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Preface

This book is based on the recent brilliant discoveries of Dan Voiculescu, which
started from free products of operator algebras, but grew rapidly to include all
sorts of other interesting topics. Although we both were fascinated by Voiculescu’s
beautiful new world from the very beginning, our attitude changed and our interest
became more intensive when we got an insight into its interrelations with random
matrices, entropy (or large deviations) and the logarithmic energy of classical po-
tential theory.

There are many ways to present these ideas. In this book the emphesis is not put
on operator algebras (Voiculescu’s original motivation), but on entropy and random
matrix models. It is not our aim to make a complete survey of all aspects of free
probability theory. Several important recent developments are completely missing
from this book. Our emphasis is on the role of random matrices. However, we do
our best to make the presentation accessible for readers of different backgrounds.

The basis of this monograph was provided by lectures delivered by the authors
at Eötvös Loránd University in Budapest, at Hokkaido University in Sapporo, and
at Ibaraki University in Mito.

The structure of the monograph is as follows. Chapter 1 makes the connection
between the concepts of probability theory and linear operators in Hilbert spaces.
A sort of ideological foundation of noncommutative probability theory is presented
here in the form of many examples. Chapter 2 treats the fundamental free relation.
Again several examples are included, and the algebraic and combinatorial aspects
of free single and multivariate random variables are discussed. This chapter is a
relatively concise, elementary and selfcontained introduction to free probability.
The analytic aspects come in the next chapter. The infinitely divisable laws show
an analogy with classical probability theory. This chapter is not much required
to follow the rest of the monograph. Chapter 4 introduces the basic random ma-
trix models and the limit of their eigenvalue distribution. Voiculescu’s concept of
asymptotic freeness originated from independent Gaussian random matrices. Since
its birth, asymptotic freeness has been a very important bridge between free prob-
ability and random matrix theory. The strong analogy between the free relation
and statistical independence is manifested in the asymptotic free relation of some
independent matrix models. Entropy appears on the stage in Chapter 5—first the
Boltzmann-Gibbs entropy, which is considered here as the rate function in some
large deviation theorems. The frequent random matrix ensembles are charecterized

ix



x PREFACE

by maximization of the Boltzmann-Gibbs entropy under certain constraints. Sev-
eral large deviation results are given following the pioneering work of Ben Arous
and Guionnet on symmetric Gaussian random matrices. The main ingredient of
the rate functional is the logarithmic energy, familiar from potential theory. For an
n-tuple of noncommuative random variables, the probabilistic–measure theoretic
model is lacking; hence Chapter 6 is technically in the field of functional analysis.
Properties of Voiculescu’s multivariate free entropy are discussed in the setting of
operator algebras, and we introduce an analogous concept for n-tuples of unitaries.
Chapters 3–6 comprise the main part of the monograph. The last chapter is mostly
on free group factors, and gives ideas on applications to operator algebras.

Since rather different areas in mathematics are often combined, it was our in-
tention to make the material nearly self-contained for the sake of convenience. This
was a heavy task, and we had to cope with the combination of probabilistic, an-
alytic, algebraic and combinatorial arguments. Each chapter concludes with some
notes giving information on our sources and hints on further develpoments. Fur-
thermore, we supply standard references for the reader who is not familiar with
the general background of the chapter. The “Overview” is an attempt to show the
place of the subject and to give orientation. It replaces an introduction, and the
reader is invited to consult this part either before or after studying the much more
technical chapters.

We thank many colleagues for helping us to finish this enterprise. Imre Csiszár,
Roland Speicher, and Masaki Izumi can be named specifically. We are also grateful
for several institutions for supporting our collaboration: funds of the Hungarian
Academy of Sciences (OTKA F023447 and AKP 96/2-6782), of the Canon Foun-
dation, of the Grant-in-Aid for Scientific Research (C)09640152, and of the Erdős
Center are acknowledged.

Fumio Hiai and Dénes Petz



Overview

0.1 The isomorphism problem of free group fac-

tors

John von Neumann established the theory of so-called von Neumann algebras in the
1930’s. The comprehensive study of “rings of operators” (as von Neumann alge-
bras were called at that time) was motivated by the spectral theorem of selfadjoint
Hilbert space operators and by the needs of the mathematical foundation of quan-
tum mechanics. A von Neumann algebra is an algebra of bounded linear operators
acting on a Hilbert space which is closed with respect to the topology of pointwise
convergence. Factors are in a sense the building blocks of general von Neumann
algebras; they are von Neumann algebras with trivial center. In a joint paper with
F.J. Murray, a classification of the factors was given. Von Neumann was fond of
the type II1 factors, which are continuous analogues of the finite-dimensional ma-
trix algebras. The normalized trace functional on the algebra of n× n matrices is
invariant under unitary conjugation, and it takes the values k/n (k = 0, 1, . . . , n)
on projections. A type II1 factor admits an abstract trace functional τ which is
invariant under unitary conjugation, and it can take any value in [0, 1] on projec-
tions. The N -fold tensor product of 2× 2 matrix algebras is nothing else than the
matrix algebra of 2N × 2N matrices on which the normalized trace of projections is
in the set {k/2N : k = 0, 1, 2, . . . , 2N}. In the limit as N →∞, the dyadic rationals
fill the interval [0, 1] and we arrive at a type II1 factor. What we are constructing
in this way is the infinite tensor product of 2 × 2 matrices, and the construction
yields the hyperfinite type II1 factors. (“Hyperfinite” means a good approximation
by finite-dimensional subalgebras; in the above case approximation is by the finite
tensor products with growing size.) This was the first example of a type II1 factor.
Murray and von Neumann showed that any two hyperfinite type II1 factors are
isomorphic, and they were looking for a non-hyperfinite factor.

Countable discrete groups give rise to von Neumann algebras; in fact one can
associate to a discrete groupG a von Neumann algebra L(G) in a canonical way. On
the Hilbert space `2(G) the group G has a natural unitary representation g 7→ Lg,
the so-called left regular one, which is given by

(Lgξ)(h) := ξ(g−1h) (ξ ∈ `2(G), g, h ∈ G).

1



2 OVERVIEW

The group ring R(G) is the linear hull of the set {Lg : g ∈ G} of unitaries. The
group von Neumann algebra L(G) associated to G is by definition the closure of
R(G) in the topology of pointwise convergence. If the group under consideration
is ICC (i.e. all its non-trivial conjugacy classes contain infinitely many elements),
then the von Neumann algebra L(G) is a factor. When the closure of R(G) is taken
with respect to the norm topology of B(`2(G)), we arrive at another important
object, that is, the reduced group C∗-algebra C∗r (G). There exists a canonical trace
τ on L(G), which is given by the unit element e of G. Let δe ∈ `2(G) stand for the
characteristic function of {e} and define

τ( · ) := 〈 · δe, δe〉 .

Then it is easy to check that τ is a trace, i.e. it satisfies

τ(ab) = τ(ba) for all a, b ∈ L(G).

Von Neumann started from the free group with two generators and proved that
the corresponding factor is not hyperfinite. Historically this led to the first example
of two non-isomorphic type II1 factors. Much later it was discovered that the group
factor of an ICC group is hyperfinite if and only if the group itself is amenable,
and free groups are the simplest non-amenable groups. (The concept of amenable
groups also goes back to von Neumann.) Actually, von Neumann showed that the
free product of groups leads to a non-hyperfinite factor. It seems that Richard
Kadison was the person who explicitly posed the question of whether free groups
with different numbers of generators could produce the same factor. This question
is still open, and it was the main motivation for Dan Voiculescu to study the free
relation and to develop free probability theory.

Let Fn denote the free group with n generators. If n 6= m then Fn and Fm are
not isomorphic. This can be seen by considering the group homomorphisms from
Fn to Z2, the two element group, which is actually a field. Consider the space Xn

of all homomorphisms from Fn to Z2. This is a bimodule over Z2 of dimension
exactly 2n. Since a group isomorphism between Fn and Fm induces a module
isomorphism between Xn and Xm, the groups Fn and Fm for n 6= m cannot be
isomorphic. Although the free group Fn is contained in L(Fn) in the form of the
group ring, L(Fn) is much larger than R(Fn) due to the closure procedure in the
definition of the group factor. Hence simple proofs, for example the proof that F2

is not isomorphic to F3, do not extend to the topological closures, to the group
C∗-algebras, or to the group von Neumann algebras.

If one expects L(Fn) and L(Fm) to be non-isomorphic, a possible strategy to
prove this is to read out n intrinsically from L(Fn). Each von Neumann factor
of type II1 has a unique canonical (faithful normal) tracial state τ , so this is in-
trinsically at our disposal. A.N. Kolmogorov in 1958 and Ya.G. Sinai in 1959
introduced the so-called Kolmogorov-Sinai (or dynamical) entropy of a measure-
preserving transformation on a probability space, which has been a very successful
tool in the isomorphism problem of Bernoulli shifts. Bernoulli shifts are simple, but
they are the most important probabilistic dynamical systems. It turned out that
the Kolmogorov-Sinai entropy is a complete invariant for Bernoulli shifts; in 1970
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Donald Ornstein proved that two Bernoulli shifts are conjugate if and only if they
have the same dynamical entropy. It seems to the authors that Dan Voiculescu
was deeply influenced by these ideas. Independently of the success of his approach
toward the isomorphism problem, his analysis created a new world in which the free
relation and the free entropy of noncommutative random variables play the leading
roles. Random matrices give the simplest examples of noncommutative random
variables; they can model the free relation and are present in the definition of free
entropy.

0.2 From the relation of free generators to free
probability

The free group factor L(Fn) is an important example in von Neumann algebra
theory, since it is the first-found and simplest non-hyperfinite type II1 factor. The
free group itself is an important object in harmonic analysis; in fact, there is a
strong and intimate relation between harmonic analysis on the free group and the
structure of the free group factor.

The fundamental relation of the generators of a free group is the algebraic “free
relation”; namely, there are no identities expressed in operations of the group which
are satisfied by the generators. Eventually, this algebraic free relation is present
in non-free groups as well. For instance, if G is the free product of G1 and G2,
then the elements of G1 are in free relation to the elements of G2. The study of
harmonic analysis on free product groups is the obvious continuation of its study
on free groups.

Next we outline an idea which starts from a random walk on free groups and
leads to the key concept of free relation; on top of that, the role of the semicircle law
becomes clear as well. Let g1, g2, . . . , gn be generators of Fn and consider a random
walk on this group which starts from the group unit and goes from the group element
g to hg with probability 1/2n if h ∈ {g1, g2, . . . , gn, g

−1
1 , g−1

2 , . . . , g−1
n }. Then the

probability of return to the unit e in m steps is of the form

P (n,m) :=
1

(2n)m
〈(
Lg1 + Lg−1

1
+ Lg2 + Lg−1

2
+ . . .+ Lgn + Lg−1

n

)m
δe, δe

〉
.

(This vanishes if m is not even.) In the probabilistic interpretation of quantum
mechanics, it is standard to interpret the number 〈Aξ, ξ〉 as the expectation of the
operator A in the state vector ξ. Adopting this view, we have the expectation

〈( n∑
i=1

A
(n)
i

)m
δe, δe

〉

of selfadjoint operators, A(n)
i standing for (Lgi + Lg−1

i
)/
√

2. The operators A(n)
i
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might be called random variables in the sense that they have expectations, and to
distinguish this concept from classical probability theory, we speak of noncommuta-
tive random variables. The asymptotic behavior of the return probability P (n, 2m)
is given as follows:

P (n, 2m) ≈ 1
(2n)m

1
m+ 1

(
2m
m

)
as n→∞.

What we have is a sort of central limit theorem for the array

A
(n)
1 , A

(n)
2 , . . . , A(n)

n

of noncommutative random variables, because

A
(n)
1 +A

(n)
2 + . . .+A

(n)
n√

n

converges in moments (or in distribution) to the even classical probability density
whose 2mth moment is the so-called Catalan number

1
m+ 1

(
2m
m

)
(m ∈ N).

This limit density is the semicircle or Wigner law 1
2π

√
4− x2 with support on

[−2, 2].

The different generators gi are free in the algebraic sense, and this led Voiculescu
to call the relation of the selfadjoint operatorsA(n)

i (for a fixed n) free as well. When
one aims to formulate the concept in the spirit of probability, the plausible free
relation of these noncommutative random variables must be formulated in terms of
expectation. The noncommutative random variables A1, A2, . . . , An are called free
with respect to the expectation ϕ if

ϕ
(
P1(Ai(1))P2(Ai(2)) . . . Pk(Ai(k))

)
= 0

whenever P1, P2, . . . , Pn are polynomials, Pj(Ai(j)) = 0 and i(1) 6= i(2) 6= . . . 6=
i(k). In the motivating example we had ϕ( · ) = 〈 · δe, δe〉, and of course the above
defined operators A(n)

1 , A
(n)
2 , . . . , A

(n)
n are free in the sense of Voiculescu’s defini-

tion. It is not immediately obvious from the definition that the free relation of the
noncommutative random variables A1, A2, . . . , An is a particular rule to calculate
the joint moments

ϕ
(
A
m(1)
i(1) A

m(2)
i(2) . . . A

m(k)
i(k)

)
(for positive integers m(1),m(2), . . . ,m(k)) from the moments ϕ(Ami ) of the given
variables.
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It is always tempting to compare Voiculescu’s free relation with the indepen-
dence of classical random variables. The comparison cannot be formal, since the
free relation and independence do not take place at the same time. What we have
in mind is only the analogy of the free relation in noncommutative probability the-
ory with independence in classical probability theory. The part of noncommutative
probability in which the free relation plays a decisive role is called free probability
theory.

Free probability theory has its celebrated distributions. The semicircle law is
one of those celebrities; it comes from the free central limit theorem and its moment
sequence is the Catalan numbers. The free analogue of the Poisson limit theorem
can be established, and it gives the free analogue of the Poisson distribution. Given
measures µ and ν, we can find noncommutative random variables a and b with
these distributions. When a and b are in free relation, the distribution measure
of a+ b (or ab) can be called the additive (or multiplicative ) free convolution of µ
and ν. The notations µ � ν and µ � ν are used to denote the two kinds of free
convolution. The class of semicircle laws is closed under additive free convolution.
The distributions µ0 � w√4t form a convolution semigroup when w√4t stands for
the semicircle law with variance t (which corresponds to radius

√
4t). The analytic

machinery to handle additive free convolution is based on the Cauchy transform of
measures. If µt is a freely additive convolution semigroup and G(z, t) is the Cauchy
transform of µt, then the complex Burger equation

∂G(z, t)
∂t

+R(G(z, t)) =
∂G(z, t)
∂z

is satisfied with initial condition G(z, 0) = Gµ0(z), and R is the so-called R-
transform of µ1. If µt is the semigroup of semicircle laws, then R(z) = z and
we have the analogue of the heat equation.

There is an obvious way to associate a measure to a noncommuting random
variable via the spectral theorem if it is a normal operator. If the operator is not
normal, then a measure can still be constructed by using type II1 von Neumann
algebra techniques. (What we have in mind is the Brown measure of an element of
a type II1 von Neumann algebra.) However, if we deal with several noncommuting
random variables which are really noncommuting operators, then there is no way
to reduce the discussion to measures. At this level of generality free probability
theory has to work with joint moments, power series on noncommuting indeter-
minates, and a new kind of combinatorial arguments. The picture becomes very
different from classical probability theory. Computation of the joint moments of
free noncommutative random variables is a rather combinatorial procedure.

0.3 Random matrices

The joint eigenvalue density for certain symmetric random matrices has been known
for a long time. J. Wishart found it for the so-called (real) Wishart matrix back in
1928. In quantum physics the energy is represented by the Hamiltonian operator,
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and one is interested in the point spectrum of the Hamiltonian, which is the set of
eigenvalues. The problem is difficult; we do not know the exact Hamiltonian, and
even if we did, it would be too complicated to find the eigenvalues. An approach
to this problem is based on the following statistical hypothesis: The statistical be-
havior of the energy levels is identical with the behavior of the eigenvalues of a
large random matrix. Reasoning along this line, in 1955 E.P. Wigner obtained the
semicircle law for the limiting eigenvalue density of random matrices with indepen-
dent Bernoulli entries. Wigner’s work initiated a huge and deep interest in random
matrices from theoretical and nuclear physicists. From the point of view of physical
applications the most interesting question is to treat the correlation functions of
the eigenvalues and the so-called “level spacing”.

Random matrices are noncommutative random variables with respect to the
expectation

τn(H) :=
1
n

n∑
i=1

E(Hii)

for an n × n random matrix H , where E stands for the expectation of a classical
random variable. It is a form of the Wigner theorem that

τn(H(n)2m)→ 1
m+ 1

(
2m
m

)
as n→∞

if the n×n real symmetric random matrix H(n) has independent identical Gaussian
entriesN(0, 1/n) so that τn(H(n)2) = 1. The semicirle law is the limiting eigenvalue
density of H(n)’s as well as the limiting law of the free central limit theorem in
the previous section. The reason why this is so was made clear by Voiculescu.
Let X1(n), X2(n), . . . be independent random matrices with the same distribution
as H(n). It follows from the properties of Gaussians that the distribution of the
random matrix

X1(n) +X2(n) + · · ·+Xn(n)√
n

is the same as that of H(n). Hence the convergence in moments to the semicircle
law would be understandable ifX1(n), X2(n), . . . , Xn(n) were in free relation. Their
free relation with respect to the expectaion τn would include the condition

τn

([
X1(n)k − τn(X1(n)k)

][
X2(n)l − τn(X2(n)l)

])
= 0 ,

which is equivalently written as

τn
(
X1(n)kX2(n)l

)
= τn

(
X1(n)k

)
τn
(
X2(n)l

)
. (1)

For notational simplicity we write A and B for X1(n) and X2(n), respectively.
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Then what we have on the left hand side is

1
n2

∑
E
(
Ai(1)i(2)Ai(2)i(3) · · ·Ai(k)i(k+1)Bi(k+1)i(k+2) · · ·Bi(k+l)i(1)

)
=

1
n2

∑
E
(
Ai(1)i(2)Ai(2)i(3) · · ·Ai(k)i(k+1)

)
E
(
Bi(k+1)i(k+2) · · ·Bi(k+l)i(1)

)
with summation for all indices. The matrix elements are independent and have zero
expectation. Hence a term in which a matrix element appears only once among the
factors must vanish. On the right hand side of (1) we have

1
n

∑
E
(
Ai(1)i(2)Ai(2)i(3) · · ·Ai(k)i(1)

)
× 1
n

∑
E
(
Bi(k+1)i(k+2) · · ·Bi(k+l)i(k+1)

)
.

The two expressions are equal in many cases, in particular when k or l is odd or
when both are 0. However the summation is over slightly different sequences of
indices. The difference goes to 0 as n → ∞. In this way, instead of the equality
in (1) for a finite n, we have identical limits as n → ∞. The free relation appears
only in the limit; this is called the asymptotic freeness of X1(n) and X2(n). More
generally, the asymptotic freeness of the sequence X1(n), X2(n), . . . is formulated.
The free relation is present in the random matrix context asymptotically, and this
fact explains why the semicircle law is the limiting eigenvalue distribution of the
random matrix H(n).

Independent symmetric Gaussian matrices are asymptotically free, but there are
several other interesting examples too. For instance, independent Haar distributed
unitary matrices are asymptotically free (as the matrix size tends to infinity). The
asymptotic freeness may serve as a bridge connecting random matrix theory with
free probability theory.

In a very abstract sense, the distribution of a not neccessarily selfadjoint non-
commutative random variable A is the collection of all joint moments

ϕ(Am(1)A∗m(2)Am(3)A∗m(4) · · ·)

of A and its adjoint A∗. A random matrix model of A is a sequence of random
matrices X(n) such that X(n) is n × n and the joint moments of these matrices
reproduce those of A as n→∞, that is,

τn(X(n)m(1)X(n)∗m(2)X(n)m(3) · · ·)→ ϕ(Am(1)A∗m(2)Am(3) · · ·)

for all finite sequences m(1), . . . ,m(k) of nonnegative integers. It is really amazing
that many important distributions appearing in free probability theory admit a
suitable random matrix model. The selfadjoint Gaussian matrices with independent
entries were mentioned above in connection with the Wigner theorem. The free
analogue of the Poisson distribution is related to the Wishart matrix, and the
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circular and elliptic laws come from non-selfadjoint Gaussian matrices. These facts
provide room for the interaction between random matrices and free probability. On
the one hand, approximation by random matrices gives a powerful method to study
free probability theory, and on the other hand techniques of free probability can be
used to determine the limiting eigenvalue distribution of some random matrices, for
example. It seems that bi-unitarily invariant matrix ensembles form an important
class; they give the random matrix model of R-diagonal distributions. One way
to define an R-diagonal noncommutative random variable is to consider its polar
decomposition uh. If u is a Haar unitary and it is free from h, then uh is called
R-diagonal. A bi-unitarily invariant random matrix has a polar decomposition UH
in which U is a Haar distributed unitary matrix independent of H . As the matrix
size grows, independence is converted into freeness according to some asymptotic
freeness result.

The empirical eigenvalue distribution of an n×n random matrixH is the random
atomic measure

RH :=
1
n

(
δ(λ1) + δ(λ2) + · · ·+ δ(λn)

)
,

where λ1, λ2, . . . , λn are the eigenvalues of H . It is a stronger form of the Wigner
theorem that RH(n) goes to the semicircle law almost everywhere when H(n) is
symmetric with independent identically distributed entries. The almost sure limit
of the empirical eigenvalue distribution is known to be a non-random measure in
many examples, and it is often called the density of states. Sometimes it cannot
be given explicitly, but is determined by a functional equation for the Cauchy
transform or by a variational formula. Results are available for non-selfadjoint
random matrices as well.

The best worked out example of symmetric random matrices is the case of
independent identically distributed Gaussian entries. If the entries are Gaussian
N(0, 1/n) and if G is an open subset of the space of probability measures on R such
that the semicircle law (the density of states) w is not in the closure, then we have

Prob
(
RH(n) ∈ G

)
≈ exp(−n2C(w,G))

with a positive constant C(w,G) depending on the distance of w fromG. The bigger
the distance of w from G, the larger the constant C(w,G) is. Large deviation theory
expresses this constant as the infimum of a so-called rate function I defined on the
space of measures:

C(w,G) = inf{I(µ) : µ ∈ G} .

In our example, I is a stricly convex function which is stricly positive for µ 6= w.
Ingredients of I(µ) are the logarithmic energy and the second moment of µ. What
we are sketching now is the pioneering large deviation theorem of Ben Arous and
Guionnet for symmetric Gaussian matrices. More details can be found in the next
section.
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0.4 Entropy and large deviations

Originally entropy was a quantity from physics. Entropy as a mathematical concept
is deeply related to large deviations, although the two had independent lives for
a long time. A typical large deviation result was discovered by I.N. Sanov in
1957; however, the general abstract framework of large deviations was given by
S.R.S. Varadhan in 1966.

Let ξ1, ξ2, . . . be independent standard Gaussian random variables and let G
be an open set in the space M(R) of probability measures on R (with the weak
topology). The Sanov theorem says that if the standard Gaussian measure ν is not
in the closure of G, then

Prob
(δ(ξ1) + δ(ξ2) + · · ·+ δ(ξn)

n
∈ G

)
≈ exp

(
−nC(ν,G)

)
and

C(ν,G) = inf{I(µ) : µ ∈ G} .

In the above case, the rate function I(µ) is the relative entropy (or the Kullback-
Leibler divergence) S(µ, ν) of µ with respect to ν. So it is also written as

I(µ) = −S(µ) +
1
2

∫
x2 dµ(x) +

1
2

log(2π) (2)

with the Boltzmann-Gibbs entropy

S(µ) := −
∫
p(x) log p(x) dx , (3)

whenever µ has the density p(x) and the logarithmic integral is meaningful. This
rate function I is a strictly convex function such that I(µ) > 0 if µ 6= ν.

The rate functions in some large deviation results are called entropy functionals.
Eventually, this could be the definition of entropy. The logarithmic integral (3) of
a probability distribution p(x) has been used for a long time, but it was identified
much later as a component of the rate function in the Sanov theorem.

The Boltzmann-Gibbs entropy S(µ) can be recovered from the asymptotics of
probabilities. Let νn be the n-fold product of the standard Gaussian measure on
R. For each x ∈ Rn we have the discrete measure

κx :=
δ(x1) + δ(x2) + . . .+ δ(xn)

n
,

which can be used to approximate the given measure µ. The asymptotic volume of
the approximating Rn-vectors up to the first r moments is given by

1
n

log νn
({
x ∈ Rn : |mk(κx)−mk(µ)| ≤ ε, k ≤ r

})
. (4)
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A suitable limit of this as n→∞, r →∞ and ε→ 0 is exactly the above described
rate function (2). Furthermore, from (4) the entropy S(µ) can be recovered. This
crucial argument deduces the entropy from the asymptotics of probabilities. The
extension of this argument works for multivariables, but first we consider the analo-
gous situation in which the atomic measures κx are replaced by symmetric matrices.

In the large deviation result of Ben Arous and Guionnet the explicit form of the
rate function I on M(R) is

I(µ) = −1
2

∫∫
log |x− y| dµ(x) dµ(y) +

1
4

∫
x2 dµ(x) + const. (5)

The above double integral is the (negative) logarithmic energy of µ, which is very
familiar from potential theory.

Here we give an outline of how the rate function in (5) arises in the large
deviation theorem of Ben Arous and Guionnet. In an abstract setting, a large
deviation is considered for a sequence (Pn) of probability distributions, usually on
a Polish space X in the scale (Ln); in our example X = M(R) and Pn(G) =
Prob(RH(n) ∈ G). A standard way of proving the large deviation in this setting is
to show the following equality:

I(x) = sup
[
− lim sup

n→∞
Ln logPn(G)

]
= sup

[
− lim inf

n→∞
Ln logPn(G)

]
,

where the supremum is over neighborhoodsG of x ∈ X . This equality gives the large
deviation of (Pn) with the rate function I if (Pn) satisfies an additional property of a
stronger form of tightness. The scale in the Sanov large deviation is Ln = n−1, but
the scale in large deviations related to random matrices is Ln = n−2, corresponding
to the number of entries of an n × n matrix. The joint eigenvalue density of the
relevant random matrix H(n) is known to be

1
Zn

exp
(
−n+ 1

4

n∑
i=1

x2
i

)∏
i<j

|xi − xj | (6)

on Rn with the normalizing constant Zn. This means that for a neighborhood G
of µ ∈ M(R) one has

Prob
(
RH(n) ∈ G

)
=

1
Zn

∫
· · ·
∫
G̃

exp
(∑
i<j

log |xi − xj | −
n+ 1

4

n∑
i=1

x2
i

)
dx1 · · · dxn ,

where G̃ ⊂ Rn is defined by

G̃ :=
{
x ∈ Rn :

1
n

n∑
i=1

δ(xi) ∈ G
}
.
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Very roughly speaking, when G goes to a point µ, the approximation

∑
i<j

log |xi − xj | −
n+ 1

4

n∑
i=1

x2
i

≈ n2

(
1
2

∫∫
log |x− y| dµ(x) dµ(y)− 1

4

∫
x2 dµ(x)

)

holds for x ∈ G̃, and one gets

− 1
n2

log Prob
(
RH(n) ∈ G

)
≈ −1

2

∫∫
log |x− y| dµ(x) dµ(y) +

1
4

∫
x2 dµ(x) +

1
n2

logZn .

This gives rise to the rate function (5), and the constant term there comes from
limn→∞ n

−2 logZn.

Besides the symmetric Gaussian matrix, we know the exact form of the joint
eigenvalue density for several other random matrices, such as the selfadjoint or
non-selfadjoint Gaussian matrix, the Wishart matrix, the Haar distributed unitary
matrix, and so on. The joint densities are distributed on Rn,Cn, (R+)n,Tn depend-
ing on the type of matrices, but they have a common form which is a product of
two kernels as in (6); one is the kernel of Vandermonde determinant type

∏
i<j

|xi − xj |2β

with some constant β > 0, and the other is of the form

exp
(
−

n∑
i=1

Qn(xi)
)

with some function Qn depending on n. Applying the method outlined above
to this form of joint density, we can show the large deviations for the empirical
eigenvalue distribution of random matrices as above. Corresponding to the form of
joint density, the rate function is a weighted logarithmic potential as in (5) and its
main term is always the logarithmic energy.

What is the free probabilistic analogue of the Boltzmann-Gibbs entropy (3) of
a probability distribution µ on R? Voiculescu answered this question by looking at
the asymptotic behavior of the Bolzmann-Gibbs entropy of random matrices: The
free entropy of µ should be

Σ(µ) :=
∫∫

log |x− y| dµ(x) dµ(y) , (7)
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that is, minus the logarithmic energy. Below we shall explain that the above double
integral is the real free analogue of the Boltzmann-Gibbs entropy.

Let M be a von Neumann algebra with a faithful normal tracial state τ ; so τ
gives the expectation of elements ofM. Moreover, mk(a) := τ(ak) is viewed as the
kth moment of a noncommutative random variable a ∈ M. In order to approximate
a selfadjoint a with ‖a‖ ≤ R in distribution, Voiculescu suggested using symmetric
matrices A ∈Mn(R); approximation means that |trn(Ak)− τ(ak)| is small. Hence
the analogue of (4) is

1
n2

log νn
({
A ∈Mn(R)sa : ‖A‖ ≤ R, |trn(Ak)− τ(ak)| ≤ ε, k ≤ r

})
.

The scaling is changed into n2 corresponding to the higher degree of freedom, and
the measure νn must be a measure on the space of real symmetric matrices; again
the standard Gaussian measure will do. The limit as n → ∞ and then r → ∞,
ε→ 0 is

1
2

∫∫
log |x− y| dµ(x) dµ(y)− 1

4
τ(a2) + const. , (8)

where µ is the probability measure on R which has the same moments as a:∫
xk dµ(x) = τ(ak). This limit is minus the rate function (5), and the first term

gives the free entropy Σ(µ). Instead of Mn(R)sa one may use the space Mn(C)sa

of selfadjont matrices together with the standard Gaussian measure on it.

Another analogy between the two entropies S(µ) and Σ(µ) is clarified by their
maximization results. The entropy S(µ) can take any value in [−∞,+∞]. Instead
of the value itself, rather important is the difference of S(µ) from the maximum
under some constraint. For instance, under the constraint of the second moment
m2(µ) ≤ 1, the Boltzmann-Gibbs entropy has the upper bound S(µ) ≤ 1

2 log(2πe),
and equality is attained here if and only if µ has the normal distribution N(0, 1).
This fact is readily verified from the positivity of the relative entorpy S(µ, ν) with
ν = N(0, 1). On the other hand, under the constraint of the second moment
m2(µ) ≤ 1, the free entropy has the upper bound Σ(µ) ≤ −1/4, and equality is
attained if and only if µ is the semicircle law of radius 2. This maximization of
Σ(µ) resembles that of S(µ); their maximizers are the normal law and the semicircle
law, and the latter is the free analogue of the former. The Gaussian and semicircle
maximizations are linked by random matrices. The symmetric random matrix with
maximal Boltzmann-Gibb entropy under the constraint τn(H2) ≤ 1 is the standard
Gaussian matrix, which is a random matrix model of the semicircle law.

0.5 Voiculescu’s free entropy for multivariables

The free entropy as well as the Boltzmann-Gibbs entropy can be extended to multi-
variables. The multivariate case is slightly more complicated, but conceptually it is
exactly the same. First we consider the Boltzmann-Gibbs entropy of multi-random
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variables (i.e. random vectors). For a random vector (X1, X2, . . . , XN ) one has the
joint distribution µ on RN , and the logarithmic integral (3) is meaningful and func-
tions well whenever µ has the density p(x) on RN . For x = (x1, x2, . . . , xn) ∈ (RN )n

let κx be the atomic measure on RN defined analogously to the above single vari-
able case. Now k = (k(1), k(2), . . . , k(p)) must be a multi-index of length |k| := p.
For a measure µ on RN whose support is in [−R,R]N , we define

mk(µ) :=
∫
xk(1)xk(2) · · ·xk(p) dµ(x)

and consider

1
n

log νn
({
x ∈ ([−R,R]N)n : |mk(κx)−mk(µ)| ≤ ε, |k| ≤ r

})
, (9)

where νn is the n-fold product of Gaussian measures on RN . The usual limit as
n→∞ and then r →∞, ε→ 0 is

−S(µ) +
1
2

∫ (
x2

1 + x2
2 + · · ·+ x2

N

)
dµ(x) + const.

Now let (a1, a2, . . . , aN ) be an N -tuple of selfadjoint noncommutative random
variables. Due to the noncommutativity we cannot have the joint distribution (as
a measure); however the mixed joint moments of (a1, a2, . . . , aN) with respect to
the tracial state τ are available and we can consider the analogue of (9). For
a multi-index k we set mk(a1, a2, . . . , aN ) := τ(ak(1)ak(2) · · · ak(p)), and similarly
mk(A1, A2, . . . , AN ) := trn(Ak(1)Ak(2) · · ·Ak(p)) for an N -tuple (A1, A2, . . . , AN )
of n× n matrices. To deal with the quantity

1
n2

log νn
({

(A1, A2, . . . , AN ) ∈ (Mn(C)sa)N : ‖Ai‖ ≤ R, (10)

|mk(A1, A2, . . . , AN )−mk(a1, a2, . . . , aN)| ≤ ε, |k| ≤ r
})
,

we again put a product measure νn on the set of selfadjoint matrices. Since it is
not known whether the limit as n → ∞ of (10) exists, the lim sup as n → ∞ may
be considered. The limit as r →∞, ε→ 0 of lim supn→∞ of the quantity (10) is of
the form

χ(a1, a2, . . . , aN ) +
1
2
τ(a2

1 + a2
2 + · · ·+ a2

N) + const.,

independently of the choice of R > ‖ai‖. This defines Voiculescu’s free entropy
χ(a1, a2, . . . , aN). The multivariate free entropy generalizes the above free entropy
Σ(µ) (up to an additive constant); to be more precise, the equality

χ(a) = Σ(µ) +
1
2

log(2π) +
3
4
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is valid with the distribution µ of a. The term “free” has nothing to do with
thermodynamics; it comes from the additivity property:

χ(a1, a2, . . . , aN ) = χ(a1) + χ(a2) + · · ·+ χ(aN ) (11)

when a1, a2, . . . , aN are in free relation with respect to the expectation τ . In this
spirit the Boltzmann-Gibbs entropy must be called “independent” since it is addi-
tive if and only if X1, X2, . . . , XN are independent; that is, the joint distribution µ
is a product measure. When the noncommutative random variables are far away
from freeness (in particular, when an algebraic relation holds for a1, a2, . . . , aN ),
their free entropy becomes −∞. This is another reason for the terminology “free
entropy”. The additivity (11) is equivalent to the free relation of the ai’s when
χ(ai) > −∞, but the subadditivity

χ(a1, a2, . . . , aN ) ≤ χ(a1) + χ(a2) + · · ·+ χ(aN )

always holds. The free entropy χ(a1, a2, . . . , aN ) is upper semicontinuous in the
convergence in joint moments. Furthermore, certain kinds of change of variable
formulas are available. Under the constraint for ai = a∗i that

∑
i τ(a2

i ) is fixed,
χ(a1, a2, . . . , aN) is maximal when (and only when) all ai’s are free and semicircu-
lar. There are possibilities to extend χ(a1, a2, . . . , aN) to the case of non-selfadjoint
noncommutative random variables. One possibility is to allow non-selfadjoint ma-
trices in the definition (10), and another is to split the non-selfadjoint operators
into their real and imaginary parts. The two approaches give the same result, say
χ̂(a1, a2, . . . , aN), where the N -tuple is arbitrary and not necessarily selfadjoint.
The subadditivity is still true, and χ̂(a1, a2, . . . , aN) = −∞ when one of the ai’s is
normal, in paricular when all of them are unitaries.

For an N -tuple of unitaries (u1, u2, . . . , uN) the appropriate way leading to a
good concept of entropy is to use unitary matrices in a definition similar to (10), and
to measure the volume of the approximating unitary matrices by the Haar measure.
In this way we arrive at χu(u1, u2, . . . , uN). The free entropy of unitary variables has
properties similar to the free entropy of selfadjoint ones; namely, the subadditivity
and the upper semicontinuity hold, and additivity is equivalent to freeness. The
three kinds of free entropies are connected under the polar decompositions ai = uihi
in the following way:

χ̂(a1, a2, . . . , aN ) ≤ χu(u1, u2, . . . , uN) + χ(h2
1, h

2
2, . . . , h

2
N) +

N

2

(
log

π

2
+

3
2

)
,

and, furthermore. equality is valid under a freeness assumption.

0.6 Operator algebras

The study of (selfadjoint) operator algebras is divided into two major categories,
C∗-algebras and von Neumann algebras (i.e. W ∗-algebras). C∗-algebras are usually
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introduced in an axiomatic way: A C∗-algebra is an involutive Banach algebra sat-
isfying the C∗-norm condition ‖a∗a‖ = ‖a‖2. But any C∗-algebra is represented as
a norm-closed *-algebra of bounded operators on a Hilbert space (Gelfand-Naimark
representation theorem). Von Neumann algebras are included in the class of C∗-
algebras; however, the ideas and methods in the two categories are very different.
A commutative C∗-algebra with unit is isomorphic to C(Ω), the C∗-algebra of
continuous complex functions on a compact Hausdorff space Ω with sup-norm (an-
other Gelfand-Naimark theorem). So a general C∗-algebra is sometimes viewed
as a “noncommutative topological space”. On the other hand, a von Neumann
algebra is a noncommutative analogue of (probability) measure spaces. In fact, a
commutative von Neumann algebra with a faithful normal state is isomorphic to
the space L∞(Ω, µ) over a standard Borel space (Ω, µ).

According to von Neumann’s reduction theory, a von Neumann algebra M on
a separable Hilbert space is a sort of direct integral of factors:

M =
∫ ⊕

Γ

M(γ) dν(γ) .

Therefore factors are building blocks of general von Neumann algebras. Factors are
classified into the types In (n = 1, 2, 3, . . . ,∞), II1, II∞, and III. The In (n < ∞)
factor is the matrix algebra Mn(C) and the I∞ factor is B(H) with dimH =
∞. A II1 factor is sometimes said to have continuous dimensions because, as
already mentioned in the first section, it has a normal tracial state whose values of
projections in M are all reals in [0, 1]. A type II∞ factor is written as the tensor
product of a II1 factor and the I∞ factor, and it has a normal semifinite trace. The
type I factors are trivial from the operator algebra point of view. Infinite tensor
products of matrix algebras with normalized traces and the group von Neumann
algebras of ICC discrete groups are typical examples of type II1 factors; the simplest
construction isR :=

⊗∞
n=1(M2(C), tr2), as described in the first section. All factors

except type I or II are said to be of type III, and they are further classified into the
types IIIλ (0 ≤ λ ≤ 1); the latter subclasses were introduced by A. Connes. For
0 < λ < 1 a typical example of a IIIλ factor is the Powers factor

Rλ :=
∞⊗
n=1

(M2(C), ωλ), where ωλ( · ) := tr2

([ 1
1+λ 0
0 λ

1+λ

]
·
)
.

Furthermore, the tensor product Rλ⊗Rµ of two Powers factors with logλ/ logµ 6∈
Q becomes a III1 factor. The Tomita-Takesaki theory is fundamental in the struc-
ture analysis of type III factors.

A von Neumann algebra M (on a separable Hilbert space) is said to be ap-
proximately finite dimensional (AFD), or sometimes hyperfinite, if it is generated
by an increasing sequence of finite-dimensional subalgebras. On the other hand,
M⊂ B(H) is said to be injective if there exists a conditional expectation (i.e. norm
one projection) from B(H) onto M. The epoch-making result of Connes in 1976
shows that the injectivity of M is equivalent to the AFD of M, and there is a
unique injective factor for each type II1, II∞, IIIλ (0 < λ < 1). The fact that the
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aboveR is a unique hyperfinite type II1 factor had been proved long ago by Murray
and von Neumann, and the uniqueness of the injective III1 factor was later proved
by U. Haagerup in 1987. Furthermore, all AFD factors of type III are completely
classified in terms of the flow of weights introduced by Connes and Takesaki. In
this way, R⊗B(H), the Powers factor Rλ and the above Rλ⊗Rµ are unique AFD
factors of type II∞, IIIλ (0 < λ < 1) and III1, respectively. There are many AFD
III0 factors; all of them are constructed as Krieger factors L∞(Ω, µ) oT Z, where
T is an ergodic transformation on a standard Borel space (Ω, µ). The so-called
measure space-group construction is to make the crossed product von Neumann
algebra L∞(Ω, µ)oα G, where α is an action of a group G on (Ω, µ). According to
J. Feldman and C.C. Moore, there is a more general construction of von Neumann
algebras from a measurable equivalence relation on (Ω, µ) with countable orbits,
and L∞(Ω, µ) is a Cartan subalgebra of the constructed von Neumann algebra.
Moreover, the existence of a Cartan subalgebra is sufficient for a von Neumann
algebra to enjoy such a measure space construction. Any injective factor has a
Cartan subalgebra as a consequence of the above classification result. The notion
of amenability can be defined for a measurable relation, and a profound result of
Connes, Feldman and Weiss in 1982 says that a measurable relation is amenable if
and only if it is generated by a single measurable transformation. A consequence
of this is that any two Cartan subalgebras of an injective factor M are conjugate
by an automorphism ofM.

After the AFD factors were classified as above, a huge class of non-AFD factors
remained unclassified. Since any type III factor can be canonically decomposed
into the crossed product N oθ R with a II∞ von Neumann algebra N according
to the Takesaki duality, and since type II∞ can be somehow reduced to type II1,
we may say that the problem returns to the type II1 theory in some sense. A type
II1 von Neumann algebra with a faithful normal tracial state is a noncommutative
probability space most appropriate to free probability theory. A typical example of
non-AFD factors is the free group factor L(Fn), and it is generated by a free family
of noncommutative random variables. This is the reason why some techniques from
free probability and free entropy are so useful in analyzing free group factors. There
has been much progress in the theory of free group factors; for instance, the non-
existence of a Cartan subalgebra in L(Fn), proved by Voiculescu, is remarkable
because it means the impossibility of the measure space construction as above for
L(Fn).

The K-theory of C∗-algebras yields algebraic invariants to study isomorphism
problems of C∗-algebras. Two abelian groups K0(A) and K1(A) are associated
with each C∗-algebra A. The construction of K0(A) follows the old idea of Murray
and von Neumann for the classification of von Neumann factors. Since a C∗-
algebra may not have enough projections, we pass to the algebra

⋃∞
n=1Mn(A). An

equivalence relation is defined on the collection of all projections in
⋃∞
n=1Mn(A),

whose equivalence classes form an abelian semigroup K0(A)+ with zero element.
Then the Grothendieck group of K0(A)+ is the K0-group K0(A). On the other
hand, the K1-group K1(A) is defined as the inductive limit of the quotient groups
U(Mn(A))/U0(Mn(A)), where U(Mn(A)) is the group of unitaries in Mn(A) and
U0(Mn(A)) is the connected component of the identity.

The first major contribution toward classification of C∗-algebras was made by
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G.A. Elliott in 1976. He showed that the AF C∗-algebras are completely classified
by the ordered group (K0(A),K0(A)+), the dimension group. A C∗-algebra A is
said to be nuclear if the minimal C∗-norm is a unique C∗-norm on the algebraic
tensor product of A with any C∗-algebra B. The class of nuclear C∗-algebras is in
some sense a C∗-counterpart of the class of injective von Neumann algebras. Many
characterizations of nuclear C∗-algebras are known; for example, A is nuclear if and
only if π(A)′′ is injective for any representation of A. The nuclear C∗-algebras are
closed under basic operations such as inductive limits, quotients by closed ideals,
tensor products and crossed products by actions of amenable groups. In particular,
AF algebras are nuclear, and the amenability of a discrete group G is equivalent to
the nuclearity of the reduced C∗-algebra C∗r (G) (similarly to the hyperfiniteness of
the group von Neumann algebra L(G)).

Exact C∗-algebras form an important class. A C∗-algebra is said to be exact if
the sequence of the minimal C∗-tensor products

0→ A⊗J → A⊗ B → A⊗ (B/J )→ 0

is exact whenever J is a closed ideal of an arbitrary C∗-algebra B. This class
includes the nuclear C∗-algebras. For example, the reduced C∗-algebra C∗r (Fn) of
the free group Fn is not nuclear but exact. Indeed, it is open whether C∗r (G) is exact
for every countable discrete group G. A C∗-subalgebra of an exact C∗-algebra is
exact, and the exact C∗-algebras are closed under the operations of inductive limits,
minimal tensor poducts and quotients. It seems that the role of exact C∗-algebras
has increased in recent development of C∗-algebra theory since the appearance of
the work of Kirchberg.

The group C∗-algebra C∗r (Fn) is out of the scope of well-established algebraic
invariants; nevertheless, K-theory can detect n from the reduced C∗-algebra of Fn.
In 1982 Pimsner and Voiculescu computed the K-groups

K0(C∗r (Fn)) = Z and K1(C∗r (Fn)) = Zn ,

and this computation proves that C∗r (Fn) is not isomorphic to C∗r (Fm) for n 6= m.
The isomorphism question of whether L(Fn) 6∼= L(Fm) if n 6= m is still open, and
a possible approach uses the free entropy dimension, which is a candidate for a
reasonable entropic invariant.

Let a1, . . . , aN ∈ Msa and assume that S1, . . . , SN ∈ Msa is a free family of
semicircular elements which are in free relation to {a1, . . . , aN}. Then the free
entropy dimension δ(a1, . . . , aN ) is defined in terms of the multivariate free entropy
by

δ(a1, . . . , aN ) := N + lim sup
ε→+0

χ(a1 + εS1, . . . , aN + εSN)
| log ε| .

Note that the above S1, . . . , SN always exist when we enlarge M by taking a free
product with another von Neumann algebra, and that the joint distribution of
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a1 + εS1, . . . , aN + εSN is independent of the choice of S1, . . . , SN , so δ(a1, . . . , aN )
is well-defined.

Let g1, g2, . . . , gN be generators of FN . Then ai = Lgi + Lg−1
i

form a free
family of semicircular noncommutative random variables, and δ(a1, . . . , ak) = k for
k ≤ N . Proving the lower semicontinuity of the free entropy dimension would be
very exciting, for the following reason. If a1, a2, . . . , aN are in free relation and
bi ∈ {a1, a2, . . . , aN}′′, then

δ(a1, a2, . . . , aN ) ≤ δ(a1, a2, . . . , aN , b1, . . . , bM ) (12)

with equality when the bi’s are polynomials of the aj ’s. This is a proven fact. If
the lower semicontinuity held, we would have equality in (12) without any further
hypothesis on the bi’s. The isomorphism L(FN ) ∼= L(FM ) would imply that in
this von Neumann algebraM there exist two systems a1, . . . , aN and b1, . . . , bM of
generators, each of which consists of free semicircular variables. Hence, the above
equality in (12) gives

N = δ(a1, . . . , aN) = δ(a1, . . . , aN , b1, . . . , bM ) = δ(b1, . . . , bM ) = M .

In this way, the lower semicontinuity of δ(a1, . . . , aN ) would imply the solution of
the isomorphism problem.

In the parametrization of the von Neumann algebras L(Fn) the integer n is a
discrete parameter when free group factors are considered. However, in the work of
K. Dykema and F. Rădulescu a continuous interpolation L(Fr) appears, where r
is real and r > 1. Those are the so-called interpolated free group factors. It turned
out that they are either isomorphic for all parameter values or non-isomorphic for
any two different values of r. So one of the two extreme cases holds true. However,
the stable isomorphism L(Fr)⊗B(H) ∼= L(Fs)⊗B(H) is known.

The existence of the interpolation of the free group factors may suggest that
the L(Fn) are all isomorphic, contrary to the indication from the free entropy
dimension.
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