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Nieves Vélez de Mendizábal • Bernat Corominas-Murtra • Bartolomé Bejarano •
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Abstract Semantic memory is the subsystem of human
memory that stores knowledge of concepts or meanings, as

opposed to life-specific experiences. How humans organize

semantic information remains poorly understood. In an effort
to better understand this issue, we conducted a verbal fluency

experiment on 200 participants with the aim of inferring and

representing the conceptual storage structure of the natural
category of animals as a network. This was done by formu-

lating a statistical framework for co-occurring concepts that

aims to infer significant concept–concept associations and
represent them as a graph. The resulting network was ana-

lyzed and enriched by means of a missing links recovery

criterion based on modularity. Both network models were
compared to a thresholded co-occurrence approach. They

were evaluated using a random subset of verbal fluency tests

and comparing the network outcomes (linked pairs are
clustering transitions and disconnected pairs are switching

transitions) to the outcomes of two expert human raters.

Results show that the network models proposed in this study
overcome a thresholded co-occurrence approach, and their

outcomes are in high agreement with human evaluations.

Finally, the interplay between conceptual structure and
retrieval mechanisms is discussed.

Keywords Verbal fluency ! Switching-clustering !
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Introduction

Semantic memory is the subsystem of human memory that

stores conceptual and factual knowledge. Contrary to epi-
sodic memory, which stores life experiences, semantic

memory is not linked to any particular time or place. In a

more restricted definition, it is responsible for the storage
of semantic categories and naming of natural and artificial

concepts (Budson and Price 2005; Patterson et al. 2007).

How these categories are organized, and more specifically,
which words or concepts are close to which others, has kept

the attention of a number of studies, most of them based on

verbal fluency data.
Verbal fluency tasks with either semantic or phonetic

cues are widely used in neuropsychological studies

(Galeote and Peraita 1999; Ardila and Ostrosky-Solı́s
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2006). In semantic fluency tasks, participants have to

produce words from a category such as animals or fruits in
a given time (usually 60 or 90 s). Although other semantic

categories have been used in this kind of tests, the animal

category has the advantage of universality: it is a clear
enough test across languages and cultures with only minor

differences across different countries, educational systems

and generation belonging (Ardila and Ostrosky-Solı́s
2006). Being the number of different words named the

most common clinical measure (Lezak 1995), it has also
been observed that words tend to appear in semantically

grouped clusters (Bousfield and Sedgewick 1944; Gruene-

wald and Lockhead 1980; Raskin et al. 1992; Wixted and
Rohrer 1994). This behavioral observation led Troyer et al.

(1997) to propose a two component model of the semantic

fluency task. The first component, clustering, implies the
production of related words until a particular category is

exhausted.The secondcomponent, switching, impliesmoving

to a different semantic cluster. It has been argued that
switching implies the flexibility to initiate a new category

search and is related to frontal executive functioning while

clustering depends on the brain’s temporal lobe and is char-
acterized by local explorations of semantic memory (Troyer

et al. 1997, 1998a, b; Tröster et al. 1998).

This paper addresses the problem of semantic organi-
zation from the viewpoint of modern network theory.

Network theory has arisen as an influential field of research

(Albert and Barabási 2002) in the context of complex
networks, i.e., those networks or graphs containing non-

trivial topological features. This framework has broadened

the understanding of a wide variety of systems, including
social (Wasserman and Faust 1994; Rosvall and Bergstrom

2008), biological (Jeong et al. 2001; Voy et al. 2006) and

neural networks (Sporns et al. 2004; Eguı́luz et al. 2005).
The case of language (Ferrer i Cancho and Solé 2001; Solé

et al. 2010) and in particular of semantics (Sigman and

Cecchi 2002; Motter et al. 2002; Steyvers and Tenenbaum
2005) has not been an exception—see Borge-Holthoefer

and Arenas (2010b) for a detailed review. Regarding verbal

fluency, a recent study has applied a network approach
based on co-occurrences to verbal fluency data in order to

assess behavioral differences between healthy subjects,

patients with mild cognitive impairment and patients with
Alzheimer’s disease (Lerner et al. 2009).

Beyond the general statistical analysis provided by

Sigman and Cecchi (2002), Motter et al. (2002), Steyvers
and Tenenbaum (2005), a variety of cognitive models have

proposed that semantic knowledge can be represented as a

complex network, where nodes represent words or con-
cepts and links connecting them correspond to conceptual

(semantic) relationships. In earlier studies to explain

semantic memory, a tree-like hierarchical structure was
proposed (Collins and Quillian 1969, 1970), in which

specific concepts are embedded in more general ones and at

the same time nest-specific items, storing at each level of
the hierarchy the shared features of its concepts. Never-

theless, this classification seems to be too strict, since

cognitive categories are not clearly bounded (Rosch et al.
1976) and occasionally elements do not inherit the char-

acteristics of their supra-ordinates (Sloman 1998). These

theoretical limitations brought about unstructured network
models where hierarchy is lost and nodes are linked as

many times as relations found between their underlying
concepts. Hence, any single concept can be defined in

terms of its links to other concepts. These models are

known as spreading activation models since information is
processed through activation, beginning at a given point of

the network and spreading to adjacent nodes following a

decreasing energy gradient (Quillian 1967; Collins and
Loftus 1975; Anderson 1976; Hayes-Roth 1977; Anderson

and Pirolli 1984).

The models described above aim to represent the deep
conceptual structure of semantic memory through a system

of abstract propositions that characterize each concept by

relating it to others. The high level of abstraction of these
models forced authors to either code their representations

manually (Quillian 1967; Collins and Quillian 1969) or

leave them at a theoretical level (Anderson and Pirolli
1984; Hayes-Roth 1977). Semantic association models,
focused on natural language use, emerged as an alternative

to these theoretically driven representations. They consist
of identifying clusters of concepts in a multidimensional

space and yield less-specific relationships than preceding

approaches—for a review see Griffiths et al. (Griffiths
et al. 2007). This permits the creation of models based on

data from semantic decision tasks (Rips et al. 1973; Henley

1969), verbal fluency tests (Henley 1969; Crowe and
Prescott 2003; Schwartz et al. 2003), association norms

(Henley 1969), or large linguistic corpora (Lund and

Burgess 1996), in a non-supervised manner. In particular,
semantic distance algorithms, which assume that nearer

words within the tests are conceptually closer, have been

applied to fluency tasks of both healthy controls (Henley
1969; Crowe and Prescott 2003; Schwartz et al. 2003) and

neurological patients (Chan et al. 1993; Aloia et al. 1996;

Schwartz and Baldo 2001; Prescott et al. 2006) in order to
study the semantic structure of memory.

The aim of this work is to obtain a reliable conceptual

network (CN) that represents the semantic organization of
the animal category. This has been done by recruiting a

large dataset of verbal fluency as the input source and by

introducing a novel statistical framework for co-occurring
concepts that aims to infer significant concept–concept

associations. The resulting network is analyzed and enri-

ched (ECN) by means of a missing links recovery criterion
based on modularity. Finally, the accuracy of both CN and
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ECN is evaluated. This is done using a subset of verbal

fluency tests and comparing the network outcomes (linked
pairs are clustering transitions and disconnected pairs are

switching transitions) to the evaluations of two expert

human raters. Results show that CN and ECN models used
as classifiers are remarkably close to human evaluation,

overcoming a thresholded co-occurrence strategy.

Our approach shares with the spreading activation
models the representation of semantic memory as a net-

work and with the semantic association models its unsu-
pervised inference (no taxonomic or any other a priori

knowledge is applied). In order to infer the semantic

organization of concepts from verbal fluency, retrieval
strategies must be taken into account. In particular,

switching transitions might be altering expected co-occur-

rence and distance between concepts. In an effort to
overcome this issue, we developed an statistical method-

ology that permitted us to create a network of reliable

related concepts. It is noteworthy that finding a network
model of semantic memory easily derives to a classifier of

switching and clustering, since links between nodes would

represent clustering transitions and the absence of links
between two nodes would represent switching transitions.

The network is later analyzed in terms of topological fea-

tures with the aim of giving some insight into the charac-
teristics of semantic memory.

Methods

Network theory and its descriptors

In this section, we outline the concepts related to network

theory that will be used in this work. For detailed network
theory reviews, see (Albert and Barabási 2002; Newman

2003; Boccaletti et al. 2006; Borge-Holthoefer and Arenas

2010b).
First, let us define a conceptual network as a graph G ¼

ðW ;CÞ formed by a set of words W:{w1, …, wn} that

represent concepts (animals in this case) and a set of links
C % ffwi;wjg; . . .; fwk;wlgg that represent semantic asso-

ciations between them. The graph is undirected, which
ensures that if a concept wi is associated with another

concept wj, it is also true that wj is associated with wi. For

the sake of simplicity, we avoid the possibility that a node
contains auto-loops (self-associations) or that two links are

connecting the same two nodes. We define N as the size of
the graph, i.e. the number of nodes (concepts) composing
the graph. The structure of a graph is completely described

by a N 9 N matrix, AG ¼ ½aij', the so-called adjacency
matrix. An entry aij is 1 when the concepts wi and wj are

linked, and 0 otherwise. In our case, such matrix is sym-

metrical (i.e., every entry aij equals to its symmetric aji)

since our graphs are undirected.1 An undirected graph is

said to be connected if there exists a possible finite path
between all pairs of nodes. Not connected graphs may

contain a giant component (GC), rawly speaking, a con-

nected sub-graph that contains a majority of the nodes of
the graph.

The degree of a node wi, denoted by k(wi), indicates its

number of links and can be easily obtained from the
adjacency matrix as

kwi ¼
XN

j¼1

aij: ð1Þ

The set of nodes connected by a link to a node is usually

referred as the neighborhood of this node. The average
degree of a graph represents the average number of
neighbors (concepts linked to a concept) and is defined as

hki % 2jCj
N

; ð2Þ

where jCj denotes the number of links contained in the set C.
The clustering coefficient Ci of a node wi is defined as

the proportion of links between the nodes that exist within
its neighborhood divided by the number of links that could

possibly exist between them (Watts and Strogatz 1998). Its

formal expression is given by

Cwi ¼
2Ewi

kwiðkwi ( 1Þ
; ð3Þ

where Ew_i are the number of actual edges that exist within

the neighborhood of node wi. The average clustering
coefficient of the nodes is denoted by

hCi ¼
PN

i¼1 Cwi

N
: ð4Þ

hCi is therefore a descriptor of the local connectivity cor-

relations of the network.
In the current work, we will use also the concept of

diameter (D) of the network referring to the longest among

the shortest paths between any two nodes. Finally, hLi
refers to the mean path length of pairwise shortest paths

between every two nodes.

Network partitioning in modules provides fruitful
information about the organization of a system and the

basis of its structure and is one of the major current topics

of interest in the field of network theory (Yip and Horvath
2007; Wagner et al. 2007; Danon et al. 2007; Arenas et al.

2008). The generalized topological overlap measure

(GTOM) (Yip and Horvath 2007) is a generalization
or extension of the topological overlap measure (TOM)

(Ravasz et al. 2002) based on the selection of higher-order

1 The absence of auto-loops ensures that all entries of the main
diagonal (aii entries) are 0.
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neighborhoods.2 It provides a robust and sensitive measure

of interconnectedness that eases the selection of a cutoff in
dendrograms. Hence, the evaluation of different high-order

neighborhoods with GTOM is an accurate option to find

modules in networks based on empirical evidence, where
missing links might be notorious. The basis of GTOM is to

take into account the number of m-step neighbors that every

pair of nodes share in a normalized fashion. For instance,
selecting m = 1 is exactly TOM algorithm that measures the

overlap coefficient OTOM for every pair of nodes i and j,

OTOMði; jÞ ¼
Jði; jÞ

minðki; kjÞ
; ð5Þ

where J(i, j) is the number of neighbors shared and

min(ki, kj) is the minimum of the degree of both nodes.

However, setting m = 2 (GTOM2) considers not only the
neighbors shared by every two nodes but also the neighbors

of those neighbors. Therefore, the generalization to GTOM
can be carried out by growing node neighborhoods,3 i.e.

adding links between those nodes distanced no more than

m links in the original adjacency matrix before computing
the overlap measure (see Eq. 5). The resulting overlap

matrix is transformed to a dissimilarity matrix by con-

verting each entry to 1 - OTOM(i,j). A hierarchical clus-
tering (with averaged linkage criterion) is then performed

on the dissimilarity matrix and a cutoff that better separates

the matrix in dark blocks (i.e., in sets of nodes with high
GTOM) is used to generate a partition of the graph in

modules. A Matlab (The Mathworks Inc., Natick, MA,

USA) implementation is available as electronic supple-
mentary material (see ‘‘Appendix’’).

Finally, in order to compare the network descriptors

defined above with respect to a null model, we used the
Erdös Rényi graph (Erdös and Rényi 1960) as a random

network model. It consists of spreading links on nodes at

random, preserving both the number of nodes and links
with respect to the network under study.

Verbal fluency data

Two hundred Spanish speakers were recruited (83 men,

117 women). Participants ranged from 18 to 61 years
(mean = 31.8, SD = 11.75), and their education ranged

from 5 to 30 years (mean = 15.2, SD = 3.85). Subjects

were asked to name all the animals they could in 90 s and
responses were transcribed to a text file.4 Verbal fluency

data are included as electronic supplementary material (see

‘‘Appendix’’).

Inference of conceptual associations

Our first aim was to extract relations between concepts based

on test evidence in order to obtain a conceptual network (CN).
For this, we assumed that a relationship between two words

existed when their rate of co-occurrence was significantly

higher than what could be expected by chance. The known
high rate of switching in fluency tests, averaged as 0.48 by

Troyer et al. (1997), indicates that two consecutive words are

not necessarily semantically related. Therefore, the use of a
statistical assessment in addition to a basal approach based on

co-occurrences is critical to discern which concepts are

associated when the data comes from verbal fluency tests.5

Given the complete set of distinct words W :
{w1, w2, …, wn} and assuming that words happen within

tests at random, the probability of a word wi to occur in a
test is independent of the rest of the test. It corresponds to a

Bernoulli variable that can be expressed as

P̂wi ¼
fwi

M
; ð6Þ

where fwi is the frequency of wi within the tests and M is the
number of tests (200 in our case). Therefore, the probability of

two words being in the same test by chance, Ptest
wi;wj

, is also

determined by the product of two Bernoulli variables that

occur independently. Their rates of success are obtained

independently from the number of occurrences divided by the

number of tests evaluated. Hence, Ptest
wi;wj

is defined by

Ptest
wi;wj

¼ P̂wi P̂wj ¼
fwi

M

fwj

M
; ð7Þ

where fwi and fwi are the frequencies of wi and wj,
respectively.

Let us define l as the distance between two words in a
test.6 See Fig. 1 for an example of l = 2. Given two words

occurring in the same test, the probability of being at a

distance l, i.e., separated by exactly l - 1 words, is

2 Performing a hierarchical clustering directly on the adjacency
matrix and setting a threshold in the dendrogram is among the most
basic and common approaches used to find modules. Nevertheless, it
must be acknowledged that inferred adjacency matrices from
empirical data are often noisy or incomplete. This severely affects
hierarchical clustering evaluation and misleads the selection of an
accurate cutoff value for module detection.
3 For any m value, GTOM output is a normalized overlap matrix with
values between 0 and 1 containing interconnectedness shared
information for every pair of nodes.

4 Every word was converted to its singular and three pure synonyms
were unified. Finally, one word that was not an animal was removed.
5 While methodologies based on co-occurrences have been success-
fully used to study language networks (Solé et al. 2010), it is
important to remark that syntactic constraints severely reduce the
possible orderings of items with respect to verbal fluency outputs,
where position of concepts is unrestricted.
6 For instance, l = 1 indicate that they are consecutive words. In
general, l = n indicate that there are n - 1 words between the two
words under study.
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PðlÞ
wi;wj

¼ 2
N ( l

N
2

! " ¼ 2
N ( l

NðN ( 1Þ
; 1) l\N: ð8Þ

where N is the mean length of tests (a mean field
approach).7 The term 2*(N - l) is the number of

positions of the two words that leave them at distance

l within a sequence of length N. The term N
2

! "
¼ N!

ðN(kÞ! is the

total number of positions that two words can occupy within

the sequence.8 This equation can be generalized to the

probability of words happening within a window of size
l. This is expressed as

Pð) lÞ
wi;wj

¼ 2
Xl

i¼1

N ( i
N
2

! " ¼ 2

NðN ( 1Þ lN ( lðlþ 1Þ
2

# $
;

1) l\N:

ð9Þ

The expression in Eq. 9 accumulates9 the probabilities of

words being distanced from 1 (consecutive words) to

l (l - 1 intermediate words). Hence, the probability of two
words happening in the same test and window, denoted by

Plinked
wi;wj

, is

Plinked
wi;wj

¼ Ptest
wi;wj

Pð) lÞ
wi;wj

¼ fwi

M

fwj

M

2

NðN ( 1Þ
lN ( lðlþ 1Þ

2

# $
;

1) l\N:

ð10Þ

The mean cluster size found by Troyer et al. (1997) was
1.09 ± 0.54, where a cluster size of 1 had two words and

so on. It basically means that most of the clusters made by

participants contain no more than 3 words. Therefore, the
expectations of getting semantic information for l greater

than 2 are very reduced. Hence, we chose setting l = 2.10

Given that N and l are 31.57 and 2, respectively, the cal-

culated value for Pð) 2Þ
wi;wj is 0.1246. This is, in our dataset,

the basal probability of two words of a test being either

consecutive or separated only by a third word by chance.

Afterward, for each pair of words, we obtained the con-
fidence interval (a = 0.05) for a binomial distribution given

the number of attempts (number of tests) and the number of
successes (co-occurrences according to parameter l). Such
confidence intervals were computed using the Clopper and

Pearson exact method (Clopper and Pearson 1934). The
acceptance of an interaction or association between two

words was based on whether Plinked
wi;wj

was smaller than the left

confidence bound of the interval. This means that we can

reject the hypothesis that the Plinked
w1;w2

obtained can be

explained by chance. Although the Clopper and Pearson

method is particularly appropriate for low-rate success

experiments, it is certainly difficult to assess interaction
significance for pairs of words with only one co-occurrence,

specially when one of them has low frequency.11

Hence, we evaluated those pairs of words that co-
occurred more than once. This implies that words that did

not reach a co-occurrence greater than one with any other

word were not included in the inference process (158 out of
400).12 Additionally, it also implies that any pair of words

included in the inference process with a co-occurrence

equal to 1 is automatically not linked in the network.
Further analyses were carried out in the giant component of

the network.13 The numerical representation of the inferred

conceptual network (CN) is a 236 9 236 binary symmetric

Fig. 1 Example of window length when l = 2, as done in the present
work. The word sequence represents part of an individual test. When
analyzing shark relationships, neighbors distanced no more than two
words on both sides are taken into account. Hence, in this toy
example, tiger and whale on the left and dolphin and tuna on the right
shark-related candidates

7 A more individualized approach could be done by assessing
individual test sizes instead.
8 It is assumed that sequences, i.e. tests, do not contain repeated
elements. In the unlikely event of finding a word repeated in a test,
neighborhoods for all appearances are considered to obtain co-
occurrences.
9 It is straightforward to see that, when l ¼ N ( 1;Pð) lÞ

wi ;wj
¼

2
PN(1

i¼1
N(i
N
2½ '

¼ 1.

10 Setting l = 1 would only consider associations for strictly
consecutive words, which are more likely to be related with respect
to more distant concepts. The high-order variability naming related
concepts requires of a large dataset to capture most relationships.
A solution to overcome this issue consists of increasing para-
meter l. However, large windows provide more candidates for
establishing relationships of words but at the same time, they reduce
the significance of nearby concepts (method explained below) and are
more likely to induce meaningless co-occurrences.
11 For instance, a word named once would be automatically linked to
any word named less than 32 times, considering that N = 31.57 and
l = 2 in our dataset.
12 Removing 39% of distinct words might seem a severe filtering, but
they only represented 3.5% of all word occurrences within the tests as
they were very low frequent items. Such small reduction of evidence
is indeed one step ahead of previous works where semantic distance
approaches have been applied to those words either said by a
minimum of around 30% of participants or to most named words
(threshold set around 12 occurrences) (Henley 1969; Chan et al.
1993; Aloia et al. 1996; Schwartz and Baldo 2001; Prescott et al.
2006).
13 Those words with no significant interactions were not included in
the network (4 words) since they represented isolated words that
prevent a network analysis. Additionally, the isolated pair eel-elver
was also removed for the same reason, leaving a total of 236 nodes in
the network.
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matrix A (see Sect. 2.1 for details). Such matrix contains all

possible interactions among words. For every significant
relationship between two concepts (wi, wj), the entries aij
and aji were set to 1, and 0 otherwise. A Matlab imple-

mentation of the network inference process is available as
electronic supplementary material (see ‘‘Appendix’’).

In order to compare our models with a basal co-occurrence

approach, a thresholded co-occurrence strategy was also
carried out. Using the same window (l = 2), different co-

occurring thresholds from 1 to 10 were applied on the set of
236 concepts present in CN and ECN. On each case, pairs of

concepts co-occurring below the threshold were classified as

switching, and concepts co-occurring as many times as the
threshold or above were classified as clustering. Table 1

describes four descriptive examples of how the methodology

described in this section behaves with respect to an approach
based on counting co-occurrences (prior step to thresholding).

Examples such aswhale-mouse co-occurringmore frequently

than viper–cobra in our verbal fluency dataset show the rel-
evance of our approach for the inference process.

Conceptual network enrichment and topological
evaluation

The recovery of missing links in inferred and experimental
networks is a topic of crucial importance (Mestres et al.

2008) that has been addressed by taking advantage of the

network topology, i.e., predicting real missed links based
on those already observed (Yip and Horvath 2007; Clauset

et al. 2008) and detecting both missing and spurious links

(Guimera and Sales-Pardo 2009). In our case, the com-
munity structure of CN (i.e., the partition of the graph in

modules) obtained by means of the GTOM algorithm (see

Sect. 2.1 for details) was the basis of the enrichment

process in order to provide a reliable conceptual network

model. Modules happened to be mostly ruled by semantic
constraints, and thus, it is very likely that any node should

be reachable from any other node of the same module in

one step if there were not missing links. The integration of
modular information was carried out setting in the adja-

cency matrix A a value of 1 for every pair of words found

in the same module. Thus, every module became a fully
connected set of nodes or clique (except auto-loops). This

neighborhood enrichment produced the enriched concep-
tual network (ECN), and its visualization was carried out

with Pajek (Batagelj and Mrvar 2002). A Matlab imple-

mentation of the enrichment process is available as elec-
tronic supplementary material (see ‘‘Appendix’’).

Network models used for switching and clustering
classification

In order to evaluate CN and ECN as in-silico classifiers (eval-
uation via computer simulation) of clustering and switching

transitions, animals not represented in the networks were

removed from verbal fluency tests. The 200 tests were con-
verted to binary vectors, where switching and clustering tran-

sitionswere labeled according toCNandECN.Every transition

was labeled as clustering when both concepts were directly
linked on the network and as switching otherwise (see Fig. 5 for

avisual representationof theoutputs producedbyeachclassifier

for all the tests). Those 21 out of 200 testswheremore than 10%
of concepts had to be eliminated were discarded for the classi-

fication task in order to avoidmethodological biases. Finally, 20

of the 179 remaining tests were randomly selected. Two human
raters14manually evaluated switching andclustering for the 600

transitions contained in the tests in order toprovidean inter-rater

agreement between human expertise, our unsupervised
approach and a co-occurrences approach (BCON). Inter-rate

agreements between every expert and in-silico outputs were

measured by kappa coefficient (Cohen 1960).

Results

Verbal fluency data and inference of conceptual

associations

The subjects produced a series of animals containing

between 16 and 52 words (mean 31.57, SD 6.99). Overall,

Table 1 Four examples of the concept–concept statistical analysis to
decide whether each pair is associated and thus their nodes are linked
in the network

Pair of concepts P̂w1
P̂w2

Plinked
w1 ;w2

Hits Interval Linked

Monkey–horse 0.34 0.51 0.022 2 [0.0012, 0.035] No

Whale–mouse 0.59 0.45 0.033 6 [0.011, 0.064] No

Viper–cobra 0.04 0.04 0.0002 4 [0.0055, 0.0504] Yes

Lion–tiger 0.73 0.59 0.054 91 [0.38, 0.52] Yes

Pair of concepts indicates the pair studied; P̂w1
is the frequency of the

first concept (as defined in Eq. 6); P̂w2
is the frequency of the second

concept (as defined in Eq. 7); Plinked
w1 ;w2

is the value obtained according to

Eq. 10; hits is the number of times that both concepts were named
within a distance not greater than 2 (parameter l, see Eq. 8); interval is
the confidence interval (a = 0.05) for the binomial distribution con-
sidering the number of hits and the number of attempts (number of
tests); a pair of concepts is linked in the conceptual network only

when Plinked
w1 ;w2

is on the left of the interval, i.e., we can reject the

hypothesis that the Plinked
w1 ;w2

obtained can be explained by chance

14 Raters had experience at the evaluation of verbal fluency tests in
healthy controls and neurological patients. They were asked to judge
whether each transition between two words was between animals
from the same or different subcategories and had for guidance two
articles with rules on how to evaluate clustering and switching
(Troyer 2000; Villodre et al. 2006). Raters were blind to the results
produced by the in-silico evaluations.
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400 distinct animals were listed from which 115 animals
appeared only once.15 We used the previously described

statistical approach in a novel fashion that permits the

inference of concept associations from verbal fluency tasks
taking into account the number of participants, mean test

length, window length and word frequencies. The output of

this method was an adjacency matrix of the CN. The
topological characteristics of such network are summarized

in Table 3, and its implications are described in Sect. 3.3.

Modularity analysis

It is widely accepted that semantic memory in general and
natural categories in particular must be organized in sub-

categories. However, which and how many these subcate-

gories are remains poorly understood. From a network
perspective, the presence of such categorical organization

should be related to the presence of modules in CN.

Therefore, our next aim was to study the existence of
modularity and, if present, its fundamentals and a charac-

terization of each module. The clearest partition of the

network in modules was obtained with GTOM2.16 Figure 2

shows the absence of modularity in a random network with
the same number of nodes and links. Regarding CN,

GTOM1 shows the presence of several modules confirmed

and better bounded when using GTOM2. For both net-
works, GTOM3 analysis showed a saturated overlap matrix

indicating that no more generalizations were required to be

evaluated.
The overlap measure matrix obtained with GTOM2 is

represented in Figs. 2 and 3. On the top of the figure, we

can see the hierarchical clustering performed on this matrix
and the resulting modules colored. Once modules were

defined, their content was qualitatively analyzed to report a

brief description as inclusive as possible of each module.
Table 2 summarizes the 18 modules found and their main

characteristics.

In summary, we obtained the presence of 18 modules in
an unsupervised manner (Fig. 3). The qualitative analysis

of these modules confirmed that they were semantic in

nature, contained elements with common attributes and
their size was heterogeneous.

Conceptual network enrichment and topological
evaluation

Modular semantic knowledge obtained in previous section
was incorporated in the network by fully connecting nodes

of the same module. Hence, every module became a clique

connected with other modules. We refer to those nodes
connecting different modules as frontier animals, i.e. nodes
that have inter-module links. A representation of ECN can

be seen in Fig. 4. The topological features before and after
the enrichment (CN and ECN, respectively) are shown in

Table 3. Enriching the network reduced the diameter from

Fig. 2 GTOM orders from 1 to 3 for CN network and a random
network (ER-net) with the same number of nodes and links created
according to the Erdös-Rényi model. Results indicate the existence of

high modularity in the conceptual network inferred, while no
modularity appears in the random network

15 These figures are close to the results of 423 distinct animals, and
175 named only once obtained from 21 participants during 10 min
somewhere else (Henley 1969) and might be indicating an average
magnitude of the human lexicon size in the category of animals.
16 The information regarding modularity provided by this matrix is
the presence or absence of discrete blocks along the diagonal. When
there is no modularity in a network, as it occurs in random graphs, no
blocks appear independently of the number of neighborhood expan-
sions until the graph represents itself one module. For those networks
where modularity emerges, the selection of a hierarchical clustering
cutoff (0.58 in our data) must separate those blocks as well as possible
to get a feasible partition of the network in modules.
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9 to 6 (i.e. every animal can be attained from any other

animal in no more than six steps along ECN) and the mean
shortest path length from 4.40 to 3.24 (i.e. the shortest path

length between every two nodes is on average shorter in

ECN). Both network diameters were quite short due to a
small-world phenomenon (Watts and Strogatz 1998) pro-

duced by frontier animals that act as short-cuts i.e. links

that connect different regions of the network. Example of
animals linking two or more modules are monkey and

crocodile. Crocodile is part of the\Reptiles[module but
has five links toward animals of\Savanna[, while monkey
has three links toward animals of\Savanna[but conforms

a module with other \Apes[. Finally, the conversion of
every module to a clique multiplied by almost four the

averaged degree of the network and increased the cluster-

ing coefficient from 0.33 to 0.87. As shown in Table 3, the
high difference between hCrandi and hCi for both networks

showed the presence of high organization. In other words,

concepts indirectly linked through a common neighbor are
more likely to be directly linked, a phenomenon not

observed when there is a random linkage of nodes in a

network.

In-silico classifiers of switching and clustering

ECN aims to represent conceptual storage structure. There

is a natural parallelism between the definition of clustering

and switching and our conceptual model, where links
connect related words and disconnected pairs imply that

there is no relationship between the two concepts. Hence,

we assessed whether ECN and CN could be used as reli-
able in-silico evaluators of verbal fluency transitions.

Table 4 shows inter-rater agreements among in-silico and

human judge expertise. With respect to human evalua-
tions, CN is in good concordance with raters (0.71 and

0.70), while ECN shows even a higher agreement (0.82

and 0.83). Indeed, these figures are very close to the kappa
coefficient found between the two human raters (0.88),

which quantifies the inter-rater reproducibility. Hence,

ECN is a conceptual representation closer to human
evaluation than CN and represents an unsupervised reli-

able approach. This implies that the links added to ECN

due to the network enrichment process were in benefit of a
more accurate classification. Differences between CN and

ECN evaluations for the complete dataset are shown in

Fig. 5. Regarding a thresholded co-occurrence strategy,
both ECN and CN overcome the best co-occurrence

approach obtained (BCON), which showed low kappa

coefficients with human raters (0.56 and 0.53) . Kappa
coefficients obtained for a range of co-occurrence

thresholds from 1 to 10, including BCON (threshold = 2)

are shown in Fig. 6.

Table 2 Description of the modules obtained by the GTOM2 tech-
nique applied to the CN network

Id Description n Explored
by

rmodule Most
frequent

1 Farm-big 21 0.83 0.16 Horse

2 Farm- and forest-small 16 0.85 0.15 Hen

3 Cervidae 12 0.35 0.05 Deer

4 Wild birds 23 0.86 0.10 Eagle

5 Pets and singing birds 11 0.95 0.33 Dog

6 Crustacean and mollusk 18 0.39 0.03 Octopus, crab

7 Fish and cetaceans 31 0.84 0.14 Whale

8 Unclassifiable 2 0.09 0.01 Manta ray

9 Reptiles 21 0.80 0.11 Snake

10 Rodents 5 0.55 0.18 Mouse

11 Savanna and felinae 16 0.93 0.23 Lion

12 Apes 6 0.41 0.12 Monkey

13 Australian 5 0.26 0.06 Kangaroo

14 Bears and Polar 9 0.47 0.11 Bear

15 Wild Canis 3 0.27 0.09 Wolf

16 Mammalian burrowers 4 0.17 0.03 Platypus

17 Insects and Arachnids 32 0.69 0.09 Fly

18 Unclassifiable 1 0.05 0.00 Ferret

Id stands for module position in the dendrogram; n is the number of
nodes contained in each module; Explored by is the proportion of
participants that named at least one concept of the module; rmodule is
the standard deviation of concept frequencies of each module; Most
frequent is the most cited concept of each module

Fig. 3 Dissimilarity based on GTOM2 (gray scale) with a hierarchi-
cal clustering on it. Modules obtained correspond to the presence of
black blocks along the diagonal of the matrix. On the left, a
qualitative description of each module is also included. The two
smallest modules (8 and 18) happened to be unclassifiable and they
probably belong to other existing modules

Cogn Process

123



Discussion

Our study constitutes an attempt to tackle the complexity of
semantic organization by means of network theory and

verbal fluency data. By collecting verbal fluency tests from
200 individuals, we have been able to reconstruct a feasible

network model of semantic memory, in particular for the

natural category of animals. It has been common to use
verbal fluency tests to extract representations of semantic

memory. This has been usually done using the mean dis-

tance between pairs of words and including the most
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Fig. 4 Enriched conceptual network (ECN) is a conceptual organi-
zation model inferred from verbal fluency. Size of each node
represents its frequency. Each module is identified with a different
color in accordance with the color legend of Fig. 3. Links between

nodes stand for concept associations and thus represent clustering
transitions (related concepts). The absence of links between nodes
indicate switching transitions (unrelated concepts, contextual change)

Table 3 Network analysis

Descriptor CN ECN Description

N 236 236 Number of nodes

jCj 611 2,357 Number of interactions

D 9 6 Diameter

hLi 4.40 3.24 Mean path length

hki 5.18 19.97 Average degree

hCi 0.33 0.87 Average clustering coefficient

hCrandi 0.02 0.08 hCi Expected for a random network

Topological features of the conceptual network (CN) and the enriched
conceptual network (ECN). A more detailed explanation of each
measure can bee seen at Sect. 2.1

Table 4 Inter-rater agreement

ECN BCON Rater1 Rater2

CN 0.85 0.62 0.70 0.71

ECN – 0.58 0.82 0.83

BCON – – 0.56 0.53

Rater1 – – – 0.88

Kappa values among in-silico CN, ECN and BCON models and two
experienced human raters
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common elements in a multidimensional space (Henley

1969; Crowe and Prescott 2003; Schwartz et al. 2003).

Here, we have developed a methodology that produces a
novel representation of semantic memory as a graph. In our

case, nodes stand for concepts while links between nodes

represent that there is a semantic relationship between
them. Interestingly, the inferred network shows an orga-

nized structure characterized by a high modularity, which
seems to be ruled by a trade-off between conceptual con-

straints such as taxonomy, habitat and size of its concepts.

Additionally, connected and disconnected pairs of concepts
within ECN nicely match to clustering and switching

transitions, respectively, and thus gives rise to an accurate

in-silico classifier when compared to human expert
evaluation.

In Sects. 3.2–3.4, we respectively inferred a conceptual

network, extracted its modules and used them to enrich the
network. CN was obtained linking those concepts that co-

occurred significantly according to the methodology

described in Sect. 2.3. The detection of modules was car-
ried out with the GTOM algorithm and showed 18 modules

strongly addressed by semantic features. The community

structure obtained by the modularity analysis permitted us

to convert each module into a clique to create a final net-

work (ECN). This network connects any two concepts

found to be in the same module, and thus semantically
related, keeping at the same time the links between mod-

ules through frontier animals.

The validity of our model is demonstrated by the fact
that it could be used to classify transitions between words

into clustering or switching as proposed by Troyer. When a
person categorizes a transition as a clustering or switching,

he is making a dichotomous subjective judgment of the

feasibility of a semantic relationship between two words.
The high agreement between our networks and human

raters implies that our methodology was able to catch

important semantic properties that make a pair of concepts
to be subjectively connected. In addition, the outstanding

kappa coefficient obtained confirms the reliability of this

model as a classifier. It could be of use to the psychological
community to evaluate in a fast and reliable way verbal

fluency datasets, with the advantage of not dealing with

inter-rater differences derived from subjective judgments.
Between the two in-silico classifiers, using ECN was

clearly the most accurate. The main difference with respect

to CN was that the modularity found had been exploited to

Fig. 5 CN and ECN in-silico
evaluations of switching
transitions (black) and
clustering transitions (white).
Positions in gray indicate that
the test already ended, i.e., no
more animals were said by that
participant. The network
enrichment process introduced
some modifications in the
evaluation, i.e., some transitions
considered switching by CN
evaluator became clustering
under ECN evaluation
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recover missing links between concepts. This points at an

important property of semantic memory. It is not a disor-

dered compendium of concepts but an ordered dataset,
where it seems that every concept is included in a more

general group. In our case, we make a specific proposal of a

suitable classification into modules. A qualitative analysis
of this classification indicates that most modules had

semantic relevance, having their elements many features in

common. However, by no means we propose that the
modules found here are the only possible ones. A careful

analysis of the dissimilarity matrix obtained from GTOM

(see Fig. 3) shows evidence of certain hierarchical orga-
nization of the modularity, with highly connected sub-

modules nested into bigger ones. Accepted theories on

semantic representation and natural categories consider
that cognitive categories do not have clear-cut frontiers.

Elements are better or worse exemplars of their categories,

conforming a typicality decay from the central concepts
(Rosch 1974, 1975; Rosch and Mervis 1975). Although a

limitation of a modular partitioning is that a concept only

pertains to one module, in our approach those animals with
a fuzzy module belonging still have links toward nodes of

other modules.
A relevant issue addressed in this work is the design of

an unsupervised statistical methodology that permits to

extract co-occurrences above chance from verbal fluency
data taking into account the frequency of each word, a

window length, the number of participants and the mean

length of the tests. The major advantage of an unsupervised
approach is that concept relationships do not depend on

expert judgment but only on empirical evidence and

allowed a reliable in-silico evaluation of switching and

clustering. When compared to previous works of semantic
distance (Henley 1969; Chan et al. 1993; Aloia 1996;

Schwartz and Baldo 2001; Prescott et al. 2006), our

approach does not need concepts to be named by a large
proportion of participants and has the benefit of maximiz-

ing the final number of concepts taking part in the model.

This methodology could be used in the future to explore
different domains of semantic memory or to create syn-

tactic networks from linguistic corpora, adding a confi-
dence interval to methodologies already used (Ferrer i

Cancho and Solé 2001).

It could be argued that creating dichotomous links
between concepts (related vs. not related) is an oversim-

plification of the complexity of their relationships, which is

not lost when using a multidimensional space approach.
This is true since we can assume that there are concepts

more related or more strongly connected than others.

Nevertheless, it is important to remark that our aim was to
obtain the underlying network of conceptual organization

rather than measuring the semantic distance between con-

cepts or gradients in their navigability (which might be
represented by weighted graphs). In this sense, both

approaches could be complementary for the study of verbal

fluency data, where semantic distance and weighted links
both intend to explain exploration phenomena. How this or

other cognitive-related networks are explored and how this

affects navigability and retrieval efficiency is a question of
increasing interest (Boguñá et al. 2009; Goñi et al. 2010;

Borge-Holthoefer and Arenas 2010a). Additionally, during

verbal fluency tests, the human brain makes dichotomous
classifications since switching and clustering, which are

defined as mutually exclusive, have been shown to be

originated at different neural locations (Troyer et al.
1998a). Similarly, when two people are asked to answer the

question of whether two concepts are related or not during

a verbal fluency task (i.e. to judge whether the transition
has been a clustering or a switching), inter-rater reliability

is very high, indicating an important level of agreement.

Therefore, we can assume that a dichotomous model of
semantic relationships is not opposed to the true reality of

semantic memory but complementary to non-binary mod-

els. Such binary graphs are the natural output of using a
statistical threshold, which ensures that the found rela-

tionships were true with a specific level of confidence.

Additionally, our methodology, although it is somewhat
less precise than non-binary models when qualifying links,

is able to recover many reliable associations (note that

semantic distance methodologies to date have only per-
mitted to investigate the relationships among the most

common items). Another limitation of this study is the use

of a single semantic category. Future works could deal with
other semantic categories, different in nature to the one
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Fig. 6 Accuracy of the outcomes produced by the network models
when compared to human expertise. CN and ECN are the networks
inferred in the present study. Numbered points correspond to different
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thresholding at 2 led to the best co-occurring network (BCON), its
accuracy is clearly overcome by CN and ECN networks
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used here. An example could be non-living objects such as

tools, which have been shown to activate different brain
areas of animals during naming tasks (Chouinard and

Goodale 2010). The use of a statistical approach could help

to elucidate whether their representation differs from the
clustered organization of animals.

How a system is organized greatly influences informa-

tion retrieval mechanisms and efficiency (Noh and Rieger
2004). We have proposed here a model of semantic storage

that could be used to further investigate the characteristics
of human memory. The high clustering coefficient and the

modular structure of ECN are a consequence of the high

level of organization of the semantic storage. Both topo-
logical properties will impose severe restrictions on the

navigability or exploration of the network. As there is not

an unanimous model of semantic retrieval (Wixted and
Rohrer 1994), the dynamical behavior of our semantic

network when extracting information could be further

studied. Investigating how possible retrieval mechanisms
are influenced by the topological characteristics of our

network would certainly provide interesting results that

could give rise to new theories of semantic memory and
specifically on how subjects produce semantic fluency

outputs.

It is important to highlight that countless retrieval
models can be created to explore a network such as ECN.

Ideally, the interplay between the conceptual structure and

the retrieval model should reproduce relevant features of
verbal fluency, including the appearance of words in

semantically related clusters (Troyer et al. 1997), the fact

that some words are much more frequent than others
(Overschelde et al. 2004), the tendency of subjects to

produce more frequent words earlier in the test (Bousfield

and Barclay 1950), and a similar effect of typicality (Rosch
et al. 1976) or age of acquisition (Alvarez and Cuetos

2007) of words. Time effects, such as the appearance of

words in spurts followed by silences (Wixted and Rohrer
1994), and the reduction in the production rate as a func-

tion of time (Bousfield and Sedgewick 1944) should also

be accounted for. A commonly proposed model consists of
randomly retrieving concepts (see Wixted and Rohrer

(1994) for a review). When applying random graphs, a

model whose output is the consequence of a random-walk
through networks (Noh and Rieger 2004) can been pro-

posed . While the former completely ignores the semantic

structure, the latter totally depends on it. Random sampling
models can hardly explain any of the listed effects, with the

exception of the increasing silences (assuming that repe-

ated elements manifest as silences). A random-walk on a
highly modular graph (as it is the case of ECN) explains the

presence of series of semantically related concepts but

easily produces repetitions, due to persevering within the
same module and thus producing silences from the

beginning. Partial combinations of both kinds of retrieval

models are also possible and may overcome some of their
limitations. Theoretical efforts in this direction have led to

propose cognitive inspired strategies of graph exploration

(Goñi et al. 2010). Nevertheless, the validity of a retrieval
model when used on our storage representation (ECN) or

any other would have to be tested confronting it with

empirical data.
Future work could uncover new properties of semantic

organization and retrieval in human cognition by applying
similar or other topological analysis tools and studying

other semantic categories on the networks inferred by this

method. Furthermore, this methodology might be useful to
better understand the evolution of semantic network

acquisition and the relation between verbal fluency skills in

neurodegenerative diseases from an unsupervised dual
perspective, i.e. storage architecture degradation (Rogers

et al. 2004) and impaired retrieval abilities.
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Appendix

A Matlab (The Mathworks Inc., Natick, MA, USA)

implementation of the methodology described in this study
is available as electronic supplementary material. It starts

with a verbal fluency dataset and at the last step obtains an

enriched conceptual network. In order to ease the use of the
code, all these files contain step-by-step explanations and

references to sections and equations of this manuscript

where appropriate. The script batch_verbal_fluency.m is
also very helpful to comprehend the process in a global

manner. The modular implementation of the different

functions permits their independent use.
• batch_verbal_fluency.m: It is the general script that

deals with the whole process from the verbal fluency

data to the enriched conceptual network. It uses the
functions described below.

• count_words.m: function that counts the number of

words of each verbal fluency test contained in the
dataset.

• get_rel_frequencies.m: function that gets the relative

frequencies of each word included in the verbal fluency
data.

• getco_occurrences.m: function that counts the number

of co-occurrences of every pair words for a given
maximum distance (parameter l)
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• get_statistical_co_occurrences.m: function that per-

forms the statistical approach described in the paper for

the network inference.
• get_components.m: function that obtains the compo-

nents of an undirected graph. This is used to obtain the

giant component of the conceptual network.
• computeGTOM.m: function that performs the modu-

larity analysis using the Generalized Topological

Overlap Measure.
• enrich_newtork.m: function that performs the enrich-

ment process of a network according to its modularity

analysis (which is the output of computeGTOM in our
case).

• write_graph_links.m: function that writes pairs of

words that are linked in a graph according to a
dictionary into a file. Each line consists of a pair

word,word.
The verbal fluency data of the 200 subjects used in this
study are available in the file data.mat, which can be

loaded typing load data.mat in a Matlab environment.

The dictionaries of the 236 words included in the
networks are available in dictionaries.mat (first col-

umn in Spanish, second column in English). In the case

of Spanish, acute accents and dieresis were omitted and
letter ñ was substituted by n.

Finally, both CN and ECN graphs have been included

in Spanish (original language of the tests) and English
(translation made by the authors). These files include

all the pair of words that are connected (i.e. links of the

graph) in a comma separated value format (.csv). These
files can be easily visualized as graphs with programs

such as Pajek (Batagelj and Mrvar 2002) or Cytoscape

(Shannon et al. 2003).
• CN_spa.csv is the conceptual network (CN) with

animals written in English (graph with 236 nodes and

611 links).
• CN_eng.csv is the conceptual network (CN)with animals

written in Spanish (graph with 236 nodes and 611 links).

• ECN_spa.csv is the enriched conceptual network
(ECN) with animals written in Spanish (graph with

236 nodes and 2357 links).

• ECN_eng.csv is the enriched conceptual network
(ECN) with animals written in English (graph with

236 nodes and 2357 links).
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