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The Segregated Approach to Predicting Viscous
Compressible Fluid Flows

ABSTRACT

The SIMPLE method of Patankar and Spalding and its
variants such as SIMPLER, SIMPLEC and SIMPLEX are
segregated methods for solving the discrete algebraic equa-
tions representing the equations of motion for an incompres-
sible fluid flow. The present paper presents the extension of
these methods to the solution of compressible fluid flows
within the context of a generalized segregated approach. To
provide a framework for better understanding the segre-
gated approach to solving viscous compressible fluid flows
an interpretation of the role of pressure in the numerical
method is presented. With this interpretation it becomes
evident that the linearization of the equation for mass con-
servation and the approach used to solve the linearized alge-
braic equations representing the equations of motion are
important in determining the performance of the numerical
method. The relative performance of the various segregated
methods are compared for several subsonic and supersonic
compressible fluid flows.

NOMENCLATURE

ap ,a e ,aw ,an ,a s	coefficients of pressure equation and alge-
braic representation of momentum and
energy conservation

A	 matrix of a coefficients

A	 approximation of A

coefficient of pressure equation and alge-
braic representation of momentum and
energy conservation

b	 vector of b coefficients

c	 pressure coefficient

c	 vector of c coefficients

CP	specific heat at constant pressure

C	 matrix of c coefficients

C P	matrix of pressure coefficients

d	 coefficient of pressure difference influence

d	 approximation of d

d	 vector of d coefficients

matrix of pressure influence coefficients

D
P
	approximation of D 5

k	 thermal conductivity
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L	 length

m e , mw , mn , m s coefficients of algebraic representation of
mass conservation

M

M

N

P *

P

P

P 1
p ll

Re

v

u*, v*

u, v

u', v 1

u n

V

w

mass contained in control volume

mass flux through control volume face

matrix of m coefficients

number of control volumes in length L

pressure

estimate of pressure

improved estimate of pressure

improved estimate of pressure of PUP

pressure correction

pressure correction of PUP

Reynold's number

velocity components in x and y directions

velocities based on p *

intermediate velocities of PUP

improved estimate of velocities

improved estimate of velocity of PUP

velocity corrections

velocity corrections of PLOP
pseudo-velocity of PUP

characteristic velocity

width of one-dimensional duct

Cartesian coordinates

time step

under-relaxation factor for pressure correc-
tion

density

density based on p *

intermediate density of PUP

improved estimate of density

improved estimate of density of PUP

density correction

density correction of PUP

pseudo-density of PUP

viscosity
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Subscripts

E, W, N, S, P grid points

nb	 neighbour grid point

determine the sensitivity of the computational requirements
of each of the segregated methods to the size of time step
chosen. A simple and stable representation of the equations
of motion was used throughout this study; the question of
discretization accuracy was not addressed.

Acronyms

PUP

SIMPLE

SIMPLER

SIMPLEC

SIMPLEX

Pressure Update of Patankar

Semi-IMplicit Pressure Linked Equations

SIMPLE-Revised

SIMPLE-Consistent approximation

SIMPLE-eXtrapolated pressure gradients

EQUATIONS OF MOTION

Differe n tial Equatioas

The differential equations expressing the conservation
of mass, momentum and energy for a laminar one-
dimensional viscous compressible flow of a perfect gas can
be expressed as

INTRODUCTION

Many problems of practical interest, such as the
analysis of gas turbine flows, require the solution of the
equations of motion for a viscous compressible fluid flow.
Over the last two decades the numerical methods for treat-
ing such problems have evolved rapidly. However, many of
the methods which can be used for the prediction of
compressible flows, such as those found in references 11-4',
are not appropriate in the lov, Mach number limit and not
at all applicable to incompressible flows. Another class of
methods used extensively for the prediction of viscous
incompressible fluid flows and which has been extended to
compressible fluid flows is based on the SIMPLE algorithm
of Patankar and Spalding 5,. The extension of SIMPLE-
based methods to compressible flows was first proposed by
Patankar [6] and later by Issa and Lockwood 7 and Hah
8. While these segregated methods are used, they are
based on the extension of the original SIMPLE algorithm
which has been, since it was first introduced, the subject of
considerable study and enhancement. As a result a number
of improved variants of the original SIMPLE algorithm
including SIMPLER , SIMPLEC 1101 and SIMPLEX [11
have been developed. These enhanced variants have not
been extended to compressible flows. In the present paper,
the extension of these methods to compressible flows is
advanced and an understanding of their limitations and
knowledge of their relative computational performance is
developed.

To provide a framework for understanding the segre-
gated approach to solving viscous compressible fluid flows
an interpretation of the role of pressure in the numerical
method is presented. With this interpretation of the role of
pressure it becomes evident that the linearization of the
equation representing mass conservation and the solution
method used to solve the linear algebraic equations
representing the equations of motion are important in deter-
mining the applicability and the computational performance
of the method.

To provide a clear understanding of the segregated
approach to solving compressible fluid flows, a generalized
segregated approach is advanced and the extension of the
segregated methods for incompressible flows to compressible
flows is presented within this generalized framework. Also,
in the interest of clarity, the concepts outlined above are
presented within the context of one-dimensional duct flow.
Fortunately all of the concepts developed within this one-
dimensional context are readily extended to two or three
dimensions. To demonstrate the latter and to evaluate the
relative performance of the various segregated methods, the
results of a number of numerical experiments including
one-dimensional flow in a duct and the steady state two-
dimensional supersonic flow around a flat plate obstacle are
reported. The numerical experiments were designed to

dp 0 

w at +
	(puu;)=0	 (1)

)u)+—(puwu)----	(u) 
du

—	)	 (2)
ax	 ax

dp II  a a 

ax
+
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( 
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(uw))

T)+	(puwT)—	(u) 
k  aT

 )
Ox	 ax C

	i 	ap a	a 

C
(w 

at
	(uwp)—p 

Ox
 (uw))

where the dependent variables, u, p, p and T are the velo-
city, pressure, density and temperature, respectively, p is
the viscosity, Cp is the specific heat at constant pressure, k
is the thermal conductivity and w is the the width of the
duct.

To close the set of equations an equation of state,
relating pressure, density and temperature, is required. For
an ideal perfect gas this relation is given by

il= RT
p
	

(4)

where R is the gas constant.

Alubr a ic Equations

To solve the equations of motion a grid is generated to
cover the domain of interest and any one of a number of
discretization methods applied. In this paper the staggered
grid of Harlow and Welch [121, shown in Fig. 1, and the con-
trol volume based discretization described by Patankar r 9
with the upstream weighted variant of Raithby and Tor-
rance '13] are applied. Also, the recommendation of Issa
and Lockwood is adopted whereby densities are
upwinded in the discretization of the mass conservation
equation. As a result the algebraic equations expressing the
conservation of mass momentum and energy for the control
volumes shown in Fig. 1 can be expressed as

M—M" •	•

	

—.11,„	 (5)

	a p uD=V 4bunb —c u (PE —Pp)+b u
	

(6)

	ap rTp = a rfbT,b+b r
	

( 7 )

where

=ajiuEanub unb

\]‘ antiTnb = -- aeTTE -FawTTw

and where M is the mass contained in the control volume,
the superscript o is to denote the value at the beginning of
the time step and M is the mass flux through the control
volume face indicated by the corresponding subscript. The
lower case subscript e refers to the location of the control
volume face that lies between P and E, and w to the face
between P and W. To close the algebraic set of equations
the equation of state can be expressed as

a

a
w ,,T

)t (3)
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explicitly appear. To remedy this, it is necessary that the

coefficients of Eq. (5) be linearized in terms of density and

the components of velocity. This choice is motivated by the
interpretation of the role of pressure described previously,

that pressure must influence velocity and density such that
both velocity and density together conserve mass.

To accomplish this the mass flux term, Ale , is approxi-

mated by

_ate
=

l/, u2U	ktv ),	e	*u *w	(9)
e	 Fe

LOCATION OF PRESSURE, DENSITY AND
•

TEMPERATURE NODES

LOCATION OF VELOCITY NODES

MASS AND ENERGY CONSERVATION

CONTROL VOLUME

EEE MOMENTUM CONSERVATION CONTROL

VOLUME

Fig. 1	Geometry and staggered arrangement of mesh.

nodes and control volumes for flow in a one-

dimensional variable area duct.

pp=cl[pp+V	 (8)

The solution of Eqs. (5)-(8), together with the algebraic

representation of the prescribed boundary conditions,

advances the solution over a time step At. The remainder

of this paper is addressed to methods used to obtain this

solution.

An laLerp_r_e_tation of the Sole Qf Eressu re

Before examing in detail the segregated approach to

solving compressible fluid flows it is instructive to consider
one interpretation of the role of pressure in a segregated

approach.

The treatment of the coupling between pressure and

velocity in the solution of incompressible fluid flows has in

the past been particularly troublesome. This difficulty
arises because only velocity and not pressure appears in the

mass conservation equation. The mass conservation equa-
tion can be interpreted in this case as an indirect constraint

equation for pressure whereby the correct pressure distribu-

tion is identified as that which, when used in the momen-
tum equations, results in velocities which conserve mass.

For compressible fluid flows both velocity and density

appear as dependent variables in the mass conservation

equation. Nevertheless, the algebraic representation of mass
conservation can still be interpreted as a constraint equation

for pressure and the modified interpretation of the role of

pressure for the segregated approach to solving compressible
flows becomes that the pressure must influence the velocity

through the momentum conservation and the density

through the equation of state such that together the result-

ing velocities and the resulting densities conserve mass.

Nsuilinearity

The form of Eqs. (5)-(8) implies that these equations

are linear. In fact the coefficients of these equations them-

selves depend on the dependent variables. To obtain solu-

tions to these nonlinear equations, linearization and itera-

tion are required.

For Eqs. (6)-(8) the linearization adopted is the one

implied by the form of these equations whereby the current
available estimates of dependent variables are used to evalu-

ate the coefficients. However, the linearized algebraic

representation of mass conservation given by Eq. (5) is not

appropriate because the desired dependent variables do not

where the superscript is used to denote that current esti-

mates are to be used to evaluate the corresponding depen-

dent variable. As a result, the mass flux term enclosed in

the ( ) brackets is linearized in terms of density and the
mass flux term enclosed in the [ ] brackets is linearized in

terms of velocity. With o e taken as the upstream nodal

value of density, with My, linearized in a similar fashion and

upon expanding the control volume mass, M, in terms of

density, Eq. (5) can be represented by

rni;PP+m'PE+rnICJ'w-Frn:uP+)n',uw—bc (10)

where current estimates of velocity and density are used to

evaluate the coefficients of Eq. (10).

The linearization of the mass conservation equation
described above, in terms of both velocity and density, has

been adopted to ensure that the linearization is applicable
to both incompressible as well as compressible flows. To

linearize mass conservation in terms of velocity alone res-

tricts the application of the resulting solution method to low

Mach number and incompressible flows and linearization in

terms of density alone restricts applications to compressible

flows with very small time steps required in the low Mach
number limit to maintain stability. The linearization of

mass conservation resulting in Eq. (10) is also a generaliza-

tion of the linearization of mass conservation suggested by
Harlow and Amsden [16; for the ICE method as well as the

linearization implied by Patankar 16; in the extension of the

SIMPLE approach to compressible flows.

With regards to the linearized algebraic representation
of the equation of state, again, the form of Eq. (8) is

motivated by the interpretation of the role of pressure

already discussed. For the linearization of the algebraic
representation of energy conservation given by Eq. (7), the

assumption is made that the couplings between temperature
and velocity as well as between temperature and pressure

are not dominant so that in the linear algebraic set of equa-

tions the energy equation is decoupled from the mass,
momentum and state equations. This allows the focus of

the present work to centre on the remaining linear equa-

tions for pressure, velocity and density. There are, of

course, flows for which such a segregation of the energy
equation is inappropriate.

SOLUTION OF LINEAR EQUATIONS FOR PRESSURE,
VELOCITY AND DENSITY

To advance the solution of the equations for mass,

momentum and energy conservation and the equation of

state over a time step, Eqs. (6)-(8) and (10) are solved, the

coefficients updated, and the sequence repeated until the

effect of the non-linearities have been adequately treated.

Each repetition of the sequence is defined here as a cycle.
For small time steps one cycle is adequate while for large

time steps several cycles may be required. Because the cou-
pling with temperature has been assumed to be weak only

the solution of the linearized algebraic representations of

mass conservation, Eq. (10), momentum conservation, Eq.

(6) and the equation of state, Eq. (8), for pressure, velocity
and density are examined in detail further.
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The development of a clear understanding of the segre-
gated approach to solving Eq. (6), (8) and (10) for compres-
sible flows begins by considering a direct non-iterative solu-
tion method. Based on this direct method, the framework
of a generalized segregated approach is advanced. Different
approximations introduced into the generalized approach
lead directly to segregated methods for compressible flows
which are extensions of methods developed originally for
incompressible flows.

Solution

For one-dimensional compressible flow in a duct, Eqs.
(6), (8) and (10) can be rewritten in matrix notation as

	

Au u+C;p=b u	(11)

p	p+13/'	 (12)

	

114P p +3.4' u=b c	(13)

Extending the method introduced by Watson [14] and
further developed by Zedan and Schneider [15] for
incompressible flows, Eq. (11) is rewritten as

u=(AT 
131 u_Dpup	 (14)

where D;=(A') -IC;, and substituting for u from Eq. (14)
and for p from Eq. (12) into Eq. (13) the resulting equation
for pressure is given by

AP p=bP	 (15)

where

AP =1VI'' C' —Mu D	 (16)

bP = —MP C" —M" (A')_ 1 b .'	 (17)

The exact solution to Eqs (11)-(13) can therefore be
achieved by solving Eq. (15) for p, followed by a direct sub-
stitution into Eqs. (14) and (12) to obtain u and p.

This method for solving the linear equations clearly
illustrates how the pressure influences velocity through Eq.
(14) and density through Eq. (12) such that together velo-
city and density satisfy the algebraic representation of mass
conservation. Also, this method for solving the linear equa-
tions for pressure, velocity and density is relatively straight-
forward and readily implemented numerically. The compu-
tational requirements, in particular, for the evaluation of D;
and the storage of AP are considerable. To reduce these
computational requirements the iterative segregated
approach is adopted where approximations to D; are intro-
duced.

Generalized Saw.- egatd Approach

Given an estimate of pressure, denoted by p *, the
corresponding velocity, u *, which satisfies the algebraic
representation of momentum conservation and the
corresponding density, p*, from the algebraic representation
of the equation of state, are given by

u *=(Au ) -1 (b u —C;p * )	 (18a)

Or,

and

p *=CP p * -Fby

Since the p* is not in general correct, the u* velocity and
p * density will not together satisfy mass conservation. To
improve the estimate of the u* velocity and p * density it is
necessary to subtract out the effect of p * on u and p and
add in the effect of an improved pressure estimate. Approx-
imating the influence of p* on u* by —13;p* and the influ-
ence of the improved pressure estimate, p, by —D;p*, the
improved estimate of velocity, u, is given by

d=u*-{-D pup*—Inii	 (20a)

or,

ii=u*—D;(F:o—p*)	 (20b)

Without further approximation, the improved estimate
of density, p, is given by

P=i) *—C'p * +C P ITi	 (21a)

or,

7=p *+C' (P — P *)	 (21b)

where C" p* and C''p represent the influence of p* and
respectively, on the density.

By requiring that the u velocity and	density satisfy
mass conservation, given by Eq. (13), the following equation
for p results.

AP 5--=bP	 (22)

where

AP	ci	i5;	 (23)

b P -=—A4P(p 9 —C'p*)—M'(u *-1-D> *)	(24)

Solving Eq. (22) for p the solution for u and	are readily
determined from Eqs. (20) and (21), respectively.

It is important to note that if D; is chosen to be D'
exactly, then p , ii and p will satisfy Eqs. (11), (12) and (13 .

exactly. However, because an approximate evaluation of Dp

is used to obtain 13,1-i and 7, these solutions will not satisfy
Eqs. (11)-(13) exactly unless the choice for p * happened to
be correct.

Using the approach described above the solutions of
Eqs. (11)413) can be determined from repeated application
of Eqs. (18)-(24) with p* to be taken from the previous
value of 5. With an appropriate choice for D; this iterative
method will converge but it is not clear that the computa-
tional requirements associated with this iterative method
would be any less than the requirements of a direct method.
However, if DI is a good approximation of D;, then the
values of p, u and 7 after one iteration will adequately
represent u, p and p. As a result, the computational
requirements of the . terative method may be considerably
less than that of a direct method.

The resulting segregated approach is implemented by
executing the following sequence of steps:

(1) Guess a pressure field, p*.

(2) Evaluate the coefficients of the momentum conserva-
tion equation and the equation of state, Eqs. (11) and
(12) and solve for u * and p* using p *.

Evaluate the coefficients of the mass conservation
equation, Eq. (13), and the pressure equation, Eq. (15)
and solve for 5.

(4) Evaluate the improved estimate for velocity, u, and
density, F, from Eqs. (20) and (21), respectively.

Evaluate the coefficients of the energy conservation
equation, Eq. (9), and solve for the temperature, T.

(6) Using the 5 found in step 3 as the new p *, return to
step 2. Repeat this cycle, until the desired convergence
is achieved, to obtain the solution for p, u, p and T at
the end of the time step.

Repeat steps 1 to 6 for each time step until the solu-
tion at the prescribed time, or steady state conditions
are obtained.

In the approach described above the solutions of the
tentative velocity, u * the tentative density p*, the approxi-
mate pressure, 5, and the temperature, T, are determined
separately, in an uncoupled manner. This approach to solv-
ing- the coupled equations can appropriately described as
segregated. In fact, without prescribing how D; is to be

( 3 )

(5 )

( 7 )
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evaluated, the method is the compressible flow extension of
the generalized segregated approach to solving incompressi-
ble fluid flows described previously [11,.

It is evident that the performance of a segregated
method is dependent on the approximations introduced to
determine D. With a detailed discussion of this considera-
tion for incompressible flows already presented by Van
Doormaal and Raithby [11', only a summary of the discus-
sion is presented here.

On the Structure  of ap.0

In an effort to ensure that the computational require-
ments of the segregated method are minimized a desirable
structure for D; arises from relating each nodal velocity,
through D;, to only the two nodal _pressures that stagger
the velocity node. In this case the D; matrix would have
zero entries everywhere except along two diagonals.

There are at least two advantages to this form of D n4 .
The first is that the diagonal entries of D; may be readily
evaluated, thereby keeping the computational requirements
low. Secondly, the computational storage requirements of
AP from Eq.(23) are minimal. It is because of these advan-
tages that most segregated methods adopt this simple form
of Due .

 However, there are at least two major shortcomings
of this practice.

The first shortcoming is that for high Reynolds number
flows and with relatively high values of the time step it has
been shown [111 that nodal pressures which are physically
distant from a nodal velocity can have a significant influ-
ence on the velocity. For such cases the simple form of D;
is not appropriate. Only for smaller time steps does this
simple form become appromiate 111. The second shortcom-
ing of this simple form of D; is that, without taking special
care, the convergence of a segregated method often degrades
significantly with grid refinement.

With a knowledge, then, of these potential limitations
Df segregated methods, these methods can be used in an
appropriate fashion. In the next section various approxima-
;ions to D; leading to the compressible flow extension of
SIMPLE. SIMPLER, SIMPLEC and SIMPLEX are reviewed.
Subsequently, the results of numerical experiments designed
to evaluate the relative performance of these methods are
presented.

EXAMPLES OF THE SEGREGATED APPROACH

The preceeding description of the generalized segre-
gated approach is given in terms of the dependent variables,
pressure, velocity and density using matrix notation, with
the solution of the temperature, determined from the con-
servation of energy, being completely decoupled from the
solution of the remaining dependent variables. In what fol-
lows the segregated approach is reformulated and cast in
terms of corrections to the nodal values of pressure, velocity
and density. Although the two descriptions are algebrai-
cally equivalent, the latter is employed because it is the
form most commonly implemented in a computer code.
Also, in the interest of minimizing the effects of computer
round-off, use of the correction form is recommended 101.

-Seer- egated .Approach in Terms of N_osIal Values

Given an estimate for pressure, p*, the nodal values for
the u* velocities and p * densities are determined from

ap"u*p= a nu b u (P*E—p*p)-{-V` (25)

and

p *p=cP p*p+V (26)

Introducing corrections to the p * pressure and is* velocity
denoted by p' and u' such that

	p'=1T—P *
	

(27)

	

u 1 =i7c—u*
	

(28)

approximating that

(29)

and combining with the definition of it', the u velocity is
given by

17P=u*P—ilu (P i E — P 1 P)

	

(30)

Similarly, introducing a correction to the p * density
denoted by p' such that

	

*
	

(31)

the F density is given by

P =1) *P -H P P	 (32)

By requiring that the u velocities and p densities satisfy
mass conservation, that is

TqFP+rne'T'Erniw+rrte4117P+rnLI:LTvii=b`	(33)

the following equation for p i results:

cqP iP=a 1;P'E -Eaf,P i EH- b P'	(34)

where

+m euilu +rn:,*,1d u 1 w	(35)

4 ---- rn1c y lE+rri:ju	(36)

a,,,—m,1,11c/ 1 1 w—rn u,':d u1 w	(37)

bP'=b c -7721;/) *p-774' p E—ML;1) *w—meu*p—rri,,1*,ti*w (38)

and where the subscripts on the coefficients enclosed by the
1 brackets refer to coefficients written for the equation of

the corresponding subscript. For terms not enclosed by the
1 brackets the P-control volume is implied. Upon solving

Eq. (34) for IT is obtained from

	

/Y=P *-FP 1	(39)

IT is obtained from Eq. (30) and p from Eq. (32).

At this point it is instructive to note the algebraic
equivalence of Eqs.(18) and (25), Eqs. (19) and (26), Eqs.
(20b) and (30), Eqs. (21b) and (32) and Eqs. (22) and (34).
In the case of Eqs. (30), (32) and (34) which are expressed in
terms of Eq. (39) provides the simple linear transforma-
tion to /3 which appears in Eqs. (20b), (21b) and (22). In
noting the equivalence of Eqs. (22) and (34) it is worthy to
note that the approximate form of DP results in a tridiago-
nal matrix for A P thereby minimizing the computational
storage requirements.

Lour S_egregatesi

Using the generalized segregated approach described
above, a number of segregated methods can be generated b4
introducing different approximations to evaluate the d
coefficient of Eqs. (29) and (30). The evaluation of du and
the approximation introduced for several segregated
methods including SIMPLE, SIMPLER, SIMPLEC and SIM-
PLEX, all proposed originally for incompressible flows, are
listed in Table 1.

It is important to note here that the evaluations of d u

distinguish the segregated methods from one another, and
that the same evaluations of d u used for incompressible
flows are applicable to compressible flows. The major
difference between segregated methods for incompressible
flows and segregated methods for compressible flows is the
additional consideration in compressible flows of the varia-
tions in density in the mass conservation equation.

SlI1PI,F, In the original form of SIMPLE L5 1 , the
approximations which are introduced to evaluate d u often
result in an overestimation of the magnitude of p' which in
turn leads to slow convergence or to cause divergence of the
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Method

SIMPLE

SIMPLER

SIMPLEC

SIMPLEX

TABLE 1

EVALUATIONS OF d u

Approximation

ar/bunb

arutb u inb =°

anb(u l	P)=°

-PALL=-APP for Up

cu /a;

c u /a u

'/(C 	uanb )

apu4=variubjnub+cu

method. To remedy this, for incompressible flows, the
correction of pressure is under-relaxed by

	P =P * ±"pPi	 (40)

	

where Patankar 17 recommends	 However, for
compressible flows Eq. (40) is not necessarily appropriate
since the pressure now influences both velocity and density.
Therefore, for compressible flows a value of unity for p is
used.

SIMPLER In place of under-relaxing p' Patankar '9,17
in his SIMPLER method for incompressible flows introduces
the "Pressure Update of Patankar" (PUP) as a second stage
to SIMPLE. For compressible flows a similar update of
pressure can be adopted. By introducing a second set of
improved pressure, velocity and density estimates. p, u and

p and substituting into momentum conservation and the
equation of state

• 1	=	.L

CqUp= a n bu nb—c (PE —Pp)+b	 (41)

	iip=c 17p+b y	(42)

With a second set of pressure and velocity corrections,
np =p—p and u"-----u--Ft, and introducing the approximation

that VaLu nb " ,-----0, which is similar to that of SIMPLE, Eq.
(41) becomes

17p=U**p—ilu(p"E—p"p)	 (43)

where

u **P =L] a:Zb l7nb —eu E-1 P)+bu)/a;	(44)

Similarly by introducing a second density correction,
Eq. (42) can be expressed as

77p=p**p+cl'P"P	 (4 5)

where

p"p=---CPITp+b/'=Fp	 (46)

By requiring that 'it and i7 satisfy mass conservation, an
equation for p" similar to Eq. (34) results

qp"p=afp"E -Patp"w d-bP"	 (47)

where	„
bP =b`—rnr;Fp—TTIFE —m w—rtz euzip —rn,,,'t7w	(48)

Upon solving Eq. (47J for p" the improved pressure estimate
is determined from 75-73H-p" and the 17, velocities and 77 den-
sities from Eqs. (43) and (45), respectively.

The application of PUP differs in two ways from the
description of SIMPLER provided by Patankar r9,171. The
first difference arises from the use of a second pressure
correction, p", not used by Patankar. However, PUP can be
implemented in terms of the 73 pressure by rearranging Eqs.
(43) and (45) into the form given by

uP=T2 P — ti u (PE — PP)

I ) P=P Pel-c PP

where up=( °nub t7nb ±b ),/cq and 1 ----V)p. Now by requiring

that t7 and 71 conserve mass an equation for p results that is
consistent with Patankar's proposal.

The second difference is the order of the SIMPLE and
PUP stages. In the preceeding description PUP follows
SIMPLE where in the SIMPLER described by Patankar,
PUP precedes SIMPLE. The order of the PUP and SIMPLE
stages described in this paper is identical to the order
described by Raithby and Schneider 1,181 in their study of
methods for solving incompressible flows and is in many
ways similar to the PISO method 19,20 developed for solv-
ing incompressible and compressible flows. In fact, for
steady incompressible flows the PISO method is identical to
the method described here. For transient incompressible
flows as well as compressible flows further study is required
to determine the significance of any difference between the
two methods.

SIMPLEC The introduction of PUP as a second stage
is an attempt to correct errors in the pressure which result
from making a poor approximation to D p '. In the SINI-
PLEC method of Van Doormaal and Raithby [10 a more
'consistent' approximation is introduced. The results of
numerical experiments indicate that for incompressible flows
SIMPLEC is substantially more economic than SIMPLE and
that SIMPLEC is usually less expensive than SIMPLER.

SIMPLEX In the three segregated methods described
above, no care is taken to ensure that the rate of conver-
gence will not decrease with grid refinement. An attempt to
address this concern is made in SIMPLEX 11] where the
influence of nodal values of pressure further from a nodal
velocity is accounted for. This is accomplished in SIMPLEX
by using extrapolation to express all pressure differences in
the domain in terms of the pressure difference local to the
velocity. Again, for incompressible flows, the computational
advantage of SIMPLEX over the previous methods reviewed
here, particularly for fine grids, has been demonstrated [11 .

ONE-DIMENSIONAL DEMONSTRATION PROBLEMS

To illustrate the applicability of the segregated
methods and to evaluate the relative convergence behaviour
of these methods numerical experiments were performed on
two laminar one-dimensional compressible duct flows.

Sstbs_onic Remonstration Problem

The first demonstration problem is that of a subsonic
laminar flow through the 3:2 converging duct shown in Fig.
2 with an inlet Mach number of 0.3. Using a Reynolds
number of 10 7 steady state numerical solutions were deter-
mined to within the round-off limit of the computer using
20, 40, 80, 160, and 320 nodes. Using these solutions,
numerical experiments were performed to evaluate the sensi-
tivity of the convergence of the segregated methods to the
number of nodes, N, and the time step, At. For each grid
and for a prescribed time step the coefficients of the linear-
ized algebraic representations of mass conservation, momen-
tum and energy conservation and the equation of state were
determined using the steady state solutions for p, u, p and
T. Subsequently, the pressure was set throughout the
domain to the value of the outlet and the convergence of
each segregated method was monitored as the solution of
the linearized algebraic equations with fixed coefficients was
obtained. It is important to emphasize that these tests
reveal how well the solution methods used treat the cou-
pling between p, u and p in the linear equation set. Good
performance at this level is a prerequisite to the satisfactory
solution of the non-linear set.

In Fig. 3 the number of cycle, K required by each of
the methods on each of the grids, to determine the pressure
to within 0.5 percent of its correct value is presented as a
function of the size of the time step. The results indicate

(49)

(50)
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SIMPLE

M 0.3
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N.320

160

30

1

N .1E0 ,3.3D
80

1.0 10.00.1

At u/L

0.00 1	0.01

20

SIMPLER

M 0.3

SIMPLEC

M 0.3

N 90,160,320

40

20

1

30

20

SIMPLEX

M=0.3

20
U)

O

Cc 10
W
1—

30

1

u = u in i

T= Tintou

Fig. 2	Problem of one-dimensional subsonic flow through
a 3:2 converging duct with Mach 0.3 inlet.

Fig. 3	Iterative convergence behaviour of a) SIMPLE, b)
SIMPLER, c) SIMPLEC and d) SIMPLEX for
one-dimensional subsonic test problem.

that for sufficiently small time steps all methods require
only one cycle. This is due to the fact that the coefficients
of the algebraic equations which are based on the steady
state solution are held fixed. However, as the size of the
time step increases the iterative requirements of all methods
increase monotonically. This behaviour is due to the limita-
tions imposed on all methods by using a very simple struc-
ture for D u which does not appropriately account for the
significant Influence of nodal pressures which are far from a
nodal velocity. The results also show that the behaviour of
both SIMPLEC and SIMPLEX is relatively independent of
the number of nodes while the behaviour of both SIMPLE
and SIMPLER suffers with grid refinement. In summary,
these results indicate that for subsonic flow the behaviour of
segregated methods using large time steps is determined by
the approximations to D u .

.duper o nic Demons t ration Problem

The second demonstration problem is that of a super-
sonic laminar flow through the 3:2 converging duct, shown
in Fig. 4, with an inlet Mach number of 2.0. Using the same
Reynolds number, the same grids and a similar numerical
experiment as in the subsonic case, the sensitivity of the
convergence of the segregated methods to the number of
nodes and the time step were determined.

The results shown in Fig. 5 again indicate that for
small _Nt only one cycle was required by all methods to
achieve an accuracy of 0.5 percent and that the behaviour
of SIMPLEC and SIMPLEX is similar to that found in the
subsonic case. However, in contrast to the poor behaviour
of SIMPLE and SIMPLER on the subsonic problem, the
behaviour of these methods for the supersonic problem are
quite favourable. As shown in Fig. 5c, both SIMPLE and
SIMPLER exhibit only a marginal sensitivity to the time
step and no sensitivity to spatial discretization. These
results, at first, seem surprising especially in light of the
poor approximations used to evaluate d u . In fact, in both
SIMPLE and SIMPLER the value of cl a is underestimated
resulting in an overestimation of pressure corrections for
incompressible and subsonic flows. However, for supersonic
flows, it appears that the underestimation of d u is not detri-
mental to the convergence behaviour of SIMPLE and
SIMPLER. This is due to the fact that for supersonic flows
the primary role of pressure is to influence the density
through the equation of state so that mass is conserved. As
a result the influence of pressure on velocity can be ignored.
To illustrate this point the numerical experiments were
repeated for the supersonic problem using SIMPLE() where 0

is appended to SIMPLE to denote that d u is everywhere set
to zero. The results shown in Fig. 5c indicate that the
iterative convergence behaviour is identical to that of SIM-
PLE and SIMPLER. Therefore, the superior performance of
SIMPLE and SIMPLER for supersonic flows is not due to a
better approximate_evaluation of d u but rather that the
underestimation of cr is not detrimental to the performance
of these methods. Unfortunately, the same is not true for
multi-dimensional flows.

SEGREGATED APPROACH FOR TWO-DIMENSIONAL

PROBLEMS

Up to this point the segregated approach and methods
have been considered in a one-dimensional context. In what
follows the extension of the segregated approach and
methods to two-dimensions is reviewed. Subsequently, the
applicability of these methods is demonstrated on a two-
dimensional compressible flow problem.

Differential Equations

The differential equations expressing the conservation
of mass, momentum and energy for a laminar two-

-7-
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30

20

N.320
160

BO
40

20

SIMPLE

SIMPLER

SIMPLEO

M 2.0

N .20,40,80, 160, 320

T=Ti n

-

U - U.
ml

=P in

Fig. 4	Problem of one-dimensional supersonic flow
through a 3:2 converging duct with Mach 2.0

inlet.

0.001	0.01	0.1	1.0	10.0

At u/L

Fig. 5	Iterative convergence behaviour of a) SIMPLEC,
b) SIMPLEX, and c) SIMPLE, SIMPLER and
SIMPLEO for one-dimensional supersonic test
problem.

dimensional viscous compressible flow of a perfect gas can
be expressed in Cartesian Coordinates as

a 
at ax

(p u)+ —ay(p v)=0

a
(012)-1-	 (p uu).-1- (T

yat	ax

a

a	a	a 
(pv)+	(puv)+ (p vv)=--

dp

at	ax	ay	ay

H-- p
	+
	p	+ 

3 ay ( 

as 
+ax ax ay ay	 —

ay 
)

a	av	a 1 av	p a au av

a	a	a	k  a aT dT 
(pT)-1--(puT)+ (pvT)=	—(	+	) (54)at	dx	dy	C ax ( ax ay

P

1  dp a	a	an	av

+C 
(
dt +ax 

(uP)+
 ay 

(uP)—Pax
	ay

—13-- )
P

where the additional dependent variable, a, is the com-
ponent of velocity in the y coordinate direction.

Algebraic Equal:was

Employing the staggered grid shown in Fig. 6, the same
discretization and linearization techniques described in the
one-dimensional context, the linearized algebraic representa-
tions of the conservation of mass, momentum and energy
can be expressed as

	rni)l ) P+rnPE+rn/ii;Pw+Tnri ) N -l- rn't's	(55)
+rneatup+rnwuuw+7<vp±rnsvvs_bc

a;uP=ii: bunb —c u (PE —PP)+b u

v vp=1; aLv nb —c ° (pN —pp)+6'ap 

anTbTnb +b T

where

anbunb=aeuuE -FaZ u w±a n'uN -Fa su us

 vw+an vN -Pa sv vsany bunb=aeu uE+awu

------ a eTTE -f-a„Tw -FanTTN -Fa sTTsa rirTb Trzb

and, where the equation of state is again represented by

Pp=e'Pp+b P	(59)

MASS AND ENERGY CONSERVATION

CONTROL ■..OLUME

z- COMPONENT MOMENTUM CONSERVATION

CONTROL VOLUME

y- COMPONENT MOMENTUM CONSERVATION

CONTROL. VOLUME

•	PRESSURE, DENSITY AND TEMPERATURE NODES

-COMPONENT VELOCITY NODE

y -COMPONENT VELOCITY NODE

(51)

(52)

(53)

(56)

(57)

(58)

1111 1

a	aul a 
ax ax	ay

fl

aul
+	(	+	)

a au au
ay	3 ax ax ay 

Fig. 6	Staggered arrangement of mesh, nodes and control
volumes for two-dimensional flow. 
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IL •0 ; extrapolate v ;dy 
If • 0; If -

M • 2.0	

p •1034 liPa

T• 278'8

v • 0
thl dT 0

\dy

FLUID: AIR

GRID: 22 x 18

L = 0.5588 rn

H. 0.4572 m

or v = 0

x) .11 = 0

k =0
dx

Gen.eralized Segregated Approach

The generalized segregated approach presented previ-
ously within the context of one-dimensional flow in a duct is
readily extended to multi-dimensions. In terms of nodal
values and considering only the influence of nodal pressures
which are adjacent to the nodal components of velocity, the
improved estimates of the components of velocity, u and v,
can be related to the pressure correction by

	17p --=- U *p —d u (p'E—p' p)	 (60)

	JP= *P—d v (P i N —P' P)	 (61)

where, given p*, an estimate for pressure, u* and v* are
determined from

	a v u *p=\ ' a nu b u *n b —C (P *E —P	*p)±b u	(62)

apv v *P=Y, aruzbv *nb — C v (p *N —P * P)+ by	(63)

By requiring that the improved estimates of velocity u
and v given by Eqs. (60) and (61) and the improved esti-
mate of density given by Eq. (32) satisfy mass conservation,
Eq. (55), the following equation of pressure correction is
obtained:

	aPi P —661,' E+4P 1 w+af,P 1 -1-af s PP'	(64)

where

a pP	A-rqdm	,w+ m ny — m	s
	

(65)

	1E+m,uda	 (66)

(67)

(68)

	

a,=----- m i,',1c f"is —174'4 u is	 (69)

bP'=b c —mf,',0	*E—m.11,1)*w—mni) *N—m; *s (70)
_ rnem a *p_mwu u *w77inv v *p_mst, , ,,s

and where the evaluations of d u' are given in Table 1 and,
for SIMPLE and SIMPLER

(71)
di;

for SIMPLEC

350

310

270

230

,90

d`l	 X 150

110

dv

a u —Va vP nb

70

(72)	 30	

and for SIMPLEX

c

SONIC LINE— — --

M 41

apv ld v ip=V a r,v b ,'d v ; n0-c v (73)

Solving Eq. (64) for p', the p pressures determined from
f=p*-Fp', and the 11 velocities, r7 velocities and 7 densities
are determined from Eqs. (60), (61) and (32), respectively.

Fig. 7	Flow around a flat plate, a) geometry and boun-
dary conditions, b) isobars (kPa) of pressure in
excess of inlet pressure and c) streamlines.

TWO-DIMENSIONAL DEMONSTRATION PROBLEM

For the purpose of demonstrating the applicability of
the segregated methods and of demonstrating their relative
performance, the steady state supersonic ( Mach 2 ) flow
around a flat plate oriented normal to the flow, as shown in
Fig. 7a, was considered. The solution of the discrete equa-
tions of motion using a uniform coarse 22x18 grid was
determined to the round-off limits of single precision
FORTRAN-H on an IBM 4341 Group II computer. The iso-
bars and streamlines from this solution are plotted respec-
tively in Figs. 7b and 7c. Figure 7b shows that a bow shock
is predicted, while Fig. 7c shows the flow deflection around
the the plate with a subsonic region surrounding the plate.
The shock smearing that is evident results from the coarse
grid and from the numerical diffusion that is inherent in the
discretization used. Because the present study focuses on

the applicability of solution methods, the improvement of
iccuracy was not considered.

A number of tests were carried out to establish the
sensitivity of solution time of the segregated methods to the
number of cycles used for each time step arid to the accu-
racy to which each linear set of equations was solved.
Details of these tests have been reported by Van Doormaal
221. It was found that, for each time step, it was best to
permit only one cycle (ie. to solve only one set of linear
equations ) except for the continuity equation where a
second coefficient evaluation and solution were performed.
The MSIP solver of Schneider and Zedan 21 1 was used to
solve the segregated linear equation set for each variable.

The performance of the various solution methods was
tested by initializing all dependent variables to inlet condi-
tions, and advancing the solution through time steps

-9-
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400.0
CL

CC

o 300.0
Lt_
1..LJ

_J

< 200.0
0
s-

10 0 .0
o_

O
C.)

0.0
10

1

TIME STEP

10
2

SIMPLER

SIMPLE

SIMPLEC

SIMPLEX

until the computed variables were all within 0.5 percent of
the previously obtained steady state solution. The compu-
tational effort is plotted against At in Fig. 8 for each of the
four segregated methods. At small At the behaviour of all
methods is similar; the slightly higher effort for SIMPLER
and SIMPLEX reflects the need to solve an extra linear
equation. For lager At SIMPLEC and SIMPLEX become
distinctly superior to SIMPLE and SIMPLER. This is due
to the relatively poor approximations inherent in and d u

in SIMPLE and SIMPLER. For multi-dimensional flows this
detrimental effect of the underestimation of d u and cr is to
be expected, even in supersonic cases, because there is likely
to be at least one coordinate direction along which the com-
ponent of the flow is subsonic. An attractive feature of
SIMPLEX for this particular test problem is its relative
insensitivity to the size of At when large time steps are
taken.

Fig. 8	Computational requirements versus time step of
SIMPLE, SIMPLER, SIMPLEC and SIMPLEX for
flow around a flat plate.

CONCLUDING REMARKS

A number of aspects of the segregated approach to
solving viscous compressible fluid flows have been presented
in this paper. Included in these are the extension to the
solution of compressible flows of an interpretation of the
role of pressure in the segregated approach, of the general-
ized view of the segregated approach, and of the segregated
methods SIMPLE, SIMPLER, SIMPLEC and SIMPLEX
developed originally for the solution of incompressible flows.
The present paper also develops an understanding of the
strengths and shortcomings of the segregated methods.
Many of these aspects are demonstrated on one-dimensional
and two-dimensional compressible flow problems. In partic-
ular, with the appropriate linearization of mass conservation
and with the appropriate approximation of the influence of
pressure on velocity, the segregated approach has been
demonstrated to be equally applicable to supersonic and
subsonic compressible flows as well as compressible flows.
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