
 Open access Book Chapter DOI:10.1007/978-3-540-68351-3_16

The Self-synchronizing Stream Cipher Moustique — Source link

Joan Daemen, Paris Kitsos

Institutions: STMicroelectronics, University of Peloponnese

Published on: 01 Apr 2008

Topics: Stream cipher, Stream cipher attack, Cipher, Block cipher and Transposition cipher

Related papers:

 New approaches to the design of self-synchronizing stream ciphers

 Handbook of Applied Cryptography

 Chosen-Ciphertext attacks against MOSQUITO

 A Connection Between Chaotic and Conventional Cryptography

 Flatness and defect of non-linear systems: introductory theory and examples

Share this paper:

View more about this paper here: https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-
3hsxl61gcr

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-68351-3_16
https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr
https://typeset.io/authors/joan-daemen-3ex4onqyzx
https://typeset.io/authors/paris-kitsos-29s7d8ezdc
https://typeset.io/institutions/stmicroelectronics-27g14r9i
https://typeset.io/institutions/university-of-peloponnese-uoq0zfd0
https://typeset.io/topics/stream-cipher-2fxdpfi7
https://typeset.io/topics/stream-cipher-attack-2o0np4rh
https://typeset.io/topics/cipher-3vgxw4tm
https://typeset.io/topics/block-cipher-lkx1hxsb
https://typeset.io/topics/transposition-cipher-hb3zh33z
https://typeset.io/papers/new-approaches-to-the-design-of-self-synchronizing-stream-5487xxd068
https://typeset.io/papers/handbook-of-applied-cryptography-3fjeq8w0cb
https://typeset.io/papers/chosen-ciphertext-attacks-against-mosquito-2v4aw4wal9
https://typeset.io/papers/a-connection-between-chaotic-and-conventional-cryptography-4lb02b1dga
https://typeset.io/papers/flatness-and-defect-of-non-linear-systems-introductory-42ot9eoqmh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr
https://twitter.com/intent/tweet?text=The%20Self-synchronizing%20Stream%20Cipher%20Moustique&url=https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr
https://typeset.io/papers/the-self-synchronizing-stream-cipher-moustique-3hsxl61gcr

The self-synchronizing stream cipher Moustique

Joan Daemen, STMicroelectronics Belgium, joan.daemen@st.com

Paris Kitsos, Hellenic Open University, Patras, Greece, pkitsos@eap.gr

June 30, 2006

Abstract

In this note we specify the hardware-oriented self-synchronizing stream cipher Mous-

tique, a tweaked version of Mosquito that was submitted to the eSTREAM project
and broken in [2]. We motivate the modifications with respect to Mosquito[1].

1 Introduction

Recently, the self-synchronizing stream cipher Mosquito was broken with a chosen-ciphertext
attack in [2]. In this note we specify Moustique, a tweaked version of Mosquito, or
MosquitoV2 if you want. In this note we only specify the cipher, motivate the tweak with
respect to Mosquito and give some incremental implementation results. For an explanation
of the general design approach and more implementations results, we refer to [1].

2 Self-synchronizing stream encryption

In stream encryption operating at the bit level, each plaintext bit mt is encrypted by adding
a keystream bit zt modulo two resulting in a ciphertext symbol ct:

ct = mt
⊕ zt . (1)

Decryption is:
mt = ct

⊕ zt . (2)

In self-synchronizing stream encryption with symbol size ns = 1, the keystream symbol zt is
the result of applying a cipher function fc to a window of the ciphertext stream with index
range [t − nm, t − (bs + 1)] and a cipher key K of nk bits:

zt = fc[K](ct−nm . . . ct−(bs+1)) . (3)

nm is called the input memory and we call bs the cipher function delay. For the encryption
of the first nm bits of the plaintext, there are no ciphertext bits available. The place of these
bits are taken by an initialization vector that must be shared between sender and receiver
and that may be public:

c−nm . . . c0 = initialization vector (IV) . (4)

In general, encrypting a plaintext with a key using different IV values results in different
ciphertexts. However, taking different IV values may result in the same ciphertext values.

1

Table 1: Number of bits per cell

Range of j nj

1 − 88 1
89 − 92 2
93 − 94 4
95 8
96 16

More particularly, if the IV values only differ in the first ℓ bits, the probability that the two
ciphertexts are equal is 2−ℓ. Additionally, if the IV values only differ in the last 10 − ℓ bits,
the ℓ leading bits of the ciphertext will be the same with certainty.

3 The Moustique cipher function

Moustique is a self-synchronizing stream cipher with:

• : Symbol size ns: 1

• : Key size nk: 96

• : Input memory nm: 105

• : cipher function delay bs: 9

3.1 The Moustique internal state

Moustique consists of a conditional complementing shift register (CCSR) and a number of
pipelined stages. The Moustique CCSR has 128 bits that are partitioned in 96 cells denoted
by qj. The index j ranges from 1 to 96. The number of bit per cells depends on the value of
j and is denoted by nj. The values of nj are specified in Table 1. This topology combined
with the updating function results in an input memory of 96 bits.

The bits within a cell qj are denoted by qj
i with 0 ≤ i < nj. We index the bits of the

CCSR in two ways: we use q
(j)
i in the specification of the updating function of the CCSR

itself, and a0
i in the specification of of the updating function of the first stage. Figure 1 shows

the expansion of the CCSR at the high input memory end and the two ways of indexing. The
Moustique internal state has 8 stage registers denoted by ai, including the CCSR:

• a0 is the CCSR and has a length of 128.

• a1 to a5 have length 53.

• a6 has length 12.

• a7 has length 3.

The bits of the registers a1 to a7 are indexed starting from 0, those of a0 start from 1. The
cipher key k consists of 96 bits: k0 . . . k95.

2

i
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0· · ·

j 88 89 90 91 92 93 94 95 96

88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108

109 110 111 112

113 114

115 116

117 118

119 120

121

122

123

124

125

126

127

128

Figure 1: Expansion of the CCSR in the high memory region. q indexing at the right and
bottom, a0 indexing inside the boxes.

a b

⊕

c d

⊕

⊕

g0(a, b, c, d)

a b

⊕

c d

◦

◦⊕

g1(a, b, c, d)

a b

◦

◦

c d

◦

◦⊕

g2(a, b, c, d)

Figure 2: The three functions used in the state-updating transformation

3.2 The Moustique state updating function

For all bits in the internal state, the value of a bit at time t is a simple function of bits of the
internal state, possibly a key bit and possibly the ciphertext bit at time t− 1. We distinguish
three Boolean functions, defined in terms of addition and multiplication in the field GF(2):

g0(a, b, c, d) = a + b + c + d (5)

g1(a, b, c, d) = a + b + c(d + 1) + 1 (6)

g2(a, b, c, d) = a(b + 1) + c(d + 1) . (7)

Figure 2 gives combinatorial circuits of these functions.
For the bits of the CCSR we have:

qj
i ⇐ gx(qj−1

i mod nj−1
, kj−1, q

v
i mod nv

, qw
i mod nw

) , (8)

with 0 ≤ v,w < j − 1. The values of x, v and w for all combinations (i, j) are specified in
Table 2, except those for j ≤ 2 and those with j = 96 and i > 1. In this table a 0 in columns
v or w denotes the bit at the input to the CCSR.

For j ≤ 2, the qv and qw entries are taken to be 0. The 15 bits q96
i with i > 0 are specified

by:
q96
i ⇐ g2(q

95
i mod 8, q

95−i
0 , q94

i mod 4, q
94−i
1 mod n94−i

) . (9)

3

Table 2: Function and v and w values for equation 8

Index Function v w

(j − i) mod 3 = 1 g0 2(j − i − 1)/3 j − 2
(j − i) mod 3 = 2 g1 j − 4 j − 2
(j − i) mod 6 = 3 g1 0 j − 2
(j − i) mod 6 = 0 g1 j − 5 0

Table 3: Bit updating function for the stages

Output Equation Input

a1
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(a128−i, ai+18, a113−i, ai+1) a0

i , 1 ≤ i < 128

a2
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a1

i , 0 ≤ i < 53

a3
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a2

i , 0 ≤ i < 53

a4
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a3

i , 0 ≤ i < 53

a5
i , 0 ≤ i < 53 a4i mod 53 ⇐ g1(ai, ai+3, ai+1, ai+2) a4

i , 0 ≤ i < 53

a6
i , 0 ≤ i < 12 ai ⇐ g1(a4i, a4i+3, a4i+1, a4i+2) a5

i , 0 ≤ i < 53

a7
i , 0 ≤ i < 3 ai ⇐ g0(a4i, a4i+1, a4i+2, a4i+3) a6

i , 0 ≤ i < 12

The bit updating functions for the stages are specified in Table 3. In this table, if a lower
index in the right-hand side of the equations is out of the specified range, the corresponding
bit is taken to be 0, e.g., a3

53 = 0.
The keystream bit is given by

z = a7
0 + a7

1 + a7
2 . (10)

This yields:
p ⇐ g0(c, a

7
0, a

7
1, a

7
2) . (11)

and
c ⇐ g0(p, a7

0, a
7
1, a

7
2) . (12)

3.3 Putting it together

Figure 3 shows the Moustique self-synchronizing stream cipher. Its critical path delay
is 2 XOR gates, equal to the gate delay of the state-updating transformation. Building a
circuit that can perform both encryption and decryption while maintaining this path delay
necessitates the introduction of extra intermediate storage cells, denoted in Figure 3 by boxes
containing a d. In the encryptor this cell is located between the encryption and the input of
the CCSR. For correct decryption this necessitates a double delay at the input of the CCSR.

4

C
C
S
R

✛K K✲

C
C
S
R

✻
d
✻

✻
2d
✻

❄

⊕

❄⊕ ✲⊕ ✲
d

✲❄

⊕

❄✲⊕ ✲⊕ ✲
d

✲mt ct ct−1 mt−1 mt−2

at−1 at−1

Figure 3: Encryption and decryption with Moustique.

4 Security claims

The claimed security properties of a self-synchronizing stream cipher may be expressed in
terms of its cipher function.

Claim 1 The probability of success of an attack not involving key recovery, that guesses
the output of the cipher function corresponding to ℓ input vectors Ci while given the cipher
function output corresponding to any set of (adaptively) chosen input vectors not containing
any of the Ci is 2−ℓ.

Claim 2 There are no key recovery attacks faster than exhaustive key search, i.e. with an
expected complexity less than 2nk cipher function executions.

We do not claim resistance against attackers that may manipulate the key and that in
our attack model, the attacker has no knowledge about the key whatsoever.

5 Motivation for the tweak

We first give a short and simplified description of the attack that broke Mosquito, for a
more detailed treatment we refer to the original paper [2].

If the first ℓ bits of the key are (assumed to be) known, the propagation of a difference
applied at the input can be controlled up to qℓ. The attacker can apply a difference in the
ciphertext that leads at time t = 1 to a difference equal to 1 in cell q1 and 0 in cells q2 to
qℓ. He then iterates the CCSR ℓ times, while ensuring that the difference in q1 at time t = 1
propagates to a difference in only qi at time t = i, and nowhere else in the complete CCSR.
Due to the fact that the worst-case diffusion in the CCSR is minimal, the attacker can easily
enforce this by choosing the appropriate ciphertext bits. At time t = ℓ, the difference in the
cells q1 to qℓ is a single 1 in qℓ and zero elsewhere.

Consider now the cells qℓ+1 and higher. At time t = 1, the attacker has no knowledge
of the difference in this section. However, at time t = i, the difference in cells qℓ+1 up
to qℓ+i−1 is zero. If the input memory of the SSSC is 2ℓ or smaller, at time t = ℓ the
difference in the CCSR is 1 in cell qℓ and zero elsewhere. The stages realise some confusion
in the mapping from the CCSR state to the output bit, but clearly not sufficient to such a
powerful differential. They have been designed assuming that an attacker cannot construct

5

high probability differentials in the CCSR. The authors of [2] proved this assumption to be
wrong and showed that guessing about half of the key and decrypting some chosen ciphertext
pairs suffices to find the remaining part of the key, thereby breaking the cipher.

In the design of the CCSR of Mosquito care was taken to have high diffusion from its
input bit to the cells by injecting the input bit in 16 positions. However, the attack exploits
the low worst-case diffusion within the CCSR. Actually, the attack exploits this low diffusion
in combination with two other properties of Mosquito: the lack of confusion realised by the
stages and the fact that guessing part of the cipher key gives access to the first part of the
CCSR. A tweak should therefore address at least one of these three properties. In our choice
of the tweak, we also considered that the efficiency of the cipher in dedicated hardware should
not degrade too much: the area and the critical path delay should not change significantly with
respect to Mosquito. This rules out the introduction of a key schedule, the augmentation
of the number of stages or their width or an increase of the width of cells of the CCSR. Only
the CCSR updating function remains.

The worst-case diffusion in the CCSR is dramatically improved by using for about one
third of the bits the function g0 instead of g1 leading to much better worst-case diffusion. The
indexing ensures that differences in the low-end part of the CCSR propagate much faster to
differences in the high-end part of the CCSR. This makes containment of single-bit differences
in the first bits of the CCSR to a small number of bits during a significant number of iterations
infeasible. Therefore, we believe chosen-ciphertext key-guessing attacks as in [2] cannot be
mounted for Moustique. We are aware that replacing the nonlinear function g1 by the linear
function g0 for one third of the bits of the CCSR may introduce new weaknesses and possibly
lead to new attacks. For the moment we do not see a method for exploiting this decrease
in nonlinearity in an attack. Still, we invite the cryptographic community to try to break
Moustique.

6 VLSI implementation synthesis results

We have implemented a Moustique encryption/decryption circuit using Field Programmable
Gate Array (FPGA). This circuit has the same architecture as our circuit for Mosquito

and is described in [1]. We designed and coded the hardware implementation in VHSIC
Hardware Description Language (VHDL) with structural description logic and verified the
resulting implementation using the Mentor Graphics ModelSim simulation environment, with
test vectors returned by the software implementation. We synthesized the circuit using Mentor
Graphics LeonardoSpectrum tool in both Xilinx [3] and Altera [4] FPGAs and used the
same FPGA families as for Mosquito: from Xilinx FPGAs the Virtex, Virtex-E and Virtex-
II family and from Altera FPGAs the Apex, Flex and Max family.

The synthesis results and performance analysis are shown in Table 4 indicating the number
of D Flip-Flops (DFFs), Configurable Logic Blocks (CLBs) and Function Generators (FGs)
for Xilinx FPGAs and the number of D Flip-Flops (DFFs) and Logic Cells (LCs) in cases
of Altera FPGAs. The indicated throughput is that for encryption/decryption, after the
initialization phase.

The main difference between Mosquito and Moustique is in the connections between
the Flip-Flops in the CCSR. The ciphers have the same critical path delay: 2 ∗ tXOR. As
can be seen when comparing Table 4 and the corresponding table in [1], we achieved some
improvements in speed and the usage of logic cells with respect to our Mosquito implemen-

6

Table 4: Moustique synthesis results and performance numbers

FPGA Device # DFF # FG/LC # CLB Speed
total used total used total used Mb/sec

Xilinx Virtex (V50BG256) 1536 503 1536 405 768 252 228
Xilinx Virtex-E (V50EPQ240) 2010 503 1536 405 768 252 263
Xilinx Virtex-II (2V80FG256) 1384 503 1024 405 512 252 369
Altera Apex (EP20K200RC208) - - 8320 503 - - 336
Altera Flex (EPF10K70RC240) 4096 503 3744 503 - - 146
Altera Max (EPM3512AQC208) 512 503 512 503 - - 167

tations, thanks to some optimizations. The only negative point is the slight decrease of speed
for the Xilinx Virtex-II FPGA. Probably our proposed VHDL implementation of Moustique

matched less with the hardware resources of this kind of FPGA than that of Mosquito.

7 Acknowledgements

We would like to thank Joe Lano for stimulating us to submit Mosquito to e-STREAM
and Sanand Sule, Ralf-Philipp Weinmann and Sean O’Neal for reporting problems with the
reference implementation in Mosquito and draft versions of Moustique. Finally we would
like to thank Frédéric Muller and Antoine Joux for doing the effort to cryptanalyze Mosquito

and its predecessor KNOT. Without these attacks Moustique would not exist.

References

[1] Joan Daemen and Paris Kitsos, Submission to ECRYPT call for stream ci-
phers: the self-synchronizing stream cipher Mosquito (2005), available from
http://www.ecrypt.eu.org/stream/

[2] A. Joux and F. Muller, “Chosen-Ciphertext Attacks against MOSQUITO,” Fast Software
Encryption 2006, LNCS, M. Robshaw, ed., Springer-Verlag, 2006, to appear.

[3] Xilinx Virtex FPGA Data Sheets (2005), URL: http://www.xilinx.com

[4] Altera FPGA Data Sheets (2005), URL: http://www.altera.com

7

