query distribution phase by
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bootstrapping pairwise authentication at the same time the spanning tree overlay is es-

tablished.

Using physically uncloneable functions. An authentication protocol that uses a phys-

ically unclonable function (PUF) is described in Section 3.4.3. A PUF adds resilience

against node simulation in case the permanent secret key has been recovered by the ad-

versary. Let us now consider how the protocol described above can be augmented by PUF

features for added security.

A straight-forward solution is to insert a challenge-response exchange between A and

each aggregator individually before messages 7 and 9 in the protocol. However, the num-

ber of messages can be reduced by delegating the challenge/response tasks to the aggrega-

tor nodes themselves by including the necessary information in messages 7 and 9. This is

accomplished by the aggregator appending encrypted challenge/response pairs into these

messages as follows: A includes a challenge/response pair CR2 = (EAa2(C2, N2), R2)

into message 7 (destined for a1) and CR1 = (EAa1(C1, N1), R1) pair into message 9

(destined for a2). The challenges are encrypted to prevent the recipient from learning a

challenge/response pair for a peer. Nonces add variability in the encrypted message and

reduce the opportunity to mount replay attacks against the challenge/response exchange.

The key confirmation protocol is amended as follows:

Messages 11, 12 and 13:

a1 → S1 → S2 → a2 : ⟨REKEY, a1, Ea1a2(a1, a2, N
′
a1
, CH2)⟩

• a1 initiates the protocol. The initiating message is identical to the previous version

of the protocol, except for the challenge CH2 = EAa2(C2, N2).

• a2 receives the message, decrypts using the shared session key Ka1a2 and verifies

packet data. The challenge C2 is extracted from CH2 and processed by computing

R2 = PUF(C2).

Messages 14, 15 and 16:

a2 → S2 → S1 → a1 : ⟨CHALLENGE, a1, Ea1a2(a2, a1, N
′
a1
− 1, CH1, R2)⟩

• a2 returns the response R2 and issues the challenge CH1 = EAa1(C1, N1) for a1.

• a1 begins by verifying the received response R′
2 against the R2 supplied by A. a1

then extracts the challenge C1 from CH1 and computes R1 = PUF(C1).
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Messages 17, 18 and 19:

a1 → S1 → S2 → a2 : ⟨CHALLENGE, a2, Ea1a2(a1, a2, N
′
a1
− 2, R1)⟩

• a1 submits the response R1 to a2.

• a2 verifies the received R′
1 against the R1 supplied by A.

Messages 20, 21 and 22:

a2 → S2 → S1 → a1 : ⟨NEWKEY, a2, Ea1a2(a2, a1, N
′
a1
− 3, R)⟩

• a2 generates the key material R and submits to a1.

• Both nodes derive transport keys KT = KDF(R).

Verification. As discussed in Chapter 3, proper verification of cryptographic protocols,

such as the ones presented in this section, is essential in order to give overall guarantees of

system integrity. The symmetric protocol described above has been modeled in ProVerif

and results indicate that it is secure in terms of the adversary being unable to modify

contents or extract secret information (Kristinsson, 2013). Methodology and assumptions

for the ProVerif modeling is analogous to that discussed in Chapter 3.

4.2.5.2 Asymmetric Authentication Protocol

The symmetric TTP protocol achieves the objectives of mutual entity authentication and

shared key establishment but at the expense of some messaging overhead. In addition, the

need for an TTP to be available at all times may be unreasonable for some networks. This

can be avoided by employing public key (asymmetric) cryptography.

Public key cryptographic primitives solve the key distribution problem, as originally

shown in the seminal work of Diffie and Hellman (1976) and Merkle (1978). Each partic-

ipating node must have a set of (Kpub, Kpri) keys, whose public part Kpub can be freely

distributed. Encryption of a plaintext P by a party a destined for a party b is accomplished

by executing an encryption function C = E(Kpub,b, P ), provided a holds b’s public key.

Conversely, decryption of the ciphertext C by b is P = D(Kpri,b, C). Public key primi-

tives can also be used for authenticating messages. A message M can be digitally signed

by a party a using a signature algorithm: s = Sign(Kpri,a,M). A recipient of M can

verify the signature as Verify(s,Kpub,a) = {true, false}. The cost of asymmetric cryp-
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tography is the relatively large keys required for acceptable level of security and generally

computationally expensive algorithms.

The sensor network literature, for instance Perrig et al. (2004), commonly assumes sensor

motes to be incapable of complex cryptographic operations. Hence, it is easy to dismiss

such approaches to securing the resource constrained trusted devices we are considering.

However, implementations of asymmetric primitives exist for resource constrained de-

vices, whose scale is on the order of the devices we are considering, such as the more

powerful SmartCard processors (Rankl & Effing, 2001). Watro et al. (2004); Batina et

al. (2006); D. J. Malan et al. (2008); A. Liu and Ning (2008) discuss the feasibility of

public key implementations on resource constrained systems, while Finnigin et al. (2007)

provide a cryptanalysis of Malan’s original EccM (2004) design.

For the remainder of this section, we assume each trusted device has a permanently in-

stalled identity consisting of a public ID and a single digital certificate, including public

and private keys signed by a root of trust. The identity tuple is of the form

ID = (v,Kpub, Kpri,S{v,Kpub}RT , RTpub)

where KRT = (Kpri, Kpub) is the signing key pair for a root of trust RT .

Cert = (v,Kpub,S{v,Kpub}RT )

is the public key certificate submitted to peers in the protocol. The asymmetric keys in

the identity tuple will be used exclusively for signing in the protocol that follows.

We require the chosen protocol to have the properties of mutual entity authentication and

explicit key authentication. A number of suitable protocols exist, including the station-

to-station (STS) protocol (Diffie et al., 1992), (Menezes et al., 1996, pp. 519), and an

asymmetric version of Needham-Schroeder (Needham & Schroeder, 1978), (Menezes et

al., 1996, pp. 508).

Let us now outline the application of an elliptic curve version of the STS protocol, EC-

STS (Hankerson et al., 2004, pp. 193), in hierarchical TSense. Public key cryptography

based on elliptic curves (Koblitz, 1987) requires considerably smaller keys for equivalent

level of security, compared to RSA and similar methods based on the hardness of factor-

ization (Barker et al., 2007, sec. 5.6.1). The intra-node authentication case is shown in

which a trusted sensor σi,0 and trusted aggregator ai, both hosted by an observation node

Si, establish trust relations. D = (q, FR, S, a, b, P, n, h) are the elliptic curve parameters,

as further described by Hankerson et al. (2004, Chapter 3).
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Message 1:

Si → σi,0 : ⟨invite, ai,Certai⟩

• The protocol is initiated by an untrusted agent Si (representing observation node

i) upon discovery of sensor σi,0 (sensor zero of node i). We assume the trusted

aggregator ai is already known to Si and its public key certificate cached.

• Si sends an invite message on behalf of ai.

• σi,0 caches certificate Certai .

Messages 2 and 3:

σi,0 → Si → ai : ⟨authenticate, σi,0, ai, Rσ,Certσi,0
⟩

• σi,0 verifies and caches the public key certificate of ai. See verification procedure

below.

• σi,0 picks kσ ∈R [1, n− 1] and submits the ephemeral public key Rσ = kσP and its

public identity to ai, routed via the untrusted Si, where P is a point on the elliptic

curve.

• ai validates the certificate for σi,0 as discussed below. ai validates Rσ, selects ka ∈R

[1, n − 1] and computes the ephemeral public key Ra = kaP . ai then computes

Z = hkaRσ s.t. Z ̸= ∞. A symmetric key pair (K1, K2) = KDF(xZ) is then

derived from the x-coordinate of Z.

Messages 4 and 5:

ai → Si → σi,0 : ⟨authenticate, σi,0, ai, Ra, sa, τa⟩

• ai submits a message to σi,0 containing its public identity, Ra, a signature sa =

Sa1{Ra, Rσ, σi,0} and a tag τa = TK1
(Ra, Rσ, σi,0) computed using the derived key

K1.

• σi,0 validates RaP and computes Z = hkσRa s.t. Z ̸= ∞. σi,0 then derives the

symmetric key pair (K1, K2) = KDF(xZ) from the x-coordinate of Z. σi,0 then

verifies the signature sa using Certa and that ta = TK1
(Ra, Rσ, σi,0). The signature

convinces σi,0 of the identity of ai and that the message has not been tampered with,

while the tag proves to σi,0 that ai has derived the shared secret Z.

• The session key for the (σi,0, a0) association is K2.
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Messages 6 and 7:

σi,0 → Si → ai : ⟨authenticate, ai, σi,0, sσ, τσ⟩

• σi,0 submits a message containing sσ = Sσ{Rσ, Ra, ai} and a tag τa = TK1
(Rσ, Ra, ai)

computed using the derived key K1.

• ai verifies the signature sσ and tag tσ. The signature convinces ai of the identity of

σi,0 and that the message has not been tampered with, while the tag proves to ai that

σi,0 has derived the shared secret Z. The session key for the (a0, σi,0) association is

K2

This protocol achieves the establishment of a shared secret Z = hkσkaP , derived from

the ephemeral public keys Rσ and Ra. The shared secret is then used to establish a session

key Kaσ = K1 = KDF(xZ) using the x-coordinate of Z. The re-keying phase described

for the symmetric protocol can then be executed to establish transport keys. In comparison

with the symmetric TTP protocol, the messages required to establish the session key are

fewer and routed over a shorter distances (exactly two hops) compared to the arbitrarily

long paths in the TTP case.

Verification of certificates Trusted nodes must establish that the communicating peer

is indeed a member of an accepted group of trust. This was easy in the symmetric protocol

due to the use of a single TTP that held (or had access to) all the keys of devices certified

as trusted. In the public key protocol, the identity tuple of the devices hold a certification

of membership in the form of the signature of a root-of-trust (RT ).

The case in which both devices are certified by the same RT is easy: nodes run a verifica-

tion procedure on received certificates VerifyRT (Cert) using the embedded public signing

key RTpub of their root-of-trust.

The case in which devices are signed by separate RT s cannot be solved using local knowl-

edge, as neither has the information to verify the RT signature on their prospective peers

identity. Further, they have no knowledge of whether their own RT considers the peer

RT trusted. In this case, the untrusted node must (prior to the execution of the protocol)

retrieve the public key certificates for both RT’s signed by the respective RT. As an ex-

ample, we assume observation node Si hosts ai and σi. ai is certified and signed by RT A

and σi certified and signed by RT B. The protocol to be executed by the untrusted node

is as follows:
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1. Si submits Certai to B.

2. Si submits Certσi
to A.

3. if A trusts B (have a common ancestor in the root-of-trust hierarchy) then it signs

Certσi
and returns to Si.

4. if B trusts A (have a common ancestor in the root-of-trust hierarchy) then it signs

Certai and returns to Si.

Now, both entities ai and σi can verify the certificates brokered by Si as representing a

trusted device using the embedded public key of their respective RTs. This procedure

requires A and B (or an representative thereof) to be reachable by all S that require their

services. This is not an unreasonable requirement if A, B are reachable by q, the querier

that is by definition reachable by all S able to participate in the aggregation protocol. In

the event that A and B are not reachable, the system configuration must include off-line

processing and caching of certificates on each S prior to deployment.

4.3 Properties of TSense

4.3.1 Security

We refer to the properties discussed previously in Chapter 3 and expand in this section as

applies to the hierarchical model.

The hierarchical TSense solution provides end-to-end integrity guarantees, comparable

to those of the simpler client/server model in Chapter 3. As before, the trusted sensor

provides the foundation of trust, enabling next hop aggregators to verify their contribu-

tions. In turn, upstream aggregators can verify the partial aggregate contributions of their

downstream peers. Since trusted aggregators by definition perform their computations

correctly, we can assume transitive trust relations from leaves (trusted sensors) to the

querier, guaranteeing overall aggregate correctness. As in the system considered in Chap-

ter 3, the security guarantees achievable in a hierarchical aggregation system depend on

the assumed resiliency of the trusted devices, the strength of the protocols and underlying

cryptographic primitives.

We have assumed the cryptographic primitives and protocols to be secure, which in turn

is the basis for the claimed overall system security. We may expect advances in crypt-

analysis and, to some extent, computing hardware to degrade or break the security of

cryptographic protocols and primitives over time. However, the system is designed for

cipher-independence: any secure cryptographic primitive which can be implemented on
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trusted devices may be substituted for those suggested in this or the preceding chapter.

Likewise, the asymmetric authentication is not bound to the EC-STS algorithm.

Successful man-in-the-middle attacks would allow the adversary to gain the capability

of influencing the aggregate. We refer to Hankerson et al. (2004) on a full analysis of

the resiliency of EC-STS against MitM. Drop attacks during the authentication and key

establishment phase are availability attacks but do not further the adversaries stated goals

of gaining the capability of stealthily influencing the aggregate computation. Rather,

drops in the initialization phases cause the affected trusted devices to stay inert and not

participate in the protocol. Hence, the correctness properties of the aggregate computation

are intact in the case of misbehavior during initialization.

4.3.2 Scalability

One of our original design goals was securing distributed aggregation, while preserving as

far as possible the scalability properties of the underlying aggregation algorithm protocol

stack. Let us now consider the impact of the proposed solution on the overall performance.

The secure transport protocol adds some cryptographic overhead in terms of message ex-

pansion and authentication codes. However, the overhead per message is constant and the

number of update messages remains the same as for the underlying aggregation protocol.

The relatively expensive authentication protocols add considerable overhead. However,

we may assume authentication is carried out relatively infrequently. This allows us to

amortize the cost of authentication over a prolonged period of data transfer. Assuming

the overhead imposed by authentication is negligible in comparison with data transfer, we

arrive at the conclusion that the messaging overhead (number and size) imposed by the

trusted devices is of constant order.

4.3.3 Generality

Our original design goals were for the system to support arbitrary data types and ag-

gregation functions. Any data type that can be securely encrypted and authenticated for

transport can be supported by a trusted sensor. Any data type and associated aggregation

function that can be implemented in a trusted device can be supported by a trusted aggre-

gator. We conclude that the TSense trusted overlay approach is independent of data types

and aggregation functions.

Another design goal was for the approach to be applicable to a range of aggregation pro-

tocols. We have so far discussed protocols based on spanning-trees. However, the trusted
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systems approach is applicable to any aggregation protocol, whose local function can be

implemented in a trusted aggregator. Trustworthy routing, independent of aggregation

protocol, is provided by the trust relationships established between trusted peers. Hence,

we can claim that the trusted devices approach can be used to support arbitrary aggrega-

tion protocols.

4.4 Concluding Remarks

We extend the trusted systems approach presented in Chapter 3 to hierarchical aggrega-

tion in dynamic networked systems. Specifically, we define a trusted aggregator (Def-

inition 4.7) – a dedicated hardware device that reliably executes the local aggregation

function. Secure channels, established pairwise between trusted devices, constitute a

trusted aggregation overlay. The trusted system as a whole effectively provides a se-

cure distributed execution environment for arbitrary aggregation protocols. Given such

an environment, we can give quite strong guarantees in terms of the aggregate integrity.

In particular, we can state that if a trusted sensor provides a reading, then it will be cor-

rectly represented in the computed aggregate, or not included at all. Hence, we prevent

the most damaging attacks under our adversarial model – the stealthy data modification

attack.

We have already constructed a proof-of-concept system for trusted sensing in a single

trusted aggregator model. Future agenda includes extending this prototype to a fully

distributed system, such as the one outlined in this chapter. A conceivable approach is

to implement a dynamically configurable secure aggregation system, based on executing

verified and attested software modules in trusted environments, such as hypervisors, on

the aggregation nodes. Issues, such as tamper-resistance and device manufacture, remain

to be resolved, along with evaluation of the impact of trusted devices on hosting nodes in

terms of power, computational and communications resources. Further development of

the PUF aspects of the protocol is also an interesting direction for future research.
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Chapter 5

Complete Aggregation

In this chapter, we address the objective of completeness – that all updates contributed by

observation nodes are included in the computed aggregate. This objective compliments

the discussion in the previous chapters, where the focus was on delivering correct updates.

That is, if a partial aggregate was delivered to the querier then we could trust its integrity.

Now, we turn our attention to ensuring that correct updates generated by trusted nodes

are actually delivered in the form of partial aggregate contributions to the querier. Our

goal is to to construct mechanisms that are low impact in terms of communications and

processing costs, while approaching this ultimate goal. We analyze the problem of guar-

anteeing completeness and survey a selection of existing solutions. Our findings are that

in the general case, no solution can guarantee completeness. Rather than attempting what

is in our opinion a futile task, we propose a simple protocol that builds on the correctness

layer proposed in Chapter 4, adding mechanisms that reduce the influence of potentially

malicious nodes.

Part of the material presented in this chapter has been published by Jónsson, Palmskog,

and Vigfússon (2012) and Jónsson, Vigfússon, and Helgason (2012).

5.1 The Importance of Completeness

Completeness was previously given as Definition 3.4. Recapping, the completeness objec-

tive states that all updates based on local observations released by (honest) data providers

must be delivered to the querier. The complimentary objective with regards to integrity is

correctness – that all observations delivered to the querier are correct (Definition 3.3).
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Let us begin by motivating the discussion in this chapter by considering the importance

of completeness in terms of the trustworthiness of aggregate observations. We assume a

corrupt insider is able to observe, but not modify, the contents of messages, for instance

by the assumption of a trusted layer, as described in Chapter 4, which we may also call

a correctness layer. However, the correctness layer described in the previous chapters

does not prevent the adversary from dropping “inconvenient” observations. Hence, the

adversary still wields some control over the aggregation system in terms of his ability to

prune the sample set. Let us express this control as the potential adversarial influence:

the adversary may at any time remove samples, thereby intuitively reducing the fidelity

of the aggregate. The adversarial influence can be described by the ratio of nodes under

adversarial control (whose updates the adversary can disrupt) to the total number of nodes.

Let us call this the adversarial influence factor.

The bias an adversary can introduce by removing updates is strongly dependent on the

underlying aggregation network topology and positioning of corrupt nodes. Consider a

centralized system, such as the one discussed in Chapter 3. A single corrupt node can

at most influence its own reading (that of its hosted trusted sensor), implying that the

potential adversarial influence factor is exactly t/n, where t is the total number of corrupt

nodes and n is the total number of nodes. In a tree-based aggregation network, such as

the one presented in Chapter 4, the adversary effectively controls a subnetwork of a size

equal to the subtrees of all corrupt nodes. Limiting the influence of the adversary to the

set of corrupt nodes is the ultimate goal.

The bias achievable by affecting message delivery is dependent upon the aggregation

function being computed. Consider for instance the MAX and TOP_QUANTILE functions that

estimate the upper range of some measured quantity in a observed system. Given some

population of corrupt nodes, the adversary is in a position to induce the querier to accept

a false maximum or top quantile reading by suppressing legitimate readings. Aggregation

functions such as AVERAGE are more resilient against malicious drops. Intuitively, removing

samples from a Gaussian distribution does not affect the expected value. However, a

reduced sample size due to malicious drops reduces the fidelity of the sample, thereby

likely increasing the sampling error.
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5.2 Feasibility of Complete Aggregation

We have previously discussed how the objective of correctness can be met, given a trusted

aggregation layer, which we will call a correctness layer in this chapter. Let us begin by

considering whether similarly efficient means of guaranteeing completeness exist.

Let us consider an aggregation network, such as the one described in Chapter 4. The

system is efficient in terms of message and time complexity, and guarantees correctness

within the bounds placed by the resiliency of trusted modules. However, the system is

best-effort with regards to the delivery of messages, meaning that no guarantees are given

regarding completeness. The weakest form of a completeness guarantee is that all mes-

sages released by data contributors are eventually delivered to the querier, either directly

or as contributions to partial aggregates. Guaranteeing timely delivery, which would be

necessary for a practical system, is a harder goal. Intuitively, even eventual delivery is

impossible to guarantee in an aggregation system, such as the ones discussed in Chap-

ters 3 and 4, given the non-negligible probability of node and message corruptions and

drops in real-world networked systems. For instance, nodes can malfunction, messages

can be corrupted in transit due to environmental conditions or link re-configurations in

dynamically evolving networks. Benign faults of this sort may be reduced by the addition

of reliability mechanisms, for instance TCP or a protocol tailored to distributed systems

(Stann & Heidemann, 2003). However, even reliability layers cannot guarantee complete-

ness, demonstrating the inherent difficulty of countering an adversary that can simulate

link faults.

Nodes that maliciously drop updates are by definition Byzantine in that they break the

protocol in communications with some of their peers. We previously reviewed some

techniques to counter Byzantine behavior in Chapter 4. However, differentiating between

legitimate and malicious absence of information is intuitively an even harder problem

than that of verifying the consistency of delivered information.

5.2.1 Guaranteeing Completeness

Let us assume all drops are malicious, that is, channels deliver all data, except if corrupt

entities deliberately drop messages. Completeness of contributions by honest nodes can

be guaranteed under this assumption, but only if the following conditions hold:
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(i) At least one uncompromised path exists between any given honest data provider and

the querier. An uncompromised path is one in which all nodes are honest and follow

the protocol with regards to routing.

(ii) Contributing nodes send their updates on all available paths.

Under these conditions, at least one copy of each message is bound to reach the querier,

hence guaranteeing completeness. By the same argument, sending less than all available

channels forces us to settle for probabilistic completeness guarantees. The stipulation of

a good path is rather strict for practical applications, but the probability of such a path

existing can be increased by careful construction of redundant paths. An example is the

braided paths proposed by Ganesan et al. (2001). Exploiting path redundancy to any

degree requires by definition a quite significant increase in messaging, which is coun-

terproductive in terms of our goal of efficient aggregation. Further, multi-path solutions

are problematic, as previously discussed in Section 2.3.4, due to the multiple inclusion

problem (Keshav, 2006). Multi-path techniques require duplicate insensitivity, either

by employing solely functions which are inherently duplicate insensitive, such as MIN

or MAX, or solutions such as order-and-duplicate insensitive (ODI) messages (Keshav,

2006; Nath et al., 2008). Both options limit the applicability of the aggregation systems

in terms of the data types that can be processed and the aggregation functions that can

be computed. Further, multi-path approaches require considerable communications and

processing overhead.

We can reduce the effectiveness of the adversary in terms of making intelligent dropping

decisions by denying him access to information. That is, we can encrypt message traffic

to reduce its utility to malicious nodes. This is further discussed in Section 4.1.2.

5.2.2 Assessing Completeness

If we accept the futility of guaranteeing complete aggregation, the next logical step is

considering whether we can quantify the completeness of an aggregate. This is straight

forward in the case of a static synchronous network with a known node population. The

centralized case is easy: we simply count the messages received at the end of execution

of the algorithm and give a reliability rating proportional to the messages received vs.

the total number of known contributors. Similarly, we can assess the completeness in

a hierarchical aggregation network by comparing an aggregate count with the expected

number of contributors. If the protocol is executed over a correctness layer, we can accept

this count as accurate. A proportional reliability rating can be computed as a ratio of the

known node population, given a reliable contributor count. Allowing for asynchronous
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operation complicates the issue, since delays may impact ordering and delivery times of

messages. The problem is compounded in systems in which contributors may release

updates sporadically, for example in response to local events such as threshold crossings

(Wuhib et al., 2005). Considering systems in which nodes can fail or leave the system

without warning makes quantification of completeness even harder to do in a reliable

manner.

5.3 Building Blocks for Reducing Adversarial Influence

Efficiency is one of our primary criteria in the search for security mechanisms. Hence,

we dismiss multi-path approaches to the problem of complete aggregation due to the

fact that they are bound to impact message complexity, while still not providing absolute

completeness guarantees. Similarly, protocols that attempt to achieve completeness by

introducing elaborate sub-protocols are bound to sacrifice efficiency without achieving

guaranteed completeness.

In this chapter, we explore simple means of increasing the resilience of aggregation proto-

cols to malicious drops. Increased resiliency translates to decreased adversarial influence,

and thereby higher probability of a complete sample set being aggregated. The methods

described are efficient in terms of messaging overhead, which is our primary performance

criteria. In light of our earlier discussion, we make no claims towards guaranteeing com-

pleteness in any sense, even probabilistically. Rather, we settle for a reduction in the in-

fluence an adversary can wield over completeness compared to an unmodified best-effort

aggregation protocol. We describe the general mechanisms in this section and move on to

applying the principles to a real protocol in Section 5.4.

The methods described in this section are applicable to any best-effort aggregation pro-

tocol, including gossip-based aggregation protocols (Wuhib et al., 2007). However, we

confine our discussion to a tree-based best-effort aggregation system as described in Chap-

ter 4 and later in this chapter. The aggregation overlay is composed of a single implicitly

trusted querier and a number of observation nodes that provide observations (contribute

local inputs) as well as functioning as aggregators. Observation nodes are generic cor-

ruptible platforms but trusted sensors and aggregators form a secure aggregation overlay,

guaranteeing aggregate correctness. For simplicity, we assume channels are reliable and

all loss events are caused by adversarial actions.

The fact that observation nodes (hosts of trusted modules) can be corrupted forces us to

regard communications channels between trusted modules as under adversarial control
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Figure 5.1: Transmission of message mab from trusted module a to peer b. The two trusted modules a and

b are hosted (respectively) by untrusted observation nodes A and B.

in terms of message drops, delays and reordering. Hence, aggregate completeness is

not addressed in the system of Chapter 4. Let us now discuss the basic components –

building blocks – which can be applied to reduce the adversarial influence in this and

other aggregation protocols.

1. Fault detection is necessary in order to formulate a response.

2. Local response, for instance re-routing, is the first step towards responding to events

which can be considered potentially malicious.

3. Dissemination of fault information empowers peers in the system with the ability to

cooperatively respond to potential threats.

We assume the protocol enhancements considered in the latter part of this chapter are

executed on the correctness layer, that is, by trusted aggregators. Hence, we can assume

that all messages which belong to the protocol are correct, even though their delivery

cannot be guaranteed.

5.3.1 Fault Detection

The ability to detect faults is a prerequisite for effective response. Let us consider a single

update message mab sent from trusted module a to a peer b, hosted (respectively) by

untrusted observation nodes A and B, as shown in Figure 5.1. The channel (a, b) is under

adversarial control in terms of eventual delivery, delay and reordering of messages. Either

one of the untrusted hosts A or B (or both) can be malicious, implying that they can affect

message delivery at will. Our primary objective is to convey information of such actions

to the trusted modules a and b, enabling them to respond effectively. As discussed in the

previous chapters, the trust relationship between a and b (the correctness layer) guarantees

that if a message mab sent from a reaches b then it is correct. We exploit the existence of

a correctness layer in the mechanisms proposed in this chapter.
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5.3.1.1 Receiver-side Fault Detection

Detecting a missing message hinges on having knowledge of a message having been sent

but not delivered. This is difficult from the perspective of the receiver, unless we assume

some knowledge of the schedule of the sender, which may be a reasonable assumption in

some instances. Let us assume node a is on a known update schedule, enabling b to detect

the absence of messages: if a message mab is not received within some δ of the expected

delivery time, b knows that the message was dropped by either of the untrusted hosts A

or B under the stated adversarial model. However, node b does not know which of the

two hosts (or both) is corrupt and node a has no knowledge of the fault whatsoever at that

point in time.

We can enable receiver-side detection of missing messages, regardless of update sched-

ule, by adding sequence numbering to messages sent over the (ab) channel. Gaps in

the sequence of messages indicates to the receiver that loss events have occurred. The

trust relations between a and b (correctness layer) guarantee that the adversary in con-

trol of the (a, b) channel cannot modify the sequence number (or any other part of the

message) without being detected. Note however, that detection in this case hinges on a

message eventually being delivered from a to b – a complete block of messages on the

(a, b) channel gives b no error information, except in the case of a pre-determined update

schedule. Compulsory periodic pings can be added to any protocol to ensure that a chan-

nel is “alive”. The performance impact is minimal if such messages are infrequent. In

fact, most link layer protocols implement periodic handshake messages on to which our

protocol messages can be piggybacked for increased efficiency. However, a slow rate of

link layer handshakes slows the detection of faults. Hence, we advocate the integration of

fault detection into the aggregation protocol itself.

5.3.1.2 Sender-side Fault Detection

Enabling senders to detect faults requires some form of a feedback mechanism. For in-

stance, adding an acknowledgement message m′ (see Figure 5.1) to a basic best-effort

aggregation protocol gives the sender a the necessary information. Node b responds to

an update message m by generating an acknowledgement message transmitted over the

(b, a) channel to a. Let us assume host B is malicious and drops either m or m′. The host

a can determine that a fault occurred if m′ is not received within some time δ of the trans-

mission. However, a cannot determine whether A or B was faulty, without corroborating

information. Further, b has no information of the fault at this point in time, unless update
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schedules are pre-determined to some degree. Note that we assume acknowledgements

are protected by the correctness layer, as discussed earlier.

5.3.1.3 Rating Channel Reliability.

The detecting node, whether it is sender or receiver, is limited to determining that a fault

occurred on the (a, b) channel. As shown in Figure 5.1, both of the untrusted hosts A and

B participate in relaying messages on the (a, b) channel. Hence, we rate the reliability of

channels, rather than hosts, in the subsequent discussion.

A trusted module a maintains a local rating αab ∈ [0, 1] for a communicating peer b.

Two update functions fF and fR (fault and redemption) are defined to update the α rat-

ing. Each detected fault, acknowledgement timeout or missing serial number, invokes

the fault function fF and decreases the relevant channel rating. Any reduction function

can be used, but we use reduction by a constant in the examples that follow. Optionally,

misbehaving nodes can redeem themselves and increase the channel rating upon correct

behavior. That is, a correctly delivered message invokes the redemption function fR and

increases the channel rating.

5.3.2 Local Response

Local response to faults is possible, once edge ratings are available. We must differentiate

between response to benign faults that are caused by unintentional errors, and malicious

faults caused by the adversary.

Intermittent benign faults can be countered by retransmissions. However, persistent be-

nign faults require re-routing, for instance to bypass failed intermediary nodes. Ideally,

malicious faults should be countered by permanently routing “around” corrupt nodes. In

practice, this is a difficult objective due to the possibility of benign faults. In the case of

a trusted aggregation system, the problem is compounded by the fact that the host of the

detecting node may be corrupt. Consider for instance the example of Figure 5.1. Let us

say A is corrupt and drops one or more update messages from a destined for b and that

a detects this by the absence of acknowledgement messages. a detects the problem and

reduces the α rating of the (a, b) edge accordingly. However, a is unable to respond ef-

fectively by any means, since its own host is malicious. In contrast, a has an opportunity

to respond to (a, b) faults by re-routing in case B is malicious and drops messages. Note

that statically configured networks are unable to respond at all.
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Figure 5.2: Excerpt of a binary tree, showing two nodes. αab is the local rating of node a for the (a, b)
parent edge and αx∗ is the reported (back propagated) parent edge rating.

5.3.3 Disseminating Fault Information

Informing peers in the aggregation network of perceived faults enables pro-active re-

sponse. Given fault detection capability as outlined above, a and/or b can inform sur-

rounding nodes of a history of faults on the (a, b) edge. Recipients of such alerts can

in turn take measures to avoid one or both of the potentially malicious hosts A and B,

thereby reducing the chance of being affected by future faults.

Flooding a special alert message is one option of disseminating fault alerts. However,

flooding is potentially hazardous in terms of messaging and storage demands. Further,

alert messages are not likely to work in case the host of the alerting node is malicious. In-

cluding an indication of past performance in regular protocol updates is more promising.

Let us consider a tree-based aggregation network, as described in Chapter 4. For simplic-

ity, we confine our discussion to the two observation nodes A and B shown in Figure 5.2.

The trusted aggregator a is the child of b in the trusted aggregation overlay (tree). a has

available the local rating of the edge (a, b) as αab. A fault on this edge indicates that either

A or B (or both) are faulty. In this event, the safest recourse for the children of a and other

surrounding peers is to avoid the (a, b) edge.

In the case of tree-based aggregation networks, we propose a simple mechanism that

“feeds back” the rating of parent edges to lower level nodes, enabling avoidance of po-

tentially faulty edges. Figure 5.2 demonstrates this graphically. Aggregator b submits a

rating of its parent path (not shown) as αb∗ to its downstream child a. In turn, a submits

αa∗ = g(αab, αb∗) to its downstream children, where g is a function that rates the over-

all reliability of the forwarding path by utilizing reported forwarding path ratings. One

example is αa∗ = αab · αb∗.

An example is shown in Figure 5.3. The host B of a trusted module b is malicious and has

dropped a single message on the (b, a) channel, detected by b by a missing acknowledge-
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Figure 5.3: Example of α rating in a small binary tree. Vertices represent trusted aggregators. Malicious

actions are confined to edges controlled by the adversary.

ment. b executes an α update function that subtracts 0.2 for each perceived fault. Hence,

the (b, a) channel has a rating of αba = 0.8 from the perspective of b. Node a has not

detected any faults at this point in time, so its rating of the forwarding path is αa∗ = 1.

Hence, b computes a reliability rating for its forwarding path (b, a) as αb∗ = αa∗·αba = 0.8

and back-propagates to its peers. Node e has detected two drops on the (e, b) channel.

Hence, its local rating for the channel is αeb = 0.6. Taking the back propagated report

from b into account gives a rating of αe∗ = αb∗ · αeb = 0.48 for the current forwarding

path (e, b). Given this rating, node e would be better served by selecting the alternate

(e, c) channel, which currently has a rating of one. Node d has not detected any drops

on the (d, b) channel but nevertheless sets its rating of the forwarding path αd∗ = 0.8 in

response to the report received from b.

Blocking α updates. An adversary may attempt to block the dissemination of “incon-

venient” update messages, for instance the back-propagated α reports in the previous

example. However, such behavior will not prove to be productive. As reports are built

into regular protocol messages (aggregate updates and acknowledgements) any blocking

of messages will only result in lowering of the local rating of a malicious node. The

host of node b may for instance try to prevent node d in Figure 5.3 from learning of the

αb∗ rating. Again, we assume the back-propagation of α ratings is built into regular ac-

knowledgements from b to d. Blocking of even a single acknowledgement results in an

immediate drop in the local αdb rating on node d.

The multi-armed bandit. Experiments in which outcomes of past trials affect future

decisions can be formulated in terms of the Multi-armed Bandit (MAB) problem (Vermorel

& Mohri, 2005): a gambler pulls the levers of k slot machines (one-armed bandits) one

at a time, keeps track of the rewards and uses the results to maximize his rewards, that is,
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to play the machine that has the highest probability of producing a win. In opaque bandit

formulations, the gambler only observes the reward for the lever pulled. Hence, in order

to establish the probable returns per lever, all have to be played a certain number of time.

MAB algorithms use some strategy which maximizes gains by playing the best lever as

often as possible (exploitation), while playing the other levers sufficiently often to learn

their probable returns (exploration). For instance, in ϵ-greedy algorithm, a random lever

is chosen with some frequency ϵ, while choosing the lever with the current best rewards

with probability (1− ϵ).

We can liken transmissions of messages in an aggregation protocol to “pulling the lever”

for the corresponding channel: each trial gives us information about the reliability of

a channel. Hence, MAB algorithms may be of interest in future work, enabling more

efficient exploration/exploitation of channel reliability to minimize the adversarial influ-

ence.

5.4 Secure GAP

Let us now apply the building blocks discussed in Section 5.3 to an actual aggregation

protocol, the Generic Aggregation Protocol (GAP) (Dam & Stadler, 2005). We present

a version of GAP, which we will call S-GAP, that is secure against modification of data

(correctness attacks) and resilient against adversarial drops (completeness attacks). The

correctness of the aggregate computation is ensured by the inclusion of trusted devices, as

discussed in Chapter 4, while completeness is addressed by the application of the protocol

building-blocks outlined in Section 5.3.

5.4.1 The GAP Protocol

Our case study involves securing GAP, an efficient tree-based aggregation protocol, de-

signed for continuous monitoring of a distributed system. While efficiency was one of the

primary design goals for GAP, security was not addressed in the original protocol, nor its

subsequent enhancements (Gonzalez Prieto & Stadler, 2007; Wuhib et al., 2007, 2008;

Stadler et al., 2008).

Nodes that execute the GAP protocol self-organize into a spanning tree (aggregation over-

lay) by continually choosing the most advantageous peers, in terms of minimizing total

path length, as parents. GAP is resilient against benign crash faults, that is, non-reachable

nodes, due to peer monitoring and updating of the overlay topology. However, the role
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(a) A schematic representation of the
aggregation overlay. Bold lines
indicate edges in the spanning
tree. Dotted lines indicate reachable
neighbors.

id status level weight
d self 2 56
a - 1 128
b parent 1 17
c peer 2 97
e peer 2 112
g child 3 73
h child 3 23

(b) The neighborhood table of
node d for the network in-
stance shown in (a).

Figure 5.4: Small example of a GAP aggregation network.

of fault detection is relegated to the underlying network layer in the original protocol,

implying that considerable delay is to be expected until a peer is deemed unreachable.

Intermittent faults are not handled by the protocol. Hence, attacks against the complete-

ness of the protocol are quite plausible. A further problem is that the fault detection is

independent of the aggregation protocol itself.

The GAP protocol maintains the dynamic spanning tree overlay by means of a neigh-

borhood table maintained locally by each participating node. An example is shown in

Figure 5.4. The neighborhood table maintains the current weight (the partial aggregate)

and the status of all reachable one hop peers (child, peer, parent) along with their reported

distance (in hops) to the root of the tree (querier in our terminology). Each node elects

a single node as parent, as shown in Algorithm 5.1, with the objective of minimizing the

distance to the root of the tree. Briefly, nodes (v) monitor their immediate neighborhood

(one hop) Γ for nodes (u) that report a shorter distance to the root than the current parent.

If such a node u exists, then v selects u as its parent, updates its own level accordingly

and broadcasts a state update message to all peers. State update messages are also broad-

cast whenever the local weight (local state) is updated and when a new partial aggregate

(weight) is computed in response to received partial aggregates from designated children

(downstream nodes). Hence, the dissemination of aggregate updates is in essence embed-

ded into the tree maintenance protocol. We will exploit the state broadcast inherent in the

GAP protocol in our S-GAP protocol.

The local aggregation function is computed over the weights delivered by current child

and self nodes. In the example shown in Figure 5.4, node d delivers a partial aggregate



Kristján Valur Jónsson 117

update with weight = 56 + 73 + 23 = 152 to node b. In our implementation of GAP,

described in Section 5.5, we use a rate limiting delay δ from the instance the state table

is modified and until an update message is produced. This delay increases the messaging

efficiency of the protocol by increasing the probability of combining more than one state

modification in each update message, but at the cost of delaying dissemination of changes

in the monitored environment state to the querier.

Algorithm 5.1 GAP parent selection

1: On neighborhood modified for node v do:
2: if ∃ u ∈ Γv s.t. level(u) < parent_level(v) then
3: parentv ← u
4: levelv ← level(u) + 1
5: update_neighbors()
6: end if

Let us now describe the proposed modifications of the original GAP protocol to achieve

the two objectives of correctness and completeness.

5.4.2 Correctness in S-GAP

A GAP overlay is composed of generic observation nodes, that is, computing platforms

that can be compromised by an adversary. The goal of the S-GAP protocol is to ensure

the integrity of the computed aggregate, both in terms of its correctness and completeness,

when executed in such an environment.

The correctness objective is met by employing trusted sensors and aggregators, as de-

scribed in Chapters 3 and 4. This requires a decomposition of the original GAP protocol

into trusted and untrusted components. Trusted components of the S-GAP protocol ex-

ecute exclusively on trusted modules (sensors and aggregators) and handle all function-

ality that must be considered essential to the primary mission of the system. Services,

such as peer discovery, link-layer failure detection and routing, may remain under the

control of an untrusted agent, comparable to tsclient in the prototype discussed in

Chapter 3.

5.4.2.1 Essential Protocol Information.

Let us now consider the protocol state information that must be considered part of the

essential functionality.
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Property Access
Public node identity READ
Private node information, incl. cryptographic keys NONE
Level READ
Status READ
Weight READ (optional)

Table 5.1: Protocol properties and allowed access under the S-GAP protocol.

id status level weight K

(a) Trusted neighborhood table

id network address level

(b) Untrusted neighborhood ta-
ble

Figure 5.5: S-GAP neighborhood table. The original neighborhood table of GAP is augmented and divided

into two trusted and untrusted components.

Public node identity is part of the secure data exchanged between trusted modules.

Hence, node identity should always be protected against modifications. While an

untrusted host may read public node identities, private identities, including crypto-

graphic keys must be kept secret. Hence, session and transport keys, as described

in Chapter 4, must remain secret.

Level is required to compute node status and essential to the proper function of the pro-

tocol. Hence, the integrity of level report received from peers must be ensured.

However, level does not have to be kept secret, since the untrusted routing services

need (and presumably have) the same information, independent of the S-GAP pro-

tocol.

Status of peer nodes is essential to correct functionality of the protocol. However, status

does not have to be kept secure as the protocol can function properly by computing

peer status prior to each update. However, in the interest of efficiency, the untrusted

hosting node should be prevented from arbitrarily modifying the state assigned to

peers by the S-GAP protocol.

Weight is the essential commodity of the protocol and must at minimum be protected

against modifications to meet the objective of correctness. Maintaining the secrecy

of the weight may be a requirement for some applications.

In the terminology of access control, each trusted module that implements the S-GAP

protocol may grant the untrusted protocol service rights as specified in Table 5.1.
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Neighborhood table. Given this analysis, we can divide the neighborhood table of GAP

into two overlapping parts, as shown in Figure 5.5. One part is maintained by the trusted

module and the other by the untrusted host. The untrusted agent plays an important role

in the protocol. Its primary role is to manage the neighborhood, that is, discover new

nodes, detect failures and to bootstrap an observation node into the aggregation protocol.

This was previously discussed in Chapter 4. In particular, the untrusted component of

the S-GAP protocol must maintain a routing table that will in essence be a duplicate of

the level and state information maintained by the protected part. The primary goal of

the S-GAP protocol is to prevent any untrusted services executing on the observation

node from influencing the aggregate computation. Note that the S-GAP protocol enables

verification of routing by including distances in the secure communications, allowing

receiver to verify routing decisions made by the untrusted agents.

The secure neighborhood table may impose undue demands on the storage capabilities of

a resource constrained device, especially in a dynamic environment that requires caching

of a large number of nodes. Solutions exist which allow secure storage of information

in untrusted memory (Chun et al., 2007; Levin et al., 2009), allowing the resource con-

strained trusted module to offload much of this burden to the untrusted observation node

services. Solutions similar to the secure storage primitives of a TPM (Challener et al.,

2008) may also be used. For simplicity, we assume the trusted table will be maintained

within the trusted device itself for the remainder of this discussion.

Protocol messages. Two messages in the original GAP protocol, update and weight,

need to be protected. Weight is assumed to be provided to the trusted aggregator by a

trusted sensor, and hence, already protected, as described in Chapter 3. The protected

version of the update message is a composition of the original GAP update and the data

transport message from Chapter 4:

⟨update, a, Cab, lE , Ēab(a, b, Cab, w, l, p)⟩

where a and b are the trusted sender and receiver node identities (respectively), Cab is a

monotonically increasing counter for messages sent on the (a, b) channel, lE is the length

of the encrypted payload and Ēab denotes authenticating encryption using key set Kab.

Note that proper cryptographic practices dictate use of a key set, that is, independently

derived keys for the functionalities of tagging and encryption (Barker et al., 2007, sec.

5.2), (Gligoroski et al., 2008).
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5.4.3 Increasing Completeness

The trusted systems principles applied to secure the S-GAP protocol achieve guarantees

against adversarial modifications of data, that is, correctness attacks. However, message

delivery, including re-ordering and artificially introduced delays, remains under adver-

sarial control. Our goal in the remainder of this chapter is to minimize the impact an

adversary can have by manipulating message delivery. We exploit the existence of the

correctness layer, that is, the correctness protocols which we describe in this section are

ensured by the same trust relationships used to ensure the wholeness of the aggregate

data.

5.4.3.1 Detecting Misbehavior

Let us now apply the building blocks described earlier to increase the resiliency of the S-

GAP protocol against malicious drops. First of all, a counter is needed to enable receiver

side detection of missing messages. The non-secret nonce (counter) already included in

the update message is sufficient for this purpose. However, we need to add an acknowl-

edgement message to enable sender-side misbehavior detection. The complete transport

protocol is shown in Protocol 5.1. Note that we include a parent edge α rating in both

messages.

a⇒ b : ⟨UPDATE, a, Cab, lE , ĒT (a, b, Cab, αa∗, w, l, p⟩

a⇐ b : ⟨ACK, b, ĒT (b, a, Cab, αb∗, h(w, l, p)⟩

Protocol 5.1: Transport protocol for the update exchange with acknowledgements. The a ⇒ b relation

denotes communications between trusted peers a and b on a pairwise trusted (a, b) channel. ĒK() denotes

authenticating encryption using the transport key set KT for the a ⇔ b association. Ca,b is a counter for

messages sent on the (a, b) channel. αx∗ denotes a rating ∈ [0, 1] of the current forwarding path of node x.

h(w, l, p) is a hash computed over the (weight, level, parent) protocol data update.

The trusted sender a increments the counter Ca,b and sets a timer Ta,b when transmitting

a message to the trusted peer b. The counter and timer fields need to be added to the

neighborhood table, as shown in Figure 5.6. We limit the number of active exchanges

between a and b to one in this protocol. Upon reception, b constructs an acknowledgement

message and sends to a. A counter Cab for the (a, b) edge prevents replays and enables

receiver-side misbehavior detection. The counter Cab keeps track of messages sent by a on

the (a, b) edge and functions both as a non-secret nonce and means for b to detect drops.

The acknowledgement mechanism serves as application layer fault detection: The results

w.r.t. a are success if the acknowledgement from b is received before the timer elapses and
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id status level weight K C A

Figure 5.6: S-GAP secure neighborhood table modified to include the fields required to enhance complete-

ness. Sets of keys K, counters C and edge ratings A are added.

fail otherwise. The α rating for the (a, b) edge is updated upon both success and failure. A

set A of α ratings is maintained per neighbor in the neighborhood table. The set includes

αab, the local rating of node a for the (a, b) channel as well as αb∗ reported by the peer b

for its current forwarding edge.

5.4.3.2 Modified Parent Selection

In contrast to the opaque bandit problem mentioned earlier, the GAP protocol uses status

message broadcasts as its mechanism for aggregation as well as tree maintenance – in

essence, pulls all levers simultaneously. Hence, detailed and up-to-date information is

available in order to select the best available parent in each round.

We modify the GAP parent selection criteria, described in Algorithm 5.1, to pick the best

parent, based on available α ratings. In Algorithm 5.2, we present a minimal modification

of the GAP parent selection algorithm: a node v selects a parent from the set of nodes with

smaller distance to the querier, picking the one with the current best α rating. This peer

selection process does not affect the dynamic tree maintenance features of GAP, while

favoring high-α nodes.

Algorithm 5.2 GAP-SC parent selection (policy II)

1: ON neighborhood modified for node v do:
2: dmin ← min

u∈Γv

du

3: P ← {u ∈ Γv | s.t. du = dmin}
4: αmax ← max

u∈P
αu

5: if dp ̸= dmin ∨ αp < αmax then
6: pv ← p ∈ P s.t. αp = αmax

7: dv ← dp + 1
8: update_neighbors()
9: end if

This protocol achieves no reduction in adversarial influence if all neighbors having a

shorter distance to the querier are corrupt. This can be addressed by allowing nodes to

select parents from the set of designated as peers in GAP, that is, nodes with the same

distance to the querier. The modified algorithm is shown in Algorithm 5.3.

The algorithm selects as parent the nodes with the current best α rating nodes either from

nodes with less (u ∈ L0) or equal (u ∈ L1) distance to the querier, allowing greater flex-
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Algorithm 5.3 GAP-SC parent selection (policy III)

1: On neighborhood modified for node v do:
2: dmin ← min

u∈Γv

du

3: L0 ← {u ∈ Γv | du = dmin}, L1 ← {u ∈ Γv | du = dmin + 1}
4: α0 ← max

u∈L0

αu, α1 ← max
u∈L1

αu

5: if α0 ≥ α1 then
6: p′ ← u ∈ L0 s.t. αu = α0

7: α′ ← α0

8: d′ ← dmin

9: else
10: p′ ← u ∈ L1 s.t. αu = α1

11: α′ ← α1

12: d′ ← dmin + 1
13: end if
14: if dp ̸= dp′ ∨ αp < α′ then
15: pv ← p′

16: dv ← d′ + 1
17: update_neighbors()
18: end if

ibility in selecting parents that have not exhibited faulty behavior. However, the aggrega-

tion tree may degenerate from the best case of a BFS spanning tree to a taller one, since

distances advertised do not necessarily correspond to the minimal ones. Nevertheless, the

graph will remain a connected valid tree by the invariants enforced in the protocol.

5.5 Protocol Validation

We implement protocols and carry out experiments using the OMNeT++ discrete event

simulation system (Varga, 2001). A screenshot of a S-GAP scenario in OMNeT++ run-

ning in GUI mode is shown in Figure 5.7(a), and the compound object representing an

observation node in Figure 5.7(b). Communications and graph generation are handled

by the Dynamic Random Graph Simulator Library, DRGSimLib1 (Jónsson, Vigfússon,

& Helgason, 2012), which consists of a set of components that enable construction of

dynamic simulation scenarios.

A factory component dynamically instantiates and manages lifetime of simulated

node objects in a simulation scenario. The factory component of DRGSimLib is an

extension of earlier work by Helgason and Jónsson (2008).

1 The components are available at https://github.com/kristjanvj/DRGSimLib and re-
leased under a open source license.
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(a) (b)

Figure 5.7: The OMNeT++ simulation environment. Figure (a) shows a screenshot of a simulation scenario

running in GUI mode in the OMNeT++ development environment, whereas Figure (b) shows a the sub-

components of a sensing and aggregation node in the scenario.

A topology component (shown in Figure 5.7(a)) assembles communications graphs

dynamically upon registration of factory-generated modules. Conversely, the topology

component removes nodes from the communications graph at the end of their life-

time. topology uses a set of generators, derived from the BasicGenerator

class and implementing the IBasicGenerator interface, to construct graphs.

Examples described by Jónsson, Vigfússon, and Helgason include generators for

Erdös-Rényi (Erdös & Rényi, 1959) and scale-free Barabási-Albert (Barabási &

Albert, 1999; Barabási & Bonabeau, 2003) random graphs.

5.5.1 S-GAP Implementation

We base our implementation of S-GAP on a OMNeT++ implementation of GAP described

by Jónsson, Vigfússon, and Helgason (2012). The S-GAP protocol is implemented as a

OMNeT++ simple module. The protocol module implements a generic IProtocol in-

terface, which plugs into an observation node module, as shown in Figure 5.7(b). Periodic

updates of local inputs are generated by a sensor module.

A simulation scenario (an example is shown in Figure 5.7) contains three fixed nodes,

factory and topology, as described earlier, and a single querier node. A number

of observation nodes are then dynamically instantiated by the factory and assembled

into a connected communications graph by the topology component.

The S-GAP protocol is initiated by the querier after the initial topology has been con-

structed. A query flooding phase distributes query parameters to the network and builds

the initial spanning tree at the same time, establishing the querier as root. Nodes gener-
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ated after protocol initiation receive a cached copy of the query from their neighbors as

part of the initial post-discovery handshake process.

5.5.2 Completeness in a Small Fixed-topology Graph

Let us now turn our attention to the property of completeness and how the S-GAP protocol

performs with respect to reducing the overall adversarial influence factor.

The trials described in this section are executed over a graph of fourteen nodes, as shown

in Figure 5.8(a), using the OMNeT++ implementation of S-GAP and DRGSimLib. The

node population is pre-determined and static in this trial for ease of analysis. A network

tree is constructed as shown in Figure 5.8(b). The construction of the tree depends on the

initial message distribution, whose sending times and delays are drawn from a random

distribution. However, a constant random seed is used in the following trials, resulting in

a consistent initial spanning tree.

(a) Network graph G over fourteen
nodes. Node 8 is the implicitly hon-
est querier. Nodes 15 and 19 are
corrupt.

(b) Initial configuration of the tree.

Figure 5.8

The tree state query protocol. GAP is a continuous aggregation protocol, designed to

propagate local state updates as quickly as possible to the querier. However, it is not suited

to producing a concise state snapshot over the tree. The ECHO protocol (Adam et al.,

2005) is a better candidate for the task. In the following trials, we run GAP to aggregate

continuous updates and maintain the aggregation tree, but query the tree state periodically

using a separate broadcast/convergecast protocol similar to ECHO: the querier broadcasts

a query message which is broadcast to all children. Each recipient in turn forwards a

copy of the query message to all its children in the current GAP tree. The convergecast



Kristján Valur Jónsson 125

phase is initiated once the query reaches a leaf node, i.e. one with no designated children.

During the convergecast phase, nodes marked as corrupt increment (honestly) the current

partial aggregate count to include the size of their current sub-tree – their current sphere

of influence. The aggregate result received by the querier is a honest representation of the

number of nodes controlled directly or indirectly by the adversary in terms of message

delivery.

5.5.2.1 No Adversarial Avoidance

Let us now explore the issue of completeness abstractly, without considering the effects

of an incomplete set of results on the computed aggregate. In this scenario, we have t = 2

(two corrupt nodes) out of n = 13 (excluding the querier) nodes. Node 15 is corrupted at

T=600s and node 19 at T=800s. The adversarial influence factor is plotted versus time in

Figure 5.9. Recall, the adversarial influence factor is a measure of the potential impact an

adversary can have on the modeled graph, regardless of past or present actions.

The adversarial influence is explored, given the static tree shown in Figure 5.8(b). When

node 15 is corrupted at time T = 600s, the adversary controls a subtree of size six, which

we can quantify as a ratio of nodes potentially under his influence to the total number of

nodes, 6/13 = 0.46. At time T = 800s, the influence factor is increased to 7/13 = 0.54

with the inclusion of node 19 in the set of corrupt nodes. Analysis reveals 7/13 to be

the worst case adversarial influence for the graph instance shown in Figure 5.8(a). The

average adversarial influence factor over the simulated run (from the first corruption) is

53.5%, close to the worst-case of 54%.

5.5.2.2 Random Parent Switching

The initial spanning-tree, shown in Figure 5.8(b), represents a worst-case scenario in

terms of the adversarial influence due to corruption of both nodes 15 and 19. Several

tree configurations are possible that reduce the influence factor to the lowest achievable

4/13 = 0.31 for the particular communications graph examined. Hence, one may explore

the effects of selecting parent nodes at random, in an effort to utilize better configurations.

The results of a single simulation run of such an experiment is shown in Figure 5.10.

In the time interval T = [600s, 800s], several configurations give an influence factor

∈ [1/13, 6/13]. After T = 800s, the adversarial influence factor is [4/13, 7/13]. This

particular run gives an average adversarial influence over the simulation time of 36.7%,

which is a reduction from the worst case represented in Figure 5.9. Examining the mean
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Figure 5.9: Adversarial influence factor vs. simulation time for the spanning tree configuration shown in

Figure 5.8(b). Node 15 is corrupted at T = 600s and node 19 at T = 800s. No adversarial avoidance

algorithm is employed (static graph configuration), resulting in a mean adversarial influence of 53.5% as

shown by the horizontal line.

adversarial effect over 30 simulation runs with different random seeds, as shown in Fig-

ure 5.10, confirms this ballpark figure, with slightly tighter confidence intervals as the

frequency of parent reassignment is increased. However, the cost in this particular proto-

col is increased messaging, as shown in Figure 5.11(b), exponential with increased parent

reassignment probability. The messaging cost can be reduced by protocol optimizations,

but the random avoidance solution remains unsatisfactory in terms of guarantees of com-

pleteness.
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Figure 5.10: Adversarial influence factor vs. simulation time for random reconfigurations (parent elections)

in the communications graph of Figure 5.8(a). The results of a single simulation run are shown. Node 15

is corrupted at T = 600s and node 19 at T = 800s. Parents are reassigned per state table update with a

probability p = 0.1.
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(a) Average potential adversarial influence.
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(b) Messaging cost for the GAP protocol vs. par-
ent reassignment probability.

Figure 5.11: Adversarial influence factor for random reconfigurations (parent elections) in the communi-

cations graph of Figure 5.8(a). Results are averaged over 30 statistically independent runs. Node 15 is

corrupted at T = 600s and node 19 at T = 800s. Parents are reassigned per state table update with a

probability p = 0.1.

5.5.2.3 Avoiding Corrupt Nodes – First Approach (Switching Policy II)

We now employ Protocol 5.2 to select alternative parents based on peers fault history.

As before, node 15 is corrupted at T=600s and node 19 at T=800s. Corrupt nodes drop

update messages with a probability pdrop = 0.1. The results of a single run are shown in

Figure 5.12.

The edge rating α is updated using the functions

α = fF (α) = MIN(1, α− γ)

α = fR(α) = MIN(1, α · ϱ)

where 0 < γ ≤ 1 and ϱ > 1 are constants allowing tailoring of the penalization upon

errors, as well as the “grudge” held against a faulty edge. A fault on the channel (from

the perspective of a) will reduce the rating, while a successful transmission can increase

it up to a maximum of one. The constants used to update α for this run are γ = 0.25 and

ϱ = 1.15.

At T = 600s, the adversary effectively controls a subtree of size six, and hence, has a

potential influence factor of 6/13. A fault is detected at T = 734s when node 15 drops

a single message, as shown in the log excerpt given in Figure 5.13. The single fault

causes node 31 to select node 11 as its alternative parent, thereby immediately reducing

the potential adversarial influence by three. A second switch at T = 787s reduces the
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Figure 5.12: Adversarial influence factor. Faults are monitored locally by each participating node (trusted

module). Nodes use Protocol 5.2 to select the current best α peer as parent from the set of nodes that

advertise shorter distance to the querier (proper parents in the spanning tree).

734.950547 SWITCH 31 15 11 PARENTPEER 0.800000 1.000000

787.139119 SWITCH 35 15 19 PARENTPEER 0.800000 1.000000

990.479567 SWITCH 35 19 15 PARENTPEER 0.800000 1.000000

992.088208 SWITCH 35 15 19 PARENTPEER 0.800000 1.000000

1496.947260 SWITCH 35 19 15 PARENTPEER 0.600000 0.800000

1592.660109 SWITCH 35 15 19 PARENTPEER 0.600000 0.780000

Figure 5.13: Excerpt from fault detection log. Algorithm 5.2 (switching policy II) used to select best α

parent. Drop probability is 10%. First column is simulation time, while third, fourth and fifth columns

represent node, previous parent and new parent, respectively. Finally, the current α for the previous and

newly selected parent are shown in the last two fields.

adversarial influence to the minimum of one for the t = 1 nodes corrupted at that time.

Node 19 is corrupted at T = 800s and begins to drop messages with 10% probability.

Now, the adversary controls a sub-graph of at least size four, the corrupt nodes 15 and 19

as well as nodes 35 and 55 which have no recourse under this protocol but to select either

nodes 15 or 19 as parents. Hence, the lowest achievable potential adversarial influence

factor is 4/13. However, the protocol attempts to maximize completeness by selecting

the best possible current parent: as can be seen in Figure 5.13, node 35 continues to

switch between potential parents 15 and 19 during the run, based on the current best α

rating.

Figure 5.14 shows an excerpt from another run with p = 0.25 drop probability. The

parameters for the α computation are γ = 0.25 and ϱ = 1.15. As before, node 15 is

corrupted at T = 600s and 19 at T = 800s. α(35,15) and α(35,19) are plotted, as observed

by node 35. Switch-over points for potential parents 15 and 19, w.r.t. node 35, are shown.
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Figure 5.14: Progression of α(35,15) and α(35,19) as observed by node 35. Switch-over points for potential

parents 15 and 19 are shown.

Observe how node 35 selects the best current α parent during the run at the time updates

are available.

The α rating of an edge is extended to a path reliability rating by each node feeding back

its current parent reliability rating to its peers, as discussed in Section 5.4.3.1. The α

feedback mechanism is demonstrated in Figure 5.15. A series of three send faults are

generated on the (15, 8) edge at T = 1200s, while all other edges are fault-free in this

experiment. The α(15,8) rating is immediately reduced by the trusted module of node 15.

The fault is reported back to node 35 on the first 15 → 35 update, which reflects at that

time in the α(35,15) rating. In turn, this affects the α(55,35) on the next 35 → 55 update.

The alpha rating is gradually increased on subsequent successful transfers. The feedback

delay is beneficial in the protocol, promoting switching to better parents nearest to the

fault. In this case, node 15 would have the first opportunity to select a new parent, and if

successful, report a better α to downstream peers.

5.5.2.4 Avoiding Corrupt Nodes – Second Approach (Switching Policy III)

Protocol 5.2 represents a minor modification of the original GAP protocol and retains its

properties in terms of BFS spanning tree construction. In contrast to randomized parent

selection, this protocol does achieve a clear reduction in potential adversarial influence.

We can do even better by relaxing the parent selection rules to select from a larger set

of potential parents, for instance by employing Protocol 5.3. In the example considered

here, we can bypass corrupt nodes entirely, given that they do reveal themselves and
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Figure 5.15: Demonstration of the α feedback mechanism. A series of three send faults are triggered at

T = 1200s on the (15, 8) edge. All other edges are fault-free.

act maliciously. Node 35, occluded by the adversary in the previous section, can use

the parent selection rules of Protocol 5.3 to elect either of its honest peers 31 or 39 as

parent.

The results of two simulation runs using Protocol 5.3 are shown in Figure 5.16 for drop

probabilities p = 0.1 and p = 0.2. An excerpt from the fault detection log for p = 0.1 is

shown in Figure 5.17. In the case of p = 0.1 drop probability, the adversarial influence is

reduced to the current minimum of 1/13 shortly after corruption of node 15 at T = 600s.

The adversarial influence is increased briefly once node 19 is corrupted at T = 800s.

However, node 35’s selection of alternative parent 31 lowers the influence to the current

minimum at that time of 2/13. Note that node 15 is temporarily redeemed at T=1227s

and the potential adversarial influence factor temporarily increased accordingly. However,

upon detecting fault on the (15, 35) edge, node 35 once again selects node 35 as alternative

parent. In the case of the heavier 20% drop probability, the faulty behavior of node 15

causes node 35 to stick with its alternative parent node 31.

Using positional information. The protocols described above can be optimized by tak-

ing the positioning of the nodes in the network graph into account. In GAP, a fist level

trusted node that experiences loss events can determine with full certainty that it is its own

host that is malicious, as the counterpart, the querier, is by definition honest. However,

this assumption is only valid for the particular adversarial model in which the querier is

honest. If we assume this fact, then first level nodes should not waste effort on trying to
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Figure 5.16: Adversarial influence factor. Faults are monitored locally by each participating node (trusted

module). Nodes use Protocol 5.3 to select the current best α peer as parent from the set of nodes that

advertise shorter or equal distance to the querier.

734.950547 SWITCH 31 15 11 PARENTPEER 0.750000 1.000000 1 1

787.139119 SWITCH 35 15 19 PARENTPEER 0.750000 1.000000 1 1

990.479567 SWITCH 35 19 31 PEER 0.750000 1.000000 1 2

1227.732792 SWITCH 35 31 15 UNASSIGNED 1.000000 1.000000 2 1

1627.843370 SWITCH 35 15 31 PEER 0.750000 1.000000 1 2

Figure 5.17: Excerpt from fault detection log. Protocol 5.3 (switching policy III). Nodes use Protocol 5.3

to select the current best α peer as parent from the set of nodes that advertise shorter or equal distance to

the querier. Drop probability is p = 0.1.

obtain reliability by choosing alternative peers other than the querier. This knowledge is

used in the previous runs to reduce the switching noise in the simulation.

Path length can be weighted into routing decisions, which helps the protocol in terms

of efficiency. In terms of security, the path length does not have an impact. However,

accuracy (timeliness of information) is increased as path lengths are shortened.

5.5.3 Completeness in a Kleinberg Random Graph

Let us now consider how the protocols perform in a random graph. In the simulations

that follow, the factory component selects a number of nodes uniformly at random

and marks as corrupt. Corrupt nodes drop update messages with some probability p. A

random communications graph is then constructed, using DRGSimLib.
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5.5.3.1 Kleinberg Graph Construction

We have previously described two types of random graph generators implemented in the

DRGSimLib set of components. For our subsequent trials, we use a third type of gener-

ator, KleinbergGenerator, that constructs Kleinberg topologies (Kleinberg, 2000).

The Kleinberg algorithm takes a number of nodes and constructs a square n × n grid by

adding edges, local contacts, to all neighbors within lattice distance p ≥ 1, as shown

in Figure 5.18. We restrict the initial grid topology to odd n and p = 1 in our imple-

mentation. After construction of the basic grid, the Kleinberg algorithm adds random

“shortcuts” as follows: For each node v we add q long-range contacts with the probabil-

ity of adding an edge (u, v) being proportional to their distance over the grid d(u, v)−r,

where r is the clustering exponent.

(a) (b)

Figure 5.18: Construction of a Kleinberg random graph. Figure (a) shows the initial lattice, in this example

a 7 × 7 grid for p = 1. Edges in the graph are the initially generated local contacts. Figure (b) shows

examples of local and long-range contacts of a node u for q = 2.

5.5.3.2 Comparing Parent Selection Policies II and III

Figure 5.19 shows a sample run for a 7 × 7 Kleinberg graph. In the experiment shown

in Figure 5.19(a), we construct a series of pure 7 × 7 grids, that is, lattice graphs with

no random shortcuts. The random factor in this case is solely the distribution of corrupt

nodes. The experiment represented in Figure 5.19(b) is conducted over randomly gen-

erated Kleinberg graphs with q = 1 and r = −4.0, producing a relatively sparse graph

with a high clustering coefficient. The results of 30 statistically independent runs were

averaged to produce the results shown.
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(a) Pure grid (p = 1, q = 0)
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(b) Clustered Kleinberg graph (p = 1, q = 1, r =
−4.0)

Figure 5.19: Adversarial influence over a 7×7 Kleinberg random graph. The figures show results for three

algorithms, (i) the original GAP algorithm (no reassignment on faults), (ii) Protocol 5.2 (selection from the

set of best α proper parents) and (iii) Protocol 5.3 (selection from same or lower level peers). Adversarial

influence is given as the average of the total number of controlled nodes over 30 statistically independent

runs. Error bars are 95% confidence intervals.
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(a) Algorithm 5.2
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(b) Algorithm 5.3

Figure 5.20: Adversarial influence over a 7 × 7 Kleinberg random graphs with p = 1, q = 0 (pure grid)

and p = 1, q = 1, r = −4.0 (clustered random graph). Comparing the of performance of (a) Algorithm 5.2

and (b) Algorithm 5.3. Adversarial influence is given as the average of the total number of controlled nodes

over 30 statistically independent runs. Error bars are 95% confidence intervals.

In the pure grid graph experiment, we can see that the potential adversarial influence

increases with the number of corrupt nodes, as would be expected, in the case of the

original algorithm (no parent reassignment). Algorithms 5.2 and 5.3 produce a significant

improvement. However, the test is inconclusive2 with regards to the relative performance

2 Statistical significance was determined with a paired t-test, computed with the R statistical package (R
Development Core Team, 2011). 99% confidence level was used. We also used the visual approximate test
described by Jain (1991, pp. 211).
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Figure 5.21: Basic p = 1 Kleinberg grid with annotated distances (in lattice steps) to the root. The node

at level two has a single lower level neighbor and the node at level five has two. In no case do nodes have

same level peers.

of Algorithms 5.2) and 5.3. From Figure 5.21, we can see that any given node has either

one or two alternative parents, but no same-level peers. Hence, Algorithm5.3 may be

expected to be ineffective in this case, as no same level peers are available.

In the second experiment, represented in Figure 5.19(b), we add random links, the proba-

bility of a node v linking to a node u being proportional to d(u, v)−4.0. Hence, we expect

relatively short random links for a high clustering coefficient. This added randomness in-

troduces the possibility of selecting same level neighbors as parents, which reflects in the

statistically significant improvements (p = 0.0006095 for a paired t-test with 99% confi-

dence level) of Algorithm 5.3 over 5.2 in this case, as can be seen from Figure 5.20(b).

Further, note that Algorithm 5.3 achieves close to the ideal minimum adversarial influence

of t/|V |, where t is the number of corrupt nodes.

5.5.3.3 Effects of Topology on Adversarial Influence.

As expected, the q and r parameters have a significant influence over the topology of

the Kleinberg random graph, as shown for a range of parameters in Figure 5.22. The

average diameter (Figure 5.22(a)) can be seen to be strongly dependent on the clustering

coefficient r, since lower r causes long links to be more probable. The average clustering

is also dependent on the distribution of random link lengths.

We would expect the graph diameter to have an impact on the adversarial influence. Con-

sider a binary tree of size n = |V |. In the worst case, a single corrupt node can control

half of the tree. If we modify the graph to a k-ary tree, the potential worst and average

case adversarial influence is expected to decrease, since each corrupt node controls a shal-

lower sub-tree. At the extreme of a star graph (k = n − 1), each corrupt node controls
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Figure 5.22: Topology analysis of a 7× 7 Kleinberg random graph (p = 1). Results are averages over 30

statistically independent runs. Error bars are 95% confidence intervals.

only itself, that is, adversarial influence is reduced to the minimum of exactly t/n, the

ratio of corrupt nodes to the total node population.

Figure 5.23 demonstrates the effect of running the basic GAP algorithm (no avoidance)

over two Kleinberg graph topologies, a pure grid (p = 1, q = 0) and a clustered graph with

p = 1, q = 1 and r = −4.0. The clustered graph has a considerably lower diameter (≈6

compared to 12) due to the random links, and hence, a lower adversarial influence would

be expected. Examining Figure 5.23 gives an indication that this may be the case, but the

results are not statistically significant. We examine this further in an experiment depicted

in Figure 5.24, processing a dataset of simulation runs for t = {1, . . . , 6}, q = {1, 2, 3},

r = {−2.0,−3.0,−4.0} and 30 statistically independent runs executed for each com-

bination. Again, vague trends towards decreasing adversarial influence with decreasing

diameter can be observed, but the predominant effect is t, the number of corrupt enti-

ties. We conclude that depending on a small average graph diameter as the sole means of

decreasing the adversarial influence is not a promising approach.

5.6 Concluding Remarks

We consider the problem of guaranteeing completeness in distributed aggregation net-

works, an important property in the case of in-network aggregation, since malicious nodes

can affect the completeness of the set of contributions of honest ones. We begin by argu-

ing for the impossibility of guaranteeing completeness by any proactive means, including

the expensive measure of forwarding on all available paths.
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Figure 5.23: Adversarial influence over a 7 × 7 Kleinberg random graph with p = 1, q = 0 (pure grid)

and p = 1, q = 1, r = −4.0 (clustered random graph). Comparison of the effects of topology on the

adversarial influence when executing the basic GAP algorithm (no adversarial avoidance). Adversarial

influence is given as the average of the total number of controlled nodes over 30 statistically independent

runs. Error bars are 95% confidence intervals.
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Figure 5.24: Adversarial influence over a series of 7x7 Kleinberg graphs, for configurations with q =
{1, 2, 3} and r = {−2.0,−3.0,−4.0}. The number of corrupt nodes is t = {1, . . . , 6} for each graph

configuration. Adversarial influence is given as the average of the total number of controlled nodes over 30

statistically independent runs. Error bars are 95% confidence intervals.

We proceed by considering the mechanisms necessary for a failure detection and response

protocol. A case study of securing the GAP protocol is presented, demonstrating the

application of the trusted modules concept from the previous sections combined with

light-weight means of reducing the influence of potentially corrupt nodes in terms of

completeness. The adversarial influence is reduced by avoiding nodes that have dropped

messages. To this end, a failure detection protocol is executed over the trusted layer,

whose correctness is guaranteed by the same principles as discussed in the preceding
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chapters. The protocol is inexpensive, based solely on the straight-forward mechanisms of

acknowledgements and sequence numbering of messages. We support the protocol design

by simulation trials, whose results indicate that a significant reduction in the potential

adversarial influence can be achieved.
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Chapter 6

Conclusions

We have discussed the various aspects of secure in-network aggregation in distributed sys-

tems in an attempt to answer our original research question: Can a dynamic aggregation

system composed of several data contributors and aggregators in the hands of untrusted

entities be secured to give sufficiently strong integrity guarantees? Having presented the

material in this dissertation, the answer is a qualified yes. We can indeed give strong

security guarantees in terms of the integrity sub-goal of correctness. However, the com-

pleteness sub-goal is in many respects a more difficult one. In fact, no practical approach

appears likely that can guarantee aggregate completeness. However, the correctness attack

is definitely the more powerful of the two, and, hence, more important to prevent.

Our primary goal was to present means of securing in-network aggregation in the gen-

eral case, in particular to ensure end-to-end integrity of aggregate data in the event of

corruption of one or more participants in such a system. Hence, we searched for efficient

solutions, broadly applicable to a wide range of networked systems and aggregation ap-

plications. In particular, we searched for solutions applicable to a wide range of input

data types and aggregation functions, as well as arbitrary network transports, topologies

and aggregation protocols. Furthermore, our goal was to support arbitrary dynamic net-

worked systems. This set of requirements placed restrictions on the range of possible

solutions.

We analyzed the problem of aggregation integrity, beginning from a centralized single

honest aggregator model and progressing to a hierarchical tree-based model, widely used

in distributed aggregation applications. Two separate problems were examined: those

of data source and aggregate integrity. In the case of networked measurement systems,

the data source integrity problem relates to the trustworthiness of original observations,

which is hard to establish, even with corroborating evidence. Hence, we turned to the
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established principles of trusted systems theory to provide an anchor of trust. Specif-

ically, we proposed a trusted sensor – a minimal self-contained hardware device that,

given some integrity assumptions, can guarantee correctness and verifiability of source

data. The trusted sensors concept was supported by a proof-of-concept prototype of a

client/server measurement system, composed of general-purpose untrusted nodes aug-

mented with trusted sensors. The trusted sensors concept was then extended to the prob-

lem of trusted in-network aggregation in arbitrary dynamic networked systems. A trusted

aggregator is a generalization of a trusted sensor – a dedicated device that extends the

trusted functionality to correct evaluation of aggregation functions. Given trusted sensors

and aggregators, we can construct a trusted overlay over a system composed of arbitrary

untrusted observation nodes. The trusted overlay delivers correct results by virtue of

transitive trust relations, from the trusted data sources (trusted sensors) to the implicitly

trusted querier (recipient of aggregate information). The trusted aggregation concept was

supported by a design for a tree-based aggregation system.

Given a trusted overlay of sensors and aggregators, we can claim aggregate correctness.

The complementary goal of completeness is more difficult, if only for the fact that losses

due to link faults and churn are commonplace in dynamic networked systems. Rather

than attempting the likely futile task of guaranteeing aggregate completeness, we investi-

gated light-weight means of increasing completeness, while maintaining the efficiency of

the underlying aggregation protocol. To this end, we outlined a simple protocol that can

increase completeness by monitoring anomalies and avoiding suspicions nodes. A case

study of S-GAP, a secure version of the Generic Aggregation Protocol (GAP), was pre-

sented, which applies trusted systems principles to ensure correctness and the proposed

adversarial avoidance measures to increase completeness. The protocol was shown by

means of simulations to produce a significant reduction in the potential influence an ad-

versary can wield in terms of aggregate completeness, while imposing a small overhead

on the underlying aggregation protocol.

Future directions

As this project draws to a close, the ways in which this work can be extended appear

limitless. Let us briefly touch on a few directions for future work. The TSense system

can be developed more fully and a prototype of a full distributed system produced. The

trusted sensor design requires fuller consideration of tamper-proofing and packaging of

the trusted sensor, including measures to secure against side-channel attacks. A full pro-

totype of a tamper-proof trusted sensor is a challenging but necessary next step in the
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development of a trusted sensing system. Formal specification and verification of the

functionality and security of trusted modules is a crucial task for which techniques and

procedures should be developed, including the trusted manufacturers certification proce-

dure. The cryptographic protocols used in the TSense system should be analyzed more

rigorously with regards to their security and efficiency. Formal verification of a subset

of the presented protocols was carried out as student projects, using both the ProVerif

and Avispa tools. The results indicate that the presented versions of the protocols are se-

cure against key discovery and data alterations. Efficiency of protocols and cryptographic

primitives should be analyzed and optimized, as both are crucial issues in resource con-

strained systems.

We proposed the use of Physically Unclonable Functions as a means of preventing sim-

ulation attacks against trusted aggregation systems in the event of key discovery. Our

proposed protocols and their analysis assumes the PUF used to behave like a random ora-

cle. Further work is required to use a PUF securely in a real implementation. For instance,

one must consider the entropy provided by the PUF used, as well as the repeatability of

the measurements on which the output is based. Further, the feasibility of the PUF so-

lution in terms of the storage requirements imposed by the required challenge/response

pairs must be addressed.

The trusted aggregation work presented assumed trusted hardware devices. This is a ro-

bust but yet limiting choice, as the set of functions that can be supported in such a system

is by definition pre-determined. A more flexible solution based on security-oriented hy-

pervisors was discussed briefly as an alternative to the approach of using dedicated hard-

ware devices. This should be explored further in future work. Methods for constructing

and attesting trusted software, and the distribution of trusted software modules, need to

be addressed as part of this work.
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