
THE SEMANTICS OF I.AZY (AND
INDUSTRIOUS) EVALUATION

by

Robert Cartwright

and

James Donahue

Rice Technical Report TR83-30

The Semantics of Lazy (And Industrious) Evaluation

Robert Cartwright

1. Introduction.

Computer Science Program
Mathematical Sciences Department

Rice University
Houston,Texas 77251

James Donahue
Xerox Corporation

Palo Alto Research Center
Palo Alto, California 94304

Since the publication of two influential papers on lazy evaluation in 1976
[Hend76, Frie76], the idea has gained widespread acceptance among language

theoreticians-particularly among the advocates of functional programming

[Hend80, Back78]. There are two basic reasons for the popularity of lazy evalua
tion. First, by making some of the data constructors in a functional language
non-strict, it supports programs that manipulate "infinite objects" such as recur
sively enumerable sequences, which may make some applications easier to pro
gram. Second, by delaying evaluation of arguments until they are actually
needed, it may speed up computations involving ordinary finite objects.

Despite the popularity of lazy evaluation, its semantics are deceptively com

plex. Although the implementation of lazy evaluation is easy to describe, its
semantic consequences are not. In lazy domains, the existence of infinite objects
nullifies the usual principle of structural induction for program data. Replacing
conventional data constructors by their lazy counterparts radically alters the

structure of the data domain. As a result, reasoning about programs defined over
lazy spaces is a subtle, often counterintuitive endeavor. Many simple theorems
about ordinary data objects do not hold in the context of lazy evaluation. For
example, although the function reverseareverse is the identity function on ordi

nary linear lists, it does not equal the identity function in the context of lazy
evaluation; applying reverse to an infinite list yields the undefined object J_. In
response to these issues, this paper develops a comprehensive semantic theory of
lazy evaluation and explores several approaches to formalizing that theory within
a programming logic. The paper includes four interesting new results.

First, there are several semantically distinct definitions of lazy evaluation
that plausibly capture the intuitive notion. In contrast to the usual
implementation-oriented approaches in the literature, we define lazy evaluation
as a change in the value space over which computation is performed. We use a

This research has been partially supported by NSF grants MCS-7805850 and MCS-8104209 and by

small collection of constructors from denotational semantics [Scot76, Scot81,

Scot83] to build abstract value spaces that correspond to the meanings of com
putations using various lazy constructors. Our abstract approach to defining
lazy domains accommodates several distinct interpretations of the informal con
cept of lazy lists developed in the literature [Frie76, Hend76]. Apparently trivial

programs produce significantly different results under the different interpreta
tions.

Second, non-trivial lazy spaces are similar in structure (under the approxi

mation ordering) to universal domains (as defined by Scott [Scot76]) such as PCJ

and Tc.i [Plot78] models for the untyped lambda calculus. Specifically, we show

that PCJ (with the standard primitive operations 0, succ, pred, cond, K, S, and

Apply) is isomorphic to the simple lazy space

Trivseq = Triv x Trivseq

(with corresponding primitive operations) where Triv is the trivial data domain
consisting of two objects LL true} and x denotes the standard cartesian product
of two sets. The corresponding primitive operations on Trivseq are recursively
definable (using first order recursion equations) in terms of the constants true
and J_, the constructor and selector functions for forming and tearing apart
objects in Trivseq, and the logical operations and and por (parallel or) on Triv.

Hence, lazy trivial sequences (as defined above) provide an elegant model of the
(untyped) lambda calculus that is intuitively familiar to most computer scien
tists.

Third, we prove that neither initial algebra specifications [ADJ76,77] nor final
algebra specifications [Kami80] have the power to define lazy spaces. This result,
which is surprisingly easy to prove, establishes a fundamental limitation on the

power of equational theories as data type specifications.

Fourth, although lazy spaces have the same "higher-order" structure as
universal domains such as Pc.,, they nevertheless have an elegant, natural charac
terization within first order logic. In this paper, we develop a simple, yet
comprehensive first order theory of lazy spaces relying on three axiom schemes
asserting

• the principle of structural induction for finite objects;

• the existence of least upper bounds for directed sets; and

• the continuity of functions.

To demonstrate the deductive power of the system, we show that there is a sim
ple, natural translation of the higher-order logic LCF [Gord77] into our first order
system. In addition, we derive a generalized induction rule (analogous to fixed
paint induction in LCF) for admissible predicates called lazy induction which

Xerox Corporation.

- 2 -

extends conventional structural induction to lazy spaces, greatly simplifying the

proof of many theorems. An instance of this generalized rule reduces to ordinary
fixed point induction.

The remainder of the paper is divided into six sections. Section 2 provides a

brief overview of Scott's theory of data domains [Scot76,Scot81,Scot83]. Section 3

develops the specific machinery required to define the abstract semantics of lazy

data domains. Using this machinery, Section 4 presents a taxonomy of lazy lists,

demonstrating that there are many semantically distinct data domains that cap
ture the intuitive notion of lazy evaluation. Section 5 explores various
approaches to formalizing our semantics definition of lazy domains within a logi
cal theory. In the process, we prove that algebraic specification is too weak to
accomplish the task and that lazy spaces have the same rich "higher-order"

structure as Pru. Finally, in Section 6, we present a simple first order theory for

lazy data domains and demonstrate that it is as least as powerful as the

corresponding theory formulated in the higher-order logic LCF. Section 7

assesses the intuitive significance of our results and speculates about promising

directions for future research.

2. Background

2.1. Mathematical Foundations

The following group of definitions rigorously describes our concept of data

domain, which is an adaptation and distillation of several different expositions by

Scott [Scot 76,81,83].

Definition A partial order S is a pair <ISi,~> consisting of a set ISi of objects
and a binary relation ~ over ISi such that

(i) ~ is refexive: VxEISI x~x.

(ii) ~ is antisymmetric: Vx,yE!SI x~y I\ y~x:) x=y.

(iii) ~ is transitive: \lx,y,zEISI x~y I\ y~z :) x~z.

A subset R~!S! is consistent iff there exists uE!SI such that \lrE:R r~u; u is called an

upper bound of R. A subset R~!SI is directed iff for every finite subset E~R has an
upper bound in R.

Notation Given a partial order S, we will use the symbol Sas an abbreviation

for the more cumbersome notation ISi whenever no confusion is possible. Hence
xES and RES as abbreviate xEISI and REISI, respectively.

Definition A (data) space S is a partial order with the following two proper
ties:

(i) Every directed subset RES (including the empty set) has a least upper bound

in S (denoted lubs R). The least upper bound of the empty set is denoted by

the special symbol J_S (pronounced "bottom").

- 3 -

(ii) S has a countable subset B = lb/:S I iEINl called the basis elements of S, such

that1

(a) B is closed under the least upper bound operation on finite consistent

subsets.

(b) Every element xES is the least upper bound of the subset of B that
approximates it, i.e.

V xES X = lubs iyEB I y~x~.

(c) Every basis element xEB is finite: every directed subset C of B has the
property that x ~ lubs C implies that 3yES such that x ~ y.

Theorem A data space S has a unique basis; it consists of the finite elements
of S.

Proof By property (c) above, every basis element must be finite. To show
that every finite element must be a basis element, let e be an arbitrary finite ele
ment. Let E be the set lb~e I bEB~. Since e is finite, there exists a finite subset
E'~E such that lubs E' = e. But lubs E' must be a basis element, because the basis

is closed under least upper bounds on finite sets. O

Notation When no confusion is possible, we will frequently omit the sub

scripts (identifying a space) on the symbols lub and _l.

Definition An element s of a data space S is well-founded iff the set {yES I
y~s~ is finite. A data space S is well-founded iff the well-founded elements of S
form a basis for S. A data space S is fl.at (industrious) iff for every element yES,
x~y <=> (x=y v x= _l). A well-founded data space Sis lazy iff it is not flat.

Although all lazy spaces are well-founded, many "higher-order" spaces (such as

mappings from one lazy space to another) are not well-founded.

Definition An ideal over B is a set F such that

(i) Vx,yEF lubix,y~EF, and

(ii) VxEF,yEB y~x :) yEF.

Definition Two spaces S1, S2 with bases B1, B2 are isomorphic iff there exists

a bijective (one-to-one and onto) function h:S
1

-+S2 such that:

(i) h(B 1)=B2 and h(_l 1)= _12.

(ii) For any finite set S~S 1, Sis consistent iff h(S) is consistent.

(iii) For any consistent set S~S 1, h(lub S) = lub h(S).

Theorem A data space S with basis B is isomorphic to the space I(B) consist
ing of the set of ideals over B under the partial ordering defined by the subset

1The elements in the enumeration b 1, b2, ••• are not necessarily distinct. Hence, B can be finite.

- 4 -

relation on ideals (which are simply sets of basis elements).

Proof The function h:I(B)~s defined by

h(F) = lubs F

maps I(B) onto S and clearly preserves the approximation ordering on I(B):

F 1 ~ F 2 <=> 1 u bs F 1 ~ 1 u bs F 2

Similarly the function h':S~I(B) defined by

h'(x) = hEB I y ~s xt
maps S into I(B) and preserves the approximation ordering on S. Moreover, it is
obvious (from the definition of a basis) that for all xES

h(h'(x)) = X.

To complete the proof, we must show that h' maps S onto l(B), i.e., that for
each xES, there is a unique ideal F in I(B) such that lubs F = x. Assume that two

X X

distinct ideals F and G have the same least upper bound in S. Without loss of gen-
erality, we can assume that F-G is non-empty. Let wE:F-G. Since w is a basis ele
ment, it is finite, implying that G (a directed set approximating x~w) contains an
element v such that w~v. Since G is an ideal, G must contain w, which is an obvi

ous contradiction.

Remarks The preceding theorem shows that the structure of space S is com

pletely determined by the structure of B. In the neighborhood system formula

tion of domain theory [Scot 81], the elements of a space are filters rather than
ideals because each element of the universe is identified with a filter of sets
(called neighborhoods) that "contain" (2) rather than "approximate" (~) the ele
ment.

Definition Let S be an arbitrary data space with basis B. A function f:s#f~s is

approximable iff

An approximable function f:s#f~s is strict iff the image of every argument list
containing J_ is J_, i.e.,

V x 1, ... ,x#fES x 1=J_ v ... v x#f=J_ :::> f(x 1, ... ,x#f) = _l.

Definition A space R is a subspace of the space S iff2

(i) IRl<;;:ISI, ~R<;;:~s• and J_R = J_s.

(ii) IRlnB forms a basis for R.

- 5 -

(iii) For all directed subsets R'~R. lubR R' = lub8 R'.

Remark Some formulations of domain theory use a weaker definition of sub
space. In particular, they omit condition (ii) and replace condition (iii) by a stipu

lation that the consistency relation in the subspace R agree with consistency
relation in the parent space S. In Section 2.5, we discuss some of the implications
of this alternative.

Definition Let G be a countable set of symbols. A domain D with signature G
is a pair <D,G> consisting of a space D (called the universe) and an interpretation
junction G mapping each symbol gEG into an approximable function g (called an

operation) over D.

Definition Two domains D1, D2 with signature Gare isomorphic iff the spaces

D1 and D2 are isomorphic under a function h:D 1
4 D2 and for each operation sym

bol gEG,

where g 1 and g2 denote the interpretations of g in D1 and D2 , respectively.

Definition A domain E with signature His a subdomain of the domain D with
signature G iff

(i) Eis a subspace of D.

(ii) H<;;;G and for each operation symbol hEH, Gn(h) (the interpretation of h in D)

restricted to Eis GE(h) (the interpretation of h in E).

The obvious difference between a space and a domain is that a domain

identifies a collection of primitive operations-in addition to a universe of
values-that form a set of building blocks for defining new functions over the
universe. In contrast, a space leaves the possible operations on data unspecified.

Notation Given a domain D with signature G, we will frequently write G
instead of G(G) to denote the set of functions over D interpreting the operation
symbols G.

2.2. Sample Spaces

Many common data spaces such as the natural numbers and ordinary (indus
trious) lists are degenerate in the sense that they contain no limit points; in
these spaces, every element is a basis element. For example, let Nat be the

natural numbers IN under the partial ordering ~Nat defined by

X ~Nat y ¢;> X = y V X = j_ .

Nat is a space with basis Nat. Similarly, let Boal, the space of Boolean truth

values, be defined as the set

- 6 -

LL true, false}

under the partial ordering ~Boo! defined by

X ~Bool y ~ X = y V X = _J_.

An example of a more interesting space is Pc.,, the power set of the natural

numbers under the partial ordering ~ determined by set inclusion. The finite
(basis) elements of Pc., are precisely the finite sets of natural numbers.

2. 3. Space Constructions

In specifying data spaces, it is often convenient to construct composite
spaces from simpler ones. There are two fundamental mechanisms for con

structing composite spaces: the Cartesian product construction and the approx

imable function construction. We will discuss several other constructions later in

the paper, but they are all based on these two mechanisms.

We will define the two constructions without proving that the constructed

spaces are well-formed. The interested reader is encouraged to verify that the
constructions actually build well-formed spaces.

Definition Given data spaces S1,S2 with bases B1,B 2 and approximation order

ings ~ 1.~ 2, the Cartesian product space S1 xS2 is the data space determined by the

basis set

under the relation ~ defined by

(x1,Y1) ~ (xz,Yz)~ X1~1x2 "Y1~2Y2 ·

The bottom element of S 1 xS2 is (_j_ 1,_j_2) where _j_ 1 and _j_ 2 denote the least ele

ments of S1 and S2 .

Notation In informal mathematics, no distinction is typically made between
a unary function f defined on the Cartesian product SxS and the corresponding
binary function f' over S. Since we will be dealing with spaces S that contain SxS

as a subspace, we cannot ignore the difference between the two. Consequently, we
will employ the following conventions. First, unless we explicit state otherwise,
the expression RxS always denotes the Cartesian product space formed from R

and S. Second, the "exponentiated" expression sk denotes the domain of a k-ary

function over the universe S. To avoid unneccesary confusion, we will confine our
attention to unary functions when it is feasible.

The second fundamental space construction is the formation of the space of
approximable mappings from one data space into another. An approximable
mapping is a data object that denotes a function.

- 7 -

Definition Assume that we are given data spaces S1,S2 with bases B1, B2 . A

binary relation Jc; B1xB2 is an approximable mapping from S 1 to S2 iff

(i) fis consistent: for all xE:B 1, the set

is consistent.

(ii) f is directed-closed: for all <x',y'>E:B 1 xB2 (3<x,y>Ef [x~x· A y'~y] :::>

<x',y'>Ef) .

Definition Given an approximable mapping f from S 1 to S2 , the junction

determined by fis the function f:S 1 ~s2 defined by

f(x) = lub! yE B2 I 3x'EB1 [x·~x A x' Jy] f .

Observation If f is an approximable mapping from S to S, then the function f

over S determined by f is approximable.

Definition Given the spaces S1,s2 with corresponding bases B1,B2 and approx

imation orderings ~
1

• ~ 2 • the space of approximable mappings S1 ~ S2 is the

space determined by the basis

U I 3 finite consistent/ <;;; B1 xB2 such that fis the directed closure of/ f

under the partial ordering ~ defined by

The least element of S1 ~S2 is the relation

which is the directed closure of the empty relation; it determines the everywhere

"undefined" function O defined by

Theorem For any data space S that contains a subspace isomorphic to S ~S.

there is an approximable function Apply over S such that for every approximable
mapping JES ~S and corresponding function f:s~s

VxE:S 1 Apply(f,x) = f(x) .

Proof Let Apply be defined by the equation Apply(f,x) = lub !bEB I 3(u,b)Ej
u~xf . The theorem follows immediately from the definition of the function f

determined by f. D

- 8 -

Although we have only defined the notion of approximable mappings

corresponding to unary functions, there is a standard transformation (usually

called currying) that converts a multiple argument function f:S#f~s to an
equivalent unary function f': S ~ [S ~ ... ~ [S ~ S]. ..] defined by the lambda

expression:

Ax1 AX#f. f(x 1, ... ,x#f).

2.4. Computability

In order to formalize the idea of computable mappings (functions) on a data
space, we must identify a concrete representation for the elements of the space.

Definition An effective presentation of a data space S is a enumeration B =
<bi I iElN> of the basis of S such that2:

(i) The binary relation CON defined by

is recursive.

(ii) The ternary relation LUB defined by

is recursive.

The enumeration Bis called an effective presentation of S.

Theorem Given effective presentations B1, B2 for the spaces S1, s2 , we can

construct effective presentations for S1 xS2 and S1 ~S2 .

Proof Omitted.

A subspace S of an effectively presented space S (with presentation B = <bi I iE:lN>

) is effective iff the index set for the basis of S

is recursively enumerable.

Notation We will use italicized identifiers A, B, ... to denote effective presenta-
tions and the matching Roman identifiers A, B, ... to denote the corresponding

sets of basis elements.

In an abstract implementation of an effectively presented space S, each ele

ment x of the universe is represented by a natural number xR encoding the index
set In(x) = {i1 , i 2 , ... } of the set of basis elements {bi, bi, ... } approximating x.

l 2

More precisely, there is a binary total recursive function (3 such that for all xES,

- 9 -

Ak . {3(xR,k) has range In(x). In this context, a computable function f over S is

implemented by a #f-ary partial recursive function fR such that for all x 1, ... ,x#fE:S,

the function Ak. {3(fR(xt, ... ,x#fR),k)) has range ln(fR(xl' ... ,x#f)) .

Given the preceding motivation, we formalize the notions of computable
function and computable mapping as follows.

Definition An approximable mapping f is computable iff it is recursively enu

merable.3 The function f determined by an approximable mapping f from S 1 into

S2 is computable iff f is computable.

A computable function f:S 1->S2 is "computable" in the sense that given an

arbitrary element x E S 1 (represented by the code xR), we can enumerate the set

of basis elements that approximate the image element f(x) E: S2 .

Definition A data domain D = <D,G> is computable iff there exists an

effective presentation B for D such that every operation gEG is computable. An

element d E: D is accessible iff the index set of the ideal of basis elements approxi

mating d is recursively enumerable. An element d E: D is definable in D iff there is
a variable-free term pd constructed from the operation symbols in G such that

denotes d. A function f:Dn->D is recursively definable in D iff there is a term Tr

composed solely from the free variables x 1 , ... ,xn and the operations G such that f

is the least function (using the approximation ordering on the corresponding

mappings in on =*"D) satisfying the equation (called a recursive program for f)

The domain D is expressive iff every accessible element of D is definable in D. The

domain D is computationally complete iff every computable function f:Dn->D
(n~O) is recursively definable in D. D is refexively complete iff the following
three properties hold:

(i) D =*"Dis isomorphic to a subspace Ma'Pn of D.

(ii) Every accessible element of Map0 is definable in D.

(iii) The function Apply: D->D defined in the previous section is recursively

definable in D.

Remarks By Kleene's recursion theorem, the least function f satisfying the
equation (*) must exist since it is simply the the least fixed-point of the approx-

imable function F: [Dn->D]->[Dn->D] denoted by the lambda expression

2The elements in the enumeration are not necessarily distinct.

- 10 -

Observation If a domain Dis reflexively complete, then it is computationally

complete.

A particularly appealing property of Scott's theory of data domains is that

the set of approximable mappings between effectively presented spaces is an

effectively presentable space in its own right. Moreover, the set of computable
mappings within this space are precisely the accessible elements of the space. We
will discuss this issue in more detail below. In this paper, we will be exclusively
concerned with computable spaces and domains.

2.5. Retractions on the Universal Domain

A fairly rich collection of spaces can be constructed by starting with a few

very simple primitive spaces (such as Nat and Bool) and constructing more com

plex spaces by composing the Cartesian product and approximable mapping
space constructions. However, it is easy to devise spaces such as infinite carte
sian products of primitive spaces that are beyond the scope of this simple
scheme. Scott has developed a much more comprehensive approach to the prob

lem of constructing spaces based on the concept of a universal space.

Definition A universal space U is a computable space with effective presenta

tion B such that that every data space D is isomorphic to a subspace S of U. More

over, if D is effectively presented, then S must be an effective subspace of U.

Since every space D has an isomorphic image S within the universal space,

the problem of defining an arbitrary space can be reduced to defining an arbi
trary subspace of a particular universal space. A simple, elegant way to identify
an arbitrary (computable) subspace Sofa universal space is to define a (comput
able) retraction characterizing S.

Definition A retraction on U is a strict approximable function a: U ~ U such

that a 0 a = a. A retraction a is finitary iff the image a(U) is a subspace of U. A

retraction is a projection iff it preserves basis elements and least upper bounds.

In other words, a must satisfy the following two properties:

(i) VbE:B a(b)EB.

(ii) V consistent u,vEB a(lubiu,vD = lubia(u),a(vH .

The range of a (finitary) retraction a is called the (finitary) retract of a.

Remark A projection is clearly a special form of finitary retraction.

Theorem For every subspace Sofa universal space U, there is a projection a
with retract S.

Proof The projection a is defined by

a(x) = ibEB I bES " b~xf

3Using the indices given in the enumerations B1, B2 to name elements in B1 and B2.

- 11 -

It is easy to verify that a(U)=S. D

Remark The reader should be aware that we are using a very strong
definition of subspace, which imposes severe restrictions on the structure of a
universal space (e.g. it cannot be well-founded). In fact, by our definition of sub-

space, the well known "universal" space Tc.; is not universal. If we weaken the

definition of subspace as discussed in Section 2.1, then Tc.; is universal and the

preceding theorem no longer holds. In this case, the basis elements of a sub

space S ~ U may be inifinite in U (even though they must be finite in S). Moreover,
there is no suitable notion of a canonical retraction (analogous to a projection)
characterizing an arbitrary subspace. For this reason, we prefer the strong
definition of subspace.

Definition A universal domain U is a reflexively complete domain <U,G>
such that the universe U is a universal space.

Remark Given a universal space U, we can construct a universal domain by

identifying a finite set of functions Gover U such that:

(i) the Apply operation is recursively definable in <U,G>, and

(ii) every recursively enumerable element of U is denoted by some variable-free

term formed from G.

Moreover, since U =>U is isomorphic to a subspace of U and U is reflexively com
plete, there is an term Pg (composed from G) for each operation g that is recur-

sively definable in <U,G>, such that

Notation To simplify the syntax of expressions over a universal domain U, we
will adopt the following conventions. First, since there is an element Pr within U

corresponding to every recursively definable operation f, we will use the mapping
Pr in place of each operation f other than constants and the special operation

Apply. Hence, instead of the expression f(x,y) we will write Apply(Apply(pf,x),y).

Second, we will abbreviate every application of the form Apply(u,v) by (u v).
Third, we will elide parentheses by making application left associative; hence u v
w abbreviates ((u v) w). Finally, we will abbreviate applications of the form J(g x)
by fog x. This notation is consistent with the conventions usually employed in the

untyped lambda calculus [Bare77].

Although there are many different possible formulations of the universal

domain, the particular choice is unimportant. Given an arbitrary universal
domain U with basis B, we can recursively define (in terms of the primitive opera

tions G on the universal domain) the basic set of operations Olazy that we need to

construct lazy spaces. Olazy consists of the projection mappings RBool' Rx' and

R =-> identifying the subspaces Bool Otrue, false, _LD. UxU, and U =:>U, and the

- 12 -

mappings

true, false: Boal
o: U :::::;> Boal
if-then-else: Boal :::::;> (U :::::;> (U :::::;> U))
and: Boal :::::;> (Boal :::::;> Boal)
or: Boal :::::;> (Boal :::::;> Boal)
por: Boal :::::;> (Boal :::::;> Bool)
not: Boal :::::;> Boal
pair: U :::::;> (U :::::;> U x U))
left: U XU ===,> U
right: U X U :::::;> U
S: (U :::::;>U) :::::;> ((U :::::;>U :::::;> U :::::;>U))
K: U :::::;> (U:::::;>U)

satisfying the axioms:

o.1_=.1_
x;i: J_ :) (o x) = true
if-then-else true x y = x
if-then-else false x y = y
if-then-else J_ x y = J_
and x y = if-then-else x y false
or x y = if-then-else x true y
x;i:true A y;i:true :::, (por x y) = (or x y)
x=true v y=true :::, (por x y) = true
not x = if-then-else x false true
Rx x =x :::i pair (left x) (right x) = x
left (pair x y) = x
right (pair x y) = y
R =? f = Ax. lublyEB I 3 uEB u~x A u f y}
S X y Z = X Z (y z)
Kx y = x.

The notation /S 1 :::::;>S2 means that f is a mapping in U :::::;>U such that

The behavior off on points outside of the space S1 is not specified.

With the exception of por, S, and K, these mappings are generalizations of

familiar operations from lazy LISP (where left, right, and pair correspond to car,
cdr, and cons). The declared domain for each mapping is its intended domain of

usage. Each mapping is actually defined over the entire universal space U; space
declarations are enforced by projecting argument values outside the declared
domain onto the declared domain D (using the projection mapping R0).

- 13 -

Since Olazy includes the Apply operation and the S and K mappings, we can

form a variable-free term that denotes the mapping corresponding to any func
tion that is recursively definable in terms of the operations Olazy· It is well known

[Barendregt 77] that any closed term (no free variables) in the (untyped) lambda

calculus can be expressed as a composition of the operations S and K. Moreover,
the least fixed point operator y: (U4U) 4 U that maps an approximable function

into its least fixed point is defined by the lambda expression

A f . (AX. f (X X)) (AX. f (X X)) .

The corresponding mapping is defined by:

Y=Saa
I= S KK
a = (S (S (KS) (S (K K) /)) (s (KS) (K /)) (K /))

Consequently, the mapping corresponding to an arbitrary recursive definition

is simply

Y(A* x 1 A* x#f. Tr)

where A* x . a denotes the term (formed using S and K) denoting the mapping

corresponding to the function A x . a .

Notation As a notational convenience, we will use lambda expressions
(without the * exponent) to denote mappings instead compositions of S and K

since they are much easier to read. On a formal level, these lambda expressions

simply abbreviate the corresponding compositions of S and K. In the remainder
of the paper, we will also use the standard infix abbreviations for applications of
Boolean mappings:

if x then y else z - if-then-else x y z
x and y = and x y
x or y = or x y
x por y = por x y .

3. The Construction of Lazy Spaces

In constructing a composite space (such as a Cartesian product or discrim
inated union) from component spaces, we must decide how to form the bottom

element of the composite space, i.e. determine which constructed objects are
identified with the undefined composite object. This decision implicitly deter
mines whether the composite space corresponds to lazy or industrious computa
tion.

- 14 -

Let D1 and D2 be arbitrary computable subspaces of our universal space U

characterized by the projection mappings R 1 and R2 in U 9U. Using the Cartesian

mapping pair: U 9(U 9UxU), we can form a surprisingly wide variety of simple
composite space using the following space constructions.

1. Ordinary product. D1 xD2 = j<x,y> I xEDl' yED2 i. The corresponding basic

mappings are:

Px: D1 9(D2 9D1xD 2) = AX. "'A.y. pairxy

fstx: D1xD2 9D1 =AZ.left z

sndx: D1xD2 9D2 = AZ. right z

Rx: U9D 1 xD2 = AX. Px (R1ofstx x) (R2osndx x)

2. Coalesced product. D10D2 = j<x,y> I xE:D 1, yE:D2 , x:;t:J_, y;t:J_~ u jJ_~. The

corresponding basic mappings are:

Pe,: D1 9(D2 9D 10D2) = AX. AY- if Rox and oy then pair x y else J_

Jst0 : D10D2 9D1 = AZ. left z

snde,: D10D2 9D2 =AZ.right z

R@: U 9D 10D2 = AX. if ox then Pe, (R1 ° fste, x) (R2°snde,x) else J_

3. Separated product. D1181D2 = j<true,<x,y>> I xE:D 1, yED 2 i . The correspond

ing basic mappings are:

P 181 : D1 9(D2 9D 1181D2 = AX. "'A.y. pair true (pair x y)

jst181: D1181D 2 9 D1 = AZ. leftoright z

sn~: D1~D2 9D2 = AZ. rightoright z

R~: U9D 1~D 2 = AX. P~ (R1ojst181 x) (R2osn~ x)

4. Coalesced sum. D1EBD 2 = j<true,x> I xE:D 1, x:;t: J_~ u l<false,y> I yE:D 2 , y:;t: J_~ u

LU . The corresponding basic mappings are:

inLg/ D1 ~D 1 EBD 2 = AX. if ox then pair true x else J_

inREB: D2 9D 1EBD 2 = AX. if ox then pair false x else J_

outLEfl: D1 EBD2 ~D 1 = AZ . right z

outREB: D1EBD 2 ~D2 = AZ. right z

isL: D1EBD 2 98001 = AZ. left z

isR: D 1EBD 2 ~Bool = AZ . no tole ft z

REfJ: U ~D 1EBD 2 = AX. if isL x then inLEfJ 0 R 1 ooutLEflx else inREfJ0 R2ooutREflx

5. Separated sum. D1 +D 2 = j<true,x> I xE:D 1} u j<false,y> I yED 2 i u jj_l . The

corresponding basic mappings are:

inL+: D1 9D 1 +D2 = AX. pair true x

inR+: D2 9D 1 +D2 = AY. pair false y

- 15 -

outl+: D1 +Dz ~D 1 = AZ . right z
outR+: D1 +Dz ~Dz = AZ. right z
isl: D1 +Dz ~Bool = AZ. left z
isR: D1 +Dz ~Bool = AZ. notoleft z

R+: U ~D 1 +Dz = AX. if isl x then inl+ oR1 ooutl+x else inR+ oRzooutR+x

6. Lifted space. Dt = l<true,x> I xEDl u LU- Let R0 be the projection mapping

corresponding to D. The basic mappings corresponding to Dt are:

delay: D ~Dt = AX. pair true x

force: Dt ~D = AZ. right z

Rt: u ~u = AX. delay 0 R1 O force X

In constructing products and unions, there are three plausible symmetric

ways to handle composite objects containing an undefined component:

1. A composite object (e.g., an ordered pair) containing an undefined com
ponent is identified with the undefined object in the constructed space.
Coalesced products(®) and sums (EB) obey this convention.

2. A constructed object containing at least one defined component is dis
tinguished from the bottom element of the composite space. In this case,

two such objects are equal only if all of their corresponding components are

equal. Ordinary Cartesian products (x) obey this convention.

3. A composite object is always distinguished from the bottom element of the

constructed space. In this case, the bottom element is outside the range of
the constructor function corresponding to the composite space. Separated

products (), separated sums (+), and lifted spaces {t) all obey this conven

tion.

Each of these three different approaches to constructing composite data
objects corresponds to a different evaluation protocol (sometimes called a "com

putation rule" [Manna 74]) for evaluating applications of constructor functions to

argument expressions. The first scheme corresponds to conventional "call-by
value" computation: evaluate all argument expressions before forming the com
posite object. The second scheme corresponds to dovetailing the evaluation of all

argument expressions until one of them converges, and forming a composite lazy
object (where the arguments other than the one that converged remain
unevaluated as closures [HendB0]). The third scheme corresponds to forming a
composite lazy object without evaluating any of the argument expressions.

In a lazy composite object, unevaluated arguments are evaluated only when
the corresponding selector function (e.g. car and cdr in lazy LISP) is applied to
the composite object. If such an application does not occur in the course of exe

cuting a program, the corresponding argument is never evaluated.

- 16 -

The lifting operator t provides an explicit mechanism for constructing a

space of "suspended" or "unevaluated" elements corresponding to a given space

D. Note that the composition of the lifted space construction with the ordinary
product construction is identical to the separated product construction, i.e.

Similarly, the separated sum construction can be defined in terms of the

appropriate composition of the lifting operator with the coalesced sum construc
tion:

Consequently, without loss of generality, we can confine our attention (when it is

convenient) to the four space constructors: x (ordinary product), (8) (coalesced

product), EB (coalesced sum), and t (lifting operator).

4. A Taxonomy of Lists

The variety of mechanisms available for constructing lazy spaces suggests

that there may be several different lazy spaces that correspond to an ordinary
(industrious) recursive data space (such as lists) -- each with subtly different pro

perties. In fact, the number of semantically distinct possibilities is surprisingly
large. We will illustrate this phenomenon by studying list spaces in detail. In par
ticular, we are interested in determining and classifying the possible lazy varia
tions on the domain consisting of the retract List

(0) List = Atom EB (List (8) List),

and the set of operations OList

J_: List
J_At: List

J_Pa: List

t,f,A1,Az,···: List

cons: List2 ---> List
car: List ---> List
cdr: List List

cond: List3 List
isAtom: List List
isPair: List List

where t,f, A1 , ~ are constants denoting Lists that are atoms. We presume that

Atom, is an unspecified flat, expressive subdomain of U including the elements
true and false and a set of objects Nat isomorphic to the natural numbers.

- 17 -

The space List defined in equation (0) is the retract characterized by the pro

jection mapping

Rust = Y (>..R. /\.U. if isl u then inl9 °RAtom 0 outl9 u
else inR9 oP0 (Rojst9 ooutR9 u) (Rosnd9 ooutR9 u))

where RAtom is the retraction for Atom. In accordance with the conventions we

adopted in Section 2.5, we will define the mappings in U determining the opera

tions OList· The elements (mappings) of U denoting the operations in OList are

defined by

J_ = J_

J_At = inlffi J_

J_Pa = cons J_ J_

t = inl(J) true
f = inl(J) false
~ = inl9 (a) where ai denotes the appropriate element of Atom.

cons = A x . A y . inR9 oP0 x y

car = I\ x . jst0 ooutRa, x
cdr = I\ x . sn~ooutRa, x
cond = A x . A y . A z . if isl x then y else z
isAtom = A x . if isl x then t else f
isPair I\ x . if isR x then t else f
isPair = A x . isR x

In the process of classifying lazy variations on the domain List, we will iden
tify which one corresponds to the implementation-oriented semantics for Lazy
LISP presented in the literature [Henderson and Morris76, Friedman and Wise76].

Our investigation will demonstrate that that apparently innocuous variations m
the definition of recursive data spaces have profound semantic consequences.

The obvious syntactic variations on industrious List space defined above

replace EB by+, or 0 by x or. The variant spaces are:

(1) List Atom + (List x List)
(2) List Atom + (List 0 List),
(3) List Atom EB (List x List)
(4) List Atom EB (List~ List)
(5) List Atom + (List ~ List)

In each variant domain, the primitive operations OList are defined in the obvious

way analogous to their definition in domain (0). For example, in variation (1), the
functions cons, car, cdr are determined by the following mappings:

cons = Ax . I\ y. inR+ oP xx y

car = I\ X .fstxooutR+ X

- 18 -

We will subsequently consider other possible variations that involve the explicit

use of the t operator.

As a gross categorization, we can classify list spaces on the basis of whether

they accommodate infinite lists. The ordinary industrious space (0) does not, but
all of the lazy variants (1)-(5) do. For example, the list expression

Y (Au. cons Ou)

denotes the undefined element J_ of the industrious space (0) while it denotes a
linear list of O's in each of the other spaces (1)-(5).

Within the class of spaces that support infinite objects, there are significant
differences in the kinds of infinite and undefined objects that can appear within
infinite and partial objects. By applying this form of analysis, we can demon
strate that the first four spaces (1)-(4) have fundamentally different internal

structure. We can also show that space (5) is distinct from the other spaces, but

the difference between it and space (1) is not significant because the two spaces

(and corresponding domains) are isomorphic.

In space (1), lists can contain undefined atoms (the element <left,J_>),
undefined pairs (the element <right,J_>), and undefined lists (j_). In space (2),
lists can contain undefined atoms and the undefined pair but not undefined lists.
In space (3), lists can contain undefined lists but not undefined atoms and

undefined pairs. In space (4), lists can contain undefined lists and undefined

pairs, but not undefined atoms. In space (5), as in space (1), lists can contain

undefined atoms, undefined pairs, and undefined lists. However, space (5) con

tains a different form of undefined pair (<true, <true,J_>>) than spaces (1), (2),
and (4).

By inspecting a few simple examples, we can easily prove that the first four
lazy domains are distinct (non-isomorphic); corresponding computations yield
different answers. In domain (1), we can define

(a) the infinite list containing no atoms;

(b) the infinite sequence containing undefined lists (j_) alternating with zeros;

and

(c) the list consisting of undefined atoms

as follows:

(a) BigTree = Y (Au. cons u u).

(b) AltSeq = Y (Au. cons J_ (cons Ou)) .

(c) J_At ·

- 19 -

However, in the other three domains (2)-(4), at least one of the correspond

ing lists does not exist. In space (2), AllSeq denotes the undefined pair _lPa; lists

may not contain undefined lists. In space (3), both BigTree and At denote the

undefined list _l; every defined list must contain a defined atom. In space (4), _lAt

denotes the undefined list _l; lists cannot contain undefined atoms. Hence,
domains (1), (2), (3), and (4) are structurally distinct (nonisomorphic); the set of
finite elements is fundamentally different in each case.

Although each pair (created by a cons operation) in domain (5) contains a
redundant level of lifting, domain (5) is isomorphic to domain (1) under the func
tion h: U--+ U defined by the recursion equation

h(x) = if isl x then x
else pair(true,h(right(righl(x))) .

The function h simply strips one level of lifting from the representation of every
List pair. The interested reader should confirm that all of the operations in Oust

(restricted to their respective domains) are preserved by h.

With the aid of the t operator, we can define an even wider class of lazy list
domains. First, we can define three more basic variations on lazy lists (spaces
(6), (7), and (8) below) completing an enumeration of the eight possible ways

(spaces (0)-(8) excluding (5)) to include or exclude undefined atoms, undefined

pairs, and undefined lists. Second, we can define pairing operators that are lazy
in only one argument (unlike P x' P~). Finally, we can add redundant levels of

delayed evaluation in the formation of either atomic lists or paired lists analo
gous to the extra level that appears in paired lists in space (5). Since every
domain in the final class (involving redundant levels of lifting) is isomorphic to a
space outside the class, we will not discuss this class any further.

To facilitate classifying the extra spaces, we rewrite the definitions of the five

basic lazy list spaces (1)-(5) in terms of the operators x, 0, +, E9, and t:

(1) List = Atomt EB (List x List)t

(2) List Atom t E9 (List 0 Listf
(3) List Atom EB (List x List)
(4) List Atom EB (List x List)'

(5) List = Atomt EB [(List x ListfJt.

In this standardized form, the close relationship between space (5) and space (1)
is evident.

The remaining interesting variations on lazy lists are:

(6) List

(7) List

Atom t EB (List~ List)

= Atom EB (List 0 List)t

- 20 -

(8) List =
(9) List =
(10) List

(11) List

(12) List

Atom t E9 (List® List)

Atom E9 (Listt ® List)

= Atom E9 (List® Listt)

Atomt E9 (Listt ® List)

Atom t E9 (List® List t) .

Variation (6) accommodates undefined atoms and undefined lists, but not

undefined pairs. Variation (7) does exactly the opposite; it accommodates

undefined pairs, but not undefined atoms or lists. Variation (8) is only marginally

lazy: within lists it accommodates undefined atoms, but not undefined lists or
undefined pairs. Variations (9), (10), (11), (12) all delay the evaluation of only one

argument of a paired list. As a result, spaces (9) and (11) allow infinitely deep
lists but not infinitely long ones while spaces (10) and (12) do the opposite.
Spaces (9) and (10) prohibit undefined atoms while spaces (11) and (12) accom
modate them.

At this point, the question arises: which denotational definition of lazy lists

corresponds to the standard implementation-oriented definition given in the

literature [Fried76]? The answer is (4), because their space accommodates

undefined lists and undefined pairs but not undefined atoms.

The situation is somewhat more complicated in the case of the semantics

presented in [Hend76]. Their semantic definition describes a space isomorphic to
(1), but the definable data points are contained within a subdomain isomorphic to
(4), because the operations in their domain cannot generate undefined atoms.

5. Axiomatizing Lazy Data Domains

Since there are significant differences between various formulations of lazy
data domains, it is important to develop clear, comprehensive axiomatic
definitions for the alternatives. Naively, we might attempt to specify a lazy space

like

(1) List = Atom + List x List

(given an axiomatization for Atom) by devising a list of equations such as those

presented in section 3 and designating the lazy space as the corresponding initial

algebra [ADJ76,77] (or alternatively the corresponding final algebra [Kami80]).
From our previous discussion, it seems reasonable to conjecture that this task

will be deceptively difficult given the variety of lazy spaces available. In fact, it is
impossible. No recursively enumerable set of equations can specify a non-trivial
lazy space as either the initial or final algebra corresponding to the specification.
We will formally prove this fact after we establish a few important properties of

lazy spaces.

Unlike ordinary data domains, lazy spaces have infinite strictly ascending

chains of objects d0 ~ d 1 ~ d 2 ~ ... (where ~ denotes the approximation relation

- 21 -

introduced in Section 3) where each object di is constructed in exactly the same

way as di+l except that di uses J_ to approximate substructures of di+l · In ordi

nary industrious data domains (such as LISP Lists), the undefined object J_ cannot

be embedded inside constructed objects, which precludes the existence of infinite

ascending chains of successively more complete approximations.

This apparently small change in the definition of data constructors (e.g. the
LISP cons operation) profoundly changes the structure of the data domain. Ordi

nary structural induction, for example, no longer holds, because lazy spaces con
tain the limit elements of infinite ascending chains -- which cannot be con
structed from primitive constants (e.g. atoms) in a finite number of steps. For
example, in the space of industrious lists, List(O)' let the operation leafcount be

recursively defined by the equation:

leafcount(x) = if isAtorn(x) then 1 else leafcount(car(x))+leafcount(tl(x)),

where if a then {:1 else y abbreviates cond(a,{:1,y) and the addition operation (+)is
defined on integer atoms in the usual way. Then the following theorem is easily
proved by structural induction on x:

Vx x~ J_ :::> leafcount(x)>O .

On the other hand, as soon as we extend the space List(O) to include limit points,

the principle of structural induction fails. In a List space including the object

BigTree (such as List(l)), the preceding theorem is clearly false.

Since lazy spaces include limit points, they have a much more complex topo
logical structure than their industrious counterparts. An important illustration
of this phenomenon is the following observation. Let Triv denote the trivial sub

space of U consisting of the objects true and J_. Although the industrious space

Trivseqlnd = Triv@ Trivseqlnd

is completely degenerate (it contains no elements other than J_), the correspond
ing lazy space

Trivseq = (Triv x Trivseq)

is isomorphic to Scott's Pw model for the untyped lambda calculus under the
mapping a defined by:

where xi denotes the ith element of x = <x0 ,x1 , ... , xj, ... >.

PCJ is the space consisting of all subsets of the natural numbers under the
approximation ordering defined by the subset relation. If we strengthen the

definition of a space by adding the requirement the every space must contain a

- 22 -

maximum element T and we weaken the definition of subspace as discussed in

Section 2.1, then Pw is a universal space. Hence, Pw contains a subspace D such

that D is isomorphic to the space Pw ~Pw. Moreover, if we augment the space Pw
by a very small set of operations Ope.;• the resulting domain Pc., is universal. Ope.;

consists of the constant O denoting the singleton set {OL the primitive binary

operation Apply: Pw2
4 Pw (defined exactly as in Section 2.3), and the the primi

tive mappings (which are constant operations)

succ: Pw ~ Pw
pred: Pw ~ Pw
cond: Pw ~ (Pw ~ (Pw ~ Pw))
K: Pw ~ (Pw ~ Pw)
S: Pw ~ (Pw ~ (Pw ~ Pw))

defined by

0 = {O}
succ x = {e+ 1 I eEx)
predx = je I e+lEx)
cond x y z = je I eEy A OEx) u je I eEz A 1 Ey}
Kxy=x
S x y z = (x z) (y z) .

Surprisingly, all of these operations are recursively definable in the a domain

containing the lazy subspaces Trivseq and Triv together with the obvious "struc
tural" operations

true, J_: Triv

por, and: Triv2 4 Triv
cons: TrivxTrivseq 4 Trivseq
hd: Trivseq 4 Trivseq
ti: Trivseq 4 Trivseq .

Note that the Cartesian product symbol x immediately above does not conform to

our normal usage of the notation: cons is a binary function -not a unary func
tion on pairs. The recursive definitions of the operations Ope.; in Trivseq (which

are a bit tedious) appear in the Appendix.

Since Pw together with the binary operation Apply: Pw 2
4 Pw and mapping

constants S and K, forms a model for the (untyped) lambda calculus (excluding
77-reduction), the lazy space Trivseq together with the corresponding operations
also constitutes a model for the untyped lambda calculus. Trivseq is a particu
larly attractive model for computer scientists, because it is based on widely
understood concepts from applicative programming. Lazy spaces are the natural

"higher order" generalization of familiar recursive data structures.

- 23 -

We have now developed sufficient machinery to prove the theorem establish

ing the inadequacy of algebraic specification as a formalism for specifying lazy

spaces:

Theorem Neither initial algebra specifications nor final algebra

specifications (consisting of a recursively enumerable set of equations) can

define non-trivial lazy spaces.

Proof We will prove the theorem for the specific lazy space Trivseq, but it is

clear that Trivseq can be implemented within any non-trivial lazy space D using
an abstraction function (homomorphism) mapping D onto Trivseq.

The initial algebra corresponding to a recursively enumerable set of equa

tions A is the set of equivalence classes of variable-free terms under the relation

MustEqual, where MustEqual(a,b) is true iff the sentence a=b is derivable from A

by first order deduction. Hence the equality relation on variable-free terms is

recursively enumerable. Yet the equality relation for a Trivseq is obviously not
recursively enumerable; otherwise, we could recursively enumerate the set of all
pairs of equivalent programs (using the untyped >..-calculus as our programming
language) -- a set which is obviously not recursively enumerable.

Similarly, the final algebra corresponding to a set of equations A (assuming

the final algebra exists) is the set of equivalence classes under the complement of

the relation CannotEqual where CannotEqual(a,b) is true iff the sentence a:;t:b is

derivable from A u ltrue:;t:false} by first order deduction. Note that if A has no
final algebra, then the complement of CannotEqual is not an equivalence rela
tion. For a final algebra, the inequality relation is obviously recursively enumer
able, but again the inequality relation for Trivseq clearly is not. Otherwise, we

could recursively enumerate the set of all pairs of inequivalent programs
(corresponding to unequal partial recursive functions), a set which is obviously

not recursively enumerable.

Q.E.D.

Since lazy spaces are so similar in structure to Pc...,, an obvious approach to

formulating a logic for lazy spaces is to use a higher order logic based on the
lambda calculus (similar to Edinburgh LCF) that conveniently expresses the pro

perties of Pc.v. 4 However, we would prefer not to abandon first-order logic for two
reasons. First, first-order systems (such as first-order Peano arithmetic) based

on structural induction provide a simple, elegant characterization of ordinary

data spaces. The highly successful Boyer-Moore LISP Verifier [Boyer75,79] is
based on such a first-order system. We would like to extend this approach to han
dle lazy lists as well. Second, the completeness theorem for first order logic pro
vides a invaluable tool for analyzing the deductive power of any theory. If a first
order theory is too weak to establish a particular theorem, there must be a non-

4See [Giles78] for an LCF axiomatization of lazy lists.

- 24 -

standard model in which that theorem is false. In higher order logics, on the

other hand, a theory may be too weak to prove an important theorem, yet there

may be no model that refutes it.

6. A First-Order Theory of Lazy Domains

The chief obstacle to extending ordinary first-order structural induction

theories to lazy domains is that conventional structural induction is applicable
only to well-founded sets, yet lazy spaces under the (proper) containment (sub

structure) ordering determined the constructors are not well-founded because a

limit element (e.g. BigTree)a can properly contain itself. Let D = <D,G> be a data
domain with signature G such that:

(i) G contains two constants true and false denoting inconsistent finite ele

ments of D and the standard ternary conditional function cond defined as in
Section 4.

(ii) G contains a finite set of contructor functions C = k 1, ... , cnl that generate

the basis of D. In other words, C satisfies the following properties.

(a) For every basis element bEB, there exists a term pb composed solely

from operations in C such that pb denotes b.

(b) For all cE:C,

V x 1, ... ,x#cE:B c(x1, ... ,x#c)EB.

(c) For all ci,cfC,

V X1, ... ,x#c/Y1, ... ,y#ciE:B [ci(x1, ... ,x#ci) ~ ClY1, .. ·,Y#ci) =:>

ci(x1, ... ,x#ci)=l. v (i=j /I X1~Y1 /I ... /I x#ci~Y#ci)]

(iii) For each constructor cEC, G contains selector functions sj, j= 1, ... ,#c such

that:

and a characteristic function isc:D~Bool such that:

isc(x) = l. if x= l.
true if x ,t:. l. 11 c(s1(x), ... ,s#/x))=x
false otherwise .

The basis B of D forms a well-founded set under the substructure ordering (which
is not an approximation ordering) which 1s the transitive closure of the binary
relation

- 25 -

' If D is industrious, then D = B, and the substructure ordering c on D is the con-

ventional well-founded ordering used in the structural induction scheme for D. It

is a straightforward (but tedious, and error-prone) task to devise a first order

axiomatization (comparable in deductive power to the first order formulation of

Peano's axioms) for an industrious domain D consisting of

(1) implications between equations relating the operations in (e.g., constructors,
selectors, characteristic functions, if-then-else)

(2) inequations asserting that the Boolean truth values true, false, and the
undefined object J_ are all distinct;

(3) axioms describing the substructure ordering c and the approximation order

ing ~ (which are both predicates);

(4) the structural induction scheme

or, equivalently,

Vx [Vx' (x'cx:) rp(x')) :) rp(x)] :) Vz rp(z) .

A detailed account of this process appears in [Cart80].

The corresponding problem for lazy domains D is much more subtle. If we

construct the axiomatization described above for a lazy domain D, then the

specified space contains only the finite objects (basis elements) of the lazy

space. 5 The structural induction scheme (4) has the effect of banning infinite
objects (limit points) from the domain. In fact, if we extend the axiomatized

structure to include the characteristic predicate IsFin for finite objects and aug

ment the axiomatization by a sentence asserting that constructors map finite

objects to finite objects, then we can prove

\Jx IsFin(x)=true

by structural induction.

As a result, recursive definitions over the domain may not have least fixed
points because directed sets do not necessarily have least upper bounds. For
example, if we consider a domain consisting the finite objects in Trivseq, the func

tion definition

f(x) = cons(true,f(x))

is contradictory, because we can prove by structural induction that

\/ x,y x;tccons(y,x)

5Non-standard models may contain "infinite objects", but their behavior does not resemble that

- 26 -

including x = J_!

If we replace induction scheme (4) by an induction axiom scheme restricted

to finite objects:

(4') \/x (IsFin(x) :::> [Vx'[x'cx :::> cp(x')] :::> cp(x)]] :::> (Vz IsFin(z) :::> cp(z)],

then the lazy space is a model for our axiomatization, but so is the subspace con
taining only finite objects. In such a theory, we could not prove any interesting

statements about infinite objects.

6.1. A Satisfactory Axiomatization

The solution to the problem is to augment the axiomatization consisting of

(1), (2), (3), and (4') above by two additional schemes asserting that:

(5) Every definable directed set has a least upper bound.

(6) Every term t(x) over the domain operations G is continuous in the variable x.

They are formalized as follows. Let cp(u) and t(u) be an arbitrary formula and

term respectively in the language of the data domain and and let x,y,z be vari
ables not free in either cp(u) or t(u). Let Didt(u)lcp(uH abbreviate the formula

\/x,y [cp(x)Acp(y) :::> 3z(cp(z) A x~t(z) A y~t(z))]

which asserts that {t(u)lcp(uH is a directed set. Let lub{t(u)lcp(u)Hv) abbreviate

the formula

Yx ([cp(x) :::> t(x)~v] A Vz[Vx cp(x) :::> t(x)~z] :::> t(x)~v)

which asserts that v is the least upper bound of the set {t(u)lcp(uH. 6 Then the two

additional schemes are:

(5) (the existence of least upper bounds)

Didt(u)lcp(uH :::> 3v [lubH(u)lcp(u)Hv)]

(6) (the continuity of functions)

lub{ulcp(uH(v) :::> lubjt(u)lcp(u)Ht(v)).

where t(u) and cp(u) are an arbitrary term and formula containing no free vari
able other than u. Scheme (5) asserts that if the set jt(u)lcp(uH is directed, then
it has a least upper bound. Scheme (6) asserts that if the set lulcp(uH has a least
upper bound v, then the function >..u. t(u) is continuous at v.

Although there are no blatant sources of incompleteness in this axiomatiza-

of lazy data objects.
6 Note that u is not free in either Dirlt(u)lrp(u)l or lublt(u)lrp(u)!(-u).

- 27 -

tion 7 (consisting of (1), (2), (3), (4a), (4b), (5), (6)), it is not obvious that the sys

tem is strong enough to prove all of the important properties of particular lazy

spaces. For this reason, it is interesting to compare the power of our first-order

system with the corresponding theory in LCF, a logic specifically designed to
accommodate "higher order" spaces like Pw. The LCF theory looks similar except:

1. It includes the typed lambda calculus in the term syntax for the logic.

2. The induction axiom scheme is fixed point induction on recursively defined
functions. This scheme has the form

cp(j_) A Vj{cp(.f)=:>cp(T(j))]) =:> cp(Y(>..f T(j)))

where cp(.f) is a formula that admits induction on f Fixed-point induction is
applicable only to admissible formulas, where admissibility is a complex syn
tactic test (described in [Gord77]) that analyzes the types of terms within

the formula.

The closest analog of structural induction in LCF is fixed point induction on a
retraction characterizing the domain of interest. The fixed point induction

scheme has the form:

(7) [VJ cp(.t)=:>cp(T(j))] =:> cp(Y(T)))

where f is a function of type T, T is a functional mapping functions of type T to
functions of type T, cp(j) is an admissible formula containing no free variables

other than f, and Y is the least fixed point operator.

After studying the two systems, we were surprised to discover that our sys

tem subsumes LCF both in expressiveness and deductive power. In fact, we can

systematically translate arbitrary LCF statements into equivalent statements in

our first order system by:

(i) Converting all lambda expressions into equivalent expressions formed using
the standard Sand K combinators.

(ii) Converting all function applications to explicit applications (using the primi

tive operation Apply of corresponding mapping.

If we use the abbreviated notation for terms described in section 2.4, the first
order translation is identical to the original LCF formula.

Under this translation, all of the LCF proof rules and axioms (expressed in

terms of translated formulas) are derivable in our first-order system. In particu

lar, we can derive the LCF fixed paint induction scheme for admissible formulas.
The derivation critically relies on the structural induction scheme for finite
objects (4'), the least upper bound scheme (5), and and the continuity scheme
(6).

7For a non-trivial lazy space (e.g. Trivseq) the axiomatization is obviously not complete by Godel's
first incompleteness theorem.

- 28 -

We call the first order analog of fixed-point induction, lazy induction. If we

use the abbreviated notation described in 2.4, then the lazy induction scheme is
identical in appearance to the fixed point scheme (7). The formal derivation of
lazy induction within our system is a tedious induction on the structure of for

mulas that is beyond the scope of this paper, but the basic idea underlying the

proof is instructive.

The admissibility test in LCF ensures that passing to the limit of a directed
set (of lazy data objects) does not change the meanings of subformulas that

determine the truth of the entire formula. The idea behind the derivation is that
the metamathematical justification for fixpoint induction on a function within a
particular admissible formula can be translated into a proof in our first order
system consisting of two parts. The first part utilizes conventional structural

induction to establish that the formula holds for all finite approximations to the

function. The second part extends the result to the entire function (an infinite

lazy object) by appealing to the definition of admissibility and the fact that all

functions in the domain are continuous.

Although the admissibility test required for lazy induction is awkward, the
rule can be a useful shortcut in certain situations. A particular important exam
ple is lazy induction on the following retraction characterizing the space D:

y (.\ R. ,\ X.

if isc 1 x then c 1 (Rosl,l x) ... (R 0 sl,#ci x)
else if ...
else if iscn(x) then en (R0 sn,l x) ... (R0 sn.#cn x)
else J_)) .

When we apply lazy induction to this retraction, the premises of the rule reduce

to the premises of conventional structural induction for the finite objects of the
space. Similarly, the conclusion of the rule reduces to an assertion that the
hypothesis holds for all objects in D. Hence, if a formula is admissible, conven

tional structural induction establishes the formula holds for all objects in D, not

just finite ones!

6.2. Sample Program Proofs

Consider the recursive definition

append(x,y) = if isAtom x then y
else cons(car(x),append(cdr(x),y))

over the data domain List(t)· The following formula

Vx,y,z append(x,append(y,z)) = append(append(x,y),z).

- 29 -

1s obviously true on the domain of finite objects (including j_). The proof is a

trivial induction on the structure of x. Does the same theorem hold for all lazy

lists? The answer must be yes, because the formula stating the theorem is
admissible! Lazy induction enables us to prove theorems about lazy spaces using
conventional structural induction.

On the other hand, lazy induction is not sound if the induction formula is not
admissible. For instance, consider the formula

(8) V xE:List (l_~zap(x))

where the function zap and the relation ~ are defined by

zap(x) = if isAtom(x) then l_

else cons(car(x),zap(cdr(x)))

x~y ~ (x=y) v (xcy)

By induction on x, we can trivially "prove" the formula (8), yet it is clearly false

for lazy lists since

zap(BigTree) = BigTree

where BigTree is defined as in Section 4. In this case, lazy induction fails because
the formula (8) is not admissible.

7. Conclusions and Future Resear.ch

Although implementation-oriented definitions of lazy evaluation provide

some insight into the behavior of particular computations, they are inadequate

as the basis of a logical theory of lazy spaces. They also blur subtle but impor

tant semantic distinctions between different forms of lazy evaluation. Our
abstract characterization in terms of domain constructors provides a much
clearer picture of the mathematical properties of lazy spaces and directly
corresponds to a natural formal system for reasoning about them.

Since lazy spaces have essentially the same complex structure as Scott's Pc.;
model of the untyped lambda calculus, they cannot be specified by restrictive

specification methods such as algebraic specification. One approach is to

axiomatize lazy spaces within a least fixed point logic such as LCF. In this paper

we have presented a first-order theory of lazy spaces that we prefer to higher
order formalizations because it relies on conventional structural induction
rather than fixed point induction as the fundamental axiom scheme. In our sys

tem, the admissibility test for fixed point induction is simply a sufficient set of
conditions for its derivation. Moreover, our system extends conventional struc
tural induction (as implemented in the Boyer-Moore LISP Verifier [Boyer75, 79]) to
the context of lazy data domains, providing programmer with a simple intuitive

- 30 -

framework for reasoning about functions that manipulate lazy data objects.

Since computable functions have a natural extensional representation8 as
lazily evaluated graphs (mappings), our first-order formalization of lazy spaces

accommodates function spaces as well. However, we must overcome one major

obstacle to make our treatment of functions intuitively accessible to program

mers: our reliance on combinators rather than lambda expressions to denote
computable mappings. In response to this issue, we are currently developing a

collection of combinators that closely correspond to conventional lambda nota
tion.

8. References

[ADJ76]
Goguen, J., J. Thatcher and E. Wagner. An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types. IBM

Research Report RC-6478, Yorktown Heights, 1976.

[ADJ77]

Goguen, J., J. Thatcher, E. Wagner and J. Wright. Initial Algebra Semantics and

Continuous Algebras. JACM 24(1977), pp. 68-95.

[Back78]

Backus, J. Can Programming be Liberated from the vonNeumann Style? A Func

tional Style and its Algebra of Programs. CACM 21(1978), pp. 613-641.

[Barendregt77]

Barendregt, H. The Type Free Lambda Calculus. Handbook of Mathematical

Logic, J. Barwise, ed., North-Holland, Amsterdam, pp. 1091-1132.

[Boye75]

Boyer, R.S., and Moore, J S.; "Proving Theorems About LISP Functions," JACM

22(1975), pp. 129-144.

[Boye79]
Boyer, R.S., and Moore, JS. A Computational Logic, Academic Press, New York,
1979.

[Cart76]
Cartwright, R. User-Defined Data Types as an Aid to Verifying LISP Programs.
Automata, Languages and Programming. Edinburgh Press, 1976.

[Cart80]

Cartwright, R. A Constructive Alternative to Axiomatic Data Type Definitions.
Proceedings 1980 LISP Conference, Stanford, 1980.

8There are still multiple "partial" mappings corresponding to the same function, but the only
difference between an arbitrary mapping and the canonical one for the equivalence class is that the
canonical one contains every possible piece of redundant information.

- 31 -

[En derton 72]

Enderton, H.B. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[Friedman and Wise76]
Friedman, D. and D. Wise. CONS Should Not Evaluate Its Arguments. Automata,
Languages and Programming, Edinburgh University Press, 1976, pp.257-284.

[Gile78]

Giles. An LCF Axiomatization of Lazy Lists. CSR-31-78, Computer Science Depart
ment, Edinburgh University.

[Gord77]
Gordon, M., R. Milner and C. Wadsworth. Edinburgh LCF. CSR-11-77. Computer
Science Department, Edinburgh University.

[Gutt78]
Guttag, J. and J. Horning. The Algebraic Specification of Abstract Data Types.
Acta Informatica 10(1978), pp. 27-52.

[Hend80]
Henderson, P. Functional Programming: Application and Implementation.
Prentice-Hall, London, 1980.

[Hend76]
Henderson, P and J. Morris, Jr. A Lazy Evaluator. Record Third Symposium on
Principles of Programming Languages (1976), pp. 95-103.

[Kami80]

Kamin, S. Final Data Type Specifications: A New Data Type Specification Method.

Record Seventh Symposium on Principles of Programming Languages (1980),

pp. 131-138.

[Scot76]
Scott, D. Data Types as Lattices. SIAM J. Computing 5(1976), pp. 522-587.

[Scot81]
Scott, D. Lectures on a Mathematical Theory of Computation. Technical Mono

graph PRG-19, Oxford University Computing Laboratory, Oxford.

[Scot83]
Scott, D. Domains for Denotational Semantics. Technical Report, Computer Sci
ence Department, Carnegie-Mellon University, 1983.

[Stoy77]
Stoy, J. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1977.

- 32 -

9. Appendix: Mapping Pc., Onto the Lazy Space Trivseq

Each data object X in the lazy space Trivseq is an infinite sequence x 0 , x 1,

xi, ... in which each element xi is either true or J_. In effect, a member of Trivseq

is a potentially infinite enumeration of natural numbers (the indices of the con
vergent elements). Consequently, the abstraction function a: Trivseq-+ Pw defined

by

establishes a natural isomorphism between the two spaces.

This appendix contains a recursive program defining the operations OPw' over

Trivseq corresponding to the basic operations OPw of Pw. The style of this pro

gram is rather unusual because all computations over Trivseq are infinite
enumerations where the computations that determine which elements appear in
the enumeration are dovetailed (performed in parallel)-an unfamiliar
phenomenon in conventional applicative languages such as Pure LISP.

For the sake of clarity, each individual recursive function definition in the
program obeys the following syntactic conventions.

1. Each definition has the form

f(x) = informal-definition = formal-definition

where an informal-definition is a mathematical description of the value of
the function and formal-definition is the actual body of the function
definition. If the formal-definition is transparent, then the informal
definition may be omitted.

2. The names of Trivseq operations (functions that return values of type

Trivseq) are capitalized; the names of Triv operations (functions tha_t return

values of type Triv) are not. Triv operations are used as subfunctions within

the definitions of the functions in Opw'.

2. Variables ranging over Trivseq that are intended to denote arbitrary sets in

Pc., are capitalized. Variables ranging over Trivseq that are intended to
denote individual natural numbers (singleton sets) are not. No variables
range over Triv.

3. In every unary function application, the parentheses enclosing the argument

are omitted. Note that this is not the same abbreviation we employed in con
nection with mappings. In this program, every application within an expres

sion is explicitly written down; consequently, a chain of unary applications f
g h x associates to the right [f(g(h(x)))], rather than the left [(((f g) h) x)].

4. In the informal definitions (comments), the following special notation

appears.

- 33 -

(a) The symbol t:i denotes the finite set in Pc., corresponding to the binary

coded integer i, i.e.

b I bit j in the binary representation of i is 1~

where bits are numbered from right to left starting with 0.

(b) The function symbol p denotes the inverse of the function ex, i.e. psis the
infinite sequence denoting the set of natural numbers s.

(c) The bracketed pair <i,j> abbreviates the arithmetic expression
[(i+j)*(i+j+l)]/2 + i. The binary function Ai,j. <i,j> is a commonly used
bijective pairing function.

9.1. Auxiliary Operations

There following collection of auxiliary operations O Aux are used in the

definition of the primitive operations OPw of Pc.,.

def X = 3i E cxX = hd x por def Tl X

Plus(l,J) = { i+j I i Eal" j E cxJ ~ =
Cons(hd land hd J,

Cons([hd Tl land hd J] por [hd land hd Tl J], Plus(Tl I, Tl J)))

Times(I,J) = j i*j I i E cxl "1· E cxJ ~ =
Cons([def I and hd J por [hd I and def J], Plus(Tl I, Times(I, Tl J)))

Pair(I,J) = l <i,j> I 3i E cx(I) "3j E cx(J) ~ =
Plus(Hal ve Times(Pl us(I ,J) ,Plus(Pl us(I,J), Succ O))), I)

Fst X = l i I 3j <i,j> E cxX ~ = Fst1 (O,X)

Fst1(k,X) = l i-k I 3j <i,j> E cxX ~ = Cons(anySnd(k,O,X),Fst1(Succ k,X))

anySnd(i,k,X) = 3 j~k [<i,j> E cxX] = Overlap(Pair(i,k),X) por anySnd(i,Succ k,X)

Snd X = l j I 3i [<i.j> E cxX] ~ = Snd1 (O,X)

Snd1 (k,X) = { j-k I 3i [<i,j> E cxX] ~ = Cons(anyFst(0,k,X),Snd1 (Succ k,X))

anyFst(k,j,X) = 3 i~k [<i,j> E cxX] =
Overlap(Pair(k,j),X) por anyFst(Succ k,j,X)

Overlap(I,J) = 3i i E [al" i E cxJ] =
hd l and hd J por Overlap(Tl l,Tl J)

Top = li} = Cons(true,Top)

odd X = 3i [2*i+ 1 E cxX] = hd Tl x por odd Tl Tl X

- 34 -

Halve X = ! i I 2*i E aX} v ! j I 2*j+ laX} = Cons(hd X por hd Tl X, Halve Tl Tl X)

approx(i,X) = ..:i <:;; aX =
hd i por [([odd i and hd X] por odd Tl i) and approx(Halve i,Tl X)]

9.2. Primitive Operations of Pc.,

Recursive definitions for all the operations in OPw· = { 0, Succ, Pred, Cond, K,

S, Apply } in terms of the auxiliary operations O Aux appear below.

0 = {O} = Cons(true,j_)

Succ = GraphSnee 0

GraphSnee k = j <i,j>-k I <i,j>;?;k A j E [a Snee p ..:J } =
Cons(approx(Snd k,Suee Fst k), GraphSnee Snee k)

Snee l = { i+l Ii Eal} = Cons(j_,l)

Pred = GraphPred 0

GraphPred k = { <i,j>-k I <i,j>;?;k A j E [a Pred p ..:i] } =
Cons(approx(Snd k,Pred Fst k), GraphPred Snee k)

Pred l = ! i I i + 1 E al } = Tl l

Cond = GraphCond 0

GraphCond k = { <i,j>-k I <i,j>;?;k A j E [a Cond1 p ..:i] l =
Cons(approx(Snd k, Cond1 Fst k), GraphCond Snee k)

Cond1 X = GraphCond1 (X,O)

GraphCond1(X,k) = j <i,j>-k I <i,j>;?;k A j Ea CondiX,p ..:i)} =
Cons(approx(Snd k, Con~(X,Fst k)), GraphCond1 (X,Suee k))

Con¾(X,Y) = AZ. Cond(X,Y,Z) = GraphCond2 (X.Y,O)

GraphCond (X,Y,k) = { <i,j>-k I <i,j>;?;k A j Ea Cond(X,Y,p ..:.) l =
Cons{ approx(Snd k,Cond(X,Y,Fst k)), GraphCond2 (X,Y,

1
Suee k))

Cond(I,Y,Z) = { i E aY IO Eal l v {j E aY I 3 w w+ 1 Eal } =
Cons([hd l and hd Y] por [def Tl l and hd Z], Cond(l, Tl Y, Tl Z))

K X = j <i,j> I j E aX } = Pair(Top,Filter X)

Filter l = { i I ..:i <:;; a.I } = Filter 1 (I,O)

Filteri(I.k) = { i-k I i;?:k A ..:i <;;; aX} = Cons(approx(k,I),Filterl(I,Suee k))

S = GraphS(O)

GraphS k = ! <i,j>-k I <i,j>;?;k A j E [a S 1 p ..:J } =

- 35 -

Cons(approx(Snd k, S1 Fst k), Graphs Succ k)

sl X = A Y. Sz(X,Y) = GraphS1 (X,O)

GraphS1(X,k) = { <i,j>-k I <i,j>~k "j E: ex Sl(X,p t) ~ =
Cons(approx(Snd k,S2(X,Fst k)), GraphS1 (X,Succ k))

S2(X,Y) = AZ. S3(X,Y,Z) = GraphSz{X,Y,O)

GraphS2(X,Y,k) = { <i,j>-k I <i.j>~k" j E: ex S3(X,Y,p t) ~ =
Cons(approx(Snd k,S3(X,Y,Fst k)), GraphSz{X,Y,Succ k))

SiX,Y,Z) = Apply(Apply(X,Z),Apply(Y,Z))

Apply(F,X) = { j I 3i <i,j>EF" t\<;;;X ~ = Snd Apply 1 (O,F,X)

Apply 1 (F,X,k) = { p-k I p~k " pE:F " EFst P<;;;X ~ =
Cons(test(k,X,F), Apply 1 (F,X,Succ k))

test(p,X,F) = pEF " EFst P<;;;X = Overlap(p,F) and approx(Fst p,X)

- 36 -

