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l/ . ABSTRACT
In the application of Shiller's smoothness prior for distributed lag
estimation the main difficulty is the selection of hyperparameters of the
prior distribution. 1In this paper the use of a maximum likelihood procedure

is proposed for this purpose and its performance is demonstrated by numerical

examples. ' .
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SIGNIFICANCE AND EXPLANATION

The distributed lag estimator developed by R. J. S8hiller based on the

concept of -ioothnenl prior is a significant example that demonstrates the
; . potential of Bayesian approach in statistics. However, the practical

application of Shiller's estimator has bcon'hnlpcrod by the difficulty of 1

specifying the prior distribution.

In this paper an objective procedure for the selection of the prior

e e

distribution is proposed and its performance is checked by both artificial and

R

real numerical examples. The result clearly demonstrates the practical

gt

utility of the procedure. It also shows the danger inherent in an arbitrary

subjective choice of the prior distribution.

VORFRSTOLiA 22 yiire,

It is expected that the result reported in this paper will contribute to

the development of practical applications of Bayesian statistics.

Aocession For

NTIS CGRAXI 8
DTIC TAB M
Unannounced

Justification.__‘E?,_ "

By
Distribu
o Distribution) |
N\ » |__Availability Codes
2 Avail and/er
Dist Special &

ANE |

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.

°'I¢

1 YA 5 1?‘ “;{‘ e e .A ,"\; -\",,« flay
Vo S T SR E RGN




LA

THR SELECTION OF SMOOTHMESS PRIORS FOR DISTRIBUTED LAG ESTINATION

Hirvotugu Akaike*
1.  INTRODUCTION

shiller (1973) introduced the oconcept of smoothness priors to define a Bayesian
estimator of the lag coefficients, or the impulse response function, of a linear system.

In this approach the prior preference of the smoothness of the lag function is expressed by
a spherical normal distribution of the fixed order differences of the lag coefficients.

One outstanding problem in the application of shiller's estimator is the choioce of the
lag length, the order of differencing and the variance of the spherical normal prior
distribution. In this paper we propose a practical solution to this problem cdbtained by
maximising a properly defined likelihood of the Bayesian model.

The performance of the estimator is checked by numerical examples. The result shows
that the estimator performs satisfactorily under widely varying ocondition. It also shows
that an arbitrary subjective choice of the prior distribution can produce awkward estimate.

2. SHOOTHNESS PRIOR FOR DISTRIBUTED LAG BSTIMNMATION
Consider the stochastic linear system defined by

(1) A ) [ T A

vhere y,, x, and w, dencte the output, input and error term of the system,
respectively. Hexe ('n} is assumed to be a segquence of random variables which ars
independent of {x‘} and are independently identically distridbuted as norsal with mean

sexo and variance '3.

B ———————— e )
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shiller introduced the smoothness prior defined by a spherical normal distributioa of
the 4P differences of the distriduted lag coefficients (s }. his prior aistridution is
given by

)
platen) = (1) ¥ 21 el - ;—-'n,,n,-) .

where | | denotes the determinant, a = “0"1""")("' A is the ratio of the standard
deviation ¢ e!vntothntofchodﬂ‘uumotﬁcul‘-l‘:. vhere Ry is an
M+ 1)% (B+ 1) matrix defined by

¢ ¢ O
S o ¢ o
- B - ]
-
.
- e o e 0O

It should be noticed here that the last 4 zows of R, dJdefine incomplete differences.
Niowever, as was mentioned by Shiller, this is equivalent to comnecting the final
coefficients to a, =0 for m > N, which will be a reasonable assumption for practical
application if the lag length N 1is taken sufficiently large.

By oombining the present prior distribution with the data distribution

L
piyla, = (<15 emp(- L5 1y - 2a8?) ,
avo
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where y = (y‘.yz,...,y.)', 8 | denotes the Ruclidean norm, and
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the estimate a® of the lag coefficients is defined as the posterior msan of a aend is
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given by

a, = (X'x + x’g:ll‘)"x-, .

Shiller demonstrated by numerical examples the superiority of this type of estimator
to both the ordinary least squares sstimator and the Almon lag estimator. This is one of
the earliest examples of successful Bayesian modeling of practical importance.

The crucial point in applying sShiller's estimator is the choice of the hyperparameter

A. shiller suggested some rule of thumb for the choice of A. However, this is deeply
concerned with the basic problem of the selection of a Bayesian model which is vital in

implementing a Bayesian procedurs.

3. SELECTION OF A PRIOR DISTRIBUTION BY LIKELIHOOD
When there are finite number of Bayesian models defined by the data distributions
tk(."):) and corresponding prior distribdbutions 'u"u’ (k = 1,2,...,K) the posterior
probability of each model is given by

£(ylx)
p(kly) = — >,

I tiylx)c,
k=1

where y denotes the cbservation, C) denotes the prior probability of the kD model
and f£(ylk) is defined by

£(ylx) = [ £, (y18 v (0 100 .
The above formula of p(k|y) shows that it is ﬁtuol to ocall f£(ylk) the likelihood of
the Bayesian model specified by 'k('“x’ and 'k(.k)'

Recent work by the present author suggests that when there is no further prior
information available and the distributions £(°|k) are well separated, i.e., only one
model attains high likelihood for ome particular observatiom, thea the equal prior
probability ck = 1/X 1is a natural choice that let the data speak most (Akaike, 1982).
With this choice of the prior probability distribution the maximum likelihood selection
that chooses the Bayesian model with maximum f(y|k) is equivalent to the selectiom by

maximum posterior probability. This shows that under ocertain circumstances the selection
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of a Bayesian model by maximizing the likelihood can be a reasonable procedure from the

Bayesian point of view. -In this paper we pursue the possibility of applying this idea to
the problem of selection of the smoothness prior.

In practical applications of the smoothness prior for the distributed lag estimation
we usually do not know the value of 0. Acoordingly we have to specify a prior
distribution of 0. To make the resulting estimator applicadle to obeervations in
arbitrary scale unit we consider the use of Jeffrey's ignorance prior ¢ '40. Por each
particular application we may consider a proper prior distribution C(u,v)s”' obtained by
restricting the range of 0 to a finite interval (u,v) of positive numbers. However,
since the integral of p(yla,0)p(alo,A)0”"' with respect to 4ads is finite, we may use
this integral as the likelihood of the Bayesian model specified by plyla,0) and

plalo,A)clu,v)o~! with sufficiently small u and sufficiently large v. Since only
ratios of the likelihoods are of interest we define the likelihood of the Bayesian model,
specified by the data distribution p(y|s,0) and the (improper) prior distzlbution
pla,gid) = plalo,A)e”!, by

p(yid) = [[ plyla,0)p(a,0ir)aad0 .

S8ince the hyperparameter ) has a clearly definsd technical meaning as the ratio of
the standard deviation of an error term to that of a difference of lag ccefficients, it is
not difficult to find a reasonsble selection of finite number of possidle values of ).
The model selection is realiszed by maximizing the likelihood over this set of ).

Por our present Wodel we have

Beird }
plyla,o)ptaoA) = (#) e Wich

...,[- # (a =~ a,)'(x'x + Azlaa‘)(u - n,)]up[- ;:—2 l(l)] v

vhere o, = (x'x + AIa)7'x'y ana 8(M) = 4p? - ai(xex + A%RIR 0, The likelihood

P(y(3) of this model is then given by
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Obviously the estimator a, is given as the solution of the least squares problem
that minimises ly* = x*al?, where

(il 1)

Here it holds that $(A) = ly* - x'u.l’. By successively applying the Householder

transformation to [X*y*], ¢first to transform lld into upper triangular form and them to
transform the whole matrix into upper triangular form, the necessary quantities for the
likelihood computation can easily be obtained during the process of the least squares

computation. Por the purpose of the comparison of models we may ignore the constant factor

2% 3r(/2) of the likeltnocod.
It should be noted here that the likelihood p(yil) 4is also a function of 4, the

order of differencing, and M, the lag length. Thus our search for the best model is

realized by maximizing p(ylA) over some finite number of possible combinations of A, 4
and N. The practical utility of this procedure will be demonstrated by numerical examples
in the next section. The feasibility of this type of procedure was first discussed in
Akaike (1980a) and its application to seasonal adjustment vas discussed by Akaike

(1960b). The idea of maximizing a likelihood with respect to the hyperparameter is

discussed in an earlier paper by Good (1965).

4. WUMEBRICAL INVRSTIGATION

From the point of view of data analysis a Bayesian model is simply an mtucin
construction that allows to generate an output from a given set of data. Only when we
oconfirm that it often produces results superior to those obtained by other conventional

procedures we can claia the usefulness of the Bayesian procedure. In this section we will




discuss the practical utility of the distributed lag estimation realized by the maximum

likelihood selection of the smoothness prior.

First we discuss the application to the artificial example discussed by Shiller as his
seocond example. In this example the input series was the series of four to six month
commerical paper rate which gave a typical nearly collinear matrix X. The output series
y wvas generated by the relation y = Ax + w with w = 0,05e, where e is a vector of
standard normal random numbers. The lag coefficients were defined by a_ = ¢ )m - 9))
with N = 19, where ¢(t) denotes the density of the standard normal distribution. The
dimengion, or the length, of y was given by N = 40. One data set generated by this
model was used in the Mt analysis.

The search for the smoothness prior was extended over the models defined with

A=sx2® (k==10,(1),10), Me=1,(1),19, where M = -1 d4enctes sero regression, and
d= 1,2,3. 8ince we are accustomed to the use of log likelihood ratio test we used

(=2)1og p(y|A) as our criterion. By ignoring the additive constant the criterion is

given by
ABIC = ¥ log 8(A) + loglx'x + A%R3,| - logh’Rim,l .

where ¥W is the dimsnsion of the vector y, log denotes natural logarithm and ABIC stands
for a Bayesian information criterion (Akaike, 1980a). Our search for the model was
realised by finding the minimum of ABIC.

The best choice in terms of the criterion was given by M = 13, d =2 and
A = 8 x 273, he resulting estimate is shown in Table 1 along with the trus values and
the ordinary least squares estimate for N = 19, dJdenoted by LS. By Table 1 it is obvious
that the present estimation procedure is producing significantly improved estimate over the
ordinary least squares estimate. Although the present result is not directly comparable
with Shiller's result due to the use of different realizations of the error term, the shape
of the estimated distributed lag coefficients is quite similar to some of the best ones
given by shiller.

One might be concerned with the possibility of non-smooth behavior of distributed lag

coefficients. To check the performance of our procedurs under such circumstances we
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é TABLE 1
%‘,
RESULTS OF AN EXPERIMENT OF SHILLER'S SECOND EXANPLE.
L8 DENOTES LEAST SQUARES ESTIMATE.
n 0 1 2 3 4
True «000 +000 .001 004 018
a* -.011 -,001 008 «014 015
18 -.010 <021 =-.045 037 078
n L (] 7 8 9
True «054 130 «242 »352 «399
a? <045 «136 «240 «347 <400
18 -.074 -255 «113 0462 033‘
s
: " 10 11 12 13 14
i .
i
f True «352 <242 «130 054 .018
1 a* <370 «250 125 <060 0 X
18 «359 «329 +046 +072 .042 o
- 15 16 17 18 19 ’
True +004 001 000 «000 ]
a* 0 0 [} ¢ o
18 -.018 -.050 065 -.008 -, 008
't
-,"“
3 ) "y
-
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considered a system defined by

y'l = 1.2 xn - 0.6 xn__1 + 0.4 xn_2 + 'n ’
wvhere the input x, was the same as that in the preceding example and thus N = 40, and
v, was also normal with mean zero and ¢ = 0,05. The range of the search for the
parameters was the same as in the preceding example. The minimum of ABIC was attained at
d=1, M=2 and A = 5Xx 2-7. The resulting estimate a, and the estimate a,,, which
was obtained by the parameters used for the computation of a, of the preceding example,
are given in Table 2 along with the true values and LS, the ordinary least squares
estimate for M = 19.

The most remarkable finding with this result is that our procedure produced extremely
good result. This was made possible by the correct determination of M and the choice of
a very small value as A. Contrary to this, a,, which was obtained by the parameters of
Table 1 produced very poor result, even worse than LS. This clearly demonstrates the
danger of applying a Bayesian model based on an arbitrary choice of the prior
distribution. 1t is obvious that a proper procedure of adaptation is necessary for the
practical application of the smoothness prior.

Having confirmed the performance of our procedure at the two extreme situations, most
favorable and unfavorable, we now turn to the example of real data handled by Shiller as
his first example. In this example Shiller analyzed the response of the Federal Reserve
Board Aaa new issue yield series to the four to six month prime commercial paper rate. Due
to the unavailability of the PFederal Reserve Board Aaa new issue yield series we used the
corresponding series of Moody's AAA bond yield as the output series. The similarity of our
result to shiller's confirms that the substitution did not change the essential aspect of
the probles.

In this example it is already noticed by Shiller that the coefficient a; has
different characteristic from other coefficients and should be freed from the rest. The
validity of this hypothesis can easily be checked by our present approach by considering
models obtained by multiplying the first row of Ry by a small positive number §. vPor

the present example ABIC kept decreasing when & was decreased from 1 to 0.0001 in

L ol R Mo ks -
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TEST RESULT FOR NON-SMOOTH DISTRIBUTED LAG COERFFICIENTS.

TABLE 2

a** DENOTES THE ESTIMATE OBTAINED BY THE PARAMETERS OF a* OF TABLE 1.

m 0 1 2 3 4
True 1.2 =6 4 0 0
ar 1.206 =-,601 «394 0 0
are «859 068 =.075 «051 «090
8 1.193 -.587 «390 -,044 «045
n L] 6 7 8 9
True 0 0 0 0 0
a* 0 0 0 0 0
are «037 -.025 =-.012 021 =.010
L8 018 -.018 «037 -,037 026
m 10 1 12 13 14
True 0 0 0 0 0
a* 0 0 0 0 0
ave ~-.000 039 -.000 -.038 0
18 -.029 .030 -.027 059 =-.067
m 15 16 17 18 19
True 0 0 0 0 0
a* 0 0 0 0 0
are 0 '] 1] [} 0
Ls .028 -.015 -.052 092 -.043

Ceniedadnaai L it S e 2 L o




several steps. This confirmed the validity of Shiller's argument. The following result

was obtained with § = 0.0001 and the same range of the parameters as in the preceding
examples.

The minimum of ABIC vas attained at d =3, M =19 and A = 5 X 2°, The amount of
xeduction of the minimum ABIC obtained by reducing 8§ from 1 to 0.001 was 20.7. The

estimate a, is given in Table 3 along with the estimate .:.0 obtained by putting

$ = 1,0. In this example the constant term ay was included to :oproocﬁe the effect of
non-gero average values of the input and output series. The estimate denoted by af vas
obtained from the series of first order differences of the input and output series. This
was to check the possible effect of the trends of both series. The estimate af was
obtained with A =3, M= 19 and A = § x z‘. The corresponding ordinary least squares
estimate for the differenced series is given by LS.

The similarity between a, and .‘,’ is remarkable and confirms that the smooth
behavior of a, does not represent the spurious response due to the trend components.
Also the distortion caused by the inclusion of a, can be seen clearly from l:'o. The
usual erratic pattern of the least squares estimate persists in this example.

Summariging our observations of numerical results, including those not reported here,
we may conclude as follows:

1) the estimator is most sensitive to the choice of A,

2) the choice of M, the lag length, is also fairly critical,

3) the choice of 4, the order of differencing, is not so critical.

We also found that the selection of M must be done with ABIC minimized with respect to
A. without the adjustment of A the selection of M by minimizing ABIC produced poor

results.

=10~




TABIE 3

RESULT OF APPLICATION TO REAL ECOMOMIC DATA. ‘:.0 DENOTES THE

RESULT dormmm UNDER THE ASSUMPTION OF SMOOTH COWMECTION T0 8.

a, DENOTES THE RESULT OBTAINED FROM DIFFERENCED SERIES.
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S. DISCUSSION

The purpose of the present paper has been to show the feasibility of an objectively
defined procedure for the selection of the smoothness prior for the estimation of
distributed lag coefficients. It was confirmed that the maximum likelihood procedure
proposed in this paper can poduce results cmparable to the results reported by Shiller in
his original paper. Since Shiller's results may be considered as typical examples produced
by an expert this shows that the present procedure is producing a good approximation to the
judgement procedure of an expert. The next step of the Bayesian modeling will be the
specification of a prior distribution for the lag length M.

The result of Table 2 demonstrated the robustness of the present estimation
procedure. However, it also demonstrated the danger inherent in the purely subjective
selection of a prior distribution.

Although the result reported in this paper has demonstrated the feagibility of the
smoothness prior gselection for distributed lag estimation, the practical applicability of
the single input single output model to the analysis of economic data is rather limjited.
This is due to the common existence of feedback between the input and output in econometric
applications. In such a case multivariate time series modeling is required. Whether the

smoothness prior can find a useful application in this case is a subject of further study.
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