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ABSTRACT

in the application of Shiller's smoothness prior for distributed lag

estimation the main difficulty is the selection of hyperparmtr Of the

prior distribution. In this paper the use of a maxim=m likelihood procedure

in proposed for this purpose and its performance is demonstrated by numerical
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BZGUZVZCA=C Am~ UXPIMITION

IThe distributed lag estimator developed by R. J. shiller based an the

concept of smoothness prior is a significant example that dstrate* the

potential of Bayesian approach in statistics. However, the practical

A application of Shiller's estimator has been hampered by the difficulty of

specifying the prior distribution.

in this paper an objective procedure for the selection of the prior

distribution is proposed and its performance is checked by both artificial and

real numerical examples. The result clearly demonstrates the practical

utility of the procedure. It also shows the danger inherent in an arbitrary

subjective choice of the prior distribution.

it is expected that the result reported in this paper will contribute to

the development of practical applications of Bayesian statistics.
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[ lirotuga Akaike*

Mhiller (1973) introduced the concept of smoothass prior* to fsf is a 3ayeIan

estimator of the lag coefficients, or the Aspulse response function, of & linar system.

In this approach the prior prefertenoe of the smoothness of the lag function Is expressed by

a spherical normal distribution of the fixed order differences of the lag ooeffioiets.

one outstanding problem in the application of Miiller's estimator is the hoice of the

lag length, the order of differenoing and the variance of the spherical ncoda prior

distribution. In this paper we propose a practical solution to thi problem, obtained by

maxuimizing a properly defined lielihood of the ftayes model.

The perf ormance of the estimator is checked by nmeical eamles. fbs result shwsv

that the estimator performs satisfactorily under widely varying condition. Zt also shove

that an arbitrary subjeative choice of the prior distribution can produce awkward estimate.

2. hhnO!Ehh PRIM FOR DZI UWUD aN 35!WMZOU

consider the stochastic linear System defined by

MNO

where yno Xa And wA dQU0tS the output. input and error term of the system.

respectively. aeve (v) is assume to be a squawos of randems variables which are

independent of (Xn) and are Independently identically distributed as normal with manz
2
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Miller intuedeed the smoothases prior defined bp a spherical actual. distribtion Of

the 4th differemce of thn distributed laT asi inents (a ). Ibis primr distribution is

given by

I (~.)Ia a" it p it, alarda)
2652 262

uhere I demotes the determinat, a - (a*,&,.... 4 ).~ is the ratio of the standard

deviation a atfw to that of the 4th difference of a~ an Rd Rif erea is an

(K + 1) x (a 1 ) matrix defined by

1-i -i 0 0
it should be noticed here that the last d rowes of R define incompete differences.

Imuever, " as -mtiaed by Miller, this is equivalent to connecting the final

coefficients to an 0 for a)- N, whia will he a reasonable assumption for practical

appication if the lag length a is taken sufficiently large.

* Dy combinin the present prior distribution with the data distribution

- (.J.....I )2 m(- 1L IF - Zee 2)
21 262

gwee W 1 '"'*"~ demotes the Euclidean main, and

On et~mae ofthlag ceefficieeos is defined as the posterior menm of a snd is
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give n by a, M I + x
2 

a1? 
1  'y

Mhiller demonstrated by nmenrioal exmles the sqperority at this type of estimator

to both the ordinary least squres estimator and the 1ams lag estimstor. This Is oes of

the earliest exasqils of successful Mayesian modeling of practical importance.

Ths crucial point in appilying Miiller's estimator is the choice of the hyperparameter

A. M iller suggested som rule of thw& for the choice of X. N EWever this is deeply

concerned with the basic problem of the selection of a Dayesian model which is vital in

implementing a Dayesian procedure.

3. INLUCYON OF A PRIOR DIWIUI3U!OU 3Y LEKMLNOO

When there are finite number of Dayesian models defined by the data distributions

fk* 'ek ) and corresponding prior distributions W O(ki-12..Z the posterior

probability of each model is given by

p(klyj - -r- I)C

kuI f(yjk)C k

where y deotes the observation. Ck denotes the prior probability of the kth model

and f(ylk) i* defined by

The above formula of p(kly) shows that it is natural to call f(ylk) the likeliood of

the Sayesian model specified by fkce10 k) and TO(Y )

Recent work by the present author suggests that when there is no further prior

information available and the distributions f(e* k) are well separated. i0e., ocly one

model attains hi~i likelihood for one particular observation, then the equal prior

probability Ck - I/K is a natural choice that let the data speak mot(Akaikee 19").

0 With this choice of the prior probability distribution the muima likelihood selection

that chooses the flayesian model with maxim f(y I I) is equivalent to the selection by

maim posterior probability. This shows that under certain circumtances the selection

-3-



of a sayesian model by maximizing the likelihood can be a reasonable procedure from the

Dayesien point of view. -in this paper vs pursue the possibility of applying this idea to

the problem of selection of the smoothness prior.

In practical applications of the smoothness prior for the distributed lag estimation

we usually do not know the value of 0. Accordingly we have to specify a prior

distribution of 0. To make the resulting estimator applicable to observations in

arbitrary scle unit vs consider the ume of Jeffrey s ignorance prior 0 l. For each

particular application we my consider a proper prior distribution C(u~v)G0 obtained by

restricting the range of a to a finite interval (u,v) of positive numnbers. Noewer,

since the integral of p(yja,O)p(aI@,7')O1 with respect to das is finite, we may use

this integral as the likelihood of the Dayesian model specified by p(yla@a) and

p(ajOA)C(u~vW 1' with sufficiently small u and sufficiently large v. $ince only

ratios of the likelihoods are of interest we define the likelihood of the Dayesin model,

specified by the data distribution p(yla,#) and the (improper) prior distribution

p(a,at7') - p(aIU,A)d by

p(yIAJ I p(yla,*)p(aUP.%)dedV

Since the hyperparameter A has a clearly defined technical meaning as the ratio of

the standard deviation of an error term, to that of a difference of lag coefficients, It Is

not difficult to find a reasonable selection of finite nmber of possible values of A.

2he mOde selection in realised by maximizing the likelihood over this set of A.

For our present model we have

2 2±

236

sep_ (a + ,(' A2 a,?d)(a - 232P[ Bo

Where a% (S + A'R 4 'y ad37)m*1 a.(X.'z A2 npd)a,. The likelihood

P(yI7') of this mode in then given by
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Obviously the estimator a* is given as the solution of the least squares problem

that nLAAimaes I1y - x'al2, where

Rnd o

mere It holds that 8(A) - lye - X*Sl . By successively applying the Nouseholder

transformation to [X'y* ] # first to transform Rd  into upper triangular form and then to

transform the whole matrix into upper triangular form, the necessary quantities for the

likelihood computation can easily be obtained during the process of the least squares

computation. For the purpose of the comparison of models we may ignore the constant factor

-12
2"1r a r(N/2) of the likelihood.

It should be noted here that the likelihood p(y IA) is also a function of d, the

order of differenoing, and M, the lag length. Thus our search for the best model is

realized by maximling p(y JI) over some finite number of possible combinations of A, d

and N. The practical utility of this procedure will be demonstrated by numerical examples

in the next section. The feasibility of this type of procedure was first discussed in

Akaike (1990a) and its application to seasonal adjustment was discussed by kaLke

(1950b). he Idea of eaximising a likelihood with respect to the Iyperpaate is

discussed in an earlier paper by Good (1965).

4. UN UAMLLAE. LUYU TONH

From the point of view of data analysis a Dayesian model is simply an artificial

construction that allows to generate an output from a given set of data. Only when we

confirm that It often produces results superior to those obtained by oaher conventional

procedures we n claim the usefulness of the Daye ian procedure. In this section we will

-5-



discuss the practical utility of the distributed lag estimation realised by the miaximm

likelihood selection of the smoothness prior.

first ws discuss the application to the artificial example discussed by Nbiller as his

seodexample. in this example the input series was the series of four to six month

omeica paper rate which gave a typical nearly collinear matrix X. Yhe output series

y was generated by the rolation y - Ax +4 wvith w - 0.05e, where * is a vector of

standard normal random nTes. eb lag coeff icients were defined by as 2 ~ ) (K- 9))

4 with X - It, where # (t) denotes the density of the standard normal distribution. Yb.

dimension, or the length, of y was given by N - 40. *one data set generated by this

model me used is the subsequent analysis.

The search for the smothnees prior was extended over the models defined with

5 kI -S 2 (k - -10,(I),10), K 1(1,9 where N - -1 denotes sero regression, and

d -1,203. Since we are accustomed to the use of log likelihood ratio test we used

(-2)log p(y IA) as our criterion. By ignoring the additive constant the criterion is

given by

ABIC - N log S(A) + logI*' + A2 -~ log,12~,4  0

where 9 is the dimension of the vector y, log denotes natural logarithm and &SIC stands

for a Sayesian information criterion (Akaike, 190a). *our search for the model was

realised by finding the minimum of ADIC.

the best choice in terms of the criterion was give by X - 13, d - 2 and

5 x 2- . the resulting estimate is shown in Table I along with the true values and

the ordinary least squares estimate for X - 19, denoted by 18. Dy Table I it is obvious

that the present estimation procedure Is producing significantly Improved estimate over the

ordinary least square. estimsate. Although the present result is not directly comparable

with Ihillerse result doe to the use of different realisations of the error tern, the shape

of the estimated distributed lag coefficients is quite similar to some of the best ones

given by Shiller.

One might be concerned with the possibility of non-sooth behavior of distributed lag

coefficients. To check the performance of our procedure under such ciromtnoe we



TADLE 1

R3UUZW OF AN XIPUIgixgW Oir URILLER'U SICD XXANILN.
1B DUUOTZ8 LUSBT SQUAJS ESTImATs.

*0 12 3 4

True .000 .000 .001 .004 .016a' -. 011 -. 001 .006 .014 .015
Ie -. 010 .021 -. 045 .037 .079

356 7 6 9

True .054 .130 .242 .352 .399a'.045 .136 .240 .347 .400
Le -. 074 .255 .113 .462 .334

a10 11 12 13 14

True .352 .242 .130 .054 .016a* .370 .250 .125 .060 0
Ie .359 .329 .046 .072 .042

Is1 16 17 16 19

True .004 .001 .000 .000 0at 0 0 0 0 0
Ls -. 018 -. 050 .065 -. 006 -. 000



considered a system defined by

Yn - 1.2 x - 0.6 x,_ 1 + 0.4 xn_2 + w.

where the input x was the same as that in the preceding example and thus N - 40, and

wn was also normal with mean zero and 0 = 0.05. The range of the search for the

parameters was the same as in the preceding example. The minimum of ABIC was attained at

d - 1, N - 2 and. . 5 x 2-7  The resulting estimate a* and the estimate a,*, which

was obtained by the parameters used for the computation of a* of the preceding example,

are given in Table 2 along with the true values and LS, the orditnary least squares

estimate for N - 19.

The most remarkable finding with this result is that our procedure produced extremely

good result. This was made possible by the correct determination of M and the choice of

a very small value as A. Contrary to this, a*, which was obtained by the parameters of

Table 1 produced very poor result, even worse than LS. This clearly demonstrates the

danger of applying a Bayesian model based on an arbitrary choice of the prior

distribution. It is obvious that a proper procedure of adaptation is necessary for the

practical application of the smoothness prior.

Having confirmed the performance of our procedure at the two extreme situations, most

favorable and unfavorable, we now turn to the example of real data handled by Shiller as

his first example. In this example Shiller analyzed the response of the Federal Reserve

Board La new issue yield series to the four to six month prim cosmercial paper rate. Due

to the unavailability of the Federal Reserve Board Aaa new issue yield series we used the

corresponding series of Moody's ARA bond yield as the output series. The similarity of our

result to Shiller's confirms that the substitution did not change the essential aspect of

the problem.

In this example it is already noticed by Shiller that the coefficient a0 has

different characteristic from other coefficients and should be freed from the rest. The

validity of this hypothesis can easily be checked by our present approach by considering

models obtained by multiplying the first row of Rd by a small positive number 6. For

the present example ABIC kept decreasing when 8 was decreased from 1 to 0.0001 in

-8-



TABLZ 2

TEST RM6UXIT FOR NON-IMOOTH DISTRIBUTED XAG COSFFICIEUT.
a"DENOTES TRE ESTIN&TE OBTAINED BY THE PARAMTERS 0F a* OF TABLE 1.

a 0 12 3 4

Trute 1.2 -. 6 .4 0 0
a* 1.206 -.601 .394 0 0
a** .659 .068 -. 075 *051 .090
IS 1.193 -. 587 .390 -. 044 .045

*5 6 7 69

True 0 0 0 0 0
a'0 0 0 0 0
a".037 -.025 -.012 .021 -.010

LB .016 -.018 .037 -.037 .026

310 11 12 13 14

True 0 0 0 0 0
a* 0 0 0 0 0
a"* -.000 .039 -.000 -.038 0
LB -.029 .030 -.027 .059 -.067

a15 16 17 Is 19

True 0 0 0 0 0
a* 0 0 0 0 0
a** 0 0 0 0 0

LB.028 -.015 -.052 .092 -.043
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several steps. This confirmed the validity of 8hiller's argument. The following result

was obtained with 6 = 0.0001 and the soe range of the parameters as in the preceding

examples.

The minimum of ASIC was attained at d - 3, 4 * 19 and A 5 x 2 . The amount of

reduction of the minimun ABIC obtained by reducing I from I to 0.001 was 20.7. The
1.0

estimate a. is given in Table 3 along with the estimate a, obtained by putting

- 1.0. Zn this example the constant term a_, was included to represent the effect of

dnon-soeo average values of the input and output series. The estimate denoted by a, was

obtained from the series of first order differences of the input and output series. This

d
was to check the possible effect of the trends of both series. The estimate a, was

4obtained with d - 3. N - 19 and X - 5 x 2 . The corresponding ordinary least squares

estimate for the differenced series is given by LB.

d
The similarity between a, and a,. is remarkable and confirms that the smooth

behavior of a, does not represent the spurious response due to the trend components.

1.0Also the distortion caused by the inclusion of a0  can be seen clearly from a, . The

usual erratic pattern of the least squares estimate persists in this example.

Sumarizing our observations of numerical results, including those not reported here,

we may conclude as follows:

1) the estimator is most sensitive to the choice of A,

2) the choice of 9, the lag length, is also fairly critical,

3) the choice of d, the order of differencing, is not so critical.

We also found that the selection of N must be done with ABIC minimized with respect to

A Without the adjustment of A the selection of N by minimizing ABIC produced poor

results .

-10-
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lABLE 3

RESUT Or AMPCATZON TO REL E I IIC DATA. a! DskUU TMI
REBUZ, ODrAINE UNDER THE AMSUNTZOu OF SNOOTS ComHOZO To

a, DENTES TE REM= OTIAZNED FROM DZ"MC ISWIM.

a 0 1 2 3 4

a' .212 .029 .045 .0se .0r3
1.0

a. .104 .088 .076 .070 .046
4

a, .281 .005 .031 .052 .03

Lo .352 -.132 .061 .127 -.009

a5 'S7 S 9

a* .074 .079 .076 .076 .072
1.0

a, .069 .072 .075 .076 .075
da* .078 .083 .084 .061 .076

LS .106 .106 .084 .054 .144

10 11 12 13 14

a* .066 .058 .049 .040 .031
1.0a, .072 .065 .056 .046 .035
da, .068 .059 .049 .039 .030

LS .077 .058 .057 .025 .036

s15 16 17 16 19

a' .022 .014 .008 .004 .001
1.0

a, .024 .014 .007 .002 0
d

a, .022 .014 .008 .004 .001

L .079 .048 .063 -.042 .037
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S. DISCUSSION

The purpose of the present paper has been to show the feasibility of an objectively

defined procedure for the selection of the smoothness prior for the estimation of

distributed lag coefficients. it was confirmed that the maximum likelihood procedure

proposed in this paper can poduce results caparable to the results reported by Shiller in

his original paper. Since Shiller's results may be considered as typical examples produced

by an expert this shows that the present procedure is producing a good approximation to the

judgement procedure of an expert. The next step of the Bayesian modeling will be the

specification of a prior distribution for the lag length M.

The result of Table 2 demonstrated the robustness of the present estimation

procedure. However, it also dmonstrated the danger inherent in the purely subjective

selection of a prior distribution.

Although the result reported in this paper has demonstrated the feasibility of the

smoothness prior selection for distributed lag estimation, the practical applicability of

the single input single output model to the analysis of economic data is rather limited.

This is due to the camon existence of feedback between the input and output in econometric

applications. In such a case multivariate time series modeling is required. Whether the

smoothness prior can find a useful application in this case is a subject of further study.
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