
163

The semi-automatic parallelisation of

scientific application codes using a computer

aided parallelisation toolkit

C.S. Ierotheoua, S.P. Johnsona, P.F. Leggetta,

M. Crossa, E.W. Evansa, H. Jinb, M. Frumkinb

and J. Yanb

aParallel Processing Research Group, University of

Greenwich, London SE10 9LS, UK

E-mail: {c.ierotheou, s.johnson, p.leggett, m.cross,

e.w.evans}@gre.ac.uk
bNAS Systems Division, NASA Ames Research Center,

Moffett Field, CA, USA

E-mail: {hjin, frumkin}@nas.nasa.gov, jyan@arc.

nasa.gov

The shared-memory programming model can be an effective

way to achieve parallelism on shared memory parallel com-

puters. Historically however, the lack of a programming stan-

dard using directives and the limited scalability have affected

its take-up. Recent advances in hardware and software tech-

nologies have resulted in improvements to both the perfor-

mance of parallel programs with compiler directives and the

issue of portability with the introduction of OpenMP. In this

study, the Computer Aided Parallelisation Toolkit has been

extended to automatically generate OpenMP-based parallel

programs with nominal user assistance. We categorize the

different loop types and show how efficient directives can be

placed using the toolkit’s in-depth interprocedural analysis.

Examples are taken from the NAS parallel benchmarks and a

number of real-world application codes. This demonstrates

the great potential of using the toolkit to quickly parallelise

serial programs as well as the good performance achievable

on up to 300 processors for hybrid message passing-directive

parallelisations.

Keywords: Parallel programming, shared memory, OpenMP,

distributed memory, message passing, CAPTools, semi-

automatic parallelisation tools

1. Introduction

The porting of applications to high performance par-
allel computers still remains a very expensive effort.

The shared memory and distributed memory program-

ming paradigms are two of the most popular models

used to transform existing serial application codes to a

parallel form. For a distributed memory parallelisation

it is necessary to consider the whole program when us-

ing a Single Program Multiple Data (SPMD) paradigm.

The whole parallelisation process can be very time con-

suming and error-prone. For example, data placement

is an essential consideration to efficiently use the avail-

able distributed memory, while the placement of ex-

plicit communication calls requires a great deal of ex-

pertise. The parallelisation on a shared memory sys-

tem is only relatively easier. The data placement may

appear to be less crucial than for a distributed mem-

ory parallelisation, but the parallelisation process is

still error-prone, time-consuming and still requires a

detailed level of expertise.

Despite the costly effort involved, the message

passing-based parallelisation process for distributed

memory architectures has tended to be favoured. This

is largely due to the higher degree of scalability (of-

ten a characteristic of the architecture) and portability

(provided by standardising the message passing library

used e.g. MPI [6]). However, the porting of real ap-

plication codes from machines that use a single serial

processor to one with multiple processors is far from a

trivial process irrespective of the paradigm or architec-

ture being used. The relentless user desire for higher

performance and scalability together with the contin-

uing evolution of parallel architectures has made the

parallelisation and subsequent maintenance of a code a

major programming effort [7,10].

The re-emergence of the shared memory parallel

machines typified by the cache-coherent Non-Uniform

Memory Access (cc-NUMA) architecture of the SGI

Origin 2000 [20] has done much to promote the use of

shared memory directives to describe parallelism in an

application. In contrast to using message passing, the

use of directives is relatively simple. For an SPMD par-

Scientific Programming 9 (2001) 163–173

ISSN 1058-9244 / $8.00  2001, IOS Press. All rights reserved



164 C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes

allelisation using message passing, consideration must

be given to data placement (as the memory is physically

distributed), masking of statements to ensure parallel

execution and the introduction of communication calls

to ensure comparable execution to the original serial

code [12]. For a parallelisation based on loop distribu-

tion and using directives, consideration is only given to

the loops and the visibility of variables. Another bene-

fit to using directives is that they can easily be ignored

since they are treated as comments if the compiler di-

rective flag is not used. Therefore, the use of directives

is generally less intrusive with fewer code modifica-

tions than that needed for a message passing-based par-

allelisation. Programming with directives is also rel-

atively simple compared to writing message passing-

based codes although it does not necessarily provide a

performance benefit. In the worst case, the code will

execute to give erroneous results if directives are incor-

rectly used and this can be time consuming and tedious

to debug, for example the errors may be symptomatic

of run-time race conditions.

Ideally, one would like to be able to automatically

insert directives (or message passing calls) into the

original serial code with very little effort. In reality,

this is not the case and the performance achievable for

real-world industrial application codes using an auto-

matic approach is largely dependent on the quality of

the dependence analysis. Many assumptions may be

required during the analysis due to the lack of knowl-

edge (often available only from the user) and this can

significantly affect the quality of the generated code

and hence the performance. Despite this limitation,

many parallelising compilers have been developed over

the years. Some of the more notable research and

commercially available compilers have included Su-

perb [22], Paraphrase [16], Polaris [3], Suif [21] and

KAI’s toolkit [15].

The focus of this paper is to look at the semi-

automatic parallelisation of codes using an industry

standard defining shared memory directives (OpenMP)

as a means to describe the parallelism present in real-

world scientific application codes.

2. OpenMP – An industry standard defining

shared memory directives

The introduction of the shared memory directive

standard, OpenMP [19], addresses the issue of porta-

bility across a range of platforms. The main aim

of OpenMP is to achieve portability without signifi-

cantly sacrificing the performance of the parallel exe-

cution. OpenMP includes a set of compiler directives

and callable run-time library routines to support shared

memory parallelism for the C, C++ and Fortran pro-

gramming languages. To some extent, OpenMP will

allow the programmer to incrementally develop a par-

allel implementation and this makes it more attractive

as it is easier to program.

OpenMP follows the fork-and-join execution model

so that each time a parallel region is defined the process

is used. A brief description of the fork-and-join pro-

cess is included here for completeness. At the start of

the process a single “master” thread exists. The mas-

ter thread executes sequentially until the first parallel

construct (calledOMP PARALLEL) is encountered. At

this point the master thread creates a number of threads

to assist the master thread in concurrently executing the

statements in the parallel region. If a parallel loop is

encountered (defined by OMP DO) then the iterations

of the loop are distributed amongst all the threads. An

implied synchronisation is performed at the end of the

loop unless a NOWAIT directive option is specified.

The SHARED and PRIVATE clauses at the start of the

parallel or work-sharing constructs define if the data is

visible globally or locally to a single thread. Reduction

operations such as summations are handled in parallel

by using the REDUCTION clause. At the end of the

parallel region all the threads in the team synchronise

and only the master threads continues with the program

execution.

Optimisation of the directives and their placement is

essential to generate parallel code that will execute effi-

ciently. There is an overhead associated with every use

of OMP PARALLEL so reducing the number of paral-

lel regions (by fusing them together whenever legally

possible) is a desirable optimisation. It is also the expe-

rience of the authors that the use of the NOWAIT clause

(whenever this is legal) can significantly improve the

parallel performance.

3. Semi-automatic parallelisation tools

The main goal for developing tools that can assist

in the parallelisation of serial application codes is to

allow as much of the tedious, manual and sometimes

error-prone work to be performed by the tools and in

a small fraction of the time that would otherwise be

needed for a totally manual parallelisation. With this in

mind, the Computer Aided Parallelisation Toolkit has

been developed over a number of years to enable the



C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes 165

generation of generic, portable, parallel source code

from the original serial code [4,5,7]. The toolkit gen-

erates SPMD based parallel code for distributed mem-

ory systems or loop distributed directive-based parallel

code for shared memory systems.

For distributed memory systems, the toolkit has been

used to successfully parallelise a number of applica-

tion codes [7,13] based on the solution of a system of

partial differential equations over a defined geometry

using a mesh. The mesh over which these equations

are solved is used as the basis for the partitioning of the

data on to the distributed memory. The solution can

be computed for a single block structured, unstructured

or multi-zone structured meshes. The quality of the

parallel source code generated benefits from many of

the features provided by the toolkit. For example, the

dependence analysis is fully interprocedural and value-

based (i.e. detects the flow of data rather than just the

memory location accesses) [11] and allows the user

to assist with essential knowledge about program vari-

ables [18]. The placement and generation of communi-

cation calls also makes extensive use of the interproce-

dural capability of the toolkit as well as the merging of

similar communications [12]. Finally, the generation

of readable parallel source code that can be maintained

was seen as a major benefit. The use of the toolkit to

generate parallel code for distributed memory systems

will not be described in detail here since it has been

documented elsewhere [4,8,11,12,18].

The toolkit can also be used to generate parallel code

with OpenMP directives from the original serial code.

This approach also makes use of the very accurate in-

terprocedural analysis and also benefits from a direc-

tive browser to allow the user to interrogate and refine

the directives automatically placed within the code.

4. Automatic generation and placement of

OpenMP directives in the serial code

The process the toolkit uses to automatically exploit

loop level parallelism can be defined by three distinct

stages (see [9] for more details of these stages and their

implementation):

i. Identification of parallel regions and parallel

loops – this includes a comprehensive break-

down of the different loop types (these are de-

scribed in more detail below). Due to the cur-

rent lack of support for nested parallel regions in

OpenMP compilers, only the outermost parallel

loops are considered for exploitation so long as

they provide sufficient granularity. Since the de-

pendence analysis is interprocedural, the paral-

lel regions can be defined as high up in the call

tree as possible, in doing so, providing a more

efficient placement of the directives.

ii. Optimisation of parallel regions and parallel

loops – the fork-and-join overhead (associated

with starting a parallel region) and the cost of

synchronising is greatly lowered by reducing the

number of parallel regions required. This is

achieved by merging together parallel regions

where there is no violation of data usage. In ad-

dition, the synchronisation between successive

parallel loops is possible if it can be proved that

the loops can correctly execute asynchronously

(using the NOWAIT clause).

iii. Code transformation and insertion of OpenMP

directives – this includes the analysis for possi-

ble THREADPRIVATE common blocks due to

the usage of the common block variables. There

is also special treatment for private variables in

non-threadprivate common blocks. If there is a

usage conflict then a routine is copied and the

common block variable is added to the argu-

ment list of the copied routine. Finally, the call

graph is traversed to place OpenMP directives

within the code, this includes the identification

of SHARED, PRIVATE and THREADPRIVATE

variable types.

5. An interactive browser to provide detailed

information on loops

Although the dependence analysis carried out is very

detailed, it can often contain dependencies that had to

be assumed to exist. In these cases, assistance from the

user can improve the quality of the generated OpenMP

code. This is done by classifying the different types

of loops that generally exist in application codes and

using a browser (Fig. 1) to inspect and interrogate all

the loops in turn. For example, the user can enforce

the classification of a selected loop by re-defining the

loop type. The user can also define the granularity

threshold for a loop so that any loop below this level is

not considered for distribution. In our study we have

identified the following different types of loops:

i. Totally serial loops – These loops contain a loop-

carried true data dependence that causes the se-



166 C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes

Fig. 1. Browsers used to inspect all loop types in the application code and detailed information about the selected loop.

rialisation of the loop i.e. data assigned in an

iteration of the loop is used in a later iteration.

(Other possible reasons for a loop to be defined

as serial include the presence of I/O or loop ex-

iting statements within the loop body). The di-

rective browser shows a list of the variables and

a textual explanation of why the loop is serial.

However, the data dependence may have been

assumed to exist and the user may be able to sup-

plement the dependence analyser with additional

information to prove that the data dependence

does not exist. Alternatively, the user may wish

to enforce the removal of a serialising data de-

pendence using the dependence browser (Fig. 2)

In addition, this loop type does not contain any

nested parallel loops and is also not contained

within a parallel loop.

ii. Covered serial loops – These are also serial loops

containing a loop-carried true data dependence,

so they can be treated in a similar way to totally

serial loops. However, this type of serial loop is

either nested within a parallel loop or contains

parallel loops within it. In the latter case, if

the serial loop can be made parallel (see totally

serial loops) then the parallelism can be defined

at a higher level and may therefore enhance the

performance of the execution.

iii. Falsely serial loops – These loops are not serial

due to a loop-carried true dependence. Instead,

they will need to execute in serial due to the

existence of pseudo dependencies that represent

memory re-use, this needs to be considered when

working within a global memory address space.

The directive and dependence browsers can be

used together with any additional information

the user may wish to offer to re-examine if the

variable(s) concerned can be privatised. In the

process, dependencies into or out of the loop are



C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes 167

Fig. 2. Dependence browser displaying the code and the equivalent dependence graph.

examined to test if the variable could be made

PRIVATE, or to re-examine if the loop-carried

pseudo dependencies are needed, in an attempt

to allow the loop to execute in parallel.

iv. Reduction loops – The analysis is used to deter-

mine if the loop body computations represent a

global reduction operation such as a MAX or sum-

mation. These loops provide a partial update of

the results by each thread followed by a global

update to give the final reduction value.

v. Pipeline loops – This is a special class of se-

rial loops with loop-carried true dependencies.

Directive-based software pipelines can be used

to good effect in parallel. Figure 3 shows an

example where OpenMP function calls are used

to define the pipeline start-up before the J-loop

and the pipeline shutdown after the loop. The

example is taken from a version of the NAS par-

allel LU benchmark. This is a similar strategy

to that adopted for a software pipeline used in a

distributed memory parallelisation with message

passing. Figure 3 shows a software pipeline im-

plementation that might be generated by CAP-

Tools. The code generated by the toolkit will
execute calls that use a high-level message pass-
ing library called the Computer Aided Paralleli-
sation Library (CAPLib) [17]. CAPLib is a thin
layer that covers a choice of message passing
libraries such as PVM, MPI, Cray Shmem etc.

vi. Chosen parallel loops – These are the parallel
loops at which the OMP DO directive is defined.
These loops may contain serial or parallel loops
within their nesting and are not generally sur-
rounded by other parallel loops.

vii. Not chosen parallel loops – Also parallel loops,
but these have not been selected for applica-
tion to the OMP DO directive. This is be-
cause these loops are surrounded by other par-
allel loops at a higher nesting level. In gen-
eral, the OpenMP compiler suppliers do not cur-
rently support nested parallelism, therefore, even
though parallelism exists at these lower levels, it
is not currently exploited.

The accurate dependence analysis allows the algo-
rithm to automatically generate efficient OpenMP code
in many cases. In the experience of the authors, this



168 C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes

(a) Using OpenMP function calls to implement a software pipeline for routine BLTS
      lloop = jend-jst

      if (lloop .gt. mthnum) lloop = mthnum

      iam = omp_get_thread_num()

      if (iam .gt. 0 .and. iam .le. lloop) then

        neigh = iam - 1

        do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

        end do

        isync(neigh) = 0

!$OMP FLUSH(isync)

      endif

!$OMP DO SCHEDULE(STATIC)

        do j=jst,jend,1

          do i=ist,iend,1

c---------------------------------------------------------------------

c

c forward elimination and back substitution for diag. block inversion

c---------------------------------------------------------------------

          enddo

        enddo

!$OMP END DO nowait

      if (iam .lt. lloop) then

        do while (isync(iam) .eq. 1)

!$OMP FLUSH(isync)

        end do

        isync(iam) = 1

!$OMP FLUSH(isync)

      endif

(b) Using CAPLib message passing routine calls to implement a software pipeline

for routine BLTS
      CALL CAP_RECEIVE(v(1,2,LOW-1,k),nx0*5-10,3,CAP_LEFT)

        do j=MAX(jst,jst+LOW-2),MIN(jend,jst+HIGH-2),1

          do i=ist,iend,1

c---------------------------------------------------------------------

c

c forward elimination and back substitution for diag. block inversion

c---------------------------------------------------------------------

          enddo

        enddo

      CALL CAP_SEND(v(1,2,HIGH,k),nx0*5-10,3,CAP_RIGHT)

Fig. 3. Implementation of a software pipeline using (a) OpenMP (b) message passing.

typically leaves a small proportion of cases that require
user interaction. For example, the use of workspace
arrays is very common in application codes, but the
value-based nature of the dependence analysis will of-
ten prove that no data is passed between iterations of a
loop. The memory re-use (pseudo) dependencies must
however be set. This correctly does not classify such
loops as serial, however, the legal privatisation of these
arrays to allow parallel execution requires that no data
is passed into or out of these arrays from, or to outside
the loop. The value-based analysis again greatly aids
in proving that no such dependencies into or out of the
loop exist.

6. Test cases

6.1. Parallelisation of the NAS Parallel Benchmark

codes

The NAS Parallel Benchmarks were designed to
compare the performance of parallel computers and

have been widely used in this capacity. The details

of the benchmarks and their message passing imple-

mentations can be found in [1,2], respectively. The

dependence analysis was supplemented with very sim-

ple user information for some of the benchmark codes.

More details on the parallelisation of these bench-

marks using the toolkit can be found in [9] so only

a brief report will be made here. Figure 4 shows

the performance achieved for six of the NAS paral-

lel benchmark codes on an SGI Origin 2000 (R10000

CPU running @195 MHz) for the class A size of

problems. The comparisons show the performance

for the hand tuned message passing (MPI-hand) and

OpenMP (OMP-hand); the Computer Aided Paralleli-

sation Toolkit using OpenMP (CAPO); and the SGI

Power Fortran Analyser (SGI-PFA). The parallel code

generated using the toolkit is not tuned for the Origin

2000 architecture, so that for example, there are no

explicit ‘optimisations’ for cache usage/re-usage. A

summary of the findings indicate that:



C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes 169

5

102

2

3

5

103

2

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
s
)

BT SP LU

2
3

5

10

2
3

5

102

2
3

1 2 3 4 5 10 20 30

FT

1 2 3 4 5 10 20 30

Number of Processors

MG

1 2 3 4 5 10 20 30

CG

  MPI-hand
  OMP-hand
  CAPO
  SGI-PFA

Class A, Origin2000

Fig. 4. Various parallelisations of the NAS Parallel benchmark codes.

– It was possible to generate parallel code using the

toolkit in a few minutes while the manually tuned

parallelisations were created over a period of a few

weeks.

– Code generated using the toolkit was within 5%-

10% of hand tuned parallel performance.

– Code generated by the SGI-PFA is not as efficient

as that provided by the toolkit.

6.2. Parallelisation of FDL3DI code (Air Force

Research Laboratory)

The FDL3DI code was developed by M. Visbal at

the Air Force Research Labs to study aeroelastic ef-

fects. The code solves the Navier-Stokes equations

using a one-dimensional structural solver component.

The parallelisation of this 10,000 line source code took

approximately two hours (including user assistance)

for the message passing-based parallelisation using a

2-dimensional decomposition and half an hour for the

OpenMP-based parallelisation. The results shown in

Figs 5 and 6 are for a regular 100×100×100 node test

case and indicate that very respectable performances

were achieved with both message passing and direc-

tive based approaches. It is also important to recognise

that the results are for the parallel code versions gen-

erated by the toolkit and that no manual optimisation

has been performed. Table 1 shows a summary of the

key communication requirements while Table 2 shows
a summary of the key directives generated.

6.3. Parallelisation of the R-Jet code (Ohio

Aerospace Institute)

The R-Jet code was developed by M. White and is
a hybrid, high-order compact finite difference spectral
method. It is used to simulate vortex dynamics and
breakdown in turbulent jets. Although the code is ex-
plicit in time, the compact finite difference scheme re-
quires the inversion of tri-diagonal matrix systems.

As part of the identification for directive placement,
the algorithm automatically applied routine duplication
to routines where it was necessary to be able to fully ex-
ploit the parallelism present. The code fragment shown
in Fig. 7 shows a part of routine rhs with the two calls
to r2r and a part of the routine r2r. The J loop in
routine rhs and the K loop in r2r are both identified
as being parallel and can therefore benefit from be-
ing encapsulated by the OMP DO directive construct.
However, nested parallel regions are not currently fully
supported by the vendors so one solution to exploiting
the parallelism at both levels for different instances is
shown in Fig. 7. The complete list of routines dupli-
cated can be seen in the call graph for the R-Jet code
(Fig. 8).

Table 3 contains a summary of the statistics for
the OpenMP directives automatically generated by the



170 C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes

* results shown for a small problem size           + PC-based cluster using MYRINET

0

5

10

15

20

25

S
p

e
e

d
 U

p

2 4 8 16 32
Processors

Linux cluster +

SGI O2K (SGI)

IBM SP (ANL)

CRAY T3 *

Fig. 5. Performance of the message passing-based parallel FDL3DI code that was generated using the Computer Aided Parallelisation Toolkit.

0

50

100

150

200

250

300

T
im

e
 (

s
e
c
s
)

1 2 4 8 16 32
Processors

Fig. 6. Performance on an SGI Origin 2000 of the OpenMP di-

rective-based parallel FDL3DI code that was generated using the

Computer Aided Parallelisation Toolkit.

Table 1

Summary of communication types generated for the FDL3DI code as

part of the message passing-based parallelisation using the Computer

Aided parallelisation toolkit

Communication type Total

Exchange: 194

Send/Reveive: 72

Broadcast: 22

Reduction: 20

Pipeline: 24

toolkit. Figure 9 illustrates the execution performance

of the automatically generated OpenMP directive-

based parallel code for a 500 × 500 node test case. It
demonstrates that a performance improvement of up to

32 processors of an SGI Origin 2000 was possible even
for such a small test case.

6.4. Parallelisation of the INS3D code (NASA Ames)

There is a trend towards hybrid hardware systems

that comprise clusters of nodes connected to each other

Table 2

Summary of directive types generated for the FDL3DI code as part

of the OpenMP directive-based parallelisation using the Computer
Aided parallelisation toolkit

Directive type Total

Parallel Regions: 46

PARALLEL + DO Regions: 43

Parallel DO Loops: 194

Atomic/Critical Sections: 1

Regions with Firstprivate: 3

Regions with Lastprivate: 1

through a communication interconnect. Within each

node there is a number of processors and a common

shared memory. One obvious scenario could be to ex-

ploit parallelism within a cluster using OpenMP direc-

tives while using message passing to communicate data

between clusters. This multi-level exploitation of par-

allelism may have the potential to enable a more effec-

tive and scalable use of larger numbers of processors to

solve a common problem. The Computer Aided Paral-

lelisation Toolkit developed thus far has all the individ-

ual components to potentially exploit the hybrid sys-

tems. The strategy for combining these two approaches

seems a natural extension. Indeed, a prototype has al-

ready been designed and implemented. However, care

is needed to identify the applications where such a hy-

brid model can be used to good effect instead of using

either pure message passing or pure OpenMP direc-

tives.

The parallelisation of the INS3D code using a mixed

model of message passing and shared memory direc-

tives is shown as an example where such a model can

be used effectively. A detailed account of this paralleli-

sation was carried out by C. Kiris et al. [14] but only a

summary is included here. The INS3D code solves the



C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes 171

 Original serial code Automatically generated parallel OpenMP code

subroutine rhs subroutine rhs

. . . . . .

call r2r(1)       call r2r(1)

do j=2,jmax !$OMP PARALLEL DO DEFAULT(SHARED),PRIVATE(j)

  call r2r(j)       do j=2,jmax

enddo         call cap_r2r(j)

 enddo

!$OMP END PARALLEL

subroutine r2r(j)  subroutine r2r(j)

do k=1,kmax !$OMP PARALLEL DO DEFAULT(SHARED),PRIVATE(k)

   ... do k=1,kmax

enddo       ...

enddo

!$OMP END PARALLEL

            subroutine cap_r2r(j)

do k=1,kmax

   ...

enddo

Fig. 7. Automatic routine duplication to exploit parallelism at a number of levels.

Fig. 8. Call graph for the R-Jet code. Duplicated routines are shown highlighted.

3D, incompressible Navier-Stokes equations and uses

a structural, overset grid system. This is analogous to

a multi-zone type application code. The manual MPI

parallelisation was carried out at NASA Ames by T.

Faulkner and J. Mariani and was used as the base code

that was inputted to the toolkit. The toolkit was then

able to complement the parallelism defined at the zone

level by providing OpenMP directives for the paral-

lelism defined within a zone (Table 4). The test case

is the Space Shuttle Main Engine high pressure turbo-

pump impeller. The geometry was made up of 60 zones

and 19.2 million grid points (the sizes of the zones

ranged from 75,000 to over 1 million grid points). The

results for the test case are shown in Figure 10 and

demonstrate the impressive performance achievable for

this hybrid parallelisation. The processors are arranged

by MPI groups so that with 300 processors and 30

groups performing MPI/zone-level parallel execution,

within each group there is a total of ten threads used to

perform the OpenMP/intra-zone parallel execution.

7. Conclusions

The work presented here demonstrates a number of

significant differences between the toolkit discussed

here and other tools or compilers. It highlights the need

for a very accurate dependence analysis including the

detection of dependencies interprocedurally, and this is

supplemented with the need for user interaction to aid

in the parallelisation process. There is also a need to

carefully insert directives in an efficient manner to ex-



172 C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes

1 2 4 8 16 320

50

100

150

200

250

300

350

400

T
im

e
 (

s
e
c
s
)

1 2 4 8 16 32
Processors

Fig. 9. Performance on an SGI Origin 2000 of the OpenMP direc-

tive-based parallel R-Jet code that was generated using the Computer

Aided Parallelisation Toolkit.

10

100

1000

1 10 100 1000
Processors

T
im

e
 (

s
e

c
) 

p
e

r 
it
e

ra
ti
o

n
 

30 MPI groups

20 MPI groups

12 MPI groups

6 MPI groups

Fig. 10. Performance of hybrid parallel code that includes MPI

(performed manually at the zone level) and OpenMP (done using the

toolkit and exploiting parallelism within a zone).

ploit the systems as far as possible using generic tech-

niques. Finally, this work has demonstrated the perfor-

mance achievable when using the toolkit to parallelise

real large scientific application codes.

Currently, the toolkit only handles Fortran 77 code.

It is expected that the functionality to parallelise For-

tran 90/95 codes will be added in the very near fu-

ture, indeed much of the development work for this has

already been completed. In addition, the developers

are continuously addressing the issues that will enable

the toolkit to handle even larger real world application

codes.

Acknowledgements

The authors wish to acknowledge the assistance from

C. Kiris (NASA Ames), P. Saddayapan (OSU) and R.

Luczak (ASC) for their involvement in generating re-

sults for some of the test cases reported. The authors

Table 3

Summary of directive types generated for the R-Jet code as part

of the OpenMP directive-based parallelisation using the Computer

Aided parallelisation toolkit

Directive type Total

Parallel Regions: 9

Parallel + DO Regions: 41

Parallel DO Loops: 32
Reduction loops: 4

Regions with Firstprivate: 1

Table 4

Summary of directive types generated for the INS3D code as part

of the OpenMP directive-based parallelisation using the Computer

Aided parallelisation toolkit. (The code read into the toolkit was an
MPI parallel version of the code)

Directive type Total

Parallel Regions: 95

Parallel + DO Regions: 297
Parallel DO Loops: 251

Reduction loops: 79

Atomic/Critical Sections: 6

Regions with Firstprivate: 2

also wish to thank the many people at both the Univer-

sity of Greenwich and NASA Ames who have helped

in both the CAPTools and the CAPO developments.

This work is supported by NASA Contract No. NAS2-

14303 with MRJ Technology Solutions, No. NASA2-

37056 with Computer Sciences Corporation.

References

[1] D. Bailey, J. Barton, T. Lasinski and H. Simon, eds, The NAS

Parallel Benchmarks, NAS Technical Report RNR-91-002,

NASA Ames Research Center, Moffett Field, CA, 1991.
[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A.

Woo and M. Yarrow, The NAS Parallel Benchmarks 2.0,

RNR-95-020, NASA Ames Research Center, 1995, NPB2.3,

http://www.nas.nasa.gov/Software/NPB/.

[3] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Lee, T.

Lawrence, J. Hoeflinger, D. Padua, Y. Paek, P. Petersen, B.

Pottenger, L. Rauchwerger, P. Tu and S. Weatherford, Re-

structuring Programs for High-Speed Computers with Polaris,
1996 ICPP Workshop on Challenges for Parallel Processing,

August 1996, pp. 149–162.

[4] E.W. Evans, S.P. Johnson, P.F. Leggett and M. Cross, Au-

tomatic and Effective Multi-Dimensional Parallelisation of

Structured Mesh Based Codes, Parallel Computing 26 (2000),

677–703.

[5] E.W. Evans, S.P. Johnson, P.F. Leggett and M. Cross, The
automatic code generation of asynchronous communications

embedded within a parallelisation tool, Parallel Computing 23

(1997), 1493–1523.

[6] W. Gropp, E. Lusk and A. Skjellum, Using MPI, (2nd ed.),

MIT Press, 1992.

[7] C.S. Ierotheou, S.P. Johnson, M. Cross and P.F. Leggett,

Computer aided parallelisation tools (CAPTools) – conceptual



C.S. Ierotheou et al. / The semi-automatic parallelisation of scientific application codes 173

overview and performance on the parallelisation of structured

mesh codes, Parallel Computing 22 (1996), 197–226.

[8] C.S. Ierotheou, C. Forsey and U. Block, Parallelisation of

novel 3D hybrid structured-unstructured grid CFD production

code. HPCN95, Springer-Verlag, 1995.

[9] H. Jin, M. Frumkin and J. Yan, Automatic generation of

OpenMP directives and its application to Computational Fluid
Dynamics codes. Proceedings of International Symposium on

High Performance Computing, Tokyo, Japan, Oct. 16–19,

2000, pp. 440.

[10] S.P. Johnson and M. Cross, Mapping Structured Grid Three-

Dimensional CFD Codes Onto Parallel Architectures, Applied

Mathematical Modelling 15 (1991).

[11] S.P. Johnson, M. Cross and M. Everett, Exploitation of Sym-

bolic Information In Interprocedural Dependence Analysis,
Parallel Computing 22 (1996), 197–226.

[12] S.P. Johnson, C.S. Ierotheou and M. Cross, Automatic Parallel

Code Generation For Message Passing on Distributed Memory

Systems, Parallel Computing 22 (1996), 227–258.

[13] S.P. Johnson, C.S. Ierotheou and M. Cross, Computer Aided

Parallelisation Of Unstructured Mesh Codes, in: Proceedings

of the International Conference on Parallel and Distributed

Processing Techniques and Applications, (Vol. 1), H.R. Arab-
nia et al., eds, CSREA, 1997, pp. 344–353.

[14] C. Kiris, D. Kwak and W. Chan, Parallel Unsteady Turbop-

ump Simulations For Liquid Rocket Engines. Proceedings of

Supercomputing 2000, Dallas, Texas, 2000.

[15] D. Kuck and Associates, Inc., Parallel Performance of

Standard Codes on the Compaq Professional Workstation

8000: Experiences with Visual KAP and the KAP/Pro Toolset

under Windows NT, Champaign, IL, Assure/Guide Reference

Manual, 1997.

[16] D. Kuck et al., The Structure of an Advanced Retargetable

Vectorizer, in: Supercomputers: design and Applications Tu-

torial, K. Hwang, ed., IEEE Society Press, Silver Spring, MD,
1984.

[17] P.F. Leggett, S.P. Johnson and M. Cross, CAPLib – A ‘Thin

Layer’ Message Passing Library to support computational me-

chanics codes on distributed memory parallel systems, Ad-

vances in Engineering Software 32 (2001), 61–83.

[18] P.F. Leggett, A.T.J. Marsh, S.P. Johnson and M. Cross, Inte-

grating user knowledge with information from parallelisation

tools to facilitate the automatic generation of efficient parallel
Fortran code, Parallel Computing 22 (1996), 259–288.

[19] OpenMP Fortran/C Application Program Interface,

http://www.openmp.org/.

[20] SGI Origin 2000 User guide, SGI, Mountain View, USA.

[21] R.P. Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, J.M.

Anderson, S.W.K. Tjiang, S. Liao, C. Tseng, M.W. Hall, M.

Lam and J. Hennessy, SUIF: An Infrastructure for Research

on Parallelizing and Optimizing Compilers Computer Systems
Laboratory, Stanford University, Stanford, CA.

[22] H.P. Zima, H.-J. Bast and H.M. Gerndt, SUPERB-A Tool for

Semi-Automatic MIMD/SIMD Parallelisation, Parallel Com-

puting 6 (1988).



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


