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Once upon a time, modal logics “had no semantics”. Bearing a real world 

G, a set of worlds K, and a relation R of relative possibility between worlds, 

Saul Kripke beheld this situation and saw that it was formally explicable, and 

made model structures. It came to pass that soon everyone was making model 

structures, and some were deontic, and some were temporal, and some were 

epistemic, according to the conditions on the binary relation R. 
None of the model structures that Kripke made, nor that Hintikka made, 

nor that Thomason made, nor that their co-workers and colleagues made, 

were, however, relevant. This caused great sadness in the city of Pittsburgh, 

where dwelt the captains of American Industry. The logic industry was there 

represented by Anderson, Belnap & Sons, discoverers of entailment and 

scourge of material impliers, strict impliers, and of all that to which their false- 

hoods and contradictions led. Yea, every year or so Anderson& Belnap turned 

out a new logic, and they did call it E, or R, or Ei ,  or P - W, and they beheld 

each such logic, and they were called relevant. And these logics were looked 

upon with favor by many, for they captureth the intuitions, but by many more 

they were scorned, in that they hadeth no semantics. 

Word that Anderson & Belnap had made a logic without semantics leaked 

out. Some thought it wondrous and rejoiced,’ that the One True Logic should 

make its appearance among us in the Form of Pure Syntax, unencumbered 

by all that set-theoretical garbage. Others said that relevant logics were Mere 

Syntax. Surveying the situation Routley, and quite independently Urquhart, 

found an explication of the key concept of relevant implication. Building on 

Routley [ 19721 , and with a little help from our friends - Dunn and Urquhart 

I The underlying point is, of course, that there are tiiany ways to explicate informal logical or 

mathematical notions formally, and that an axiom set counts. So do matrices, rules for natural 

deduction, correlated algebraic structures, and so forth. which had previously been provided for 

the relevant logics. The novelty of the present approach, as Belnap has put i t .  is that like 

Kripke’s semantical reductions of modal logics i t  provides an extensional - in a significant 

sense, a truth-funcrional .- understanding of relevant logic. Why this kind of understandmg 

turns out particularly illuminating is a matter forps.vchology of logic. in which we profess no 

competence; in fact, even purely technical problems seem to become much easier - cf., e.g.. 

section VIIl below. 
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in particular, with thanks also due to Anderson, Belnap, V. Routley, and 

Woodruff - we use these insights to present here a formal semantics for the 

system R of relevant implication, and to provide it with proofs of consistency 

and completeness relative to  that semantics. 

Central to the semantics being developed here is a ternary relation R which 

takes the place for the relevant logics of the Kripke binary relation for stand- 

ard modal and intuitionistic logics. In subsequent work we shall show how by 

varying the postulates on R one gets, as is customary in these things, other 

relevant logics, notably the Anderson-Belnap systems E of entailment and P 

of ticket entailment and the Ackermann systems of strengelmplikation’. For 

the present we stick to R, developing as in Meyer [ 19681 a theory of entail- 

ment by adding an explicit Lewis-style modal operator to R.3 Since the 

modal part of Ackermann-Anderson-Belnap theories of entailment is essential- 

ly S4, while the relevant part rests on novel insights, the essential novelties of 

the semantics developed here will lie in the treatment of the underlying 

relevant system R, necessity than being analyzed along the lines of Kripke’s 

analysis of S4 in Kripke [ 19631. We note that in its implicational part 

(Church’s weak theory of implication RI), R is the oldest of the relevant 

logics and perhaps the most naturally motivated. Extensions of R (Dunn’s 

R-mingle) and of its positive fragment R t  (positive logic, intuitionistic logic) 

fall easily under our account and will be treated in passing. 

Consider a natural English rendering of Kripke’s binary R. H R H i  

“says” that “world”H1 is possible relative to world H. An interesting ternary 

generalization is to read H R H1 ,H2 to say that “worlds” Hi and H2 are 

compossible (better, maybe, compatible) relative to H. (The reading is sug- 

gested by Dunn.) “Worlds” will not detain us, for we apply the terminology 

of Routley [ 19721 to speak of “set-ups’’ rather than “worlds”, by which we 

indicate that what we deal with is not necessarily realized or even realizable in 

any ordinary sense. [But logic, we think, should have room for extraordinary 

sense, to do justice to physics as well as to philosophy and poetry.] To ply 

some of the intuitions that make relevant logics philosophically interesting, in 

addition to the pedestrian set-ups that might count also as worlds, we could 

include in, perhaps, what is putatively described by a coherent (though not 

necessarily consistent) set of beliefs, what might be presumed on a certain 

2 P has been renamed T, in Anderson and Belnap [ 19721 , q.v.  for formulations of all logics 

mentioned. 

3 We develop the semantics of  N R  in a sequel to this paper, to be published in the Journul of 

Philosophical Lo~ic .  
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combination of law and observational report (even if the combination engen- 

ders difficulties [the scientist’s word for inconsistencies] or is incomplete), 

what would happen if all that ought to be done were done. We waive here the 

question whether the notion of a set-up belongs ultimately to ontology, episte- 

mology, or even perhaps just psychology4. 

Two set-ups are compatible relative to a third, on the intuitions exploited 

here, provided that whenever sentences A and B hold respectively in the first 

and the second, a sentence C that asserts directly that A and B are consistent 

holds in the third. [Dunn recalls the standard model analogue from Kripke - a 

world is possible relative to a second provided that whenever A holds in the 

first, a sentence directly asserting that A is possible - namely 0 A - holds in 

the second.] 

notation away from that most familiar to readers of Kripke. Henceforth we 

use a, b, c, etc., in place of H, H I ,  etc., to indicate set-ups. We also abandon, 

with a permutation, the old infix notation; Rabc shall henceforth assert, as 

we have put it informally, that a and b are compatible relative to c.5 We 

also introduce an explicit binary consistency connective -read ‘A 0 B’, ‘A is 

consistent with B’.6 

If one examines the syntactical residue of normal modal semantics (as we 

were doing in brackets a paragraph ago), Kripke’s modal structures may be 

naively viewed as having consistent and complete theories as their elements. 

Our model structures, on examination of their syntactical residue, will also 

have theories as their elements. But as in Routley [ 19721 and in view of pre- 

vious remarks, regard for relevance requires us to treat theories abnormal 

from the classical viewpoint. The class of theories to which we shall attend 

will be, given that constraint, as nearly normal as possible; its members will be 

what we call here prime intensional theories. Besides being closed in a suitable 

sense under entailment, prime intensional theories will respect conjunction 

and disjunction as do classically consistent and complete theories. 

To make it easier to comprehend postulates and proofs, we switch 

4 The same might be said, of course, of a possible world in the semantics of Lewis-style modal 

logics. But our colleague Nino Cocchiarella finds in ideas like the present ones an epistemologi- 

cal rather than an ontological orientation; we are not so sure, but drop the question as involving 

matters of philosophical stance too far-reaching for thorough examination here. 

5 c R u, b, in the old notation. 

6 An analogue of *d goes back t o  Church’s work on RI in Church [ 195 1 ] : whether viewed as 

consistency, compossibility, an intensional kind of conjunction, or simply as  an operation in 

correlated algebraic structures, i t  has proved very useful: cf., e.g., Meyer et al. [ 19721. 
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Negation, on the other hand, requires as in Routley [ 19721, as in previous 

work of Dunn, Belnap, and others, the admission of theories that are incon- 

sistent, incomplete, or both. Justification as above can be found in belief con- 

texts, or in evaluative ones, or even, indicatively, when under extreme provo- 

cation (e.g., Russell’s paradox) we might choose to bite the bullet of explicit 

contradiction, or must choose (e.g., axiomatized arithmetic) never to savour 

the sweet fruits of completeness. We save nevertheless something like the 

familiar recursive treatment of negaticii by distinguishing a strong and a weak 

way of affirming a sentence A in a given set-up. The strong way is to assert A; 

the weak way is to omit the assertion of A. This yields for each set-up a the 

complementary set-up a*, where what is strongly affirmed in a is weakly 

affirmed in a* and vice versa. The wanted recursive clause then says that A 
holds in a just when A doesn’t hold in a*; the reader will have noted that 

under normal circumstances, when we affirm just what we don’t deny, a and 

a* coincide, whence the account of negation reduces to the usual one. 

Relevant implication, though the heart of the matter, derives here its 

characterization via negation and consistency, given that A relevantly implies 

B just in case A and Bare  inconsistent. As it turns out (on a fixed interpre- 

tation of our formal language), A relevantly implies B is a set-up c just in case. 

for all set-ups a and b,  whenever Rcab and A holds in a then B holds in b.7 

The real world plays a distinguished role in our semantical postulates. 

(Accordingly we call it 0 rather than G; not only does the former look better 

[this is supposed to be, remember, a mathematical semantics] , but it cor- 

rectly h n t s  that 0 will play the formal role of an identity.) It’s necessary to 

distinguish 0 for the following reason: Logical truth does not turn out to be 

truth in all set-ups; for the strategy which dispatches the paradoxes lies in 
allowing even logical identities to turn out sometimes false. (What, after all, 

could be better grounds for denying that q entails p -+ p than to admit that 

sometimes q is true when, essentially on grounds of relevance, p -+ p isn’t?)8 

What then is logical truth? Truth in all set-ups, of course, in which all the 

Zogical truths are true! (That’s not, by the way, a tautology; it’s possible that 

a stray non-logical truth might get dragged into all set-ups in which all logical 

truths are verified.) Frankly, in considering as candidates for the real world 

only set-ups that verify all logical truths, we are only showing our parochial 

loyalties as logicians, since as logicians these are the truths we want our formal 

In weaker systems, such as E and T, we shall use this condition to characrerim the ternary 

In addition to the remarks immediately following, cf. section 4 below. 

accessibility relation R. 
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semantics to characterize. Our semantics, to be sure, requires the physicist or 

the economist to reason correctly, in the sense that he’d better use valid 

arguments, but the physicist is no more required to prefer qua physicist to 

assert laws of logic than the logician is required to assert qua logician the third 

law of thermodynamics. (We have, by the way, restored a certain parity be- 

tween the logician and the physicist; that physics deals somehow in only low- 

grade [on some accounts, high-grade] truths, in that we can imagine - or at 

least pretend formally - that its laws are false, while laws of logic are always 

true, turns out to be a view made possible only by a defect of imagination; so 

much the worse, as Quine would say, for analyticity.) 

So much, too. for general motivating remarks. The formal developments 

to follow are of course independent of them and might be used to ground 

varying informal intuitions. Chief among these developments are proofs of the 

semantical consistency and completeness of the sentential logic R of relevant 

implication. Numerous applications are made of the main result, either newly 

answering or offering greatly simplified proofs of answers to questions of the 

sort posed in Anderson [ 19631 . A characterization of normal validity, for 

example, shows that the set of theorems of R is closed under detachment 

for material implication, the main result of Meyer and Dunn El9691 ; 

borrowing from Meyer [ 1972a, b] , we show moreover that R is well- 

axiomtized, in the sense that in general its fragments got by dropping certain 

connectives can be got from axioms in which the dropped connectives do not 

occur (details are in section lo); similarly, extension of our completeness 

proof to the Dunn-McCall system RM sheds further light on certain results 

obtained by Meyer and cast in algebraic form by Dunn [ 19701 . The theory of 

deMorgan monoids, developed by Dunn in his dissertation (University of Pitts. 

burgh, 1966) to furnish an algebraic counterpart of R and summarized in 

Meyer et al. [ 19721, is linked in several places to our semantics, and a useful 

Stone-type embedding theorem is noted for the former. A theory of proposi- 

tions is introduced and is used to sketch an extension of the present semantics 

to the Anderson-Belnap system RP of relevant implication with propositional 

quantifiers presented in Anderson [ 19721 ; a similar extension is offered for 

the first order version RQ of R. Alternatively, we offer truth-value semantics 

(in the sense of Leblanc) in the quantifier cases. We think that proofs of com- 

pleteness relative to  the suggested semantics of the quantificational systems 

are messy but straightforward, but, our most patient editor’s patience having 
run out, and having just begun to plumb the ramifications of relevance at the 

quantificational level, we content ourselves here with proofs of semantic con- 

sistency for the quantificational systems. 
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Our introductory remarks conclude with the observation that, as a result 

of this paper and of Urquhart’s [ 19721 related work, the relevant logics now 

have a formal semantics; but relating such a semantics to the informal claim 

that a system of logic has captured one’s intuitions is ever a matter of private 

judgment, and that judgment we leave, as his rightful due, to the reader. 

1. Syntactical preliminaries 

The sentential language SL is a triple GS, 0, I?, where S is a denumerab- 

ly infinite set of sentential parameters, 0 is the set whose members are the 

unary connective - and the binary connectives &, V, +, and F is the set of 

formulas built up as usual from the parameters in S and the connectivcs in 

0. (We use ‘p’, ‘4’’ etc., to refer to sentence parameters in S and ‘A’, ‘B’, 

etc., to refer t o  arbitrary formulas of F. For ease in reading formulas, the 
binary connectives, including those immediately to be defined,, are to be 

ranked &, 0, V, -+, t--, in order of increasing scope, otherwise resolving am- 

biguities by associating to the left.) As definition, axiom, and rule sche- 

mata for the system R of relevant implication we enter the following: 

A l .  A + A ,  

A2. A 3 ((A + B) - B), 

A3. (A -+ B) -+ ((B -+ C) -+ (A + C)), 

A4. (A -+ (A -+ B)) -+ (A -+ B), 

AS. A & B -+ A, 

A6. A & B + B, 

A7. (A -+ B) & (A - C) -+ (A -+ B & C), 

A8. A + A V B, 

A9. B - A V B, 

A10. (A -+ C) & (B -+ C) -+ (A V B -+ C), 

A l l .  A & ( B  V C)- A & B V A & C ,  

A12. (A -B) + (B + x) 
A13. -+ A. 

D1. A o B = d f A + B  (Consistency) 

D2. A t--, B =df (A -+ B) 0 (B + A).9 (Equivalence) 

R1. From A -+ B and A, infer B. (Modus ponens) 

R2. From A and B, infer A & B. (Adjunction) 

9 The definiens is equivalent in R to the more usual (A + B) & (B + A). 
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2. Semantic preliminaries 

A relevant model structure (henceforth, r. m. s.) is a quadruple 

( 0 ,  K ,  R, *), where K is a set, 0 E K ,  R is a ternary relation on K, and * 
is a unary operation on K, satisfying postulates to follow. For ease in stat- 

ing postulates and for help in interpreting them we define a binary relation 

< and a 4-ary relation R2 on K as follows, for all a, b, c, d in K :  

d l .  a < b =df ROab, 

d2. R2a bcd =df 3 x(Rabx & Rxcd & x E K ) .  

dl  and d2 may be explained as follows. We began with a Kripke-style notion 

of a world being accessible from another. Generalizing to take account of the 

essentially relational notion of relevance, we passed to the notion of a set-up 

being accessible from pairs of set-ups. Obviously we could go on to trios of 

set-ups, quadruples of set-ups, and so forth. However, on the intuitions about 

compossibility formalized in the system R, which rest on the fact that con- 

sistency as introduced by D1 is commutative and associative, all the higher 

order accessibility relations prove definable using just the ternary R; thus R2, 

as defined by d2, says that d is accessible from the trio a,b,c, or, if one pre- 

fers, that a,b, and c are compossible relative to d. Moreover, just as one can 

move up levels via the sort of ternary relational product that enters into d2, 

one can move down thanks to the privileged status accorded to 0; crudely put, 

to say in the system R that A is compatible with the way things really are is 

just to say A, and vice versa. Accordingly, and in particular, ROab returns us 

to Kripke’s turf by saying simply that b is accessible from a, motivating d l .  

Since the system R is non-modal, we’d expect < as defined by d l  to be like 

the binary intuitionistic relation of Kripke [ 19651 ; so it turns out. 

Here are the postulates that an r. m. s. (0, K ,  R, *) must satisfy, for all 

a,b,c,d in K: 

p l .  ROPa, 

p2. Raaa, 

p3. R2 abcd * R2acbd, 

p4. R’abcd =* Rubc, 

p5. Rabc * Rac*b*, 
p6. ,**=a.  

We trust that, given our motivating remarks, it is not implausible that each of 

pl-p6 should be true. (Since, as noted, by varying postulates different rele- 
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vant logics result, there are of course points of view which exclude one or 

another of these postulates. Accordingly plausibility is all that is to be wished.) 

3. Valuations, interpretations, validity 

Let (0, K ,  R, *>be an r. m. s., {T, F) the set of classical truth-values, and 

SL = 6, 0, F) the sentential language defined in I .  A valuation v of SL in 

(0, K,  R,  * ) will be a function that assigns a truth-value to each parameter in 

S for each set-up in K, subject to the restriction that v respect the binary 

accessibility relation < defined by d l  . The interpretation I associated with v 

is the unique extension of v to all formulas of F in each set-up K required by 

the informal explication we have given of the connectives. Formally, 

(a) v is a valuation of SL in (0, K ,  R, *) provided that v is a function 

from S x K to {T, F} that satisfies the following condition, for all p in S and 

a, b in K: 

(1) a < b & v ( p , a )  = T + v(p,b) = T. 

(b) I is the interpretation associated with v provided that I is a function 

from F x K to {T, F} which satisfies the following conditions. for all p in S, 

A,B in F, and a in K :  

i. I(p,a) = v(p.a), 

ii. 

iii. 

iv. 

V. 

vi. 

I ( A  & B,a)= T iff I(A,a) = T and I(B,a) = T, 

I (A  V B,a) = T iff I(A,Q) = T or I(B,a) = T, 

I (A  .+ B,a) = T iff, for all b, c in K,  Rabc and 

I(A,b) = T 3 I(B,c) = T, 

I(AoB,a) = T iff there exist b,c in K such that Rbca and 

I(A,b) = T and I(B,c) = T,lO 

I(&) = T iff [(A@*) = F. 

A formula A is true on a valuation v, or on the associated interpretation I ,  

at a point a of K, just in case I(A,a) = T; otherwise A is false on v, at a. 1 1 

10 Since 

vi, and the semantical postulates; in section 10 below, when I is added as a primitive connective 

with governing axioms A14 A l 5 ,  v becomes of course a primitive semantical postulate. 

1 1  This switches the terminology of Meyer and Dunn [ 19691 : note accordingly that here if A 

is false at u on v ,  it does not follow that A is true at u on v :  it does follow by vi, i n  accordance 

with the introductory remarks, that A is true at a* o n  v .  

has been defined by D1, that this definition is correct is determined by applying iv, 
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Truth at 0 is as noted earlier what counts in verifying logical truths; accord- 

ingly we say simply that A is verified on v, or on the associated I ,  just in 

case I(A,O) = T, and otherwise that A is falsified on v .  A is valid in an r, rn. s. 
( 0 ,  K ,  R, *)just in case A is verified on all valuations therein. Finally, A is 

R-valid just in case A is valid in all r. rn. s.; otherwise A is R-invalid. 

4. Entailment 

In the introductory remarks, we allowed, e.g., the physicist to deny some 

logical laws, so long as he reasoned correctly. By this we meant that if the 

physicist asserts A, and A entails B, he is committed also to B. Thus we arrive 

at the following semantical concepts. 

Let (0 ,  K ,  R, * ) be an r. rn. s. in which v is a valuation and I is the 

associated interpretation. Then A entails B on v provided that, for all a in K ,  

( 2 )  I(A,a) = T * I( B,a) = T .  

We say simply that A entails B in (0, K ,  R,  *>just in case A entails B on all 

valuations therein. Finally, A R-entails B just in case A entails B in all r. m. s. 
Entailment being the key notion which it is our business here to explicate, 

a word about the role which we have assigned it in our semantics is in order. 

First, entailment here is a semantical relation between sentences; in the 

sequel, when we add necessity to R and consider the arrow of E, the means 

will be at hand to consider an entailment connective, but for the moment our 

system is too poor to express the claim that A entails B, in any sense. In- 

deed, except to keep our terminology uniform we might better have spoken 

of implication on v ,  or in (0 ,  K ,  R ,  *). But as the classical provability of 

A 3 B indicates classically that A classically entails B, just so, as we shall see, 

the provability of A + B in R indicates that A R-entails B in the sense just 

defined; i.e., in an absolutely general sense of ‘whenever’, whenever A is 

true B is true. Second, entailment on a valuation and, derivatively, entailment 

in an r. rn. s. are not to be identified with entailment in its logical sense; 

rather these notions characterize all the truth-preserving arguments in 

specific contexts; by taking into account all interpretations and all r. rn. s., 
however, we arrive at the desired logical notion. 

We now wish to relate entailment and verification. Our remarks about 

the preferred status of 0 suggest, quite correctly, that A + B is to be R-valid 

iff A R-entails B, and, more specifically, that on a valuation v in an r. rn. s., 

A entails B on v iff A --* B is verified (Le., true at 0) on v .  These things are 

to be proved immediately; in that light, we pause to remark that the chief 
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role of 0 and its special postulates lies in the fact that we wish to know in 

general which sentences are logically true, not just which sentences of the 

special form A + B are true. Nevertheless, the former problem may be re- 

duced to the latter, making 0 and its accompanying machinery theoretically 

dispensable. 

To show that entailment reduces to verification, we prove first some 

key lemmas. Until further notice, let A, B, C, be arbitrary formulas, 

( 0 ,  K ,  R, * )  be an arbitrary relevant model structure, a and b be members 

of K ,  v be a valuation of SL in (0, K ,  R, * ), and I be the interpretation 

associated with v. 

Lemma 1.  

Proof: 

a < b and I (A,a) = T + I(A, b) = T. 

By induction on the length of A. Restriction (1) on p. 206 

takes care of the basis case. The argument is trivial on inductive hypothesis 

where the main connective is & or V. Since 0 is a defined connective, two 

cases remain. (a) If A is of the form B, then if b > a  andI(A,a) = T, by p6  

b* <a* and so by vi I(B, a*) = F, whence on inductive hypothesis 

Z(B,a*) = F and hence Z(A, a) = T. (b) If A is of the form B -+ C, then if 

I(A,a) = T it is the case by iv that if I(B,d) = T and Radc then I(C,c) = T, 

for any d,c in K. Suppose then that a < b and I(B,d) = T and Rbdc. By d l  

and d2, RZOadc, whence by p4 Radc, whence on assumption, I(C,c) = T; so 

by iv, I(A,b) = T ending the proof of Lemma 1. 

Lemma 2. A entails B on v * A 3 B is verified on v. 

Proof: Suppose that, for all c in K ,  if I(A,c) = T then I(B,c) = T. We 

must show I(A -+ B,O) = T. For arbitrary a,b in K, suppose I(A,a) = T and 

ROub. By d l ,  Q < b. By Lemma l,I(A,b) = T. By assumption I(B,b) = T, 

which, applying iv, ends the proof. 

Lemma 3. 

Proof: 
I(B,b) = T. Applying d l  and p l ,  A entails B on v. 

The theorem relating entailment and verification is at hand. 

A -+ B is verified on v =+. A entails B on v. 

Suppose that for all a,b in K, if ROab and I(A,a) = T then 

Theorem 1. 

(0 ,  K ,  R ,  *) i f f  A -+ B is valid therein, and A R-entails B i f f  A -+ B is R- 
valid. 

Proof by Lemmas 2 , 3  and definitions. 

A entails B on v iff A + B is verified on v. So A entails 0 in 
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5. Semantic consistency of R (adequacy of the postulates) 

conventions are as in 4, and again we prove some preliminary lemmas. 

Lemma 4. 

Proofi 

by Lemma 2 to show for each such axiom that (a) if I(B,a) = T then 

I(Cp) = T. Accordingly, for each instance of A1-A13 we assume the 

antecedent of (a) and prove its conclusion. A1 is trivial. For A2 it suffices 

to show that if A and A -+ B are respectively true on v at points a and b 

respectively, then if Rabc it follows that C is true at  c; inasmuch as 

Rubc * R2Oabc + R2Obac +. Rbac by p l ,  p3, and p4, C is indeed true 

at c,  verifying A2. For A3 it suffices to show that if A + B is true at  a and 

Rubc, then if B -+ C is true at b and Rcde and A is true at d on the valuation 

v then C is true at e;  but if Rubc and Rcde then by d2, R2abde and by p3, 

Rbdbe ,  whence if I(A -i R,a) = I(A,d) = I(B + C,b) = T then there is 

by d2 an x in K such that I(B,x) = T and Rxbe, whence Rbxe [cf. verifica- 

tion of A2], whence C is true at e, verifying A3. For A4 suppose 

I(A -+ (A -+ B), a )  = T and I(A,b) = T and Rabc; show I(B,c) = T. But 

Rubc * Rbac, as above, whence by p2 and d2, R2bbac; by p3, R2babc; apply- 

ing d2 and commuting, again Rzabbc, whence on assumption, d2, and iv it is 

clear that I(B,c) = T, verifying A4. 

Conjunction and disjunction axioms are trivial, given the characterization 

(b) above of what counts as an interpretation. Consider, for example, A7; 

assume both A -+ B and A -+ C true at a;  show A -+ B & C true a t  a. Suppose 

then I(A,b) = T and Rubc; show B & C true at c. But on assumption 

Z(A + B,a) = Z(A + C,a) = T, whence I(B,c) = I (C,c)  = T, whence by ii on 

p. 206, I(B & C, c) = T, which was to be proved; other verifications among 

A5-A11 are in like manner. 
true at a. Suppose 

Rubc and B true at  b; show A true at c - i.e., show I(A,c*) = F. Suppose for 

reductio that I(A,c*) = T; by pS,Ruc*b* and hence Z(B,b*) = T, since 

A -+B is true at a. So I(B,b**) = F, by vi, whe_nce by p6,I(B,b) = F. a COP 

tradiction. Similarly, verify A1 3 by assuming 

hence A true at a**, hence by p6 A true at a, thus completing the proof of 

Lemma 4. 
In order to consider variations on the underlying logic, it is significant to 

inquire what in the proof of Lemma 4 depends on what. Among the postu- 

lates, only p4 figures essentially in verification of the conjunction-disjunction 

We show in this section that every theorem of R is R-valid. Notational 

I f  A is an axiom of R, I(A, 0) = T. 
Since each of the axioms of R is of the form B + C, it suffices 

To verify Al2, suppose A -+B true at a. Show B + 

true at a, hence false at a*, 



210 R. Routley and R. K. Meyer 

axioms and of Al ,  on account of its role in the proof of Lemma 1. The 

negation postulates p5 and p6, it should be noted, enter essentially only into 

verification of negation axioms; these postulates may be weakened to pro- 

duce, if desired, another theory of negation - e.g., an intuitionistically accep- 

table one, lacking A1 3. The total reflexivity postulate p2 enters only into the 

verification of the contraction axiom A4; dropping the postulate amounts to 

dropping the axiom, and conversely. Finally p3, called by Dunn Pasch f Law 
because of its similarity in form to the famous postulate introduced by Pasch 

into geometry (reading Rabc, ‘c is between a and b 3, pays its way in the 

verification of the transitivity axiom A3; other uses may be replaced, as is 

clear from the proof of Lemma 4, by weaker postulates. 

To complete the proof that our postulates are adequate, we want to show 

that R1 and R2 preserve verification; we prove a little more, beginning with a 

definition. Where (0, K ,  R, *> is an r. m. s., a E K ,  and v is an arbitrary 

valuation in (0, K ,  R, *> the theory determined by u at a, in symbols T(u, a), 

shall be the set of sentences true at a on v ;  the regular theory determined by 

v shall be the set of sentences verified on v - i.e., T(v,O), which in context 

we abbreviate as T(u). 

Lemma 5. 

i.e., if A, B E T(u,a), A & B E T(v,a). Accordingly the set of sentences T(v)  

verified on v is closed under adjunction. 

The set of sentences T(u,a) true on v at a is closed under adjunction; 

Proof: Immediate from definitions. 

Lemma 6.  T(u,a) is closed under entailment on v; i.e., $A e T(u,u) and 
A -+ B e T(v,O), then B e T(u,a). Accordingly T(v) is closed under modus 
ponens. 

Proof: 

Lemma 7. 
A -+ B E T(u,a), then B E T(u,a). Accordingly T(v)  is closed under modus 
ponens. 

Pr0o.f 

Theorem 2. 

relevant model structures and all valuations v therein, contains all theorems 

of R. Accordingly the semantics developed above is adequate for R, in the 
sense that all theorems of R are R-valid. 

T(u)  being as in the statement of the theorem, it contains by 

Lemma 4 all axioms of R, and is closed under adjunction and modus ponens 
by Lemmas 5 and 6 (or 7) respectively. So all theorems of R belong to 

Immediate from definitions and Theorem 1. 

T(u,a) is closed under modus ponens; i.e., if A E lyv,a) and 

Immediate from definitions and p2. 

The regular theory T(u) of sentences verified on v, for all 

Proof: 
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T(v) ,  for arbitrary v in an arbitrary r.rn.s. Hence an K-theorem A belongs to 

all such T(v),  which amounts to its R-validity. 

6. Preliminaries for completeness: The theory of intensional theories 

Let the sentential language SL = (S. 0, F )  be as in 1. A subset T of F is an 

intensional R-theory provided that Tis closed under adjunction and that when- 

ever A E T and A + B is a theorem of R, B E T. (The latter condition amounts 

to closure under R-entailment in the syntactical sense, which coincides, as we 

must prove, with R-entailment as characterized semantically.) 

A V B E T, A E Tor  B E T. Tis  regular provided that T contains all theorems 

of R,12 and T is consistent provided that T does not contain the negation of 

some theorem of R.13 Finally, T is  normal, as in Meyer and Dunn [1969], 

provided that T i s  regular, consistent, and prime; normality, we note, implies 

consistency and completeness in the familiar classical sense. 

Lemma 8. Let v be Q valuation in an r. rn. s. (0, K,  R, * 1 and let a E K.  

Then the theory T(v,a) determined by v at a is an intensional R-theory; 

moreover, T(v,a) is prime. Zf 0 < a, T(v,a) is regular; in particular, T( V )  is 
regular. Finally, a sufficient condition for T ( v )  to be normal is that 0 < O* 
hold in (0, K,  R, * >, < being defined by d l  above. 

By Lemma 5 ,  T(v,a) is closed under adjunction. Suppose then 

that A E T(v ,a)  and A 4  B is a theorem of R. By Theorem 2 ,  A entails B on 

v ,  when by Lemma 6, B E T(v,a). So T(v,a) is an intensional R-theory. 

Moreover, by the recursive conditions on V, T(v,a) is prime. 

Since by Theorem 2 all theorems of R are verified on v, if 0 < u then by 

Lemma 1 all theorems of R are true on v at a; so if 0 < a, T(v,a) is regular. 

Finally, suppose that 0 < O*. By p2, RO*O*O* always holds, whence by 

p 5 p 6  RO*OO and, commuting by p3-p4, ROO*O; i.e., O* < 0 holds in all 

r. rn. s. Under the hypothesis, then, T ( v )  = T(v,O)= T(v,O*) by Lemma 1; 

i.e., exactly the same formulas are true at 0 and at  O* on v .  Since all 

theorems of R are true at 0 on v, they are by hypothesis all true also at O*; 

hence no  negation of a theorem is true at 0, which suffices for the consis- 

Let T be an intensional R-theory. T is prime provided that whenever 

Contact with the ideas of the last section may be had as follows. 

Proofi 

1 2  What is called here a regulur theory was called in previous publications - e.g., Meyer and 

Dunn [ 19691 and Meyer et a]. [ 19721  just a rheoy. 

1 3  Since A & A  is a theorem of R ,  a t  most one of A,  A belong to a consistent theory. 
_- 
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tency of T(v) and hence, since T(v) is regular and prime always, 0 < O* 

implies that T(  v) is normal, ending the proof of the lemma. 

We turn now to the development o f  a calculus of intensional R-theories. 

Let 2 be the collection of all intensional R-theories. We define an operation 

0 on 2 by setting, for all S, T i n s  S 0 T equal to the set of formulas U 

such that C E U iff there are A in S and B in T such that A 0 B -+ C is a 

theorem of R;i.e., S 0 T =  {C : 3 A ~ B ( A E S  & B E T & ~ R  A o B +  C). 

Then by the calculus of intensional R-theories we mean the structure 

X= (#,E, 0, O), w h e r e s a n d  0 are as just defined and 0 is the set of 

theorems of R; E is of course set inclusion. 

Lemma 9. 

partially ordered commutative monoid; i.e., 0 is commutative and 

associative, and 0 is an identity with respect to 0; furthermore, for all qb,c 

in Z, ifa G b then aOc ,C boc. Moreover A" is square-decreasing - i.e., 

a o a  E a .  

It is trivial that aob is closed under provable R-entailments; to show it closed 

under adjunction, suppose that both C and D belong to aob. Then there are 

A,A' in u and B,B' in b such that AoB -+ C and A'oB' + D are theorems of R, 
whence (AOB)&(A'oB') -+ C&D is a theorem of R by elementary properties 

of conjunction. But (A&A)O(B&B) + (AoB)&(A'OB') is also easily shown 

an R-theorem; the antecedent is clearly in aob by closure of a, b under 

adjunction, whence by transitivity and closure of aob under provable R-entail- 

ment, C&D E aob, showing aob an intensional R-theory. 

Commutativity and associativity of 0 as an operation on #fall out easily 

from the same properties of o as a connective of R. That OOa contains a is 

trivial, since if A E n the R-equivalent (A -+ A) 0 A E Ooa; conversely, if 

B E  000, there is an R-theorem C and A in u such that COA -+ B is provable 

in R, whence [since 0 exports] A -+ B is a theorem of R, whence 

B E a. The monotonic property of 0 under C and the square-decreasing 

property are again trivial, the latter because closure under & implies closure 

under o for an R-theory via the theorem A & B + A 0 B of R, ending the 

proof of Lemma 9. 
Let T be any regular intensional R-theory. Let an intensional T-theory be 

any set of formulas of the sentential language SL which is closed under 

adjunction and T-entailment - i.e., such that a is an intensional T-theory pro- 

vided that a is an intensional R-theory and moreover whenever A + B E T 
and A E a, B E a. The calculus of intensional T-theories A"T = W'T, C ,O,OT), 

The calculus&'just defined of intensional R-theories is a 

hoof:  Weverify firstthat oisanoperationon X; i . e . ,  thatifa,be&, aobc ,  
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for a regular R-theory T, is defined by setting HT equal to the set of all in- 

tensional T-theories, taking T as O T ,  and defining 0 and 5 as before. 

Lemma 10. 

a sub-semigroup of 2, and is hence partially ordered, commutative, and 

square-decreasing in the sense of Lemma 9; moreover ST is a monoid with 

identity OT.  

Proot Since all T-theories are R-theories, clearly ST E X. To show 

HT a sub-semigroup, and hence that commutative, associative, partial order- 

ing, and square-decreasing laws hold, it suffices to show .%$- closed under 0. 

Suppose then that a and b belong to XT. We must show aob closed under 

T-entailment - i.e., that if C E aob and C + D E T, D E aob. But if C E aob 

then there are A in a and B in b such that AoB + C is a theorem of R;  then 

by transitivity AoB -+ D E T (since it is R-entailed by C -+ D). By exporta- 

tion A + (B -+ D) belongs to T, whence by closure of a under T-entailment, 

B + D E a. Then (B -+ D)oB belongs to aob by definition; but this R-entails 

D, whence D E aob, which was to be proved. 

To show OT the identity, note that, since T is regular, a 5 aoOT as 

before. Conversely, suppose B E aoOT. Then there are A in a ,  C in T, 

such that AoC -+ B is a theorem of R. But then, exporting, A -+ B E T, 

whence by closure of a under T-entailment B E a, ending the proof of 

Lemma 10. 

Where T is a regular R-theory, the calculus J f T  just defined is 

By an r+. m. s., understand a structure (0, K ,  R), where K is a set, 0 E K ,  

and R is a ternary relation on K satisfying p l  -p4. (Clearly all r. m. S. are 

13. m. s., since the former results from the latter by adding * and its machin- 

ery, though not conversely.) Let M = (M, <, 0 , O )  be any commutative, par- 

tially ordered, square-decreasing monoid in the sense of Lemmas 9 and 10 - 

i.e., 0 is Commutative and associative, 0 is the identity, < is a partial ordering 

satisfying a < b * aoc < boc and aoa < a. By the r+. m. s. associated with M, 

we mean the structure (O,M, R )  defined by setting 0 equal to the identity of 

M, identifying M as the underlying set of M ,  and letting R be a ternary rela- 

tion on M such that Rabc holds iff aob < c in M. Then 

Lemma 11 .  

monoid, then the r+. m. s. (0, M ,  R> associated with M satisfies pl -p4, justify- 

ing the terminology. Moreover, for  any a, b, c, d in M, a < b in (0, M, R) iff 
a < b in M, and R2 abcd iff aoboc < d in M, thus interpreting d 1 and d2. In 

particular, the calculus .fof Lemma 9 and the 2 8 ~  of Lemma 10 are associ- 

ated with r+. m. s. (0, Jf, R) and ( O T ,  HT, RT) respectively. 

If M is a commutative, square-decreasing, partially ordered 
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Pro05 Let M and the ternary relation R be as just characterized. Then 

ROab iff Ooa = a < b, justifying d l  . R2abcd iff there is an x in M such that 

aob <x and xoc < d. But then the rnonotonicity condition on p. 0. monoids 

yields aoboc GXOC < d, interpreting d2, in one direction; for the converse, 

set aob = x. Then the postulates hold, as follows: p l ,  since a < a  in any 

partial ordering; p2, by the square-decreasing condition aoa < a  on M; p3, 

since o is commutative and associative; p4, because 0 is the identity of M. 
Thus (0, 2, R> and (OT, &T, RT) for regular intensional R-theories Tare 

r+. m. s for by Lemmas 9 and 10 the corresponding calculi of theories meet 

the conditions on M, ending proof of Lemma 1 1. 

Development of the calculi of intensional theories takes us most of the 

way to completeness for our semantics. Two obstacles remain. First, an 

arbitrary intensional R-theory is not sufficiently discriminating regarding 

disjunction; second, * is not in a natural way an operation on all of &'or on 

the various XT. We cure both problems in the next section by passing to 

prime theories. 

7. 

Let T be a prime, regular intensional R-theory, and let ( O T ,  .8~, RT) be 

Semantical completeness of the system R. Prime intensional theories 

the r+. m. s. associated with T by Lemma I 1. Let &T' be the subset of XT 
consisting of all the prime intensional theories in XT, and let RT' be the 

restriction of RT to ST'. Then 

Lemma 12. 

and RT' be as just defined. Let OT' be T. Then (OT' ,  XT', RT') satisfies 

pl-p4 - i.e., it's an r+. m s 

Since OT' = T = OT, and since RT' is the restriction of RT to 

the subset ST' of X;., p l ,  p2, and p4 hold in (OT', XT', RT') because they 

hold in ( O T ,  ST, RT). Thus only verification of the Pasch Law p3 might 

pose difficulties, since it makes the existential claim that if RT'zabcd, then 

there is an x in XT' such that RTacx and RTxbd. The problem is that 

although such an x certainly belongs to .%?T - by Lemma 1 1, aoc itself will 

do - there is no guarantee that there is a prime theory x which will serve the 

mediating function desired for p3; the rest of the proof of Lemma 12 con- 

sists of finding a guarantee. 

Suppose then that RT" abcd. By what has been said, there is an x in 

.%T such that R p c x  and R p b d ;  we show that there is an x' in Xf 
such that RT'acx' and RT'x'bd, whence Rfx'bd, verifying p3. At any rate, 

by definition of R and hence of RT onX'T, there is a maximal T-theory X' 

Let T be a prime, regular intensional R-theory, and let ST' 

Proof 
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satisfying the conditions (i) x < x' and RTx'bd in ( O T ,  Xi ,  RT); for x itself 

satisfies condition (i) while the union of a collection of intensional T-theories 

satisfying (i) and totally ordered by E is easily seen to be itself an inten- 

sional T-theory satisfying (i), whence by Zorn's Lemma there is an inten- 

sional T-theory x' which is a superset of x and such that x' ob G d ,  while no 
proper supersets of x' are intensional T-theories satisfying (i). 

It remains t o b e  shown that x' is prime. Suppose it isn't. Then there is 

a formula A V B such that A V B 4 ~ ' .  A {XI, and B 4x'. Let [x', A] and 

[x', B] be respectively the sets of formulas D such that there exists a 

member C of x' such that respectively C & A -+ D, C & B -+ D are members 

of T.  It is easy to see that [x', A] and [x', B] are supersets ofx' closed 

under adjunction and T-entailment; accordingly they are intensional T- 

theories which, by the maximality of x', fail to satisfy the condition (i). 

So neither [x', A] ob nor [x', B] ob is a subset of d .  Accordingly there are 

E in [x', A] and F in b such that k~ EoF -+ D, but D 4 d ;  moreover by 

definition of [x', A] there is a C in x' such that C&A + E E T, whence 

since by exportation and regularity of T, E -+ (F -+ D) E T, by adjunction, 

transitivity, and importation of 0, (C&A)oF -+ D E T. By parity of reasoning, 

there are C' in x', F' in b ,  and D' not in d such that (C'&B)oF' -+ D' E T. 

Since T is closed under adjunction, elementary syntactical arguments may 

then be applied to show that (C&C'&(AVB))O(F&F') -+ DVD' belongs to 

T, whence since C&C'&(AVB) belongs to x', F&F' belongs to b, and x'ob G d, 

D V D' E d. But d is prime; so D E d or D' E d, contradicting our selection of 

D and D' as nonmembers of d ;  the hypothesis that x' is not prime having 

proved untenable, we conclude that x' is prime, and hence that (along with 

a, b, c, d)x' E 2 ~ ' .  
We have now showed RT'x'bd, RTacx, and RTOTXX'. By p3-p4, RpCX',  

whence since a, c, x' are all prime, RTIacx' and so by d2  Ri2acbd,  complet- 

ing the verification of p3 and the proof of Lemma 12. 

Lemma 12 enables us to throw out of .%'T all but the prime theories, 

getting 2~' .  This enables us to handle negation also, since the *operation may 

be naturally defined on XT'. Indeed, where a is a prime intensional theory, 

let a* be the set of all formulas A such that doesn't belong to a - in sym- 

bols, a* = (A: A 4 a>. Then 

Lemma 13. 

(Or', .?Pi-', RT') be as in Lemma 12. Let * be defined as above, and let *' be 

its restriction to 2~'.  Then ( O T ' , ~ T ' ,  RT', *'> is an r. rn. s. 

Let T be a prime intensional theory, and let the F+. rn s 
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Proot We must show (a) that *' applied to members of XT' yields 

values in XT' and (b) that p5-p6 are satisfied, since the rest of the lemma 

follows from Lemma 12. In proving (a), we show first that *, applied to prime 

theories, yields prime theories; second, that if a is closed under T-entailment, 

so is a*. Suppose then that a is a prime theory, that A E a* and that A + B 

is a theorem of R. Suppose, for reductio, that B # a*. Then B E a ,  whence by 

contraposition and closure of a under provable R-entailment, A E a,  contra- 

dicting the supposition that A E a* and showing a* closed under provable R- 

entailment. To show a* closed under adjunction, suppose A, B E a* but that, 

for reductio, A & B 4 a*. Then A & B E a, whence by the DeMorgan laws and 

the primeness of a, either or B belongs to a, contradicting the assumption 

that both of A, B are in a*. Finally, to show a* prime, if neither A nor B 

belongs to a*, then both of A, B are in a, whence by adjunction and 

DeMorgan A V B is in a and A V B # a*. Contraposing, if A V B E  a*, A €a* or 

B e a*, completing the proof that if a is a prime intensional theory so also is 

a*. Finally, if a is closed under T-entailment and A belongs to a* and A + 

B E T,  if B isn't in u* then B and hence 

doesn't belong to a*, which is again absurd. Accordingly (a) is proved - the 

restriction *' of * to members of .X;.' does not lead out OLXT'. 
We verify (b) beginning with p6. A E a** iff A a*, iff A E a, iff A E a 

whenever a is an intensional R-theory, by double negation. To verify p5, 

suppose that RT'abc. By definition of RT', aob _C c. Suppose that D E aoc*; 

we show D E b*. Suppose not; then 

E in c* such that I-R AGE + D, whence by contraposition I- Rjj + (A + 

Since b is closed under provable R-entailment, A + E E b, whence Ao(A -+ E) 

E aob E c. But Ao(A + E) provably R-entails E, whence E c, whence 

E 4 c*, a contradiction. This shows on our assumptions that aoc* C_ b*, and 

hence by definition that RT'ac*b*, completing the verification of' p5 and 

the proof of Lemma 13. 

Semantic completeness is now at hand. Where T is any regular prime 

intensional R-theory, let the r. m. s. (Or', XT', RT', *') associated with T 

by Lemma 13 be called the T-canonical r. m. s. XT'. The T-canonical 

valuation VT will be the function that assigns, for each sentential parameter 

p ,  and each prime T-theory a in &T', V T ( P ,  a)  = Tiff p E a. V T ,  in short, 

makes a parameter true at  a theory iff that parameter is in the theory; we 

shall show that it does the same for all formulas. 

belongs as before to a and A 

E b. Since D E aoc*, there are A in a, 

Lemma 14. 

in the r. m. s. XT' associated with the T-canonical valuation VT. Then for 

Let  T, V T ,  and XT ' be as above, and let I be the interpretatiop 
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every formula A of the sentential language SL, and for all Q in ST’, I (A,  a )  = 

T iff A E a. (Succinctly, in the notation of Lemmas 5-7, T(vT,Q) = a,)  

We suppose on inductive hypothesis that for all Q in ,@*‘’the 
lemma holds for all formulas A in which fewer than k connectives occur, 

and we show that it continues to hold for arbitrary A and a if the number 

of connectives in A is k. The case where k= 0 has been decided affirmatively 

by definition of VT. When k > 0, there are 4 cases, depending on the main 

connective of A. 

Proof: 

Case 1. A is B & C. Then I(B&C, a)  = T iff I(B, a )  = I(C, a)  = T, iff 

Case 2. A is B V C. Then I(BVC, a) = T iff I(B, a) = T or I(C, a) = T, 

(applying the inductive hypothesis) B E Q and C E a, iff B & C E Q. 

iff (applying the inductive hypothesis) B E Q or C E a, iff B V C e Q (since 

Q is prime). 

Case 3. A is B. Then Z(B,  a) = T iff I(B, a*) = F, iff (applying the inductive 

hypothesis) B # a*, iff B E a. 

Case 4. A is B + C. Then I(B -+ C, a )  = T iff for all b, c, in ST’, given 

RT’Q~C and I(B, b )  = T then I(C, c) = T, iff, applying the inductive hypo- 

thesis, (i) for all b, c in XT’, given RT’Q~C and B E b then C E c. We must 

show that (i) holds iff (ii) B -+ C E a. 
We recall that Rfabc  means that ~ o b  C c in the calculus of intensional 

R-theories. Accordingly that (ii) implies (i) is trivial, since if B -+ C is in (I 

and B is in b, then (B -+ C) 0 B is in ~ o b  and hence in c, given aob C c. But 

(B + C)OB provably R-entails C, whence, since c is an intensional R-theory, 

CEC. 

To show that (i) implies (ii) it suffices to apply the maximizing argument 

of Lemma 12. Suppose that B + C # Q. We show that there exist b, c in HT’ 
such that RT’abc, B E b, and C 4 c; that (i) implies (ii) then follows by con- 

traposition. 

Since B + C 4 Q, by double negation and definition of 0, BoC E a*. Let 

[B] , [c] be the sets of formulas which are T-entailed by B and? respectively; 

clearly these are intensional 7‘-theories and [B]o[C] C a*,  since we may 

assume Q and hence a* to be an intensional prime T-theory. But, since a* 

is prime, by the argument of Lemma 12 we can find prime intensional T- 
theories b and d such that [ B] E b, IC] C d, and bod E a* applying the 

argument that verifies p5 and p6, aob E d*.  Taking d* as the desired c, 

clearly R T ‘ U ~ C  and B E b ;  moreover C isn’t in c = d*,  inasmuch as c E d = c*. 

This is what was promised and hence we’ve completed the verification of 

case 4 and with it the proof of Lemma 14 on the inductive argument. 
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Lemma 14 reduces the problem of proving completeness for R to that 

of showing that every non-theorem fails to belong to some regular prime 

R-theory. This was proved in Meyer and Dunn [ 19691 , but will be entered 

here explicitly for the sake of completeness. 

Lemma 15. 

tion. Then there is a prime, regular R-theory which does not contain A 

Proof: 
without A. Ordering the set of all regular R-theories without A by set in- 

clusion, we discover that every chain in this set is bounded by its union 

and hence, on application of Zorn's Lemma, that there is a maximal regular 

R-theory without A; call it T. If B V C E T, B { T, C { T, then by maximality 

of T the R-theories [T, B] and [T, C] formed as in the proof of Lemma 12 

both contain A, whence by elementary properties of disjunction and con- 

junction so does T,  which is impossible and which ends the proof of the 

lemma. 

Let A be a non-theorem of the system R of relevant implicp 

On assumption the set of theorems of R is a regular R-theory 

We record completeness in a theorem. 

Theorem 3. 

plete, in the sense that all R-valid formulas are theorems. 

Proof: 
of R is not a theorem of R. We prove that A is not R-valid. In fact, since 

A is not a theorem, there is by Lemma 15 a regular prime R-theory T such 

that A d T. Consider then the T-canonical r. m. s. yielded by Lemma 13 

( 0 ~ ' .  .%TI, RT', * I ) .  By Lemma 14, T(vT, a) = a for every member a of 

XT', where VT is the T-canonical valuation; in particular. the set T(vT) of 

formulas verified on VT is accordingly OT; i.e., T itself. So A in particular 

is not verified on VT and is hence R-invalid, ending the proof of Theorem 3 

and accordingly of the semantical completeness of R. 

The system R of relevant implication is semantically corn- 

We proceed by contraposition. Assume that the formula A 

8. Normal relevant semantics - gamma and all that 

In Meyer and Dunn [ 19691 and elsewhere, quite a fuss has been made 

about showing that whenever A and A V B are both theorems of R (or of 

related systems) then B is a theorem of R. The principle, known following 

Ackermann as 7, required complicated argument in Meyer and Dunn [ 19691, 

but it can be disposed of simply here. 

the following postulate is satisfied. 

Let (0, K, R, *) be an r. m. s. We shall call (0, K ,  R, '7 normal provided that 

PO. 0 = o*. 
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By Lemma 8, we note that the set of formulas verified on a valuation in a 

normal r. m. s. constitute a normal R-theory. Accordingly the set of 

formulas valid in a normal r. m. s. is always closed under 7, since if A belongs 

to each of a collection of normal R-theories can belong to none of them, 

since normality presupposes consistency, whence if in addi t ionx  V B belong 

to each member of the collection, B must belong to all of them, since nor- 

mality also presupposes primeness. Besides, it might be argued, if we want to 

take really seriously the claim that 0 constitutes the real world, then perhaps 

we should demand that validity be characterized for the system R as validity 

in all normal r. m. s., which we shall characterize as normal R-validity. The 

work of Meyer and Dunn [ 19691 shows that validity and normal validity 

coincide for R;  but it is easier to prove that fact directly. 

Lemma 16. 

the structure <O', K ,  R', *'A where 0' is a new element, K results from the 

addition of 0' to K ,  * is the extension of * to K determined by setting 
0' * = 0', and where a, b, c, are elements of K , R  holds for triples of elements 

of K' as determined below: 

Let (0, K,R, * )  be an r. m. s. By its normalization understand 

ti) R'O'O'O'; (ii) R'O'O'a iff ROOa; (iii) R'O'aO' and R'aO'O', iff ROaO*; 
(iv) R'abO' iff R&O*; (v) R'O'ab and R'aO'b, iff ROab; (vi) R'abc iff 

Rabc. 

Then the normalization < O', K'. R'. *' is a normal r. m. s. 
That PO holds has been settled by fiat, while that p l ,  p2, and p6 

hold follows from their holding for (0, K ,  R, *) and the trivial specifications 

above involving 0'. p3-p5 require slightly more work, the key to which is the 

point that R holds among members of K' iff R holds among members of K 
on replacing occurrences of 0' in the first 2 argument places with 0 and in the 

final argument place with 0*, except for the case ROO'O'. In verifying p3-p4, 

which require connections, the fact that O* < 0 in all r, m. s. is helpful; the 

rest is busy work, which we leave to the probably uninterested reader. 

Theorem 4. R is consistent and complete with respect to the normal 

semantics presented in this section - i.e., A is a theorem of R iff A is 

normally R-valid. 

including normal ones, thus establishing normal semantic consistency. 

Conversely, if A is not a theorem of R it is invalid in some r. m. s. 
(0, K ,  R, *), K for short, by Theorem 3; i.e., there is valuation Y, with 

associated interpretation Z, such that Z(A,O) = F in K. Let (O',K',R',*') 

Proofi 

Proof: If A is a theorem of R it  is valid in all r. m s. by Theorem 2, 
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be the normalization of 'K guaranteed by Lemma 16, for short K'. Extend.v 

to a valuation u' in K' by letting u' agree with u where v is defined and 
setting v(p,O') = v(p,O) for all parameters p. We show (a) that v' continues 

to satisfy the restrictive condition (1) on p. 206 and hence indeed qualifies as 

a valuation. Suppose then that for the parameter p and the point a of K' 

that v' ( p a )  = T and that R'O'ab, b E K'. We show (b) v' ( p , b )  = T. If a and 

b are both 0', there is nothing to show; if neither are 0'. by (v), a < b in K ,  
whence since u is a valuation (b) holds; if a = 0' and b E K ,  by (ii) 0 < b in K ,  
whence (b) holds since i f p  is true at 0' by stipulation it's true at 0; finally, 

if a E K and b = Of, by (iii) a < O* in K, whence since if v(p,a) = T then 

v(p,O*) = v(p,O) = T, since always O* < 0, whence by stipulation v'(p,O') 

= T, proving (a). 

Let I' be the interpretation associated with v'. We show now (c) for all 

a in K ,  and for all formulas B, I' (B,a) I(B,a), and (d) if I(B,O) = F, 
I'(B,O')= F. 

case, in which B is a parameter, is already settled by (a). 4 cases remain, 

according as the main connective of B is &, V, -, or +. (c) is trivial on in- 

ductive hypothesis in the first three cases, whence (d) follows from Lemma 

1 in these cases, since 0' < 0. 

Suppose then that B is of the form C -+ D, To show (c), suppose first 

that a # 0' and I (C .+ D, a) = F; then there are b, c in K such that Rabc, 

I (C ,b )  = T, and I(D,c) = F. By (vi) R' abc, and on inductive hypothesis 

I' (C,b) = T and I' (D,c) = F, whence I' (C -+ D,a) = F. Suppose conversely 

for a # 0' that I' (C + D, a) = F. Then there are b, c in K' such that R'abc, 

I' (C,b) = T, and I' (D,c) = F. If 6, c E K ,  I ( C  + D,a) = F on inductive 

hypothesis by reversing the previous argument. Suppose b = O', c E K.  By 

(d) and inductive hypothesis, I ( C ,  0) = T and by (v) ROac, whch  by p3-p4 

implies RuOc, which suffices to show I ( C  .+ D, a) = F. Suppose b E K,  
c = 0'. Since O* < O', by Lemma 1, I' (D, 0*) = F, while by (iv), RubO*, 

which suffices to falsify C + D at a on I ,  given the inductive hypothesis. 
Finally, suppose b = c = 0'. By (iii), commuting again, b o o *  while on in- 

ductive hypothesis and Lemma 1,I (C,O) = T and I(D,O*) = F, falsifying 

C -+ D at a on I and establishing that for all a in K and all formulas B, 
I ' (B ,a)  =I(B,a) on completion of the inductive argument; that's (c), and 
(d) follows as before by Lemma I .  

We note in conclusion that since for our chosen non-theorem A of R, 

I(A,O) = F, by the principle (d) just proved I' (A,O') = F; accordingly A 

is not normally R-valid, ending the proof of Theorem 4. 

We show (c) and (d) together by induction on the length of B. The base 
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Corollary 4.1. 

also is B. 

Proof: 

r. m. s. is closed under detachment for material implication, whence so is 

the intersection of all such T ( v )  for r. rn. s, which by the theorem is the set 

of provable formulas of R. 

y holds for  R - i.e., ifboth Aand K V  Bare theorems, so 

The set T ( v )  of formulas verified on a valuation v in a normal 

9. R-mingle and beyond. Extensions of the semantics 

Dunn and McCall’s R-mingle results from R by adding as a new axiom 

scheme A -+ (A -+ A). The following will do as a corresponding semantical 

postulate : 

p7.0 < a or 0 <a*.  

Let accordingly a Mingle r. m s. be any r. m. s. satisfying pl-p7, and a 
normal Mingle r. m. s. be a Mingle r. m. s. that also satisfies PO, for all 
elements of K. Let A be RM-valid iff A is valid in all Mingle r. m. s., and 

normally RM-valid iff A is valid in all normal Mingle r. m. s. We then have 

as an easy corollary of previous theorems the following. 

Theorem 5 .  For all sentential formulas A, the following conditions are 

equivalent. (i) A is a theorem of RM; (ii) A is RM-valid; (iii) A is  normally 

RM-valid. 

Proofi 
provided that we show A 4 ( A  -* A) to be RM-valid. It suffices to note that 
in RM, though it escapes the most noisome paradoxes, very bad guys never- 

theless entail very good guys; i.e., if both B and C are RM-valid, BRM-entails 

C. (For proof, assume B and C RM-valid, and let be true at a point a 

in a Mingle r. m. s. on I. Then a < O* fails, since otherwise B by Lemma 1 
would be false at  0, contradicting its validity; equivalently, by p5 -p6, 
0 < a* fails, whence by p7, 0 < a; but then by Lemma 1 all RM-valid 

formulas, including C, are true on Z at a, since by definition of RM-validity 

they are all true at 0.) So in particular, since A + A is R-valid and hence 

RM-valid, its negation RM-entails it. Observe that in the following sequence 

each member is R-entailed by its predecessor on simple moves: A + A -* 

(A + A), A + ( A x +  A), A -+ (K-* (A- A)), A -+ (A+ (x+ A)), 

A -+ (A + A). Since the set of RM-valid formulas is clearly closed under R- 

entailment, A + ( A  -+ A) in particular is RM-valid. After this it is trivial 
that (i) implies (ii), and it is trivial that (ii) implies (iii). The method of 

To show that (i) implies (ii), the proof of Theorem 2 will do  
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Theorem 4 shows that if (ii) implies (i), so does (iii); accordingly, we end 

the proof of Theorem 5 by showing that (ii) implies (i). 

Suppose that C is nat a theorem of RM. Lemma 15 delivers a prime, 

regular RM-theory without C, say T, and Theorem 3 shows that the 

canonical r. m. S. (Of,s~’, RTf, *’) invalidates C. All that remains to be 

proved is that p7 is true for t h s  r. m. s. Suppose then that for some 

a EST’, Of = T 4 a; we show T C a*. Let A belong to T but not to a;  

by definition of *,A E a*. Let B be any member of T By the standards 

of T, x is a very bad guy and B is a very good guy, whence, since the para- 

doxical propensities of RM are syntactic as well as semantic, in view of the 

RM-theorem A & B + (A + B), it turns out that A -+ B belongs to T. 
But then since members of &T’ are closed under T-entailment, B E a*. 

B is arbitrary, so T -C a*,  which was to be proved. This completes the 

demonstration that our chosen non-theorem C is RM-invalid, by generaliza- 

tion and contraposition, all RM-valid formulas are theorems of RM, end- 

ing the proof of Theorem 5 .  

R-mingle; it implies that < is total, in the sense that if (0, K, R, *) is a 

Mingle r.m.s. either a < b or b < a, for all a, b E K. Given the normality 

postulate PO, total ordering trivially implies p7, though without PO this does 

not hold in generalI4. We like p7, however, because it indicates exactly how 

the imaginative semantic universe for R is cut down to get R-mingle; 

roughly, the principle is that only additions to, or subtractions from, the 

“real world” 0 will count as alternatives for RM. If, in particular, we insist 

that 0 be normal, and hence in principle describable by a consistent and 

complete theory T ,  then p7 imposes the conditions that alternatives to 0 be 

describable in principle either by consistent sub-theories or complete super- 

theories of T. 
RM was proved in Meyer [1968b] to be decidable and to have a simple 

model in the integers. The present model-theoretic account yields equivalent 

results - every non-theorem A of RM is refutable in a finite Sugihara r. rn s. 

(0, K, R, *), where K consists of all the integers in some interval [-m, m] , 
0 is 0, * is -, and Rabc holds for integers a. b, c in K iff whichever of u, b 

is greatest in absolute value is G c; if a, b are alike in absolute value, if the 

greater of them is no greater than c. This implies the decidability of RM. 

The only other point worth noting about the semantics of RM given here, 

in contrast to the account of Meyer [ 1968bl and Dunn’s [ 19701 extended 

p7 is but one of a number of postulates which we might have added to  get 

14 We have a concrete counterexample. 
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account for extensions of RM is that in Meyer [ 1968bl and in Dunn [ 19701 

to put the integer 0 in a model was to make it abnormal, since 0 was its own 

negation; here the mark of abnormality is to leave 0 out, letting +1 be the 

real world. 

of Rh4 and is closed under adjunction, Modus ponens, and substitution, by 

Dunn’s [ 19701 result it has a finite characteristic matrix. A natural attack on 

extensions of RM is accordingly to throw in posulates of finitude; by adding to 

pl-p7 a postulate which says that K shall have n o  more than 9 members, say, 

we get a Dunn extension of RM; we leave to Dunn the question whether we 

get them all that way, noting merely that if we pare down to the single ele- 

ment 0, all distinctions of relevance collapse and we are back to classical logic. 

A slightly more interesting way to get classical logic is to strengthen p7 to 

Demonstration that p7’ produces classical logic requires a detour through the 

* postulates and is incomplete without it. For it suffices to show, for all a 

in K, that a < 0 to show that all classical theorems are valid in an r. m. s. 
satisfying p7’. But that’s trivial by pS-p6, since 0 <a*, whence a = a** < 
O* < 0. It then follows, by the monotonicity condition (1) on what counts 

as a valuation, that for all parameters p and all a, b in K, v(p,a) = v(p,  b) for 

all valuations v whenever p7‘ holds, since a < 0 < b ,  and conversely, whence 

by Lemma 1 for all formulas A, [(A, a) =/(A, b)  = I (A,  0), where I is the 

interpretation associated with v ,  which suffices to make the real world for 

all intents and purposes the only world and to validate all tautologies. 

If a logic is an extension of RM, in the sense that it contains all theorems 

p7‘. 0 <a.  

10. R+ and within. The semantics of positive logics 

We introduced the notion of an r+. m. s on the way to Theorem 3, as a 

triple (0, K, R> for which pl--.p4 hold. The question arises whether r+. m s 
furnish a viable semantics for the system R+ determined by the negation- 

free axioms Al-A1 1 of R with Rl-R2 and in particular for Church’s weak 

theory of implication Rl, determined by Al--A4, RI. Let semantic notions 

be characterized as before, dropping negation and all that pertains thereto, 

including the * operation with its postulates; in particular, let a negation- 

free formula of R be valid in an r+. m s. (0, K, R> iff it  is true on every valu- 

ation therein, and let it be R+ valid iff valid in all r+. m s We depend on 

results from some previous papers in what follows’ ’. 

5 In particular, Meyer [ 1972a and b]  
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Lemma 17. 
of R i f f  A is R+-valid. 

Proof: is R+-valid it is 

R-valid, whence by Theorem 3, A is a theorem of R. Suppose conversely 

that A is a theorem of R. In Meyer [ 1972131 it is proved that A has a proof 

in a system (call it R t t )  which results from R t  as defined above by adding 

the intensional conjunction o as an additional primitive together with 

axiom schemes 

Let A be a negation-free formula of R. Then A is a theorem 

Every r. rn s. is clearly also an r+. rn x, so if 

A14. A + (B + (A o B)), 

A15. (A -+ (B -+ C)) -+ ((A o B) -+ C). 

We take now the recursive condition Y on p. 206 as an additional primitive 

specification, in accordance with footnote 10. It is easily shown that A14- 

A15 are Rt-valid; the other lemmas leading up to Theorem 2 are not affected, 

whence the argument of that theorem shows that all negation-free theorems of 

R, being theorems of R+t, are Rt-valid, including in particular our chosen 

theorem A, ending the proof of Lemma 17. 

Lemma 18. If A is not a theorem of Church's weak theory of implication 

RI, and if the only connective occurring in A is +, then A is not R+-valid. 
Proof In Meyer [1972a] it is proved that under the hypothesis of the 

lemma, A is not a theorem of R, whence the conclusion follows by Lemma 

17. 

Lemma 19. Let A be a negation-free formula of R Then A is a theorem 
of R i f f  A is a theorem of Rt. 

Proof: 
As noted in the proof of Lemma 17, A is then a theorem of the system R + t  

defined there. What remains to be proved is that R t t  is a conservative 

extension of R+ - i.e., that the addition of o and A14-15 produces no 

new theorems in the connectives &, V, + of Rt .  

To do so, we develop now a calculus of intensional theories for K+ as 

we did above for R. Let an R+-theory be any set T of negation-free formulas 

of the sentential language SL which is closed under adjunction and R+- 

entailment - i.e., such that whenever A + B is derivable from &-All, 

Rl-R2,ifAeTthen B E  T. L e t s t  be the set of all R+-theories, and define 

an operation 0 on 2t as follows, for all a, b in #+: 
aob = { C :  C is a negation-free formula of R and there exist A in a, B 

in b such that A + (B + C) is a theorem of Rt}. 

The calculus of intensional R+-theories, in accordance with previous 

The 'if half is trivial. Suppose then that A is a theorem of R. 
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developments, is the structure Xt = (&'t, G , 0, Ot), where a?+, o are as 

just defined,S is set inclusion, and O+ is the set of theorems of R+. We 

then show, as in Lemma 9, that #t as just defined is a partially ordered, 

square-decreasing commutative rnonoid, with monoid identity O+; the 

strategy of the proof of Lemma 9 works; necessary changes in tactics are 

left to the reader. 

We pass now to the sub-collection&'+' of prime Rt-theories; as it 

turns out, unlike before, this includes Ot, as the methods of Meyer [ 1 9 7 2 ~ 1  

suffice to establish. Consider accordingly the structure (Ot,X+', R'), where 

O+ and#+' are as indicated and, for all a, b, c in&'+', R'abc iff aob C c .  As 

in Lemma 12, we wish to show Xt' an r+. rn. s. Verifying p l ,  p2, and p4 

is again immediate; Pasch's law p3 again hinges on a proof that, for all a, b 

i n s t  and c' in&'+', if aob S c' then, thanks to the primeness of c', there 

is a prime a' i n s t '  such that a E a' and a'ob E c', which, when proved, 

assures that Pasch's law will follow from the associativity of o as defined 

on intensional theories. As the reader may verify, the argument of Lemma 

12 indeed goes through, showing (Ot,.#+', R') an r+. m. s. Accordingly all 

theorems of R++ are valid in (O+,X+' ,  R'), and so we may complete the 

proof of the present lemma by showing all non-theorems of R t  invalid in 

.(O+,.f+', R'). 
Let the canonical valuation v t  assign, for each parameter p and prime 

Rt-theory a in&%', vt@, a) = Tiff p c a. As in Lemma 14, we wish to show 

that, where I+ is the interpretation associated with v+, I+(A, a)  = Tiff A E a, 
for all formulas A of R t  and members a of.#+'. Proof is again by induction, 

with all cases being obvious unless A is of the form B + C; again the induc- 

tive hypothesis reduces this case to the problem of showing that B -+ C e a 
iff, for all b, c in&'+', B e b and R'abc implies C e c. But R'abc means that 

aob E c, which by definition means that for all formulas C, A, and B, if 

A + (9 + C) is a theorem of R t  and A E a and B E b then C E c. Accordingly 

the implication to be shown is trivial from left to right, taking B + C itself 

as the desired instance of A. Suppose conversely that B + C I# a; we wish to 

show that there are b, c in.#+' such that R'abc, B E b, but C 4 c. At any 

rate, there are i n s t  such animals; take [B] to be the set of formulas pro- 

vably R+-entailed by B, and take c+ to be a0 [B] ; then if C were in c+ there 

would be elements A in a, B' provably entailed by B, such that A + (B' + C) 
is a theorem of R t ,  from which it quickly follows by closure of a under pro- 

vable Rt-entailment that B + C belongs to u, contra hypothesis. But then 

extending c+ to a maximal and, by the usual argument, prime theory c that 

does not contain C, and then extending [B] to a prime theory b such that 
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&b E c, courtesy of the result cited in the middle of the last paragraph, 

all our goals are reached - b and c are both prime, R’abc holds, B E b and 

C 4 c. This completes the proof that v+ does what we asked it to do - it 

makes an arbitrary formula A true at a just in case A E a. In particular, 

since O+ is the set of theorems of R+, v f  doesn’t make any non-theorems 

of R+ at all true at Ot, completing the proof that non-theorems of R+ 

remain non-theorems of Rt+ and hence non-theorems of R. Given the 

converse above, Lemma 19 is proved. 

Theorem 6. Let A be a negation-free formula of R Then A is a theorem 

of R+ (i.e., derivable from negation-free axioms, excluding those for 0) iff 
A is Rt-valid. Moreover, if A is a pure implicational formula, A is a theorem 

of Church’s weak theory of implication RI i f f  A is Rt-valid. 

R t  iff A is a theorem of R, iff A is Rt-valid, proving the first part of the 

theorem. The second part follows from the theorem and Lemma 18. 

enables us to answer affirmatively all significant questions of conservative 

extension for the system R. 

Proof By Lemmas 17 and 19, if A is negation-free, A is a theorem of 

The theorem, together with the related results of Meyer [ 1972a and b]  , 

Theorem 7. 

of connectives, all theorems in those connectives are derivable from axiom 

schemes and rules among Al-A15 which contain only those connectives 
explicitly. [o axioms are A14-A15.1 

R is well-axiomatized; for each of the following combinations 

+; +, -; +, 0; +, -, 0; +, &;+, v, &;+, 0, &;+, 0, &, v;+, -, &, v. 

found in Meyer [ 1972al or Meyer [ 1972b], or it is an easy consequence of 

the results given in one of those places. 

Theorem 7 answers for R questions asked about E by Anderson [ 19631 . 

Proof In each case either the proof has just been given, or it can be 

11. Intuitionism. Extending the positive semantics 

We noted above that the result of enriching the postulates for an r. m. s. 

with 0 <a led to classical logic. But that argument led through the * postu- 

lates - i.e., through negation. A less drastic collapse occurs if we add p7’, 

0 <a,  to the postulates for an r+. m. s; this validates, not all classically valid 

negation-free formulas, but only those that are intuitionistically valid. We 

dignify this result as a theorem. 
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Theorem 8. 
p l  -p4, p7’. Then a formula A is valid in all i. m. s. iff A is a negation-free 

theorem of the intuitionistic sentential calculus J. By extending the notion 
of an interpretation so that I (  i A, a )  = T i f f  for all b such that a < b, 

I(A, a) = F, for all a e K, we can characterize intuitionistic negation also in 

Kripke s style, whence all and only the theorems of  J are valid in all i. m. s. 
Given Kripke [ 19651 , one is hardly necessary; we note simply 

that Rabc implies b < c and a < c, given p7’, p3-p4, and dl-d2. Conversely, 

if b < c and a < c, since Rccc by p2 it follows that Rabc by p3-p4, p7‘ 

Accordingly R can be defined in terms of <, and a simple verification shows 

that all the postulates require is that < shall be reflexive, transitive, and that 

0 bear it to all a in K. Though Kripke doesn’t require the final property of 

his binary accessibility relation for intuitionistic semantics, his tree m. s. 

have it, whence the Kripke relation can be identified with our < and the 

proof completed that just the intuitionistically valid formulas are valid in 

all i. m. s. 

the relevant logics rest go beyond those that ground the sentential part of 

intuitionism. In terms of our initial motivation, it turns out that what 

intuitionism lacks, and a fortiori classical logic lacks, is a plausible way of 

saying that two sentences A and B are consistent. One way of doing so is 

to assert A & B; another way is to assert i (A 3 i B), equivalent to 

i i (A & B), which seems only a little better. At any rate, as the proof 

of Theorem 8 shows, we weaken the positive relevant intuitions to intui- 

tionistic ones if we hold that two theories are compatible relative to a third 

if whenever A holds in the first and B holds in the second, A & B holds in 

the third. No wonder, we might add, that intuitionistic logic does not block 

fallacies of relevance. 

Still, intuitionism provides, particularly in its negation-free part, a con- 

venient halfway house between classical and relevant logics. (A halfway 

house in another sense is R-mingle; cf. Meyer [ 19681 .) Indicative of this 

fact is the following simple corollary of Theorem 8 (proved in Meyer 

[ 1972b], but worth notice here). 

Let an i. m s. be a structure (0, K, R), as above, satisfying 

Proof: 

Theorem 8 suggests exactly the respect in which the intuitions on which 

Corollary 8.1. All negation-free theorems of  R are intuitionistically valid. 

Proof by Theorems 6 and 8, since all i. m. s. are r+. m. s. 

Other systems intermediate between R t  and classical sentential logic - 

e.g., Dummett’s LC, the positive part RM+ of Dunn’s R-mingle - can be 

got by adding varied postulates. 
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12. Prelude to sentential quantification. A theory of propositions 

Much interest has been shown - by Anderson, Belnap, Grover, and 

others - in equipping relevant logics with a theory of sentential quantifi- 

cation’ 6 .  On account of this interest, and for the sake of philosophical 

completeness, we accordingly sketch in succeeding sections a couple of ways 

of fitting sentential quantification into our semantics. 

Before entering into the formalism of sentential quantification, however, 

the question naturally arises, “Over what are sentential quantifiers to range?” 

We have two answers: (a) propositions; (b) sptences. People tend to wince 

when given the first answer, or at least they used to; nowdays they recover 

their composure when it is explained that propositions can be construed 

simply as sets, since hardly anybody objects any more to useful extensional 
fictions. 

Ultimate ontological commitments aside, it is in the modern style to 

view a proposition as something that corresponds to a certain distribution 

of truth-values over worlds, and to identify propositions whose truth- 

values are the same in all worlds. That being the fashion, one might as well 

construe a proposition, familiarly, as a set - namely, the set of all the 

worlds in which the proposition is true. 

Accordingly, let K = (0, K ,  R, *) be an r. m. s. Respecting the condition 

(1) and in accordance with motivating remarks, a proposition in K shall be 

any subset J E K which is closed upward - i.e., which is such that when- 

ever a E J, b E K, and, invoking d l ,  a < b, b E J. Let the algebra of proposi- 
tions n(K) determined by K be the quintuple (11, 0, U, -, l), characterized 

as follows: 

(i) n is the set of all propositions in K .  

(ii) U is the generalized operation of set-theoretical union on subsets 

(iii) 1 = {a: a E K and 0 < a ) .  

(iv) For F, G E n, 
(a) F 0 G = (c: 3 d b ( a  E F &b E G & Rabc)} 

(b) F =  (c: c E K & c* 4 F ) .  

r o m .  

The first serious attempt to equip the relevant logics R and E - or rather 

their first degree parts - with a theory of propositions was made by Belnap 

1 6  Cf. Anderson and Belnap [ 1961 I ,  Meyer [ 197241, Anderson [ 19721, and Grover’s doctoral 

dissertation (U. of Pittsburgh, 1969). 
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[ 19671. Belnap didn’t make it very clear what he conceived propositions to 

be - he associated propositions with the logical content of sentences’ ’, 
which doesn’t help a lot - but he was crashingly clear about the kind of 

algebraic structure which on his view characterized them; namely, proposi- 

tions were structured as intensionally complemented distributive lattices 

with truth-filter1 8 ,  

Belnap’s algebraic ideas were developed and refined with particular 

reference to the system R to produce the notion of a DeMorgan monoid, 

used as mentioned earlier by Dunn to provide R with proofs of algebraic com- 

pleteness’ 9 .  Moreover, on the theory of propositions developed here these 

ideas turn out to be essentially correct; given any r. m. s., the algebra of pro- 

positions just associated therewith is in fact a DeMorgan monoid, as after 

recalling relevant definitions will be shown below. 

Roughly, a structure D = < D, 0, V, -, 1 > is a DeMorgan monoid if D is 

a set, 1 e D, and 0, V are binary and - is a unary operation on D such that, 

when a A b is defined by the DeMorgan law as -(-a V -b) ,  D is a distributive 

lattice under A and V, a commutative monoid under 0 (with 1 as monoid 

identity), and the following definitions and postulates hold in addition: 

ql .  a < b  i f fa  V b = b 

q2. u + b = d f  - (Uo-b) 

q3.a2 =dfaoa 

q4. a < a’ (square-increasing postulate) 

q5. aO(b V c)= (aob)  V (aoc) 

q6. ao(a + b)  < b 

q7. - - a = a  

For more on DeMorgan monoids see Meyer et al. [ 19721 , and the further 

work of Dunn cited there. 

i.e., provided that for every subset S of D, greatest lower and least upper 

A DeMorgan monoid is complere provided that it is complete as a lattice- 

17 In Belnap [ 1 9 6 7 ] ,  p. 8. 

18 For the terminology and its application, cf.  again Belnap [ 19671. Meyer has elsewhere called 

these structures, “Belnap lattices”. Belnap suggests. “normal DeMorgan lattice“, as another 

a1 te rna t ive . 

19 Most accessibly in Meyer et al. [ I9721 : a  fuller account taken froin Dunn’s dissertation will 

appear in Anderson and Belnap [ 19721, 
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bounds AS and VS exist and belong to D, and provided that the infinite dis- 

tributive laws hold in the form, for all a ED and S C D, 

q8. a A V S = V { a A s :  s e s )  

q9. a o V S = V ( a o s :  ses)  

Theorem 9. 

(0, K,  R, *) is a complete DeMorgan monoid. 

Proof: 

above. We note that 0 and -, applied to members of n, and U, applied to sub-' 

sets of II, yield closed upward subsets of K -  -i.e., members again of Il. 
Defining, for members F and G and subsets r of II, 

The algebra of propositions determined by an r. m. s. 

Let n(K) = (II, 0, U, -, 1) be the algebra of propositions defined 

(c) F V G = d f U ( F , G )  

(e) FA C =df n { F, C} 

(d) nr =df II { F : F E  r> 

we note that all the postulates and definitions for a complete DeMorgan 

monoid are satisfied by II ( K ) ,  ending the proof. 

Corollary 9. 1.20 Every prime DeMorgan Monoid is embeddable in 

a prime, complete DeMorgan monoid whose elements are sets, with 

generalized monoid meet n, join U, and order E to be identifed with 

corresponding set-theoretic intersection, union, and inclusion. 

Let D=(D, 0, V,-, 1) be a prime DeMorgan monoid. F C D is 

as usual a filter on D provided that, for all x, y E D, x A J> E F iff both x and 

y are in F; F is moreover a prime filter iff, for all x, y E D, x V y E F iff at 

least one of x, y belongs to F. Let K be the set of all prime filters on D; 0 the 

principal filter determined by 1 (i.e., 0 =(x: 1 <x in D )  ; R, the ternary 
relation which holds among members a, b, c of K iff, for all x, y in D, when- 

ever x E a and y E b, xoy E c; *, the operation on K such that, for all x E D 
and a E K, x E Q* iff X # a. All of this simply puts in algebraic form what was 

developed syntactically in sections 6 and 7, and it is accordingly easily 

proved by the methods of those sections that (0, K, R, *) is an r. m. s. 

section. n(K) is a complete DeMorgan monoid by Theorem 9, and n, U, 

Proof: 

Consider now the algebra of propositions n(K) defined by (iF(iv) of this 

20 This corollary and the next use Stone's methods (cf. Kasiowa and Sikorski [ l"i3) ) to I'urnisli 

an embedding of DeMorgan monoids in complete DeMorgon monoids. As in Meyer et a]. I 19721. 

a DeMorgan monoid is prime if whenever 1 < u V h tlicn 1 < u o r  I < h. 
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and C are by definition intersection, union, and inclusion. Suppose that 

for some subset J of II(K), the identity l n ( ~ )  of n(K) is included in UJ. 

Since l n ( ~ )  is by definition the set of supersets of 0 which belong to n(K) ,  
0 in particular belongs to 1 H ( K ) ,  whence on assumption 0 belongs to some 

Ji in J.  But Ji by definition is closed upward, and so not only { 0) but all 

of l n ( ~ )  5 Jj. This proves not only that H(K) is prime but that it is com- 

pletely so - whenever l n ( ~ )  is a subset of a generalized join of elements 

of II(K), it is a subset of one of these elements. 

Let h now be the function from D to n(K) which takes each element x 
of D into the set h (x) of prime filters on D to which x belongs. By Stone’s 

representation theorem for distributive lattices, h is an injection which 

preserves A and V; the methods of Bidynicki-Birula and Rasiowa’s [ 19571 

have been adapted for our handling of -, whence an easy verification shows 

-h(x) = h(-x); finally, to sh0.v that h preserves 0, observe that a E h(x 0 y )  

iffxoy E u, iff (algebraizing the argument of Lemma 12) there are prime 

filters b, c on D such that x E b, y E c, and Rbca, iff a E h(x) 0 h 0). This 

shows that h is an isomorphism from D into the prime, complete DeMorgan 

monoid n(K), ending the proof of Corollary 9.1. 

Corollary 9.2. 

DeMorgan monoid. 

set of all the prime filters that contain the identity 1 of D. Define structures 

(Oi,  K i ,  &, * j >  for each i in I as follows: Oj is Fj. Kj is the set of all prime 

filters on D that are closed modulo Fi - i.e., such that the prime filter G 
belongs to K i  iff whenever x E G and x + y E Fi then y E G; note that 01 E K i ;  

Ri is a ternary relation on Ki such that Rpbc holds iff whenever x E a and 

y E b then xoy E c; *i is an operation on Ki  such that x E a* iff -x 4 a; note 

that Ri and * j  are just the restrictions to K i  of R and * as defined above, 

and proof that for each i in I, (Oi, K j ,  Ri, * j >  is an r. rn s. may be had as be- 

fore. 

We define now a product structure x i  €1 (Oj, Ki ,  Ri, * i )  = (0, K ,  R, *) by 

letting K be the Cartesian product x i  €1 I i ,  letting 0 be the element of K 
which is 0, on every coordinate i, and letting Rabc and a* = b hold respec- 

tively iff for each i in I ,  Riuibjci and ai* = bi. It is readily verified that the 

product structure is an t. m. s., given that each component structure is. Con- 

sider again the algebra of propositions II(K), which by the theorem is a com- 

plete DeMorgan monoid. Define a function h from D into II(K) by letting 

the ith component of h(a) be the set of members of Ki to which a belongs, 

Every DeMorgan monoid is embeddable in a complete 

Proof: Let D be a DeMorgan monoid, and let { Fj} i I be the indexed 
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Noting that if a Q: b in D, 1 $ a  + b,  there is by Stone’s theorem a prime 

Fi such that 1 E Fi but a + b # Fi; considering the set of all filters on D that 

are closed modulo Fi and which contain a but not b,  application of Zorn’s 

Lemma produces a maximal one, which turns out prime and so belongs to 

Ki;  so if a # b,  on some component h(a) and h(b) differ - i.e., h is 1 - 1. It 

remains only to be proved that h preserves the operations of D, which, 

since they are defined pointwise, may be proved as in the previous corollary, 

ending the proof of Corollary 9. 2. 

Since DeMorgan monoids algebraize R, our corollaries may be viewed as 

conveying syntactical information as well - e.g., that the system RP of R 

with sententid quantifiers is a conservative extension of the quantifier-free 

system. But we pursue these matters no further here. 

Our theory of propositions turns out pretty algebraically (it would, 

on what was known already, have been surprising if it hadn’t), but there 

is more to logic than developing the right form of the Stone representation 

theorems. How, for example, does our theory of propositions stack up 

against the claim that every proposition is true or false, a notable feature 

of the Belnap theory sketched above? In fact, what is it for a proposition 

to be true or false? 

As might be expected, we allow for various answers. Regular prime 

thegries, we saw when we were proving completeness, give rise to relevant 

model structures, and these may or may not be normal. If the underlying 

r. m. s. is normal, i.e., if 0 = 0*, then.the algebra of propositions H(K) will 

be normal in the sense that, for each proposition F in n(K), we have, 

exclusively either 1 C F or 1 E where the algebraic identity 1 func- 

tions as what Cocchiarella calls the world-proposition - i.e., that proposi- 

tion which is true at the “real” world 0 and all that contains it, and is false 

otherwise. So takmg 1 E F as our standard for the truth of the proposition 

F ,  it turns out that normal theories, normal r. m. s., and normal propositional 

structures all march together. (That normal theories determine normal 

r. m. s. was seen above; suppose that (0, K ,  R, *) is normal; for proof that 

n(K) is normal, suppose both that I C F and 1 G for reductio. Then in 
particular, since 0 e 1, 0 E F and 0 E F, i.e., O* # F; but 0 = O* on the assump 

tion that (0, K, R, *) is normal, a contradiction. On the other hand, suppose 

in general that 1 P F. Then some member of 1 does not belong to F,  and, 

since 1 is closed upward and has a least member 0, in particular 0 d F.  So 

O* el? by definition. But O* < 0, whence, since F i s  closed upward, 0 E F 
and hence 1 C F.) 

The last part of the proof just presented seems unfairly asymmetrical. 
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Whatever the r. m. s., normal or not, our criterion of truth for propositions 

seems to allow both a proposition and its negation to be true but to disallow 

the possibility that neither should be true. There’s something to be said for 

this, too, we think - inconsistency seems to force itself on us in a way that 

incompleteness doesn’t (e.g., in the liar paradox) - but there’s no need to 

insist upon it; we characterized the truth of propositions relative to the 

“real” world 0, and our conditions on the real world permitted inconsistency 

but not incompleteness; one gets all the incompleteness one might wish - 
even no truths at all - simply by taking our characterization of propositions 

as true or false relative to some other set-up. We can do  this even if we 

insist that the real world be normal - i.e., that 0 = O*. Alternatively, we 

can make the real world even more abnormal - allowing incompleteness - 

by weakening the postulate to prevent the derivation of O* < 0; the total 

reflexivity postulate p2 - licensing reductio and excluded middle - seems 

the place to start. 

Let us get to it. 

At any rate, having propositions we now have something to quantify over. 

13. A propositional semantics for RP 

Having developed a theory of propositions in the last section, in this 

section we consider the result of adding to R the machinery of sentential 

quantification. The propositional language PL will be a quintuple 

6, V, 0, Q, F), where S is as before a set of parameters, V is a denumerably 

infinite set of sentential variables, 0 is as before the set of connectives 

(+, &, V, ->, Q is the set of universal quantifiers (P), one for every variable 

P in V, and F is the smallest set such that S U V E F and such that F con- 

tains A & B, A V B, A + B, A, and (P)A whenever it contains A and B, for 

all P in V.  We continue to use ‘p’, ‘q’, etc., for sentence parameters and we 

shall use ‘P’, ‘Q’, etc., for sentential variables. Members of F are called 

formulas of PL; formulas in which no variables occur free are called 

sentences. (Syntactically we shall be interested only in sentences, the 

syntactical role which would otherwise have been assigned to free variables 

going instead to parameters, which may occur in sentences.) Let A be any 

formula of PL. A closure of A, as usual, will be any sentence B which 

results from A by prefacing zero or more universal sentential quantifiers. 

Let B be any formula. A[B/P] shall be the result of substituting the 

formula B for each free occurrence of P in A, rewriting bound variables 

if necessary to avoid confusion. 
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We now characterize the relevant propositional calculus RP. (The first 

explicit formulation of Rp occurs in Anderson [ 19721 .) As axioms we 
take all closures of formulas of the kinds A1-A13, together with the 

following new axiom schemes. 

A16. (P)A + A  [B/P] , 

A17. (P)(A -+ B) -+ ((P)A + (P)B), 

A18. (P)(A V B) -+ ((P)A V B), i f P  is not free in B, 

A19. B -+ (P)B, if P is not free in B, 

A20. (P)A & (P)B + (P)(A & B). 

The rules are, as before, modus ponens and adjunction. 

some useful constants* : 

D3. 3 PA = df (m, 
D4. t =df(P)(P+P), 

DS. f =df?, 

D6. F =df (P)P, 
D7. T = d f E  

The connectives o and +, are introduced as before. Also defined are 3 and 

Let now (0, K ,  R, *) be an r. m. s. and let n(K) = (H, 0 ,  U, -, 1) be the 

corresponding algebra of propositions defined in the preceding section. 

An assignment of propositions in K is a function Q defined on S U V with 

values in H. We adapt Leblanc’s technique by characterizing an assignment 

cr as a P-variant of a’ provided that cr and a’ agree on S U V - {P}; i.e., two 

assignments are P-variants of each other if they differ at most in assigning 

different propositions to P. 

valuation v and interpretation I in the sense of section 111; i.e., for each sen- 

tential variable or parameter A in PL we shall have on the valuation v 

associated with 01 

An assignment of propositions or in the r. m. s. K determines an associated 

i. v(A, o r )  = T iff a P cy(A). 

Recursive clauses ii-vi of p. 206 may be adopted as is. To handle sentential 

quantifiers we add, where II is as above, 

21 Cf. Meyer [1972d] ; there are inessential differences in the formulation of Rpthere and here, 

as also with Anderson [ 19721. 



The Semantics of Entailment 235 

vii. I((P)A, a) = T iff for each interpretation I' determined by a P-vari- 

viii. I( 3 PA, a)  = T iff for some interpretation I' determined by a P- 
and a' of a, a ' ( P )  E n, I'A, a)  = T. 

variant a' of a, a' (P) E II, I' (A, a)  = T. (Since we have not take 3 as primi- 

tive, note that vii with vi implies viii.) 

Notions of truth on an assignment or on the associated valuation, veri- 

fication, entailment, and validity may be adapted from section 3. In partic- 

ular, a formula A is W-valid iff it is true on all assignments of propositions 

to its sentential variables in a11 r. m. s. (0, K, R, *). 

the restriction ( I )  of 3 is automatically satisfied. 

It is to be noted that, since propositions are by definition closed upward, 

14. Consistency of propositional semantics. Secondary r. m. s. 

To prove RP consistent relative to its intended semantical interpretation 

is just a matter of repeating the arguments of sections 4 and 5, bringing 

all the lemmas up to date to keep pace with the enlarged vocabulary. We 

accordingly state immediately. 

Theorem 10. 
Proof: It suffices, extending Lemma 1 and Theorem 1 to the enlarged 

context, to show again that the axioms are valid and that the rules preserve 

validity. Only A16 is slightly interesting. Assume for arbitrary a in an arbi- 

trary r. m. s. that I((P)A, a )  = T; it suffices by our updated Theorem 1 to 

show I(A[B/P] , a )  = T for arbitrary B. In fact, let P(B) be the set of all b in 

K such that I(B, b )  = T. By Lemma 1, P(B) is closed upward, so P(B) E n. 
But since (P)A is true at a on I, A is true on the interpretation I' that is like 

I on sentential variables except for setting I' (P, b)  = T iff b E P(B)- i.e., iff 

I(B, b )  = T, for all b in K. An obvious inductive argument on the length of 

A yields in conclusion Z(A[B/P]) = T, which ends our proof of the theorem. 

Unfortunately, though we have at the present time no proof, there is good 

reason to believe that the converse of Theorem 10 is false. The reason may 

be variously located, but the easiest thing to say is that sentential quantifica- 

tion is an essentially second-order matter, sentence letters being parsed as 

0-ary predicates; so, it would seem, the way to prove completeness for RP 

is to adapt the techniques by which Henkin [ 19501 proved completeness 

for higher-order logics, not with reference to the intended primary interpre- 

pretation alone but including in a class of secondary interpretations, in which 

the quantifiers range not over all propositions but over the propositions in 

All theorems of RP are RP-valid. 
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some subset of the set of all propositions. Not every subset, as is well-known, 

will do. 

pleteness for propositional versions of S4 and S5.22 We apply it here by 

characterizing a secondary r. m. s. as a pair (K, r), where K = (0, K, R, *> is 

an r. m. s. and r G IT, where n as above is the set of all propositions in K. 

An assignment is characterized as before, on the restriction that its values 

under a shall always be members of r; similarly, a' does not count as a P- 
variant o f a  unlessa'(P) e r .  Valuations, interpretations, etc., may then be charac- 

terized as before, except that the (previously vacuous) clause a'(P) E n in vii 

and viii gets changed to a'(P) E r. A formula is then valid in a secondary model 

(K, I?) iff it is verified on all assignments in that model. 

This cut-down principle was actually applied by Bull [ 19691 to prove com- 

We have at any rate 

Theorem 11. 
valid in all secondary r. rn. s. (K, r>. 

Every theorem of RP whose proof does not require A 16 is 

Proof like Theorem 10. 

Our sidestepping A16 is the usual move in these cases; in fact, though A16 

holds when another variable or parameter is put for the universqlly quantified 

P, we can find a secondary model K, 
sequence thereof as 3 R(R*p & 4) .  (Cf. Henkin [I9531 for related relevant 

discussion.) Since specification is also the point that forces one to put strange 

conditions on what counts as a model for 2nd order logic and type theory in 

general - essentially, we select favored secondary r. rn. s. (i.e., the ones in 

which all the axioms, in particular A16, are valid). This is not quite as 

arbitrary as it looks, since what it amounts to is as usual the requirement 

that in favoured r. m. s the propositions be closed in certain reasonable ways. 

Le., the choice of X C  II, cutting down the range of the sentential quantifier, 

is not arbitrary, for we must make allowance not only for the propositions 

assigned to sentential variables but also for the complex propositions that 

may be built from them; in the case in point, e.g., failure came from failure 

to close the set of propositions under intersection, to allow for the logical 

operation of conjunction. 

So much for a sketch of our propositional semantics; we turn now to 

consider the interpretation of sentential quantifiers as ranging over sentences. 

that will refute such a simple con- 

2 2  The phrase, 'cut-down', is so far as we know Cocchiarella's. 
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15. Substitution semantics. First-order semantics 

We get a much simpler technique by adopting the substitution interpre- 

tation of the sentential quantifier. Specifically, we keep as they were the 

semantic definitions of section 3 (nor extending to sentential variables 

the valuations v defined there), adding to allow for sentential quantification 

simply the clause, where B is a sentence and no variables except possible P 

are free in A, 

ix. 

x. 

I((P)A, a)  = T iff for all sentences B of PL, Z(A[B/P] , a)  = T; 
I((  3 PA, a) = T iff got some sentence B of PL, I(A[B/P] , a) = T. 

Again, x follows by definitions from ix and vi. Note that our substitution 

semantics, in contrast to the propositional semantics, defines semantic 

notions only on sentences, rather than on arbitrary formulas. This is, in 

both cases, a matter convenience decides, partly anticipated here by the 

ruling that made only sentences theorems. Validity, etc., are defined as 

before. There is, on this approach, very little to do on the side of consis- 

tency. We accordingly conclude forthwith. 

Theorem 12. All theorems of RP are valid on the substitution semantics 

Pro0 f omitted. 

As was argued in Leblanc and Meyer [ 19691, there is certainly a great 

deal to be said on higher-order levels for substitution, or truth-value, 

semantics; indeed, the very style of the completeness proof of Henkin [1950] 

suggests, as Henkin himself has pointed out, a preference for linguistic rather 

than ontological interpretation; though it is interesting to muse, as we did 

above, about propositions, a typical completeness proof for calculi like RP 
will deal only with sentences - from the onotological viewpoint, with the 

named propositions only; for the more skeptical, with all that is there to 

quantify over. 

The first-order version RQ of R may be handled like RP, except that in 

this case the peculiar second-order difficulties we’ve been mulling don’t come 

up. We suppose RQ formulated as in Meyer et al. [ 19721 ; for readers without 

this article at their elbow, this means with an ordinary first-order language 

without identity, with predicate letters G ,  etc., parameters b ,  etc., and indivi- 

dual variablesx, etc., formulas and sentences being built up as usual from 

connectives and individual quantifiers. One gets an adequate axiomatization 

by putting ‘x’ everywhere for ‘P’ in A1 6--A20 and taking ‘B’ in A16 instead 

as an arbitrary term ‘t’ to be properly substituted for ‘x’. A plausible 

semantics is the following. 
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A relevant quantificational model structure (r. q. m. n)  is a pair a<, D )  

where K is an r. m. s. and D is a non-empty set. A valuation v in an r. q. m s. 
is a function which assigns all variables and parameters members of D and 

all n-ary predicate letters G at each point a of K, n-ary relations' on 0; v 
then assigns T or F to an atomic sentence Gtl . . . tn at a iff <v( t i ,  . . . , 
v(tn)> E Y ( G ,  a).  An interpretationIis associated with v as before, satisfying 
ii-vi. (The sentential constant f having been made primitive for RQ in 

Meyer et al. [1972], we note that I(f, a )  = T iff 0 4: a* suffices.) Defining 

v and Y' asx-variants, again following Leblanc, iff they agree on all variables 

and parameters except possibly at  x, we get for the quantifiers, letting Z, f 
be x-variants if v, v' are, 

xi. 

xii. 

Z((x)A, a )  = T iff Z'(A, a)  = T ,  for all x-variants I' of Z; 

I( 3xA,  a)  = T iff P(A, a) = T, for some x-variant of I. 

Defining truth, verification, etc., as before, we get 

Theorem 12. 

Proof: As in the last section, extend Lemmas i 3 and Theorem 1 and 

verify the axioms on an arbitrary valuation in an arbitrary r. q. M. s. The 

rules are no  problem (generalization not being among them, on account of 

our taking only theorems as sentences), whence all theorems are true on an 

arbitrary v and are hence valid in all r. q. m. s. 
Our quantificational semantics is pretty heavy-handed, and it's just pos- 

sible that it validates some conspicuous non-theorem of RQ. We doubt it, 

however. More interesting, of course, is to build relevance in to our quanti- 

ficational semantics by associating different domains with different set-ups, 

perhaps modifying xi and xii and the axioms of RQ in the process. For all 

the remarks we have made comparing R with the intuitionist calculus J, on 

the quantificational level RQ certainly goes beyond JQ with respect to the 

principle ( x ( p  V Fx) + p V (x)Fx, discussed at some length in Kripke [ 19651. 

But in this case it's because the principle has been taken as an axiom of RQ, 

near enough; changing the semantics in an intuitionistically acceptable direc- 

tion appears to offer no difficulties of principle; whether such a change is rele- 

vantly desirable is another question, discussed in Meyer et  al. [ 19721 . 
A first-order truth-value semantics, corresponding to that of the previous 

section for RP, may be had along the same lines. Again, semantic consistency 

is no problem; we presume that completeness isn't either. 

All theorems of RQ are valid in all r. q. m s. 

23  ( I ) must continue to be respected, in the sense a < b * u/C, a; 5 v / G ,  b). 
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16. Final remarks. Open problems. Trivia 

Our main promise has been kept. The system R does have a Kripke seman- 

tics. So d o  many of its close neighbors. We have motivated that semantics 

from many points of view, but there are others that we have not touched. 

We have shown a few things that our semantics is good for; the ease with 

which we’ve got some of our results leads us to hope that other long intract- 

able technical problems, in particular the decision question, will prove more 

amenable to analysis and solution. A few extra tidbits are, with some prob- 

lems, perhaps in order here. 

The algebraic essence of our completeness proof lay in the fact that it 

gives us a recipe to turn prime DeMorgan monoids into relevant model struc- 

tures; one simply surveys the set K of prime filters of these monoids and 

uses the monoid operation to define R in a natural way; * is usually no prob- 

lem. Defining an r. m. s., on the other hand, can if done directly be inordin- 

ately time-consuming; the reader interested in making up a few is advised to 

beware in particular of the Pasch postulate p3. So the recipe of our com- 

pleteness proof, boiled down most clearly in Corollary 9.1, is welcome; in 

particular, by turning DeMorgan monoids into r. m. s. we can see how pro- 

blems once settled by matrix methods may be handled in our semantics. 

Consider the following r. m. s. K = (0, K, R, *). 

o* = 0. ] *  = 2; 2* = 1 .  

R holds of the following triples, and fails otherwise: 000, 01 1, 101,022, 

K was independently discovered by Urquhart in applying these seman- 

K = ( O ,  1,2 ;  

202,111,222, 121, 122,120,211,212,210. 

tical methods to the DeMorgan m ~ n o i d ~ ~  Mo, which in Belnap [ 19601, 

Anderson and Belnap [ 19621, and elsewhere has been used to establish 

central semantical facts about the relevant logics; we note also that KO, as 

perhaps we should call it, is in some appropriate sense minimal, in that it is 

the smallest r. m. s. for which all of the following hold: (a) normality, in the 

sense O* = 0; (b) < is not a linear ordering (so K isn’t a Mingle r. m. s.); (c) 

* is not the identity. Given these conditions, we note that the postulates 

force the ternary relation to hold af least of the listed triples. 

24 Strictly speaking, Mo is in Belnap [ 19671 and i n  Dunn and Belnap 119683 a DeMorgan 

lattice; i.e., 0 is not defined on it: but Belnap I 19601 marks its original appearance, as a 

matrix; defining I) via -(a -f . b )  makes i t  a monoid, there. 
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The first use to which Mo was put, in Belnap [1960], was establishing 

the relevance principle - if A R-entails B, then (at the sentential level) A 

and B share a parameter. Show this in K by assuming that A and B do not 

share; if p occurs in A, set v ( p ,  1) = T ;  if in B, set v ( p ,  2) = T; except as 

determined by these conditions, set v ( p ,  Q) = F for all Q in K. Show by 

induction that, for every subformula A’ of A and B‘ of B, Z(A’, 1) = T and 

I(B’, 1) = F, and the other way round at 2. We need consider only the in- 

ductive case; & and V are inductively trivial; if A’ is F at 2, r i s  T at 2* = 1, 

displaying the strategy of the - case. Finally, consider A‘ -+ A”; first, it’s 

surely F at 2, since R212 and on inductive hypothesis [(A’, 1) = T and 

I(A”,  2) = F. On the other hand, it’s true at 1 ; for in the 5 cases in which 

1 isthefirstargumentofR- 101, 111, 121, 122, 120- in the f i r s t3  

cases no counterexample arises because A” is T at 1, and in the last 3 be- 

cause A’ is false at 2, invoking the inductive hypothesis, so A’ -+ A“ is T 

at 1 ; the B case is handled symmetrically, ending the inductive argument 

and showing that Z(A, 1) = T and I(B, 1) = F, which suffices to show that 

A does not entail B on I, and hence that it does not R-entail it. Contra- 

posing, we get the relevance principle. 

The second use of Mo occurred in Anderson and Belnap [ 19621 ; at 

the essential level, it was used to show that A 1 & . . . &A,,, +.B1 V . . . 
V Bn is a theorem iff, where all the Aj and Bj are sentential variables or 

negates thereof, some Aj is identically the same as some Bi. The ‘if is 

trivial, so we assume as before that there is no sharing, in the present case 
asserting Aj  # Bi for all i, j ,  to show the ‘only if  by contraposition. If for 

some p ,  A i  = p .  set v(Aj, - 1) = T; i fAj  = 5, set v(Ai, 2) = F; if Bj = p ,  set 

v(B,, 1) = F;  if Bi = p ,  set v(B,, 2) = T. Since there is no sharing these specifi- 

cations don’t conflict, and making v arbitrary except as specified then again 

we have made the antecedent true and the consequent false at 1 on v ,  falsify- 

ing the entailment and establishing contrapositively what was to be shown. 

(Reasoning of this sort is justified at greater length in Routley [ 19721 ; our 

purpose here is just to show off KO.) 
Well, so much for some of the little things that can be done; it’s a lot 

easier, of course, once they’ve been done already, and taking seriously some 

of the propositional motivation given by Anderson and Belnap in their papers 

and recapitulated in Anderson and Belnap [ 19721 these insights don’t seem 

essentially improved on our playing with KO - certainly not at the first 

degree level. The superb Anderson-Belnap literary style may have something 

to do  with it - it’s easy to laugh at the jokes and to miss the profound 

insights. A few other things have been done which hadn’t been done before; 
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for example, by taking Cartesian products of r. m. s. as in Corollary 9. 2 it’s 

possible to prove R reasonable in the sense of Hallden - i.e.,-if A 3 B is a 

theorem, where 3 is defined truth-functionally, either one of A, B is a 

theorem or else, at the sentential level, there is a parameter in common be- 

tween A and B; this implies, by a result of Kripke, that R has a normal 

characteristic matrix, other conditions being fulfilled. A final tidbit is used 

in Meyer [1972d], so we make it explicit; as hinted, RP is a conservative 

extension of R. For proof, take a non-theorem A of R and find an r. rn s. 
that rejects it; assigning each parameter in A the set of worlds in whch that 

parameter is true, we get a propositional assignment in the sense of 13 in 

the same r. m. s. which still falsifies A, whence by Theorem 10, A remains 

a non-theorem of RP, ending the proof. 

Some problems which we would like to see solved, and with respect to 

which we hope that the present semantics will help, are the following. 

1. 

2. 

3. 

4. 

5 .  

6. 

The decision question for the relevant sentential logics. 

Extension of these methods to higher-order logics, with nontrivial 

mathematical applications, and an appropriate proof of completeness. 

(We’d prefer the applications, if there’s a choice.) 

Deeper analysis of the relation between intutitionistic and relevant 

logics. To what extent, in particular, do relevance safeguards render 

harmless excursions through non-constructive arguments? (Some 

results on this topic appear in Meyer [ 1972el.) 

Is RF’ decidable? (Meyer thinks he has an argument that says “No”, 

but it’s not tight.) And in general, what’s RP like? Can our theory 

of propositions be characterized in a tighter way? What about the 

results of Meyer [1972d], using sentential quantification to relate 

familiar logics like J and Curry’s D to R? Do they have easy proofs 

in the present semantics? 

Necessity will be added to  R in a sequel. But what about other 

modalities, propositional attitudes, etc.? Are these to be added in 

straightforward analogy to other treatments, or should they take 

deeper account of relevant implication? 

Semantic tableaux. Gentzen formulations. How does the present 

semantics help to mechanize and to draw pictures of relevant deduc- 

tion? As opposed to natural deduction formulations of R, these have 
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been hard to come by; Dunn’s Gentzenization of R+ is the best result. 

Can it be extended to all of R?2 
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