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Abstract. The small dispersion limit of the focusing nonlinear Schroödinger equation (NLS)
exhibits a rich structure of sharply separated regions exhibiting disparate rapid oscillations at
microscopic scales. The non self-adjoint scattering problem and ill-posed limiting Whitham equa-
tions associated to focusing NLS make rigorous asymptotic results difficult. Previous studies
[KMM03, TVZ04, TVZ06] have focused on special classes of analytic initial data for which the
limiting elliptic Whitham equations are well-posed. In this paper we consider another exactly
solvable family of initial data, the family of square barriers, ψ0(x) = qχ[−L,L] for real amplitudes

q. Using Riemann-Hilbert techniques we obtain rigorous pointwise asymptotics for the semiclas-
sical limit of focusing NLS globally in space and up to an O(1) maximal time. In particular, we

show that the discontinuities in our initial data regularize by the immediate generation of genus
one oscillations emitted into the support of the initial data. To the best of our knowledge, this

is the first case in which the genus structure of the semiclassical asymptotics for fNLS have been
calculated for non-analytic initial data.

1. Introduction and background

In this paper we study the semi-classical limit of the Cauchy problem for the focusing nonlinear
Schrödinger equation (NLS)

(1) iǫψt +
ǫ2

2
ψxx + ψ|ψ|2 = 0, ψ(x, 0) = ψ0(x),

for the family of square barrier initial data

(2) ψ0(x) =

{
q |x| ≤ L

0 |x| > L

for any choice of constants q, L > 0. In this scaling ǫ is a dispersion parameter which we take to be
small, 0 < ǫ ≪ 1. Specifically, our goal in studying the semiclassical limit is to derive a uniform
asymptotic description of the limiting behavior of the ǫ-parameterized family of solutions ψ(x, t; ǫ)
of the above Cauchy problem as we let ǫ ↓ 0 for (x, t) in compact sets.

The focusing NLS equation is of course very well known, describing phenomena in a diverse
variety of fields, from the theory of deep water waves [BN67] to the study of Langmuir turbulence
in plasmas [Zak72]. In fact, under suitable assumptions the NLS equation arrises generically in
he modeling of any weakly nonlinear, nearly monochromatic, dispersive wave propagation. In
particular, it has been used extensively in nonlinear optics where it has been used to describe the
evolution of the electric field envelope of picosecond pulses in monomodal fibers [HT73]. In this
last setting, the small dispersion limit is an appropriate scaling to model the expanding use of
dispersion-shifted fiber in applications.
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An important feature of the focusing NLS equation is its modulational instability. The instability
can be understood in a number of ways, we present here the nonlinear perspective supported
by Whitham [Whi99]. Without loss of generality we can write the solution of (1) in the form
ψ(x, t) = A(x, t)eiS(x,t)/ǫ with A(x, t) and S(x, t) real. If we assume that A(x, t) and S(x, t) evolve
slowly with ǫ, then the solution q(x, t) looks locally like a plane wave with amplitude A(x, t),
wavenumber ∂xS(x, t), and frequency −∂tS(x, t). Writing ψ(x, t) in this form and setting ρ(x, t) =
|ψ(x, t)|2 = A(x, t)2 and u(x, t) = Im ∂x logψ(x, t) = Sx(x, t) we get the following coupled system
of equations which is completely equivalent to NLS:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
− ∂ρ

∂x
+ u

∂u

∂x
=
ǫ2

2

(
1

2ρ

∂2ρ

∂x2
−
(

1

2ρ

∂ρ

∂x

)2
)(3)

Assuming that the wave parameters evolve slowly with ǫ we can regard the right-hand side as
a perturbative correction which we may formally drop. Doing so we arrive at the (genus zero)
modulation equations associated with (1),

[
ρ
u

]

t

+

[
u ρ
−1 u

] [
ρ
u

]

x

= 0(4)

This is a quasilinear system of partial differential equations and it is easy to check that its char-
acteristic speeds are given by u ± i

√
ρ which are complex at any point at which ρ 6= 0. Thus

the limiting system of equations is elliptic for which the Cauchy problem is ill-posed. In fact, the
Cauchy problem for an elliptic systems is solvable (by the Cauchy-Kovalevskaya method) only if we
insist that the initial data ρ(x, 0) and u(x, 0) are analytic functions of x. This is an overly restric-
tive condition for a physical system, and one which our square barrier initial data (2), with jump
discontinuities, does not satisfy. The ill-posedness of the limiting equations makes the semiclassical
limit a very delicate question in general and particularly delicate in the case of interest where the
initial data is discontinuous. In fact, our results imply that even away from the discontinuities
the limiting behavior cannot be described by a guess of the form ψ = AeiS/ǫ without admitting
multi-scale expansions of A and S from the onset.

The original observation was that the modulational instability of the NLS equation would lead
to ostensibly chaotic wave-forms. However, a number of numerical studies [MK98, BK99, LM07]
observed that the wave forms show a large degree of order exhibiting disparate regions of regular
quasiperiodic oscillatory ǫ-scaled microstructures separated be increasingly sharp curves in the
(x, t)-plane called caustics or breaking curves, whose scale is set by the initial data. Our main goal
in studying the semiclassical limit is to analytically find the caustics and to describe the asymptotic
behavior of the oscillations in the interlaying regions offset by these caustics.

Analytic results concerning the behavior of NLS are possible because of its integrable structure
which allows one, in principle, to solve the Cauchy problem by the forward/inverse scattering
transform using the Lax pair representation [ZS71] for NLS. This procedure consists of three steps:

Step 1. From the eigenvalue problem in the Lax pair (5a) determine the ”spectral data” produced
by the given initial data ψ0. This is the forward scattering step in the procedure.

Step 2. Use the time-flow part of the Lax pair (5b) to describe the spectral data’s time evolution
as the potential ψ evolves under the NLS equation.

Step 3. Given the scattering data at time t, invert the forward scattering transform of Step 1 to
find the solution ψ(x, t) of the NLS equation at a later time. This step for NLS, as is often
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the case, may be characterized as a matrix-valued Riemann-Hilbert problem, reducing the
inversion problem to a question of analytic function theory.

For a non-integrable problem there is no reason to believe such a procedure should exist. The
amazing fact is that for integrable problems the evolution of the spectral data in step 2 is explicit
and relatively simple, and moreover, the inversion of the spectral map required in step 3 is actually
a well-defined map.

The semiclassical limit greatly complicates the analysis in both Steps 1 and 3 In the scattering
step one must determine both the discrete spectrum (L2 eigenvalues) and the so called reflection
coefficient defined on the real line (the continuous spectrum) of the Zakharov-Shabat (hereafter
ZS) scattering problem (5a). The focusing ZS problem, unlike the scattering problems for KdV or
defocusing NLS, is not self-adjoint and this makes the determination of the scattering data highly
nontrivial. Numerical evidence [Bro96] and asymptotic results [Mil01] suggest that the number of
eigenvalues scales as 1/ǫ and asymptotically accumulate on a “Y”-shaped spectral curve for a large
class of initial data. The analysis of the inverse scattering step is also frustrated by the vast amount
of spectral data. Among other issues, the eigenvalues of the scattering step become poles of the
Riemann-Hilbert problem and one is faced with seeking a function with an ever growing number
of poles. The question of how to best interpolate the poles is one of the first difficulties one has to
address in the inverse scattering step.

The situation is somewhat simplified for real data with a single maximum, in this case it has been
shown [KS03] that the eigenvalues are confined to the imaginary axis. However, exact determination
of the eigenvalues is possible only in special cases, among them the Satsuma-Yajima data and its
generalization [SY74, TV00], and piecewise constant data. The exact solvability of the scattering
problem for square barrier data (2) is one of the principle motivations for using it as a model
of how the semiclassical evolution smooths out discontinuities. The somewhat common practice
of replacing the exact scattering data with simpler approximate data is a dubious procedure for
studying initial data with discontinuities. The scattering problem has been shown to be very
sensitive to perturbations of the initial data [Bro01], and its not clear how using ”nearby” scattering
data would effect the discontinuities of the initial data. For this reason we found it crucial to solve
the true Cauchy problem; we make no approximations to either the initial or scattering data. The
only approximations we make are in the inverse problem where the error can be controlled.

Despite the numerous frustrations, in recent years there has been considerable progress on study-
ing the semiclassical focusing NLS equation. In [KMM03] the authors considered the semiclassical
limit of certain soliton ensembles, that is, families of real, analytic, reflectionless initial data whose
eigenvalues are given by a quantization rule. In a separate study [TVZ04, TVZ06] the initial data
ψ0(x) = sech(x)1+iµ/ǫ was considered to study the effect of a nontrivial complex phase on the evo-
lution. In both cases, the authors found sharply separated regions of the (x, t)-plane inside which
the leading order asymptotic behavior of the solution is described in terms of slowly modulated
wave trains of a particular genus whose Riemann invariants’ evolution is described by the Whitham
equations of the corresponding genus. For each fixed x and increasing t one encounters these sharp
transitions, or caustics, across which the genus of the asymptotic description changes. In particu-
lar, in both cases it was observed that up to some primary caustic T (x), that is for t < T (x), the
evolution was initial described by slowly modulated plane wave with invariants satisfying the genus
zero Whitham equations (4).

In both the above cases the initial data considered is analytic, and this plays an important role in
the analysis of the inverse problem. Additionally, we note that due to the analyticity of the initial
data the limiting elliptic modulation equations are locally well-posed. For non-analytic initial data



4 ROBERT JENKINS AND KENNETH D. T-R MCLAUGHLIN

it’s not clear what should happen for small (but fixed) times in the semiclassical limit; in principle,
the evolution could be described by arbitrarily high genus waves from the onset of evolution. The
situation for square barrier data is necessarily complicated; in the small time limit it was shown first
in [DM05] for the defocusing case and in [ER06] for the Manakov system (of which focusing NLS
is a special case) that the small time limit of the evolution with initial data given by (2) is equal
to the evolution of the linear problem and Gibbs phenomena occur at the discontinuities. These
Gibbs phenomena generate oscillations of arbitrarily short wavelength which propagate away from
the discontinuities. Of course, in the semi-classical scaling any fixed time independent of ǫ is not a
small time in the limit, but the existence of rapid oscillations from the onset is a strong indication
that something singular must be occurring near the discontinuities. One of the principal goals in
this study is to understand how the semiclassical NLS evolution smooths the discontinuities in the
square barrier (2) initial data.

In this paper as in all of the above mentioned studies the bulk of the work is contained in
analyzing the Riemann-Hilbert problem (hereafter RHP) associated with the inverse scattering
transform. The results are asymptotic in nature and rely on the nonlinear steepest-descent method
developed by Deift and Zhou first in [DZ93] and then generalized in [DZ94, DVZ94] and in the
works of many others. The method, in a nutshell, seeks to construct an explicit parametrix P (z)
such that the transformation m(z) = E(z)P (z) maps the solution m(z) of the original RHP to
a new unknown E(z) which satisfies a small-norm RHP whose solution and asymptotic behavior
can be given in terms of certain singular integrals. In each of the semiclassical and small-time
studies mentioned above, as in most cases where the steepest-descent method has been successful,
the construction of the parametrix revolves around the study of a single complex phase function of
the type eiθ(z)/ǫ which must be controlled.

The fact that the scattering data in the previous studies can be reduced to a single complex phase
is a consequence of the choice to study very ‘nice’ initial data. By studying square barrier data we
hope to gain an understanding of solutions for more generic types of initial data, i.e. data outside
the analytic class for which the limiting problem (4) is ill-posed. As soon as we consider initial
data outside the analytic class, we immediately encounter scattering data which cannot be reduced
to a single dominant complex phase. For the square barrier data considered here the reflection
coefficient takes the form of a whole series:

∑∞
k=0 rk(z)e

iθk(z)/ǫ where the rk(z) are ǫ-independent
algebraically decaying weights (c.f. Sec. 3.1.1). As we will show, as x and t evolve, different
terms in the expansion give the dominant contribution in different parts of the spectral z-plane.
In the course of our analysis we show that for times t up to the secondary breaking the analysis
is dominated by the two lowest phases θ0 and θ1. However, we see no a-priori way to rule out the
possibility that at later times the higher order harmonics emerge to contribute at leading order.

In addition to being multi-phased, the reflection coefficient for rough initial data is necessarily
slowly decaying; just as the Fourier transform the reflection coefficient, r(z), for discontinuous initial
data decays as 1/z for z ∈ R. The slow decay forces us to consider the contribution of the reflection
coefficient everywhere on the real line. This makes the analysis more difficult than those considered
in [KMM03, TVZ04] where the reflection coefficient, at worst, contributes only on a finite interval.
To complete the inverse analysis we had to marry techniques for analyzing multi-soliton RHPs with
those for pure reflection problems. This complication is greatest at the real stationary phase points
introduced by the steepest-descent method. On the real line no phase is completely dominant and
the multiphase nature of the reflection coefficient lead us to construct delicate ‘annular’ local models
in neighborhoods of these stationary phase points. This model is discussed in Section 3.3.3; to our
knowledge our annular construction is the first of its kind.
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1.1. Statement of the main results. The culmination of our work in this paper is the following
theorem which describes the leading order asymptotic behavior of the solution of the Cauchy prob-
lem defined by eqs. (1) and (2) for arbitrarily large times t outside the initial support and up to a
secondary caustic for x inside the support of the initial data.

L�L

L

q

L

2 2 q

S0 S0
S

S1

S

S2

S

S2

y(x,alyts i

x, t) =FOCerqu

Figure 1. The regions Sk, k = 0, 1, 2 in which we have a description of the
semi-classical limiting behavior for the initial data (2) and the caustics T1 and T2
separating the regions.

Theorem 1. Consider the curves t = T1(|x|) and t = T2(|x|) defined by (89) and (144) respectively.
Label by Sk, k = 0, 1, 2, the following subsets of R× [0,∞) (see Figure 1):

S0 = {(x, t) : |x| > L, t ≥ 0}
S1 = {(x, t) : |x| < L, 0 ≤ t < T1(x)}
S2 = {(x, t) : |x| < L, T1(x) < T < T2(x)}

Then for all sufficiently small ǫ, the solution ψ(x, t) of the focusing NLS equation (1) with initial date
given by (2) satisfies the the following asymptotic description on any compact Kj ⊂ Sj , j = 0, 1, 2:

|ψ(x, t)− ψasy(x, t)| = O
(
ǫ1/2 log ǫ

)
,

where,

i. For (x, t) ∈ S0,

ψasy(x, t) = 0.

ii. For (x, t) ∈ S1, the limiting behavior is described by the nearly plane wave solution

ψasy(x, t) = q exp

[
i

ǫ

(
q2t+ ǫω(x, t)

)]
,

where

ω(x, t) = − 1

π

(∫ ξ1

−∞
−
∫ ∞

ξ0

)
log(1 + |r0(λ)|2)√

λ2 + q2
dλ,

and r0, ξ1, and ξ0 are defined by (29), (90), and (92) respectively.
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iii. For (x, t) ∈ S2, the limiting behavior is described by the slowly modulating one-phase wave-train

ψasy(x, t) = (q − Imα))
Θ(0)

Θ(2A(∞))

Θ(2A(∞) + iT0 − iǫ−1Ω)

Θ(iT0 − iǫ−1Ω)
e−2iY0 .

Here, Θ(z) is the Reimann theta function, see (170), for the Riemann surface associated with
the function

R(z) =
√

(z − iq)(z + iq)(z − α(x, t))(z − α(x, t)∗)

The points α(x, t) and α(x, t)∗ are complex Riemann invariants described by Propostition 9 and
whose evolution satisfies the genus-one Whitham equation (141). The remaining parameters
are all slowly varying functions of (x, t) described in terms of certain Abelian integrals:

A(∞) = −iπ
∫ ∞

iq

dz

R(z)

/∫ α

α∗

dz

R(z)

and Ω, T0, and Y0 are given by (125), (174), and (177) respectively.

We make the following observations concerning our results:

1. The barrier does not asymptotically spread out in time, though at any time t > 0 the solution
is no longer compact supported. Our theorem establishes an asymptotically vanishing bound on
the amplitude of the solution for x outside the support of the initial data. However, it does not
provide any information about the nature of the small amplitude oscillations that occur in the
exterior region. These smaller corrections could be found by calculating the higher order terms
in the expansion of the small norm RHP 3.5 but we did not pursue this here.

2. In the regions S0 (trivially) and S1 the asymptotic limiting solution ψasy(x, t) is a slowly mod-
ulating plane wave solutions of (4), the genus-zero Whitham equations. The most interesting
feature of the solution in this region is the slowly evolving correction to the phase ω(x, t). This
correction has in important consequence: the Whitham modulation theory (discussed around
(3) and (4) above) fails to capture the behavior of the solution. The modulation theory cannot
recover the slow phase correction ω(x, t) which constitutes an O (1) correction to the solution’s
phase; the Riemann-Hilbert analysis naturally recovers this phase. This is explained in detail in
Section 4.7 where we show that this correction does not correspond to a regular correction to
the geometric optics approximation predicted by WKB.

3. The evolution regularizes the initial shocks in the square barrier data at x = ±L by the instan-
taneous onset of genus-one oscillations in the growing region S2. This is consistent with the
previous studies [KMM03, TVZ04] where the mechanism for formation of the primary caustic is
the formation of an elliptical shock in the solution of the genus zero modulation equations valid
for times before the primary caustic.

4. The fact that the reflection coefficient is NOT single phase is not merely a technical difficulty.
The second breaking time T2(x) which gives an upper bound on the genus-one region S2 can be
characterized in terms of a critical transition related to the second phase.

1.2. Outline of the rest of the paper. The remainder of the paper is concerned with establishing
the proof of Theorem 1. In Section 2 we quickly review the details of the forward scattering theory
pertinent to our analysis and show how one explicitly calculates the scattering data for initial
data given by (2). In section 3 we consider the inverse problem for x outside the support of the
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initial data. Section 4 concerns the inverse problem inside the support up the first caustic while
Section 5 covers the inverse problem between the first and secondary caustics. The analysis in
each of the last three sections is largely self-contained though for the sake of brevity we use results
and estimates from the previous sections whenever possible. In particular, the properties of the
reflection coefficient and resulting jump matrix factorizations discussed in Sections 3.1.1 and 3.2
are used throughout the paper.

Finally, a quick note on notation. Throughout the paper we make extensive use of the spin
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Additionally, given any nonzero scalar λ and matrix A let

λσ3 =

(
λ 0
0 λ−1

)
, and λadσ3A = λσ3Aλ−σ3 .

With respect to complex variable notation, we let z∗ denote complex conjugate of any complex
number or matrix z and let A† denote the hermitian conjugate of any matrix A. For complex
valued functions f(z) of a complex variable z we denote by f∗(z) or simply f∗ the Schwarz reflection:
f(z∗)∗. In the rare case when only the function value is to be conjugated we write f(z)∗.

2. Forward scattering of square barrier data

We here quickly review the forward scattering theory necessary to define the Riemann-Hilbert
problem associated with the inverse scattering problem. We omit proofs, preferring to get as quickly
as possible to the analysis of the inverse problem. The interested reader is referred to [BC84, BDT88]
for a comprehensive treatment of the subject.

The NLS equation is completely integrable in the sense that it has a Lax pair structure. In
[ZS71] Zakharov and Shabat showed that the focusing NLS equation (1) can be recognized as the
compatibility condition for the following overdetermined pair of equations:

ǫWx = LW, L := −izσ3 +
(

0 ψ
−ψ∗ 0

)
(5a)

iǫWt = BW, B := izL − 1

2

(
|ψ|2 ǫψx

ǫψ∗
x −|ψ|2

)
(5b)

The Lax pair allows one, in principal, to solve the NLS equation using the forward/inverse scattering
procedure. In the forward scattering step, one takes given initial data ψ(x, t = 0) = ψ0(x) that
decays suitable quickly and seeks a solution W of the first equation in the Lax pair (5a), known as
the Zakharov-Shabat eigenvalue problem, in the form

(6) W = me−
i
ǫxzσ3

such that,

i. m→ I, as x→ ∞
ii. m(·, z) is bounded and absolutely continuous

(7)

The construction of m from initial data is a nontrivial step which can be calculated explicitly only
in special cases. However, for any potential ψ0 ∈ L1(R), the solution m must have the following
properties [BC84]:

1. There exist a discrete set Z in C\R such that for each z ∈ C\(R∪Z) there exist a unique solution
of W of ǫWx = LW in the form (6) satisfying (7),
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2. m(x, z) is a meromorphic function of z in C\R whose poles are precisely the elements of Z and
on C\R, limz→∞m(x, z) = I.

3. The function m(x, z) takes continuous boundary values m±(x, z) := limδ→0+ m(x, z ± iδ) for
each z ∈ R which satisfy a “jump relation”, m+ = m−v(x, z), where:

(8) v(x, z) = e−
i
ǫxzσ3

(
1 + |r(z)|2 r∗(z)

r(z) 1

)
e

i
ǫxzσ3 .

4. The points in Z come in complex conjugate pairs. At each simple pole (the generic case) the
residues of m satisfy a relation of the form

for zk ∈ C
+, Res

zk
m = lim

zk
m(x, z)

(
0 0

cke
2izx

ǫ 0

)
,

for z∗k ∈ C
−, Res

z∗
k

m = lim
z∗
k

m(x, z)

(
0 −c∗ke−

2izx
ǫ

0 0

)
.

(9)

The form of the jump matrix and the poles coming in conjugate pairs is a consequence of the
reflection symmetry

(10) m(x, z∗) = σ2m(x, z)∗ σ2.

implied by (5a).
The collection of poles {zk}, the connection coefficients {ck}, and the function r(z), called the

reflection coefficient, appearing in the jump matrix (8) constitute the totality of the scattering data
generated by the initial potential ψ0(x).

Though one is interested in building m(x, z) for z off the real axis, the construction of the
scattering data usually begins by restricting z to the real axis. For real z one seeks solutions W (+)

and W (−) of (5a) normalization such that:

(11) lim
x→±∞

W (±)e
i
ǫxzσ3 = I.

Each of these so called Jost solution constitutes a fundamental solution of the differential equation
for z ∈ R and thus the two solutions satisfy a linear relation of the form

(12) W (−)(x, z) =W (+)(x, z)S(z), z ∈ R.

The matrix S, called the scattering matrix, is independent of x and takes the form

(13) S(z) =

(
a(z) −b∗(z)
b(z) a∗(z)

)
, detS = |a(z)|2 + |b(z)|2 ≡ 1.

The normalized solution m is then constructed by examining the integral equation representations
of W (±) and observing that different columns of each solution extend analytically to C

+ or C−. In
the process of this construction one finds that the function a(z) extends analytic to C

+, while b(z)
is, in general, defined only on the real axis. Moreover, the poles zk are precisely the zeros of a(z)
in C

+ and the reflection coefficient r(z) is defined by the ratio

(14) r(z) := b(z)/a(z), z ∈ R.

The time evolution of the scattering data is remarkably simple. As ψ evolves according to (1)
the coefficients in the Lax operators L and B gain time dependence which in turn is inherited by the
spectral data. A basic consequence of the Lax pair structure, is that the time-flow is iso-spectral
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[Lax68], that is, the eigenvalues {zk} and their conjugates are invariant in time. The remaining
scattering data evolve as follows:

(15) r(z, t) = r(z)e
2itz2

ǫ , and ck(t) = cke
2itz2

ǫ ,

where r(z) and ck above are the values of each datum at time t = 0.
Given the time evolved spectral data, the problem of reconstructing the potential ψ can be

cast as a meromorphic Riemann-Hilbert problem (RHP). For each x and t one seeks a piecewise
meromorphic matrix-valued solution m(z;x, t) of the following properties:

Riemann-Hilbert Problem 2.1 for focusing NLS. Given the intitial scattering data r(z),
{zk}, and {ck}, find a function m(z;x, t) such that:

1. m is meromorphic in C\R with poles at the points zk and their complex conjugates.
2. As z → ∞ in C\R, m→ I.
3. As z approaches R from above and below m assumes continuous boundary values m± satisfying

the jump relation m+ = m−v, where

(16) v = e−
i
ǫ (tz

2+xz)

(
1 + |r(z)|2 r∗(z)

r(z) 1

)
e

i
ǫ (tz

2+xz).

4. The poles of m at each zk and z∗k are simple and satisfy the residue conditions

Res
zk

m = lim
zk
m

(
0 0

cke
i
ǫ (2tz

2+2xz) 0

)

Res
z∗
k

m = lim
z∗
k

m

(
0 −c∗ke−

i
ǫ (2tz

2+2xz)

0 0

)(17)

If m(z;x, t) is the solution of this problem for the giving scattering data generated by initial data
ψ0(x) then the function defined by the limit

(18) ψ(x, t) = 2i lim
z→∞

z m12(z;x, t)

exists and is a solution of the focusing NLS equation (1).

2.0.1. Scattering for compactly support data, exact solutions for square barrier data. Here we record
some additional properties of the scattering data when the initial potential ψ0(x) is compactly
supported. Additionally, we find explicit formulas for the scattering data when the initial data is
piecewise constant and compactly supported which includes the square barrier initial data with
which we are interested.

For bounded compact potentials ψ0, the Jost functions W
(±)(x, z) are entire functions of z. The

scattering relation (12) thus holds not only on the real axis, but in the entire complex plane, and the
scattering coefficients a(z) and b(z) are both entire functions for compact initial data. Additionally,
the connection coefficients ck can be expressed explicitly in terms of the scattering coefficients as

(19) ck =
b(zk)

a′(zk)
= Res

zk
r(z).

This relation between the connection coefficients and the residues of the reflection coefficient, which
is false for generic L1 initial data, will later play a fundamental role in our analysis of the inverse
problem.

As discussed previously, calculating explicit formulae for the scattering data generated by generic
initial data is intractable, particularly in light of the singular dependence of the scattering data on
the dispersion parameter ǫ. However, for initial data which is compact and piecewise constant the
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forward scattering problem is simple. We can assume freely that the initial data is supported on
an interval [−L,L], and write it as

ψ0(x) =

n∑

k=1

qk1[xk−1,xk),

where −L = x0 < x1 < . . . < xn = L is a partition of the interval [−L,L], the qk are complex
constants, and 1[a,b) denotes the characteristic function on [a, b). On each interval [xk−1, xk), the

ZS scattering problem (5a) reduces to a constant coefficient ODE. The Jost solutions W (±)(x, z)
are calculated by solving the ZS problem on each interval and patching the solution together by
demanding continuity at the partition points. That calculation leads to the following formula for
the scattering matrix:

S(z) = eizLσ3/ǫ e
1
ǫ (−izσ3+Q1)(x1−x0) × . . .

. . .× e
1
ǫ (−izσ3+Qn)(xn−xn−1) eizLσ3/ǫ, Qk =

(
0 qk

−q∗k 0

)
.

In the simplest case, the potential consist of a single barrier ψ0(x) = q 1[−L,L]. The scattering
coefficients a(z) and b(z) are then

a(z) =
ν(z) cos

(
2Lν(z)

ǫ

)
− iz sin

(
2Lν(z)

ǫ

)

ν(z)
e2Liz/ǫ,(20)

b(z) =
−q sin

(
2Lν(z)

ǫ

)

ν(z)
,(21)

where

(22) ν =
√
z2 + q2.

From the explicit formalae it is clear that both a(z) and b(z) are both entire functions of z. For
real values of the constant q, the initial potential ψ0(x) falls in to the class of real potentials of a
single maximum; as such the poles zk, which are the zeros of a(z) in the upper half plane, must lie
on the imaginary axis [KS02]. Using the explicit formula for a(z) we find that the zk are confined
to the imaginary interval i[0, q), and asymptotically there are roughly 1/ǫ poles in the the interval;
as ǫ ↓ 0 they collect according to the asymptotic density

(23) ρ0(z) =
2Lq

π

z√
z2 + q2

,

which shows that the density has integrable singularities at z = ±iq. For convenience we exclude
the countable set of values at which eigenvalues are ‘born’ at the origin

ǫ 6= ǫn, ǫn =
4Lq

(2n+ 1)π
, n = 0, 1, 2, . . . .

Making use of these explicit formulae for the scattering data we state the exact Riemann-Hilbert
problem for the inverse scattering given square barrier initial data defined by (2):

Riemann-Hilbert Problem 2.2 for focusing NLS with square barrier initial data Find
a matrix valued function m(z;x, t) satisfying the following properties:

1. m is meromorphic for z ∈ C\R, with simple poles at each zk ∈ C
+ and its complex conjugate.

Here, the points zk enumerate the zeros in C
+ of the function a(z) defined by (20).
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2. As z → ∞, m = I +O (1/z).
3. m takes continuous boundary values for z ∈ R, m+ and m− satisfying the jump relation, m+ =

m−v where

(24) v =

(
1 + |r|2 r∗e−

i
ǫ θ

re
i
ǫ θ 1

)
, θ = 2tz2 + 2xz.

4. m satisfies the residue conditions

Res
z=zk

m = lim
z→zk

m

(
0 0

Res
z=zk

re
i
ǫ θ 0

)
,

Res
z=z∗

k

m = lim
z→z∗

k

m

(
0 − Res

z=z∗
k

r∗e−
i
ǫ θ

0 0

)
.

(25)

In (24) and (25), the reflection coefficient r(z) is given by

(26) r(z) =
−q sin

(
2Lν(z)

ǫ

)

ν(z) cos
(

2Lν(z)
ǫ

)
− iz sin

(
2Lν(z)

ǫ

)e−2Liz/ǫ.

Finally, if m(z;x, t) is the solution of this problem, then (18) gives the solution of focusing NLS
(1) given the square barrier initial data (2).

The goal now is to use the Deift-Zhou steepest-descent method to construct an approximation
P (z) to the solution of this RHP such that the ratio E(z) defined by m(z) = E(z)P (z) is uniformly
accurate in the semiclassical limit as ǫ→ 0+. The approximation depends parametrically on (x, t)
via the function θ(x, t) appearing in the RHP. In the following sections we will construct such an
approximation in each of the space time regions Sk, k = 0, 1, 2, described in Theorem 1. This
procedure consists of four major steps. 1. We introduce a pole removing transformation m 7→ M
such that the new unknown M satisfies a holomorphic RHP. 2. The transformation to M typically
introduces contours on which the jump matrices are asymptotically unstable in the semiclassical
limit; we therefore introduce a so-called g-function transformation to remove the unstable jump
matrices. 3. By explicit factorization of the jump matrices we deform the remaining oscillatory
jumps onto contours where they are exponentially near identity. 4. We build a global approximation
A(z) to the remaining problem and show that the resulting error E(z) satisfies a small norm RHP.
Once the problem is reduced to small-norm form, the theory of small norm RHPs gives a uniform
asymptotic expansion of E(z). By unravelling the series of explicit transformations leading from
m to E we get an asymptotic expansion for the solution of the original RHP 2.2 and through (18)
the solution ψ(x, t) of NLS.

3. Inverse problem outside the support of the initial data

Here we consider the Riemann-Hilbert problem 2.2 with scattering data generated by the square
barrier initial data (2) for values of x outside the support of the initial data. Because the NLS
equation preserves even initial data we will consider only x > L. As will become apparent this
is the simplest case in which to carry out the inverse analysis and much of what we do here will
be used in Sections 4 and 5 where we consider the inverse analysis for x inside the support of the
initial data.
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3.1. Reduction to a holomorphic RHP. To utilize the nonlinear steepest descent method we
first need to remove the poles from the Riemann-Hilbert problem. In the reflectionless case this can
be accomplished by introducing contours C and C∗ enclosing the locus of pole accumulation in C

+

and C
− respectively. A new unknown M is constructed inside these contours from an interpolate

of the connection coefficients and an explicit Blaschke factor term encoding the zk in such a way
that the new unknown has no poles, see [KMM03] for such a construction. For compact initial data
there is a more direct construction; the reflection coefficient extends meromorphically off the real
line and the relation (19) shows that the reflection coefficient naturally interpolates the poles of m.

Ξ

W

C

W*

C*

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 2. Schematic representation of the contours C and C∗ and the regions Ω
and Ω∗ involved in the pole removing factorization. The dashed line represents the
loci of pole accumulation.

Fix a point ξ < 0, and take C a semi-infinite contour in C
+ terminating at ξ such that the region

Ω enclosed by C and the real interval [ξ,∞) contains the locus of pole accumulation i[0, q], see
Figure 2. Let C∗ and Ω∗ denote the respective complex conjugate contour and region. Then the
new unknown

(27) H =





m

(
1 0

−re i
ǫ θ 1

)
: z ∈ Ω

m

(
1 r∗e−

i
ǫ θ

0 1

)
: z ∈ Ω∗

m : elsewhere

has no poles. The price one pays to remove the poles in this way is the appearance of new jumps
along the contours C and C∗ in the resulting RHP for H. In order to preserve the normalization
of the RHP and arrive at a problem amenable to steepest descent analysis the transformation
from m to H needs to be asymptotically near-identity for large z. This condition amounts to
understanding how the factor reiθ/ǫ appearing in the off-diagonal entries of the transformation
behaves in the complex plane.
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3.1.1. Multi-harmonic expansion of the reflection coefficient. For z ∈ R the reflection coefficient
(26) is rapidly oscillatory, but once z moves off the real axis any finite distance it has a simple,
ǫ independent, asymptotic limit. As previously noted, the values of the reflection coefficient are

independent of the branch cut given to ν =
√
z2 + q2. For convenience we take ν to be branched

on some simple finite contour γ and normalized to ∼ z for z large. For z ∈ C
+ outside the region

enclosed by γ and the imaginary axis (i.e. the set where Im ν > 0)

(28) r(z)eiθ/ǫ =

∞∑

k=0

rk(z)e
iθk/ǫ,

where

r0(z) =
−iq

ν(z) + z
(29)

and

rk(z) = (−1)k−1r0(z)
2k−1

(
1 + |r0(z)|2

)
, k ≥ 1;

θk = 2tz2 + 2(x− L)z + 4kLν, k ≥ 0.
(30)

In particular, the expansion is uniformly convergent for z ∈ C
+ with |z| large. The expansion

highlights the central technical difficulty of this problem; in previous studies where the semi-classical
inverse problem has been successfully solved [KMM03], [TVZ06], a single exponential factor emerges
in the jump matrices which one must control. Here, we have an infinite sum of different harmonics—
one can think of (28) as a generalized Fourier series for r—each contributing to the analysis. A
priori, we have no way of knowing which harmonics contribute for each choice of parameters (x, t).
However, in the course of our analysis we will see that, at least up to the second caustic, the first
two harmonics θ0 and θ1 dominate the analysis.

Ξ1

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ExpB i Θ1
Ε
F

Ξ0

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ExpB i Θ0
Ε
F

Figure 3. The regions of growth (white) and decay (grey) of the two principal
harmonics for x > L and t > 0. The dashed line represents the locus of pole
accumulation for m(z).

The pole removing factorization (27) works if the region Ω, except for possibly a compact subset,
lies in a region in which reiθ/ǫ is exponentially decaying. This amounts to understanding for each
θk where Im θk is positive (decay) or negative (growth). For x > L we fix γ, the finite branch cut of
ν, to lie on the imaginary axis. This choice of branch makes Im ν(z) > 0 for all z in C

+\ i(0, q] and
thus Im θk(z) is an increasing function of k for each fixed z; if we let Dk = {z ∈ C

+ : Im θk > 0}
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then Dk−1 ⊂ Dk for k ≥ 0. Furthermore, it is easily shown that each θk has a single, real-valued,
stationary phase point ξk, defined as the unique solution of d

dz θk = 0, and as k increases, the ξk’s
decreases.

The regions of exponential decay and growth of eiθ0/ǫ and eiθ1/ǫ for generic values of x > L and
t > 0 are plotted in Figure 3. The ξk depend parametrically on x and t and we have

(31)
dθ0
dz

(ξ0) = 0 ⇒ ξ0 = −x− L

2t
.

For k ≥ 1 no such simple formula for the ξk can be given, however, for small times we have

(32) ξk =
x+ (2k − 1)L

2t
+O (t) .

In particular, for x > L, ξ0 < 0 and the locus of pole accumulation in the upper half plane, i[0, q],
lies entirely in the region of exponential decay of all the θk. Motivated by these observations, let
Γ0 be a semi-infinite contour in C

+ emerging from ξ0 such that it encloses the interval i[0, q], stays
completely within the region of exponential decay of eiθ0/ǫ and is oriented away from ξ0; let Ω0

be the region between Γ0 and the positive real axis; let Γ∗
0 and Ω∗

0 be their respective complex
conjugates, see Figure 5. Define

(33) M =





m

(
1 0

−re i
ǫ θ 1

)
: z ∈ Ω0

m

(
1 r∗e−

i
ǫ θ

0 1

)
: z ∈ Ω∗

0

m : elsewhere

.

As observed previously, it follows from (25) that the new unknown M will have no poles. It follows
from its definition that M satisfies the following problem.

Riemann-Hilbert Problem 3.1 for M: Find a matrix valued function M such that:

1. M is holomorphic for z ∈ C\ΓM where ΓM = Γ0 ∪ Γ∗
0 ∪ (−∞, ξ0].

2. As z → ∞, M = I +O (1/z).
3. M takes continuous boundary values for z ∈ ΓM , M+ and M− satisfying the jump relation,

M+ =M−VM where

(34) VM =





(
1 + |r|2 r∗e−iθ/ǫ

reiθ/ǫ 1

)
: z ∈ (−∞, ξ0)

(
1 0

reiθ/ǫ 1

)
: z ∈ Γ0

(
1 r∗e−iθ/ǫ

0 1

)
: z ∈ Γ∗

0

The new jumps follow from calculating (M−)−1M+ on each contour. Observe that the new
jumps on Γ0 and Γ∗

0 are exponentially near identity away from the real axis. Thus for x > L, the
poles can be removed without introducing any poorly conditioned jumps; as we will see in Sections
4 and 5 this is markedly different from the situation for x ∈ [0, L) and accounts, to large extent, for
the difference in the resulting asymptotic description of the solutions inside and outside the initial
support.
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3.2. Reduction to Model Problem, deformation of the jump contours . Now that the
poles have been removed, we are left with a RHP with rapidly oscillatory jumps on (−∞, ξ0]. To
employ the steepest descent method we seek by explicit transformations to deform these jumps to
regions where they are exponentially decaying. Our principal tool for finding such transformations
is matrix factorization. Given an oscillatory jump matrix v on a contour C, we seek factorizations
of the form v = b− ṽ b

−1
+ such that the factors b± are analytically extendable off C. If we then

introduce contours C+ and C−, to the left and right of C respectively, see Figure 4, we can define
a new unknown

mnew =





mb− : z ∈ Int (C ∪ C−)
mb+ : z ∈ Int (C ∪ C+)
m : elsewhere

.

The new unknown mnew acquires new jumps vnew = (mnew)
−1
− (mnew)+ equal to

m
new

= m b+

m
new

= m b−

C+

C−

C

v
new

= b+
−1

v
new

= b−

v
new

= ˜ v 

Figure 4. Given a factorization v = b− ṽ b
−1
+ of the original jump matrix on C,

the definition of a new unknown (left) and the resulting new jump matrices (right)
in a generic lens opening.

vnew =





ṽ : z ∈ C
b−1
+ : z ∈ C+

b− : z ∈ C−

.

Such a factorization is useful provided that b+ and b− are near identity on their respective contours
and the jump remaining on C, ṽ, is no longer rapidly oscillatory.

3.2.1. Factorization to the left of ξ1. The original jump matrix v (cf. (24)) has two common
factorizations:

v = R†R,(35)

v = R̂ (1 + rr∗)σ3 R̂†.(36)

Where

(37) R :=

(
1 0

reiθ/ǫ 1

)
and R̂ :=

(
1 0

r
1+rr∗ e

iθ/ǫ 1

)
.

The first factorization was used already in the factorization that removed the poles from the original
RHP. For Re z < ξ1 we are interested in the second of these factorizations. The rightmost factor

R̂† is the factor which will factor into C
+, we need to understand the behavior of its off-diagonal
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entry in the upper half-plane. Recalling the definition (14) of the reflection coefficient and the
unimodularity (12) of the scattering matrix we have

1 + rr∗ = 1 +
bb∗

aa∗
=

1

aa∗
,

r∗

1 + rr∗
= b∗a.

Using (20) and (21) we can express a and b∗ in the form

a =
z + ν

2ν
e2Li(z−ν)/ǫ

[
1− r20e

4Liν/ǫ
]
,(38)

b∗ = − iq

2ν
e−2Liν/ǫ

[
1− e4Liν/ǫ

]
,

and these expressions give the off-diagonal entry in R̂† in the form

(39)
r∗

1 + rr∗
e−iθ/ǫ =

r∗0
(1 + r0r∗0)

2
e−iθ1/ǫ ×

[
1− e4Liν/ǫ

] [
1− r20e

4Liν/ǫ
]
.

Recalling that Im ν > 0 for each z ∈ C
+\ i(0, q] it follows that R̂† is exponentially near identity in

any region in which the exponential eiθ1/ǫ is growing. Thus, (36) is a good candidate factorization
for Re z < ξ1. The only issue is that the central diagonal factor (1 + rr∗)σ3 to be left on the real
axis is still rapidly oscillatory as ǫ ↓ 0: this term must also be factored. Using (38) define

(40) a0 :=
z + ν

2ν
e2Li(z−ν)/ǫ =

1

(1 + r0r∗0)
e2Li(z−ν)/ǫ

which captures the leading order behavior of the function a for z ∈ C
+. Note that for z ∈ C

+\(R∪
(0, iq]) Im ν > 0 so the quantity a/a0 = 1− r20e

4Liν/ǫ is exponentially near one. Motivated by this
observation we introduce the factorization

(41) v =
(
R̂(a∗/a∗0)

−σ3

)

︸ ︷︷ ︸
factors into C−

. (1 + r0r
∗
0)

2σ3

︸ ︷︷ ︸
stays on R

.
(
(a/a0)

−σ3R̂†
)

︸ ︷︷ ︸
factors into C+

of the original jump (24) on the interval (−∞, ξ1). This factorization greatly simplifies the analysis
of the RHP; it reduces the problem to a consideration of only the first two harmonics θ0 and θ1 in
the expansion (28) of the reflection coefficient.

3.2.2. Factorization on the interval (ξ1, ξ0) . This interval is the boundary on the real axis of an
open region of C+ in which only the zeroth order harmonic eiθ0/ǫ is large, see Figure 3. Motivated
by (28) and the matrix factorization (35) we introduce the factorization

(42) v =
(
R†R−†

0

)
.

(
1 + r0r

∗
0 r∗0e

−iθ0/ǫ

r0e
iθ0/ǫ 1

)
.
(
R−1

0 R
)
.

By R0, and later R̂0, we denote matrices of the same form as R and R̂ respectively, where in the
off diagonal entries reiθ/ǫ is replaced by its leading order approximation r0e

iθ0/ǫ:

(43) R0 :=

(
1 0

r0e
iθ0/ǫ 1

)
and R̂0 :=

(
1 0

r0
1+r0r∗0

eiθ0/ǫ 1

)
.
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The exterior factors RR−1
0 and its hermitian conjugate in (42) ‘subtract out’ the dependence on

eiθ0/ǫ, in the (2, 1)-entry we have

reiθ/ǫ − r0e
iθ0/ǫ = r0

[
1− e4Liν/ǫ

1− r20e
4Liν/ǫ

− 1

]
eiθ0/ǫ =

−r0(1− r20)

1− r20e
4Liν/ǫ

eiθ1/ǫ(44)

which at leading order depends on eiθ1/ǫ which is asymptotically small in C
+ for Re z > ξ1. This

allows us to open lenses (see (46)) which deform these exterior factors into the regions Ω1 and Ω∗
1

depicted in Figure 5.
The remaining middle factor in (42) takes the same form as the original jump matrix with the

reflection coefficient replaced with its leading order behavior. In the region of the upper half-plane
bounded by ξ1 and ξ0 the harmonic eiθ0/ǫ is exponentially large. This factor is deformed off the
axis by an analog of three term factorization (36) (the same terms with reiθ/ǫ replaced by r0e

iθ0/ǫ)
yielding the final factorization

(45) v =
(
R†R−†

0 R̂0

)

︸ ︷︷ ︸
factors into C−

. (1 + r0r
∗
0)

σ3

︸ ︷︷ ︸
stays on R

.
(
R̂†

0R
−1
0 R

)

︸ ︷︷ ︸
factors into C+

.
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Figure 5. The contours Γk and regions Ωk used to define the lens opening trans-
formation M 7→ Q. Their exact shapes are not important, each is chosen to lie
in regions where the corresponding factorizations given in (46) are asymptotically
near identity. Note, that the contour Γ3 is oriented from ξ1 to ξ0.

3.2.3. Reduction from a holomorphic RHP to a stable model problem. Using the factorizations given
above we are ready to define a new unknown Q(z). To define Q we introduce the following set of
contours and regions and their complex conjugates. Let Γ1 and Γ2 be rays in C

+ meeting the real
axis at ξ1 such that away from the axis they remain completely in regions where eiθ1/ǫ is decaying
and growing respectively. Additionally we take Γ1 to be bounded away from Γ0. Let Γ3 be a contour
in C

+ terminating at ξ0 and ξ1 such that it lies entirely in the region where eiθ0/ǫ is growing and
does not intersect either Γ0 or Γ1. Finally, let Ω1 be the region bounded between Γ0, Γ1, and Γ3;
similarly let Ω2 and Ω3 be the region between the real axis and Γ2 or Γ3 respectively. The contours
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Γk, their orientations, and the sets Ωk are depicted in Figure 5. Define

(46) Q =





MR0R
−1 z ∈ Ω1

MR̂−†(a/a0)σ3 z ∈ Ω2

MR−1R0R̂
−†
0 z ∈ Ω3

MR†R−†
0 R̂0 z ∈ Ω∗

3

MR̂(a∗/a∗0)
−σ3 z ∈ Ω∗

2

MR†R−†
0 z ∈ Ω∗

1

M elsewhere

.

Let Γ0
Q denote the union of contours used to open lenses, Γ0

Q =
⋃3

k=0(Γk ∪ Γ∗
k) and let ΓQ denote

the totality of contours on which Q is non-analytic, ΓQ = Γ0
Q ∪ (−∞, ξ0] . Using the factorizations

(41), (42), and (45) it follows that Q satisfies

Riemann-Hilbert Problem 3.2 for Q(z): Find a matrix-valued function Q such that:

1. Q is holomorphic for z ∈ C\ΓQ.
2. As z → ∞, Q(z) = I +O (1/z).
3. Q takes continuous boundary values Q+ and Q− for z ∈ ΓQ which satisfy the jump relation

Q+ = Q−VQ where

(47) VQ =





(1 + |r0|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0|2)σ3 z ∈ (ξ1, ξ0)

V
(0)
Q z ∈ Γ0

Q

and

(48) V
(0)
Q =





R0 z ∈ Γ0

R−1
0 R z ∈ Γ1

(a/a0)
−σ3R̂† z ∈ Γ2

R̂†
0 z ∈ Γ3

V
(0)
Q =





R†
0 z ∈ Γ∗

0

R†R−†
0 z ∈ Γ∗

1

R̂(a∗/a∗0)
−σ3 z ∈ Γ∗

2

R̂0 z ∈ Γ∗
3

3.3. Model RHP outside the support. The resulting RHP is an asymptotically stable problem
in the following sense: as ǫ → 0 the jumps remaining on the real axis are non-oscillatory and ǫ

independent, while along the contours in Γ0
Q the jump matrices V

(0)
Q converge to identity both for

large z and for fixed, nonreal, z as ǫ → 0. The convergence in ǫ is uniform on any set bounded
away from the two stationary phase points ξ0 and ξ1 where the contours return to the real axis.
Motivated by these comments we consider the following global model problem which we will later
prove is a uniformly valid approximation to the solution Q of the RHP defined by (47). Let U0

and U1 be, for now arbitrary, fixed size neighborhoods of ξ0 and ξ1 respectively. We construct a
parametrix of the form:

(49) P (z) =





A0(z) z ∈ U0 (cf. 3.3.2)

A1(z) z ∈ U1 (cf. 3.3.3)

O(z) elsewhere (cf. 3.3.1) ,

where the outer model O and the local models A0 and A1 will be introduced below in the indicated
subsections.
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3.3.1. The outer model problem . Away from the real axis , the jumps on Γk ∪Γ∗
k are exponentially

small perturbations of identity. By replacing the jump matrices in (47) with their point-wise limits,
we are lead to the following outer model RHP.

Riemann-Hilbert Problem 3.3 for the outer model O(z): Find a 2×2 matrix-valued function
O such that

1. O is a bounded function, analytic on C\(−∞, ξ0].
2. O(z) = I +O (1/z) as z → ∞.
3. For z ∈ (−∞, ξ0), O takes continuous boundary values satisfying O+ = O−VO, where

(50) VO =

{
(1 + |r0|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0|2)σ3 z ∈ (ξ1, ξ0).

This RHP appears in the analysis of the long time problem for NLS [DZ94]. As the jumps are
diagonal and non-vanishing, one can easily check using the Plemelj formulae [Mus92] that that
solution is given by

O(z) = δ(z)σ3(51)

where,

δ(z) = exp

[
1

2πi

∫ ξ1

−∞

log(1 + |r0(s)|2)
s− z

ds+
1

2πi

∫ ξ0

−∞

log(1 + |r0(s)|2)
s− z

ds

]
.(52)

The jump matrices for O are discontinuous at ξ0 and ξ1 which causes δ to behave singularly at
these points. The following lemma describes the nature of the singularities.

Proposition 2. Define

χ(z, a) := i

∫ a

−∞

κ(s)

s− z
ds where κ(z) := − 1

2π
log(1 + |r0(z)|2),(53)

and suppose a and b are fixed real numbers with b < a such that κ is analytic in a neighborhood of
each point. Then near these points:

i. As z → a, χ has the uniform expansion,

χ(z, a) = iκ(z) log(z − a) + χ̂(z, a),

where χ̂ is a bounded holomorphic function for z in a neighborhood of a.
ii. In any suitably small, ǫ independent, neighborhood of b, Nb, the boundary values χ+ and χ−

naturally extend as analytic functions to all of Nb and χ+(z, a) − χ−(z, a) = log(1 + |r0(z)|2)
at each z ∈ Nb.

Proof. Both results follow from the fact that the weight κ in the Cauchy integral defining χ is
analytic at the points a and b. To prove the first part it is sufficient to observe that the difference
χ − iκ(z) log(z − a) has a vanishing jump for all z near a. To construct the analytic extensions
of χ± needed near z = b the analyticity of κ is used to deform the contour of integration so that
individually the upper and lower boundary values extend analytically to the opposing half-plane.
That the extensions satisfy the jump relation follows from the Plemelj formulae. �



20 ROBERT JENKINS AND KENNETH D. T-R MCLAUGHLIN

(
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r∗0
1+r0r∗0

δ2e−iθ0/ǫ
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)
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(
1 0

r0δ
−2eiθ0/ǫ 1

)

•
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(
1 0
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1+r0r∗0

δ−2eiθ0/ǫ 1

)77

Γ∗
3
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Γ∗
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(
1 r∗0δ

2e−iθ0/ǫ

0 1

)

Figure 6. Local (exact) jump matrices near the stationary point ξ0 after intro-
ducing δ .

Expressed in terms of χ, δ(z) = exp [χ(z, ξ0) + χ(z, ξ1)]; it follows immediately form Prop. 2
that δ has the local expansions

δ(z) = (z − ξ0)
iκ(z)δhol0 (z) near z = ξ0,

δ±(z) = (z − ξ1)
iκ(z)δhol1± (z) near z = ξ1,

(54)

where δhol0 is holomorphic in a neighborhood of ξ0 and δhol1± are each holomorphic and satisfy

δhol1+ /δ
hol
1− = 1 + r0r

∗
0 in any sufficiently small neighborhood of ξ1. In particular, observe that (54)

shows that δ is bounded at each singularity. The singularity manifests as rapid oscillations as z
approaches ξ0 or ξ1.

3.3.2. Local model near z = ξ0. Near z = ξ0 we seek our local model A0(z) in the form:

(55) A0(z) = Â0(z)δ(z)
σ3 .

This has two advantages. First, it simplifies the matching condition, to match the outer model O(z)

the new unknown Â0 needs to be asymptotically near identity on the boundary where A0(z) and
O(z) meet. Second, as was shown in the construction of the outer model, this factorization removes
the jump along the real axis. Of course, this comes at the cost of modifying the jumps along the
other contours. The exact jumps after left multiplication of Q by δσ3 are given in Figure 6. At
any fixed distance from ξ0 the jump matrices are near identity due to the decay of the exponential
factors e±iθ0/ǫ along each ray. The point ξ0 is a stationary phase point of θ0, (cf. (31)), and thus θ0
is locally quadratic. This allows us to introduce the following locally analytic and invertible change
of variables

1

2
ζ20 :=

1

ǫ
(θ0(z)− θ0(ξ0)) , or ζ0 =

√
θ′′(ξ0)

ǫ
(z − ξ0).(56)

The domain U0 on which the local model A0 is defined is selected as follows. We take U0 to be
any suitably small fixed size neighborhood of ξ0 such that U0 is bounded away from the contour Γ1

and chosen so that under the map ζ = ζ0(z) its image ζ0(U0) is a disk centered at the origin in the
ζ-plane (which necessarily has a radius ∼ ǫ−1/2). Additionally, we use the freedom to deform the
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contours Γ0 and Γ3 such that the images ζ0(Γk ∩ U0), k = 1, 3 are straight lines leaving the origin
at angles π/4 and 3π/4 respectively.

The model inside U0 is constructed by approximating the function r0(z) by its value at ξ0, and
using (54) and (56) to approximate δ by

δ 7→ ζ
iκ(ξ0)
0

(
ǫ

θ′′0 (ξ0)

)iκ(ξ0)/2

δhol0 (ξ0).(57)

Finally, we make the following change of variables which maps to the ζ-plane and removes many of
the constant factors from the jumps:

(58) Â0 =

[(
ǫ

θ′′0 (ξ0)

)iκ(ξ0)/2

δhol0 (z) e−iθ0(ξ0)/2ǫ

]adσ3

ΨPC(ζ0(z); r0(ξ0)).

The resulting RHP for the new unknown ΨPC(ζ, a) is one of the canonical model Riemann-Hilbert
problems.

Riemann-Hilbert Problem 3.4 for ΨPC (The Parabolic Cylinder RHP): Given a fixed
constant a, find a matrix ΨPC(ζ; a) such that

1. ΨPC is analytic for ζ ∈ C\ {ζ : arg(ζ) = ±π/4,±3π/4}.
2. As ζ → ∞, ΨPC = I +Ψ(1)/ζ +O

(
1/ζ2

)
.

3. On the jump contours, the boundary values satisfy ΨPC+ = ΨPC−VΨPC
, where

(59) VΨPC
=





(
1 0

aζ−2iκeiζ
2/2 1

)
arg(ζ) = π/4

(
1 a∗ζ2iκe−iζ2/2

0 1

)
arg(ζ) = −π/4

(
1 a∗

1+aa∗ ζ
2iκe−iζ2/2

0 1

)
arg(ζ) = 3π/4

(
1 0

a
1+aa∗ ζ

−2iκeiζ
2/2 1

)
arg(ζ) = −3π/4,

and κ = − 1
2π log(1 + aa∗).

Proposition 3. The RHP for ΨPC(ζ; a) above has a unique, uniformly bounded, solution given by

(60) ΨPC(ζ; a) =





P (ζ; a)

(
1 0
−a 1

)
e

i
4 ζ

2σ3ζ−iκσ3 : arg(ζ) ∈ (0, π/4)

P (ζ; a)

(
1 −ā

1+|a|2
0 1

)
e

i
4 ζ

2σ3ζ−iκσ3 : arg(ζ) ∈ (3π/4, π)

P (ζ; a)e
i
4 ζ

2σ3ζ−iκσ3 : | arg(ζ)| ∈ (π/4, 3π/4)

P (ζ; a)

(
1 0
a

1+|a|2 1

)
e

i
4 ζ

2σ3ζ−iκσ3 : arg(ζ) ∈ (−π,−3π/4)

P (ζ; a)

(
1 ā
0 1

)
e

i
4 ζ

2σ3ζ−iκσ3 : arg(ζ) ∈ (−π/4, 0)
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where the function P (ζ, a), built out of the parabolic cylinder functions D±iκ(·), is

(61) P (ζ; a) =






 e−

3πκ
4 Diκ

(
e

−3iπ
4 ζ

)
∂ζ− i

2 ζ

β21
e

πκ
4 D−iκ

(
e−

iπ
4 ζ
)

∂ζ+
i
2 ζ

β12
e

−3πκ
4 Diκ

(
e

−3iπ
4 ζ

)
e

πκ
4 D−iκ

(
e

−iπ
4 ζ
)


 : ζ ∈ C

+


 e

πκ
4 Diκ

(
e

iπ
4 ζ
)

∂ζ− i
2 ζ

β21
e

−3πκ
4 D−iκ

(
e

3iπ
4 ζ
)

∂ζ+
i
2 ζ

β12
e

πκ
4 Diκ

(
e

iπ
4 ζ
)

e
−3πκ

4 D−iκ

(
e

3iπ
4 ζ
)


 : ζ ∈ C

−

and the constants κ, β12, and β21 are given by the formulae:

κ = − 1

2π
log(1 + aa∗), β12 =

√
2πeiπ/4e−πκ/2

aΓ(−iκ) , and β21 = κ/β12.

To verify that (60) gives the solution of the RHP for Ψ0 one uses the properties of the parabolic
cylinder functions, Diκ(·), (cf [AS64]) to show explicitly that the above formulae satisfies the jump
and normalization conditions. As this is a somewhat standard model problem we refrain from doing
so here. The details of the solutions derivation can be found in [DZ94] and [DM08].

Later we will need estimates of the error introduced by the local model. On the boundary ∂U0

(62) O−1(z)A0(z) = I +O
(
ǫ−1/2

)
.

This follows from (56), the large ζ expansion of ΨPC (cf. RHP 3.4), and the boundedness of the
outer solution O(z) on ∂U0. The remaining error introduced by the model lies in the approximation
of the jumps along Γ0, Γ3 and their conjugates. By direct calculation, one shows that the largest
contribution to this error is introduced by approximation (57) and consequently along each of these
rays:

(63) VQV
−1
A0

= I +O
(
ǫ1/2 log ǫ

)
.

3.3.3. Local model near z = ξ1. At ξ1 the first harmonic θ1 is stationary and this forces the lens
opening contours Γ1,Γ2,Γ3, and their conjugates to return to the real axis at this point. Just as
in the local model at ξ0, the locally quadratic structure of the stationary harmonic motivates the
definition of a locally invertible analytic change of variables; define ζ = ζ1(z), through the relation

(64)
1

2
ζ21 :=

1

ǫ
(θ1(z)− θ1(ξ1)) =

θ′′(ξ1)

2ǫ
(z − ξ1)

2 +O
(
(z − ξ1)

3
)
.

We choose the set U1 to be a fixed but sufficiently small neighborhood of ξ1 bounded away from
U0, such that (64) is analytic and invertible inside, and shaped such that the image ζ1(U1) is a disk
in the ζ-plane. Additionally, we use our freedom to choose the rays Γ1, Γ2, and their conjugates
such that the images ζ1(Γk ∩U1), k = 1, 2 lie on the rays arg ζ = π/4 and 3π/4 respectively. Inside
U1 we seek a local model of the form

(65) A1(z) = A
(1)
1 (z)δ(z)σ3

so as to remove the jumps along the real axis exactly from the local problem. The effect of (65)
on the exact local jumps is to replace VQ by δσ3

− VQδ
−σ3
+ ; the local contours and exact jumps after

introducing this δ factorization are given in Figure 7.
Comparing Figures 6 and 7, the jumps near ξ1 are more complicated than those near ξ0. The

jump matrices on Γ1, Γ2 and their conjugates involve the full reflection coefficient. As such, at ξ1
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Figure 7. The exact local jumps after conjugating VQ by δ(z)σ3 are[
δ(z)e−iθ1(z)/ǫ

]adσ3
ṼQ where ṼQ are the jumps given above. Inside the shrinking

disk D (see (66)) we relabel the contours Σk and define the subsets Dk, k = 1, 2, 3
in C

+ and their conjugates as shown.

the full multi-harmonic expansion returns to the real axis—manifesting as the factor 1− r20e
4Liν/ǫ

appearing in the jumps in C
+ and the conjugate factor appearing in C

−—and we have to deal
with every harmonic simultaneously. This is markedly different than the local structure near ξ0
where the jump matrices contained only the single harmonic θ0. However, there are also important
similarities, the δ factors in the off-diagonal entries have a power law singularity of the form (z−ξk)iκ
and along the rays Γ1, Γ2, and their conjugates the quadratic decay of a stationary harmonic makes
the jumps asymptotically near identity at any fixed distance from ξ1. These similarities lead one
to believe that the parabolic cylinder model, RHP 3.4, should be involved in the construction of
the local approximation. The key to the construction of our model at ξ1 is the separation of length
scales between the onset of asymptotic growth/decay of the locally linear harmonics, θk, k 6= 1,
and the locally quadratic harmonic, θ1, which we record in the following elementary proposition.

Proposition 4. For z ∈ U1, the following estimates hold:

i. For |z − ξ1| = O
(
ǫ1/2

)
, the functions e±iθ1/ǫ are bounded independent of ǫ.

ii. For |z − ξ1| = O (ǫ), the functions e±4Liν/ǫ are bounded independent of ǫ.
iii. For Im z ≫ ǫ (− Im z ≫ ǫ) the function e4Liν/ǫ

(
e−4Liν/ǫ

)
is small beyond all orders.

Proposition 4 motivates the introduction of a shrinking disk inside the fixed sized disk U1. Define

(66) D = {z : |z − ξ1| ≤
√
ǫ}.

Inside D relabel the jump contours by Σk (Σ∗
k), k = 1, 2, 3, ordered from the real axis to the

right of ξ1 around ξ1 with positive (negative) orientation. Additionally, define the real contour
Σ4 := {z ∈ D : z < ξ1}, oriented left to right. Label by D0 the subset of D bounded by Σ1 and
Σ∗

1, and label by Dk, 1 ≤ k ≤ 3, the other subsets of D in C
+ ordered counterclockwise; let D∗

k

denote the complex conjugate sectors. Finally, denote by Vk (V †
k ) the exact values of the jump
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δσ3VQδ
−σ3 along Σk (Σ∗

k), see Figure 7. Our procedure will be to build a model from the parabolic
cylinder functions as was introduced in the local model at ξ0. However, the presence of the linearly
harmonics requires that inside D the jump matrices be preconditioned for approximation by the
parabolic cylinder RHP. The price we will pay for this construction are near-identity jumps on ∂D
and Σ4. The preconditioning procedure, which we describe below, is summarized in Figure 8.

For z ∈ U1\D, the locally linear harmonics, those terms proportional to eiθ0/ǫ or e±4iν/ǫ in the
local jumps as expressed in Figure 7, are small beyond all orders (Prop. 4), and they may be set to
zero without introducing any appreciable error. Note that this approximation replaces the jumps
on Γ0 and its conjugate by identity. Eliminating the linear harmonics and employing (54) and (64)
the remaining jumps are approximated as follows.

We define the locally analytic and nonzero scalar function

(67) h1 =

[(
ǫ

θ′′1 (ξ1)

)iκ(ξ1)

δhol1− (z)δhol1+ (z)e−iθ1(ξ1)/ǫ

]1/2

then for z ∈ U1\D we replace the exact jump δσ3VQδ
−σ3 with hσ3

1 Vξ1h
−σ3
1 , where,

(68) Vξ1(z) =





(
1 0

−r0(ξ1)ζ1(z)−2iκ(ξ1)eiζ1(z)
2/2 1

)
z ∈ Γ1

(
1 −r∗0(ξ1)ζ1(z)2iκ(ξ1)e−iζ1(z)

2/2

0 1

)
z ∈ Γ∗

1

(
1

−r∗0 (ξ1)
1+|r0(ξ1)|2 ζ1(z)

−2iκ(ξ1)e−iζ1(z)
2/2

0 1

)
z ∈ Γ2

(
1 0

−r0(ξ1)
1+|r0(ξ1)|2 ζ1(z)

−2iκ(ξ1)eiζ1(z)
2/2 1

)
z ∈ Γ∗

2.

G1

G2

G3

G1
*

G2
*

G3
*

¶U1

¶D

aL
G1

G2

G3

G1
*

G2
*

G3
*

¶U1

¶D

bL
G1

G2

G3

G1
*

G2
*

G3
*

¶U1

¶D

cL

Figure 8. The three steps of approximation in the construction of the model
problem at ξ1. a) The jumps along the Γk are replaced by the approximation (68) in
the annular region U\D (bold contours). b) The exact jumps inside D are all folded
onto the real axis to the left of ξ1 creating jumps on ∂D and Σ4 = D ∩ {z < ξ1}.
c) The annular approximation are unfolded inside D from Σ4. Dashed contours
denote jumps which are asymptotically small after the folding and unfolding and
thus ignored in the construction of the parametrix.
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Inside D, the linear exponentials cannot be replaced by zero without introducing significant
errors. Instead, we use the local self consistency of the jump matrices to fold away the exact jumps
and then replace them with jumps matching the parabolic cylinder model. To that end we make
the following change of variables folding all of the jumps inside D onto Σ4:

(69) A
(2)
1 = A

(1)
1 F,

where F is the piecewise analytic function

F =





I z ∈ D0

V −1
1 z ∈ D1

V −1
2 V −1

1 z ∈ D2

V3V
−1
2 V −1

1 z ∈ D3

F =





I z ∈ U1\D
V †
1 z ∈ D∗

1

V †
2 V

†
1 z ∈ D∗

2

V −†
3 V †

2 V
†
1 z ∈ D∗

3 .

The new unknown A
(2)
1 has had the jumps removed from Σk, k = 1, 2, 3, and their conjugates but

gets new jumps on ∂D and Σ4. A simple calculation shows that the resulting jump along Σ4 is

(1 + |r0(z)|2)−σ3 , while along ∂D the induced jumps are given by A
(1)
1−

−1
A

(2)
1+. This factorization

is useful because it has pushed the contribution of the locally linear harmonics off of the contours
Σk and onto the disk boundary ∂(D\D0) where it is exponentially small away from the real axis.
Along the arcs ∂D3 and ∂D∗

3 , which approach the real axis, the induced jumps are independent of
the linear harmonics: the jump on ∂D3 is given by

F = V3V
−1
2 V −1

1 =

(
(1 + r0r

∗
0)

−1 −r∗0
(1+r0r0∗)2 δ

2e−iθ1/ǫ

r0(1 + r0r
∗
0)δ

−2eiθ1/ǫ 1

)
, for z ∈ ∂D3.

The jump on ∂D∗
3 is similar. Thus, the locally linear harmonics appear only in the jumps on

∂(D1 ∪ D2) and its conjugate where their contribution is exponentially small.
With the exact jumps folded away, we now introduce a second factorization which unfolds onto

each Γk ∩ D the approximation (68). Define

A
(3)
1 = A

(2)
1 U,(70)

where U is the piecewise analytic function

U =





hadσ3
1

(
1 0

−r0(ξ1)ζ1(z)−2iκ(ξ1)eiζ1(z)
2/2 1

)
z ∈ D2

hadσ3
1

(
1 0

−r0(ξ1)ζ1(z)−2iκ(ξ1)eiζ1(z)
2/2 1

)(
1

r∗0 (ξ1)
1+|r0(ξ1)|2 ζ1(z)

2iκ(ξ1)e−iζ1(z)
2/2

0 1

)
z ∈ D3

hadσ3
1

(
1 r0(ξ1)

∗ζ1(z)2iκ(ξ1) e−iζ1(z)
2/2

0 1

)
z ∈ D∗

2

hadσ3
1

(
1 r0(ξ1)

∗ζ1(z)2iκ(ξ1)e−iζ1(z)
2/2

0 1

)(
1 0

−r0(ξ1)
1+|r0(ξ1)|2 ζ1(z)

−2iκ(ξ1)eiζ1(z)
2/2 1

)
z ∈ D∗

3

I elsewhere

By first folding away the exact jumps (69) and then unfolding the parabolic cylinder model jumps
(70), the new problem has, by construction, the exact parabolic cylinder jumps along (Γk∪Γ∗

k)∩D,
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k = 1, 2, 3. The sequence of factorizations induces jumps along the new contours ∂D and Σ4, which
are all near identity. As an example, for z ∈ ∂D2,

FU =

(
1 0

r0(1+r0r
∗
0 )

1−r20e
4Liν δ

−2eiθ1/ǫ 1

)(
1

−r∗0
1+r0r0∗δ

2e−iθ0/ǫ

0 1

)
×




1 0

−r0(ξ1)(1 + r0r
∗
0)(δ

hol
1+ )−2

[√
ǫ

θ′′
1 (ξ1)

ζ1

]−2iκ(ξ1)

eiθ1/ǫ 1




=
(
δe

−i
2ǫ θ1

)adσ3




1 0

(1 + r0r
∗
0)


r0 − r0(ξ1)

[

√

ǫ
θ′′1 (ξ1)

ζ1

]−2iκ(ξ1)

(z−ξ1)−2iκ


 1


+O

(
e
− c√

ǫ

)

= I +O
(√
ǫ log ǫ

)

(71)

The calculations in the other sectors are similar with the largest contributing error always being

O (
√
ǫ log ǫ) coming from the approximation of (z − ξ1)

iκ by
(√

ǫ/θ′′1 (ξ1)ζ1
)iκ(ξ1)

.

Our local model is constructed by simply dropping the near identity jumps along D and Σ4. This
leaves only the jumps on Γ1, Γ2 and their conjugates given by (68) which depend on z only through
ζ1(z). Comparing Vξ1 with (59) we see that the functions are identical up to the substitution of

the constant −r0(ξ1) for r0(ξ0). Thus, A(3)(ζ1(z)) should solve RHP 3.4 up to replacement of the
appropriate constants. To avoid repeating details, we simply state that our local model in U1 is
completed by taking

(72) A
(3)
1 (z) = hσ3

1 ΨPC (ζ1(z),−r0(ξ1)) h−σ3
1

where ΨPC is the function defined in Prop. 3 built from the parabolic cylinder functions.

3.4. The error matrix, E(z). Proof of Theorem 1, part 1.. Here we prove that the parametrix
P (z) constructed in the previous subsection is a uniformly accurate estimate of the exact solution
Q(z) to RHP 3.2 which was derived from the original NLS RHP by explicit transformations. We
prove this by considering the error matrix E(z) defined as the ratio:

E(z) = Q(z)P−1(z).

Both Q and the parametrix P are piecewise analytic functions taking continuous boundary values
on the contours that bound their respective domains of analyticity. As such, E(z) also satisfies a
Riemann-Hilbert problem with jump relation E+ = E−VE , where

(73) VE = P−
(
VQV

−1
P

)
P−1
− .

Let ΓE denote the totality of contours on which E has a nontrivial jump. Then E satisfies the
following Riemann-Hilbert problem:

Riemann-Hilbert Problem 3.5 for the error matrix, E(z). Find a matrix E(z) such that

1. E(z) is analytic for z ∈ C\ΓE.
2. As z → ∞, E(z) = I +O (1/z)
3. For z ∈ ΓE, E takes continuous boundary values satisfying E+ = E−VE, where VE is defined by

(73),
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Figure 9. The collection, ΓE , of jump contours for the error matrix, E(z).

We now shift our perspective and think of E not as defined by (3.4), but as the solution of RHP
3.5 given the jump matrix VE which we can calculate explicitly from (47) and (49). The following
lemma will allow us to establish a uniform asymptotic expansion for E(z).

Lemma 5. For each (x, t) ∈ K ⊂ S0 compact and ℓ ∈ N0 the jump matrix VE defined by (73)
satisfies,

(74) ‖zℓ(VE − I)‖Lp(ΓE) = O
(
ǫ1/2 log ǫ

)
,

for each sufficiently small ǫ and p = 1, 2, or ∞.

Proof. For each (x, t) in a compact subset K of S0, the factorizations defining the RHP for Q can
be successfully carried through and the distance between ζ1 and ζ0 is bounded below. For any
allowable (x, t), the parametrix P is uniformly bonded in the plane, so it suffices to show that
‖(zℓ(VQV −1

P − I)‖ = O
(
ǫ1/2 log ǫ

)
. The collection of contours ΓE decouples into three categories:

the portions of Γk, k = 1, 2, 3 and its conjugates lying outside the disks U0 and U1, these we denote
Γout
E ; the portions of each Γk inside U0 and U1\D together with the real segment Σ4 we denote Γin

E ;
and finally the loop contours ∂U0, ∂U1, and ∂D denoted by Γcirc

E . We verify (74) independently on a
representative contour of each subset, the derivation on the other contours being similar. Consider
first the unbounded set of contours Γout

E as represented by Γout
0 . In this region the parametrix is
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given by the outer model O(z) which is analytic for z off the real axis. Thus,

‖zℓ(VE − I)‖Lp(Γout
0 ) ≤M‖zℓ(VQ − I)‖Lp(Γout

0 )

≤M‖zℓ · r0δ−2eiθ0/ǫ‖Lp(Γout
0 ) = O

(
e−c/ǫ

)
.

The last line follows from the boundedness of r0 and δ and that, along Γout
0 , Im θ0 increases without

bound from a least value c > 0.The error in the exterior region is small beyond all orders and does
not contribute to (74).

On the remaining finite length contours proving that ‖VQV −1
P − I‖L∞ = O

(
ǫ1/2 log ǫ

)
implies

the result for each norm and all moments zℓ. For the contours in Γin
E take Γin

1 as representative.
For z ∈ D, VP = VQ so there is no jump on the inside of D we need only consider the segment
within U1\D. Using Prop. 4, (47), (67), and (68) we have

‖VQV −1
P − I‖L∞(Γin

1 ) = ‖RR−1
0 δ−σ3hσ3

1 V −1
ξ1
h−σ3
1 δσ3 − I‖L∞(Γin

1 )

Now let M := max
{
‖h1δ−1‖L∞(Γin

1 ), ‖h−1
1 δ‖L∞(Γin

1 )

}
.Then,

‖VQV −1
P − I‖L∞(Γin

1 )

≤M2

∥∥∥∥∥

(
1 0

−r0eiθ1/ǫ
√

θ′′
1 (ξ1)
ǫ

−2iκ(ξ1)

(z − ξ1)
−2iκ 1

)(
1 0

r0(ξ1)e
iθ1/ǫζ−2iκ

1 1

)
− I

∥∥∥∥∥+O
(
e−c/ǫ

)

=M2

∥∥∥∥∥∥


−r0

√
θ′′1 (ξ1)

ǫ

−2iκ(ξ1)

(z − ξ1)
−2iκ − r0(ξ1)ζ

−2iκ
1


 eiθ1/ǫ

∥∥∥∥∥∥
L∞(Γin

1 )

+O
(
e−c/ǫ

)

= O
(√
ǫ log ǫ

)
.

The final estimate above follows from (64) and the locally quadratic behavior of θ1 near ξ1.
Finally consider the disk boundaries ∂U0, ∂U1, and ∂D. The exact unknown Q is analytic here so

VQ = I. On the positively oriented boundaries of the two fixed sized disk VP = hσ3

k ΨPC(ζk(z); (−1)kr0(ξk))h
−σ3

k ,

k = 0, 1. The ǫ−1/2 scaling in (56) and (64) and the large ζ asymptotics of ΨPC then give

‖V −1
P − I‖L∞(∂Uk) = ‖hσ3

k {I +O (1/ζk)}h−σ3

k − I‖L∞(∂Uk) ≤ O
(√
ǫ
)
.

The last contour to consider is the shrinking disk ∂D. Using (67)-(70) we have ‖V −1
P − I‖L∞(∂D) =

‖δ−σ3(FU−I)δσ3‖L∞(∂D) = O (
√
ǫ log ǫ) where the last equality was previously verified in (71). �

Lemma 5 establishes E as a small-norm Riemann-Hilbert problem. As such, its solution is given
by

E(z) = I +
1

2πi

∫

ΓE

µ(s)(VE(s)− I)

s− z
ds

where µ(s) is the unique solution of (1−CVE
)µ = I. Here CVE

f = C−[f(VE−I)] where C− denotes
the Cauchy projection operator. In particular, E(z) has the large z expansion

(75) E(z) = I +
E(1)(x, t)

z
+ . . . , where,

∣∣∣E(1)(x, t)
∣∣∣ = O

(√
ǫ log ǫ

)
.

Remark. The small norm theory of RHPs as it pertains to this problem can be found in [BC84]
and [BDT88]. In particular, we need L2 bounds on the Cauchy operators over the contour ΓE . For
the ǫ independent analytic contours in ΓE this is a classical result. More care is needed on the
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ǫ-dependent shrinking contour ∂D; the boundedness of the Cauchy operators on shrinking circles
can be found in [KMM03].

The proof of part 1 of our main result follows immediately from (75). By inverting the series of
explicit transformations m 7→ M 7→ Q 7→ E we arrive at a uniform asymptotic expansion of the
solution m of RHP 2.2. Using (33), (46), and (51) we have

ψ(x, t) = lim
z→∞

2iz m12(z;x, t) = O
(√
ǫ log ǫ

)

for each fixed (x, t) ∈ S0.

4. Inverse problem inside the support, before breaking

-
Hx- LL

2 t

e
iΘ0
Ε

-1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 10. The regions of growth and decay of the zero harmonic exp (iθ0(z)/ǫ)
for x ∈ [0, L) . Shaded/Unshaded regions represent regions of decay/growth. The
dashed line represents the locus of pole accumulation for m(z).

4.1. Introducing a new pole removing factorization. In this section we being to consider the
inverse problem for those x ∈ [0, L), that is, for x inside the support of the initial data. The analysis
in this regime is made more difficult by the fact that the poles of m in C

+ now lie in the region
where eiθ0/ǫ is exponentially large, see Figure 10. The exponential growth of eiθ0/ǫ leads us to
introduce a different pole removing scheme (see (77) below) for x ∈ [0, L). As we will see, the new
scheme introduces contours with exponentially large jumps which we control by introducing a so
called g-function transformation which effectively “preconditions” the problem for steepest-descent
analysis. In this section we show that for each x ∈ [0, L) there exist an order-one finite time T1(x)
such that the problem is controlled by the introduction of a genus-zero g-function, i.e., branched
on a single interval, for all 0 < t < T1(x), and that the corresponding solution ψ(x, t) of NLS with
initial data (2) is asymptotically described by a slowly modulated plane wave. We consider the
regime x ∈ [0, L) and t > T1(x) in Section 5.

To begin our analysis, we introduce a new pole removing factorization which accounts for the
exponential growth induced by the lowest order harmonic. Let Γ1 be a semi-infinite contour in C

+

leaving the real axis at a point ξ1 and oriented toward infinity; denote by ΩM the region consisting
of everything to the right of Γ1 in C

+, see Figure 11. For now all we demand of ξ1 and Γ1 is that
the locus of pole accumulation in C

+ is contained within ΩM :

(76) (0, iq] ⊂ ΩM .
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In the course of our analysis additional conditions will arise which will serve to more precisely define
ξ1 and Γ1.

Remark. For the inverse problem inside the support we recycle notation from the analysis outside
the support. Contours and points associated with opening lenses in the RHPs are given the same
names as before but new definitions, while the functions defining the various matrix factorizations,

R, R̂†
0, etc., keep their previous definitions.

∈ Γν ,

d Γ
∗

ν

R z ∈ Γ1

∈

∈ Γ
∗

1.

∈ ΩM

∈

∈ Ω
∗

M

iq

−iq

t ξ1

Figure 11. The contours Γ1, Γ
∗
1 and sets ΩM and Ω∗

M defining the pole removing
factorization for x ∈ [0, L). The exact shape of the contours Γ1 and Γ∗

1, and thus
the set ΩM , Ω∗

M , and the point ξ1 are for now undefined. All we require is that
ΩM ∪ Ω∗

M contain the locus of pole accumulation (dashed line) and the branch

Γν ∪ Γ∗
ν of ν =

√
z2 + q2.

Define

(77) M =





mR−1R0 z ∈ ΩM

mR†R−†
0 z ∈ Ω∗

M

m elsewhere.

The matrices R and R0 are those defined previously, (37) and (43) respectively. Clearly, the new
unknown M has no poles; the combination mR−1 is analytic in C

+–this was the basis of our pole
removal scheme for x outside the support–while the extra factor R0 has no poles. Additionally, it
follows from (44) that the nonzero off-diagonal entry of RR−1

0 is at leading order proportional to

eiθ1/ǫ and is thus unaffected by the exponential growth of eiθ0/ǫ.
Though the new unknown M has no poles it acquires an extra jump in addition to those on the

lens boundaries. The matrix R0 (43) involved in the pole removing factorization inherits a branch

cut from ν =
√
z2 + q2 which we are free to choose; we take the cut to be a finite length contour

Γν ∪ Γ∗
ν oriented from −iq to iq. Note that as sets Γν and Γ∗

ν are symmetric, but as contours with
orientation they are antisymmetric. We defer Γν ’s exact definition and assume for now only that
it lies completely within ΩM ∪ Ω∗

M . The jumps acquired by M along the branch cut are

R0
−1R0+ =

(
1 0

weiθ0/ǫ 1

)
z ∈ Γν ,(78)

R†
0−R

−†
0 + =

(
1 −w∗e−iθ0/ǫ

0 1

)
, z ∈ Γ∗

ν .(79)
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Here we have defined the scalar function

(80) w := r0+ − r0− =
2ν+
iq

,

which we note may be analytically continued away from Γν ∩ Γ∗
ν . The RHP for M then follows

directly from (77).

Riemann-Hilbert Problem 4.1 for M : Let ΓM = R ∪ Γ1 ∪ Γ∗
1 ∪ Γν ∪ Γ∗

ν . Find a matrix M(z)
such that

(1) M is analytic in C\ΓM .
(2) As z → ∞, M(z) = I +O (1/z).
(3) M assumes continuous boundary valuesM+ andM− on ΓM satisfyingM+ =M−VM where,

(81) VM =





R†R z ∈ (−∞, ξ1)

R†
0R0 z ∈ (ξ1,∞)(

1 0

weiθ0/ǫ 1

)
z ∈ Γν

(
1 −w∗e−iθ0/ǫ

0 1

)
z ∈ Γ∗

ν

R−1
0 R z ∈ Γ1

R†R−†
0 z ∈ Γ∗

1.

4.2. Introducing the g-function. The pole removing factorization introduces jumps on Γν ∪ Γ∗
ν

which are ill-suited to semi-classical asymptotics. The off-diagonal entries of the jump VM along Γν

and Γ∗
ν are proportional to eiθ0/ǫ and e−iθ0/ǫ respectively, which increase exponentially as ǫ → 0.

To account for these jumps we introduce a scalar g-function, by making the change of variables

(82) N =Me−ig(z)σ3/ǫ.

The new unknown N should solve a RHP of the type we have consider thus far, placing the following
restrictions on g:

i. g(z) = O (1/z) as z → ∞.
ii. There exist a symmetric contour γ∪γ∗ such that g is analytic for z ∈ C\(γ∪γ∗) with continuous

boundary values g+ and g− on γ ∪ γ∗.
iii. g(z)∗ = g(z∗) for all z ∈ C\(γ ∪ γ∗).
Given such a g-function, the jump matrices for N take the following form:

VN =





(
#e−i(g+−g−)/ǫ #ei(g++g−)/ǫ

#e−i(g++g−)/ǫ #ei(g+−g−)/ǫ

)
z ∈ γ ∪ γ∗

(
# #e2ig/ǫ

#e−2ig/ǫ #

)
z /∈ γ ∪ γ∗

where the #’s denote the entries of VM . The g-function affects the jumps by modifying the expo-
nential phases in the jump matrices; away from the branch cuts of g the transformation replaces
the phases θk in the expansion of the reflection coefficient with

(83) ϕk = θk − 2g.
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Our procedure is to now construct g so that the resulting RHP for N is asymptotically stable, i.e. g
should remove the exponentially growing components of VM so that, after additional lens openings,
the new jump matrix VN implied by (82) has simple semi-classical limits with controllable errors.
To construct g, we decompose γ, and by symmetry γ∗, into two interlacing sets of contours: bands
and gaps. Each band is a maximally connected component of γ satisfying (84a), and each gap is
a maximal complimentary open interval satisfying (84b); the union of all bands (gaps) in C

+ we
label γb (γg) and label the conjugate bands (gaps) γ∗b (γ∗g ).

Bands: Im (g+ − g−) = 0.(84a)

Gaps:

{
Im
(
θk(j) − g+ − g−

)
> 0 for z ∈ γ,

Im
(
θk(j) − g+ − g−

)
< 0 for z ∈ γ∗.

(84b)

Note that in (84b) we have to select a phase θk(j) which may change from one interval to the next.
As usual, in the cases where we can successfully construct the g-function, it associates with

the Riemann-Hilbert problem a rational function R(x, t) =
√∏2N

n=1(z − αn) and the associated

Riemann surface of genus G = N − 1. The eventual outer model problem, and thus the leading
order asymptotics of the solution of NLS, can be described in terms of the Riemann theta functions
on the Riemann surface R(x, t).

4.3. Genus zero ansatz for x ∈ [0, L) and small times. Having no a priori way to determine
the number of bands and gaps needed to construct the g-function, we proceed instead by ansatz. We
begin by considering the simplest nontrivial case, that the g-function is analytic for z ∈ C\(Γν∪Γν∗)
and the entire contour consists of a single band interval. In this case, we seek g, as the solutions of
the following scalar RHPs:

Riemann-Hilbert Problem 4.2 genus zero g-function and its derivative: Find a scalar
function g(z) such that

1. g analytic for z ∈ C\(Γν ∪ Γ∗
ν). 1. ρ analytic for z ∈ C\(Γν ∪ Γ∗

ν).

2. g(z) = O (1/z) as z → ∞ 2. ρ(z) = O
(
1/z2

)
as z → ∞.

3. g+ + g− = θ0 + η, z ∈ Γν ∪ Γ∗
ν . 3. ρ+ + ρ− = θ′0, z ∈ Γν ∪ Γ∗

ν .
4. g = O

(
(z ± iq)1/2

)
+ locally 4. ρ = O

(
(z ± iq)−1/2

)
+ locally

analytic function near ± iq. analytic function near ± iq.

Here η is a real constant to be determined. The RHP for the density ρ follows from formally
differentiating the RHP for g. We begin with the derivative ρ-problem because it does not depend
on the unknown constant η. By integrating the solution of the RHP for ρ we define a function g
which a posteriori solves the RHP for g and justifies the formal differentiation.

Remark. In the typical construction of a g-function, at each band endpoint, αj , the local behavior

is take to be g = O
(
(z − αj)

3/2
)
. However, for square barrier initial data the asymptotic density

of eigenvalues in the scattering problem (23) is singular: ρ0(z) = O
(
(z ± iq)−1/2

)
unlike the usual

case where eigenvalues vanish as a square root. The loss of regularity in the density motivates the
O
(
z ± iq)1/2

)
behavior at the end points.

Remark. The single band ansatz is motivated by the observation that the initial data ψ0(x) is
locally analytic for x ∈ [0, L). As such the genus zero Whitham equations (4) are locally well-posed
and so its reasonable to assume that for sufficiently small times the NLS solution, ψ(x, t), is well
approximated inside the support by a slowly modulating plane wave. In principle we could take
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the band to be a subset of Γν ∪ Γ∗
ν with endpoints α(x, t) and α∗(x, t). However, in this case one

can show that the resulting gap condition Im(θ0 − g+ − g−) > 0 for z ∈ Γν\γb cannot be satisfied
which forces α(x, t) = iq.

RHP 4.2 for ρ is easily solved using the Plamelj formula:

ρ(z) =
1

2πiν(z)

∫

Γν∪Γ∗
ν

θ′0(λ)ν+(λ)
dλ

λ− z
=

1

2
θ′0(z)−

2tz2 + (x− L)z + tq2

ν(z)

=
d

dz

{
1

2
θ0(z)− ν(z) [tz + (x− L)]

}
.

(85)

Any choice of antiderivative will satisfy conditions 1, 3, and 4 of RHP 4.2 for the g-function; in
order for g to tend to zero at infinity, we define

g(z) :=

∫ z

∞
ρ(λ) dλ =

1

2
θ0(z)− ν(z) [tz + (x− L)] +

1

2
tq2,(86)

where to be concrete the path of integration is taken such that it avoids the contour Γν ∪ Γ∗
ν on

which ρ is branched. Following (83), g has the effect of replacing the unmodified phases θ0 and θ1
with

(87) ϕ0 = 2ν [tz + (x− L)]− tq2 and ϕ1 = 2ν [tz + (x+ L)]− tq2,

4.3.1. Satisfying the band and gap conditions: contour selection. The construction of our g-function
is not complete; we have not yet defined the contour Γν ∪Γ∗

ν on which it is branched. This contour
is selected by showing that the appropriate band and gap conditions can be satisfied. For the single
band ansatz we have two such conditions:

Band: Im(g+ − g−) = Im(ϕ0−) = 0, z ∈ Γν(88a)

Gap: Im(θ1 − g+ − g−) = Im(ϕ1) > 0, z ∈ Γ1(88b)

We list only the conditions for z ∈ C
+ as the reflection symmetry implies the correct condition

in C
−. The inequality in (88b) is enforced so that the jumps introduced by (77) along Γ1 and its

conjugate are near identity away from the real axis. It is not a typical gap condition since Γ1 is not
the complement of a band, but the inequality is of the gap form and, as usual for gap inequalities,
its failure can be a mechanism for the introduction of a new band in the g-function.

The band and gap conditions in (88) amount to understanding the topology of the zero level
curves of Imϕk, k = 0, 1, and the corresponding open regions of growth and decay of the associated
exponentials eiϕk/ǫ. Note that the zero level sets of Imϕk are independent of how we choose the
branch cut of ν, so using them to determine the branch is not circular. The following lemma
characterizes the time evolving topology of the zero level sets of each modified phase.

Lemma 6. Let L(t; b) denote the zero level curve of the function

Imϕb := Im
(
2ν [tz + b]− tq2

)

for b ∈ R\{0} and ν defined by (22). Additionally, define the breaking time

Tc(b) =
|b|

2
√
2q
.

Then the zero level L(t; b) evolves as follows:

i. For t = 0, L(0; b) = R ∪ [−iq, iq].
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ii. For 0 < t ≤ Tc(b), L(t; b) consists of the real axis and two simple non-intersecting arcs: a
simple finite arc connecting iq to −iq, and an infinite arc which asymptotically approaches the
line Re z = −b/2t for z large. The finite and infinite arcs lie completely in the half-plane
Re bz < 0 and cross the real axis at points z0 and z1 respectively such that |z0| < |z1|.

iii. For t > Tc(b), L(t; b) consist of the real axis and two semi-infinite contours each connecting
one of the branch points ±iq to complex infinity in the same half-plane. In particular, L(t; b)
does not contain a finite path connecting iq to −iq

Proof. For t = 0, Imϕb = Im ν since b is real and nonzero, the topology of L(0; b) follows immedi-
ately. For t > 0 the topology is determined from the following observations:

• The conjugation symmetry ϕ∗
b(z) = ϕb(z

∗) guarantees that R ⊂ L(t; b) and allows us to
consider only z ∈ C

+. Any branch of L(t; b) in C
+ can terminate only at a critical point of

ϕb on the real line, at the branch point iq, or at ∞.
• The square root singularity of ϕb at iq guarantees that exactly one branch of L(t; b) termi-
nates at iq.

• The large z expansion ϕb = tz2 + bz + tq2/2 + O (1/z) shows that L(t; b) has exactly
one branch terminating at ∞ in C

+ and the branch asymptotically approaches the line
Re z = −b/2t for large z.

• For t > 0 no branch of L(t; b) can cross the imaginary axis, since

|Im (ϕb(iy))| =
{
ty
√
q2 − y2 0 < y ≤ q

b
√
y2 − q2 y > q.

• L(t; b) cannot contain a closed bounded loop if Imϕb is harmonic inside the loop, since the
maximum modulus principal would imply that ϕb is then identically zero.

To complete the proof we need to determine the number of real critical points of ϕb. A simple
calculation shows that ϕb has exactly two critical points given by

z0 = − b

4t

[
1−

√
1− 8t2q2

b2

]
z1 = − b

4t

[
1 +

√
1− 8t2q2

b2

]
.

For 0 < t < Tc(b) these are two real points satisfying the given properties in part ii. above. As t
increases and surpasses the breaking time Tc(b) the two real critical points z0 and z1 coalesce and
spit into complex conjugates. Thus, for t > Tc(b) the branches of L(t; b) in C

+ do not have a real
terminus. Moreover, for t > Tc(b) the branches of L(t; b) no longer pass through the critical points
since this would necessarily imply the existence of a closed loop in L(t; b) violating the last bulleted
conditions above. In each case we now connect the termini of the branches of L(t; b) in C

+ without
violating the above observations. The results for t > 0 follow immediately. �

Clearly, the zero level sets of Imϕ0 and Imϕ1 are those described above with b = x − L and
b = x + L respectively. To satisfy the band condition (88a) we define Γν ∪ Γ∗

ν to be the branch of
the zero level of Imϕ0 connecting −iq to iq. Lemma 6 guarantees this contour exists for (x, t) ∈ S1,
where

S1 := {(x, t) : 0 ≤x < L,≤ t < T1(x)} ,

T1(x) :=
L− |x|
2
√
2q

.
(89)
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For (x, t) /∈ S1 the band condition (88a) cannot be satisfied. The upper limit T1(x) we call the first
breaking time, and in the remainder of this section we will always assume that (x, t) ∈ S1; we will
address what happens when one moves beyond this first breaking time in Section 5.

The last condition to be satisfied is the gap condition (88b). For (x, t) ∈ S1 the topology of the
level curve Imϕ1 = 0 falls always into case ii. of Lemma 6. The regions of growth and decay of the
exponentials eiϕ0/ǫ and eiϕ1/ǫ follow from continuation of their large z asymptotic behavior; plots
of these regions for generic values of (x, t) ∈ S1 are given in Figure 12. As the figure illustrates, the
finite and infinite complex branches of Imϕ1 = 0 do not intersect so the subset of C+ such that
Imϕ1 > 0 consist of the entire region to the right of the infinite complex branch of the zero level
set except for the closed set bounded by the finite branch of Imϕ1 and the branch cut of ν along
Γν ∪ Γ∗

ν . To satisfy (88b) we define ξ1 to be the real critical point of ϕ1 through which the infinite
branch of Imϕ1 = 0 passes:

(90) ξ1 = −x+ L

4t

[
1 +

√
1− 8t2q2

(x+ L)2

]

and take Γ1 to be any contour in C
+ terminating at ξ1 laying completely in the set Imϕ1 > 0, see

Figure 13.
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Figure 12. The modified harmonics eiϕk/ǫ, k = 0, 1, each separate the plane into
regions of growth (white) and decay (grey). The level set Imϕ0 = 0 (bold lines)
separating the regions of growth and decay of eiϕ0/ǫ consists of three elements: the
real line, a finite arc connecting ±iq and an unbounded arc which approaches the

line Im z = − (x−L)
2t for large z. We take the branch of ν =

√
z2 + q2 along the

finite branch of Imϕ0 = 0 which we label Γν in C
+ and Γ∗

ν in C
− respectively. The

level set Imϕ1 = 0 consists of similar arcs with the unbounded arc now approaching

Im z = − (x+L)
2t for large z. These three arcs and the branch cut Γν ∪ Γ∗

ν separate

the regions of growth and decay of eiϕ1/ǫ. Finally, the points ξk, k = 1, 2 defined
by (92) and (90) are the unique points at which the unbounded arcs of Imϕk = 0
cross the real line and from which contours are opened.

4.4. Removing the remaining oscialltions: N 7→ Q. Now that the construction of the one
band g-function is complete the RHP for N follows immediately from RHP 4.1 and (82).

Riemann-Hilbert Problem 4.3 for N(z): Find a 2× 2 matrix N such that
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1. N is analytic in C\ΓM .
2. As z → ∞, N(z) = I +O (1/z).
3. N assumes continuous boundary values N+ and N− on ΓM satisfying N+ = N−VN where,

(91) VN =





eig adσ3/ǫ
(
R†R

)
z ∈ (−∞, ξ1)

eig adσ3/ǫ(R†
0R0) z ∈ (ξ1,∞)(

e−i(ϕ0−+tq2)/ǫ 0

we−itq2/ǫ e−i(ϕ0++tq2)/ǫ

)
z ∈ Γν

(
e−i(ϕ0−+tq2)/ǫ −w∗eitq

2/ǫ

0 e−i(ϕ0++tq2)/ǫ

)
z ∈ Γ∗

ν

eig adσ3/ǫ
(
R−1

0 R
)

z ∈ Γ1

eig adσ3/ǫ
(
R†R−†

0

)
z ∈ Γ∗

1

The g-function transformation has removed the exponentially large jumps along Γν ∪ Γ∗
ν . How-

ever, the RHP for N still has rapidly oscillatory jumps along the real axis which must be factored
and moved onto appropriate complex contours. To open steepest descent lenses off the real axis
we need to understand the regions of growth and decay of the, now modified, first harmonics
eiϕ0/ǫ and eiϕ1/ǫ. The topology of these regions follows directly from Lemma 6. The level sets
Imϕk = 0, k = 0.1 each have one infinite, asymptotically vertical, branch which cross the real axis
at points which we label ξ0 and ξ1 respectively; ξ1 was given above by (90), following the proof of
Lemma 6 a similar formula can be given for ξ0:

(92) ξ0 = −x− L

4t

[
1 +

√
1− 8t2q2

(x− L)2

]
.

These are stationary phase points of the associated harmonics eiϕk/ǫ. We denote them in this
way in analogy with the stationary phase points of the same name for the unmodified phases
θk, k = 0, 1 which were described in Section 3.1.1 for x outside the support of the initial data.
Just as before, these points separate connected unbounded components of the complex plane in
which the associated harmonic is everywhere either decaying or growing. These regions are plotted
numerically in Figure 12.

The oscillatory jumps on the real axis are essentially identical to those in RHP 3.1 up to the
conjugation by the g-function factor. To deform the oscillations in the current problem onto contours
on which they are exponentially small we use same factorizations as before (cf. (41)-(45)). Without
repeating those details we make the following transformation:

Q(z) = Neig adσ3/ǫ LQ

LQ =





R−1
0 z ∈ Ω0

R̂−† (a/a0)
σ3 z ∈ Ω2

R̂−†
0 z ∈ Ω3

R̂0 z ∈ Ω∗
3

R̂ (a∗/a∗0)
−σ3 z ∈ Ω∗

2

R†
0 z ∈ Ω∗

0

I elsewhere.

(93)
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The regions Ωk and the contours Γk bounding them are defined as follows: we take Γ0 to be a
contour in C

+ lying completely in the region Imϕ0 > 0 and meeting the real axis at ξ0; Γ2 lies
completely in the region Imϕ1 < 0 and meets the real axis at ξ1; and finally Γ3 connects the
stationary phase points ξ1 and ξ0 and encloses Γν always staying in the region Imϕ0 < 0. The
corresponding sets Ωk, k = 1, 2, 3 are those enclosed by Γk and the real axis, see Figure 13.
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Figure 13. Schematic diagram of the contours ΓQ and regions Ωk used to define
the transformation N 7→ Q.

To calculate the resulting jumps of Q we need the factorizations (41), (42), (45), and the following
factorization. For z along Γν , the jump of VN can be factored as follows:
(
e−

i
ǫ (ϕ0−+tq2) 0

we−
i
ǫ tq

2

e−
i
ǫ (ϕ0++tq2)

)

=

(
1 w−1e−

i
ǫϕ0−

0 1

)(
0 −w−1e

i
ǫ tq

2

we−
i
ǫ tq

2

0

)(
1 w−1e−

i
ǫϕ0+

0 1

)
.

Next, recalling the definition of r0(z), (29), and w, (80), we observe the following identity

(94)

(
r∗0

1 + r0r∗0

)

+

= −
(

r∗0
1 + r0r∗0

)

−
=

iq

2ν+
= w−1,

which allows one to express the above factorization in terms of the boundary values of R̂†:
(
e−

i
ǫ (ϕ0−+tq2) 0

we−
i
ǫ tq

2

e−
i
ǫ (ϕ0++tq2)

)

=
(
e

i
ǫ g adσ3R̂−†

0

)
−

(
0 −w−1e

i
ǫ tq

2

we−
i
ǫ tq

2

0

)(
e

i
ǫ g adσ3R̂†

0

)
+
.

(95)

This allows us to open a single lens Γ3 enclosing the band Γν of the g-function instead of opening
separate lenses off the real axis and again off Γν which significantly simplifies the construction of
the ensuing global parametrix. Let Γ0

Q =
⋃3

k=0 (Γk ∪ γ∗k) and ΓQ = Γ0
Q ∪Γν ∪Γ∗

ν ∪ (−∞, ξ0]. Using
this factorization we arrive at:
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Riemann-Hilbert Problem 4.4 for Q(z): Find a 2×2 matrix valued function Q of z such that:

1. Q is analytic for z ∈ C\ΓQ.
2. Q(z) = I +O (1/z) as z → ∞.
3. Q takes continuous boundary values Q+ and Q− on ΓQ satisfying the jump relation Q+ = Q−VQ

where,

(96) VQ =





eigσ3/ǫ V
(0)
Q e−igσ3/ǫ z ∈ Γ0

Q(
0 −w−1e

i
ǫ tq

2

we−
i
ǫ tq

2

0

)
z ∈ Γν

(
0 −w∗e

i
ǫ tq

2

w∗−1e−
i
ǫ tq

2

0

)
z ∈ Γ∗

ν

(1 + |r0|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0|2)σ3 z ∈ (ξ1, ξ0)

,

and

(97) V
(0)
Q =





R0 z ∈ Γ0

R−1
0 R z ∈ Γ1

(a/a0)
−σ3R̂† z ∈ Γ2

R̂†
0 z ∈ Γ3

V
(0)
Q =





R†
0 z ∈ Γ∗

0

R†R−†
0 z ∈ Γ∗

1

R̂(a∗/a∗0)
−σ3 z ∈ Γ∗

2

R̂0 z ∈ Γ∗
3

4. Q admits at worst square root singularities at z = ±iq satisfying the following bounds

Q(z) = O
(

1 |z − iq|−1/2

1 |z − iq|−1/2

)
, z → iq,

Q(z) = O
(

|z + iq|−1/2 1
|z + iq|−1/2 1

)
, z → −iq.

(98)

Remark. The new singularity condition in RHP 4.4 is caused by a singularity in (93) defining the

transformation N 7→ Q. In Ω3, which contains z = iq, Q = Neig adσ3/ǫR̂−†
0 and observing (94)

the (2, 1)-entry of R̂−†
0 has a square root singularity at iq. We must admit the possibility that Q

inherits this singularity in its second column. As we encounter such transformations in the rest of
this paper we will record the resulting singularity conditions without comment.

4.5. Constructing a global Parametrix: one band case. The result of the many factorizations
defining Q is a RHP which is well conditioned for asymptotic approximation. Away from the points
ξ0 and ξ1 where they return to the real axis the jumps (97) along Γ0

Q are all near identity, both for
large z and fixed z as ǫ ↓ 0. The remaining jumps defining VQ behave simply in the semiclassical
limit. The jumps on the real axis are ǫ-independent and the twist-like jumps on Γν ∪ Γ∗

ν depend
on ǫ through an oscillatory constant which we can deal with explicitly. We proceed, as before, to
construct a global parametrix P such that the ratio QP−1 is uniformly near identity. Since the
jumps along Γ0

Q are not uniformly close to identity near the stationary phase points ξ0 and ξ1, we
seek our global parametrix in the form

(99) P (z) =





A0(z) z ∈ U0

A1(z) z ∈ U1

O(z) elsewhere
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where each Uk is a fixed size neighborhood of ξk, k = 1, 2, which we will determined in the con-
struction of the approximation Ak.

4.5.1. The Outer Mode, O(z).l. At any fixed distance from the stationary phase points the jumps

defined by V
(0)
Q in RHP 4.4 are exponentially small perturbations of identity so we ignore them.

Doing so, we arrive at the following problem for the outer model.

Riemann-Hilbert Problem 4.5 for O(z): Find a 2× 2 matrix valued function O satisfying the
following properties:

1. O is an analytic function for z ∈ C\ΓO, ΓO = Γν ∪ Γ∗
ν ∪ (−∞, ξ0].

2. O(z) = I +O (1/z) as z → ∞
3. O takes continuous boundary values O+ and O− on ΓO away from the points z = ±iq, ξ0, and

ξ1. The boundary values satisfy the jump relation O+ = O−VO where

(100) VO =





(
0 −w−1e

i
ǫ tq

2

we−
i
ǫ tq

2

0

)
z ∈ Γν

(
0 −w∗e

i
ǫ tq

2

w∗−1e−
i
ǫ tq

2

0

)
z ∈ Γ∗

ν

(1 + |r0|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0|2)σ3 z ∈ (ξ1, ξ0).

4. O admits at worst square root singularities at z = ±iq satisfying the following bounds

O(z) = O
(

1 |z − iq|−1/2

1 |z − iq|−1/2

)
, z → iq,

O(z) = O
(

|z + iq|−1/2 1
|z + iq|−1/2 1

)
, z → −iq.

(101)

We construct a solution of this outer model by first introducing two scalar functions which
reduces the problem to the class of constant jumps Riemann-Hilbert problems. The first of these
functions:

δ(z) = exp

(
1

2πi

∫ ξ1

−∞

log
(
1 + |r0(s)|2

)

s− z
ds+

1

2πi

∫ ξ0

−∞

log
(
1 + |r0(s)|2

)

s− z
ds

)
,

we have already encountered; it was introduced in RHP 3.3 to remove the jumps on the real axis
from the outer model problem. The second function we need is new, and is the solution of the
following problem:

Riemann-Hilbert Problem 4.6 for s(z): Find a scalar function s such that

• s is analytic in C\ (Γν ∪ Γ∗
ν).

• s(z) = s∞ +O (1/z) as z → ∞, where s∞ is a constant, bounded for all ǫ.
• For z ∈ Γν ∪ Γ∗

ν the boundary values s+ and s− satisfy the relationship

(102) s+(z)s−(z) =

{
w(z)δ−2(z)e−itq2/ǫ z ∈ Γν

w∗(z)−1δ−2(z)e−itq2/ǫ z ∈ Γ∗
ν .

• At the endpoints of Γν ∪ Γ∗
ν :

i. s(z) = O
(
(z − iq)1/4

)
as z → iq,

ii. s(z) = O
(
(z + iq)−1/4

)
as z → −iq.
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Let us defer, temporarily, the construction of the solutions to RHP 4.6. If such a function s can
be found, we make the following transformation

(103) O(z) = s−σ3
∞ O(1)(z)s(z)σ3δ(z)σ3 .

The new unknown O(1) then satisfies the following simple, constant jump, Riemann-Hilbert prob-
lem:

Riemann-Hilbert Problem 4.7 for O(1)(z): Find a 2× 2 matrix valued function O(1)(z) such
that

1. O(1) is analytic in C\ (Γν ∪ Γ∗
ν).

2. O(1)(z) = I +O (1/z) as z → ∞.

3. Away from its endpoints O(1) takes continuous boundary values O
(1)
+ and O

(1)
− on Γν ∪ Γ∗

ν satis-
fying the jump realation

O
(1)
+ (z) = O

(1)
− (z)

(
0 −1
1 0

)

4. O(1) admits at worst 1/4-root singularities at the endpoints z = ±iq.
This is a standard model problem which often appears in problems related to integrable PDE

and random matrix theory. One builds the solution by diagonalizing the jump matrix and solving
the resulting simple scalar problem. A moments work reveals

O(1)(z) =

(
a(z)+a(z)−1

2 −a(z)−a(z)−1

2i
a(z)−a(z)−1

2i
a(z)+a(z)−1

2

)
,

where a is defined by,

(104) a(z) =

(
z − iq

z + iq

)1/4

and the root is understood to be branched along Γν ∪ Γ∗
ν and normalized to approach unity at ∞.

To complete the description of the outer model problem we need to build the solution of RHP
4.6 which is the subject of the following proposition.

Proposition 7. Riemann-Hilbert problem 4.6 is solved by

(105) s(z) = a(z)e−
i
2 tq

2/ǫ exp

(
ν(z)

2πi

∫

Γν∪Γ∗
ν

j(λ)

ν+(λ)

dλ

λ− z

)
.

Here a is as defined in (104), and using (53) we define

j(z) =




log
(

2(z+iq)
q

)
− 2(χ(z, ξ1) + χ(z, ξ0)) z ∈ Γν

log
(

q
2(z−iq)

)
− 2(χ(z, ξ1) + χ(z, ξ0)) z ∈ Γ∗

ν .

where the logarithms are understood to be principally branched. As z → ∞, s(z) = s∞ + O (1/z)
where the constant s∞ satisfies

s−2
∞ = exp

[
i

ǫ
tq2 − iπ

2
+ iω(x, t)

]
where,

ω(x, t) = − 1

π

(∫ ξ1

−∞
−
∫ ∞

ξ0

)
log(1 + |r0(λ)|2)

ν(λ)
dλ.

(106)
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Remark. The function ω defined by (106) is real and thus represents a slow correction to the fast
phase. The integrals can be evaluated in terms of special functions to give

ω(x, t) = − 1

2π

[
Li2
(
r0(ξ0)

2
)
+ Li2

(
r0(ξ1)

2
)]
,

where Li2(z) is the dilogarithm and the (x, t) dependence is contained in the location of the sta-
tionary phase points ξ0 and ξ1.

Proof. The Plamelj formulae imply that the given function (105) satisfies the analyticity and jump
conditions of RHP 4.6. Using classical results on the behavior of singular integrals along the line
of integration one can show that the Cauchy integral and its boundary values are bounded except
at the endpoints where at worst it behaves like an inverse square root [Mus92]. However, this
behavior is balanced by the presence of the factor ν(z) multiplying the Cauchy integral. Thus,
(105) is everywhere bounded except at z = ±iq where its local behavior is identical to that of a(z).
Finally, by expanding (105) for large z we get an asymptotic expansion for s at infinity in powers
of z−1; the leading order term is constant:

s∞ = e−
i
2 tq

2/ǫ exp

(
− 1

2πi

∫

Γν∪Γ∗
ν

j(λ)

ν+(λ)
dλ

)
.

By using contour deformation arguments and exploiting the odd symmetry of ν(z) for {z : |z| >
ξ0, z ∈ R} and even symmetry for {z : |z| < ξ0, z ∈ R} one shows that s∞ satisfies (106). �

Note that O(z) only depends on ǫ through the phase factors eitq
2/2ǫ appearing in s(z) and s∞

and is thus bounded independent of ǫ at each point z ∈ C\{iq, −iq}. Near the endpoints z = ±iq,
O(z) has square root singularities coming from the product O(1)(z)s(z)σ3 as described by (101).
As is expected, and will be proven in Section 4.6, the outer model contributes the leading order
behavior of the solution of NLS in the semiclassical limit; expanding O(z) for large z and taking
the (1, 2)-entry of the first moment we have

(107) 2i lim
z→∞

O12(z; x, t) = iqs−2
∞ = qe

i
ǫ tq

2+iω(x,t).

4.5.2. The local model problems. The approximation of Q(z) by the outer model is not uniform
near z = ξ1 and z = ξ0 where the jump contours Γ0

Q (cf. (96)) return to the real axis. To

construct a uniformly accurate parametrix we must introduce local models A0(z) and A1(z) defined
on neighborhoods U0 and U1 of the points ξ0 and ξ1 respectively which account for the local structure
of the jump matrices and which asymptotically match the outer solution on the boundaries ∂U0

and ∂U1.
Comparing (96) to (47), the local structure of VQ near ξ0 and ξ1 when (x, t) ∈ S1, the set

in which the single band g-function stabilizes the problem, and the local structure of VQ for x
outside the initial support are essentially identical. In moving from outside the initial support into
S1 the introduction of the g-function has replaced the harmonic phases θk with their modulated
counterparts ϕk = θk − 2g and the stationary phase points ξ0 and ξ1 have been suitably redefined
in terms of the ϕk, everything else is identical. Thus, we can essentially construct the new local
models at ξ0 and ξ1, mutatis mutandis, from the old models. Without repeating the details of their
construction we define the new local models below and refer the reader to Sections 3.3.2 and 3.3.3
for the additional details.
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First, define the locally analytic and invertible change of variables ζ = ζk(z), where,

(108)
1

2
ζ2k :=

ϕk(z)− ϕ(ξk)

ǫ
=
ϕ′′
k(ξk)

2ǫ
(z − ξk)

2 +O
(
(z − ξk)

3
)
, k = 0, 1.

Each ζk introduces a rescaled local coordinate at ξk and we choose suitably small fixed size neigh-
borhoods Uk of ξk such that the ζk are analytic inside Uk and the images ζ = ζk(Uk) are disks in
the ζ-plane. Next, using Prop. 2 and (54) we define the nonzero scaling functions:

h0 =

[(
ǫ

ϕ′′
0(ξ0)

)iκ(ξ0) (
δhol0 (z)

)2
e−iϕ0(ξ0)/ǫ

]1/2
,

h1 =

[(
ǫ

ϕ′′
1(ξ1)

)iκ(ξ1)

δhol1+ (z)δhol1− (z) e−iϕ1(ξ1)/ǫ

]1/2
.

(109)

With the above definitions in hand we define our local models as follows:

Ak(z) =
[
s−σ3
∞ O(1)(z) s(z)σ3

]
Âk(z) δ(z)

σ3 , k = 0, 1,(110)

where the functions Âk are built from the solutions ΨPC of the parabolic cylinder local model, RHP
3.4:

Â0(z) = hσ3
0 ΨPC(ζ0(z), r0(ξ0))h

−σ3
0 ,(111a)

Â1(z) = hσ3
1 ΨPC(ζ1(z), −r0(ξ1))h−σ3

1 × U−1eig(z)σ3/ǫF−1e−ig(z)σ3/ǫ.(111b)

Remark. In addition to the modified phase functions ϕk and the resulting redefinition of the sta-
tionary phase points ξk, the pre-factors right multiplying each Âk in (110) are a new element of the
local models when compared to the local models defined in Sections 3.3.2 and 3.3.3. It consists of
the factors in the outer model (103) which are locally analytic near ξ0 and ξ1; by including them
as pre-factors, our estimates of the asymptotic error on the boundaries ∂Uk are identical to the
previous estimates for x outside the support of the initial data.

4.6. Proof of Theorem 1, part two. We now consider the error matrix E(z) defined as the ratio:

(112) E(z) = Q(z)P−1(z).

As both Q(z) and P (z) are piecewise analytic functions whose components take continuous bound-
ary values on the boundaries of their respective domains of definition, E satisfies its own Riemann-
Hilbert problem, which we give below.

Riemann-Hilbert Problem 4.8 for the error matrix, E(z). Find a 2× 2 matrix E(z) such
that

1. E(z) is bounded and analytic for z ∈ C\ΓE, where ΓE is the system of contours depicted in
Figure 9.

2. As z → ∞, E(z) = I +O (1/z).
3. E takes continuous boundary values E+(z) and E−(z) for z ∈ ΓE satisfying the jump relation

E+ = E−VE where

(113) VE = P−
(
VQV

−1
P

)
P−1
− .

All of the properties listed in the RHP for E(z) follow immediately from (112) except for the
boundedness of E(z) near the endpoints z = ±iq. To show this, first observe that the jump matrices
of the parametrix P (z) exactly match those of Q(z) along Γν ∪ Γ∗

ν so that VE , as defined by (113),
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are identity along Γν ∪ Γ∗
ν . At worst E(z) has isolated singularities at the endpoints. However, the

local growth restrictions (98) and (101) dictate that at worst Ejk(z) = O
(
|z ± iq|−1/2

)
implying

that the singularities are removable. Thus E(z) is locally bounded near each endpoint. Globally
boundedness then follows directly from conditions 2 and 3 defining RHP 4.8.

The key estimate which allows us to prove the second part of our main result, Theorem 1, is
recorded in the following lemma which establishes E as the solution of a small-norm Riemann-
Hilbert problem.

Lemma 8. For (x, t) ∈ K ⊂ S1 compact and ℓ ∈ N0 the jump matrix VE defined by (113) satisfies,

(114) ‖zℓ(VE − I)‖Lp(ΓE) = O
(
ǫ1/2 log ǫ

)
,

for each sufficiently small ǫ and p = 1, 2, or ∞.

Proof. The estimates necessary to establish this lemma are identical to those used to prove Lemma
5 after introducing the modified phases (87) which replace the θk upon the introduction of the one
band g-function (86) which remains valid for any (x, t) ∈ S1. The reader is referred to Lemma 5
for the details of the estimates. �

The small norm estimate in Lemma 8 admits the representation of E(z) as

E(z) = I +
1

2πi

∫

ΓE

µ(s)(VE(s)− I)

s− z
ds

where µ(s) is the unique solution of (1−CVE
)µ = I. Here CVE

f = C−[f(VE−I)] where C− denotes
the Cauchy projection operator. In particular, E(z) has the large z expansion

(115) E(z) = I +
E(1)(x, t)

z
+ . . . , where,

∣∣∣E(1)(x, t)
∣∣∣ = O

(√
ǫ log ǫ

)
.

Unfolding the sequence of transformations: m 7→M 7→ N 7→ Q 7→ E, we have the semi-classical
asymptotic expansion of m and, using (18), we find the leading order behavior of the solution q(x, t)
of (1) with initial data (2) for each (x, t) ∈ S1. Using (77), (82), (93), (99), and (107) we find

ψ(x, t) = qe
i
ǫ (q

2t+ǫω(x,t)) +O
(√
ǫ log ǫ

)
.

4.7. Correction to the phase, evidence of a singular perturbation . We take a moment
here to remark on the phase correction ω(x, t) defined by (106) that appears in

ψasy(x, t) = qe
i
ǫ (q

2t+ǫω(x,t)),

the leading order asymptotic behavior of the solution for (x, t) ∈ S1. We can think of this phase in
several ways. Thinking of the asymptotic solution as a slowly modulating plane wave, ω constitutes
a slow correction to the singular phase. With respect to the fast evolution this is a constant
phase which the Whitham theory cannot recover. Though the phase is slow it still affects O (1)
change in the solution, which the Riemann-Hilbert machinery naturally recovers from the scattering
data. This is a nice result, but can we understand this phase in a more direct way? Altering our
perspective, we can treat ω as the phase correction in going from the geometric to physical optics
approximation of the solution in the WKB theory. This leads to an interesting observation. Writing
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the solution of (1) in the form ψ(x, t) = A(x, t)eiS(x,t)/ǫ we get the following system of equations
equivalent to focusing NLS

ρt + (ρSx)x = 0,

St +
1

2
S2
x − ρ =

ǫ2

2

[
ρxx
2ρ

−
(
ρx
2ρ

)2
]
,

(116)

where ρ(x, t) := A(x, t)2. The asymptotic solution ψasy is a correction to the simple plane wave
solution ρ = q2 and S = q2t. Inserting a regular expansion ansatz: ρ = q2 + ǫη + O

(
ǫ2
)
and

S = q2t+ ǫω +O
(
ǫ2
)
, into (116) and differentiating in t to eliminate η we are led to

ωtt + q2ωxx = O (ǫ) .

Assuming bounded derivatives in the expansion, ω should solve this rescaled Laplace equation, but,
as defined by (106), ω does not satisfy the Laplace equation. To see this, we observe that due to
the self-similar dependence of ξ1 and ξ0 on (x, t) as defined by (90) and (92) we can write ω in the
form ω(x, t) = F

(
x+L
t

)
+ F

(
x−L
t

)
− ω0 where

F (ζ) = − 1

π

∫ λ(ζ)

−∞

log(1 + |r0(λ)|2)
ν(λ)

dλ, λ(ζ) = −ζ
4

[
1 +

√
1− 8q2ζ−2

]

ω0 = − 1

π

∫ ∞

−∞

log(1 + |r0(λ)|2)
ν(λ)

dλ.

Letting ζ± = (x± L)/t and seeking a solution of this general form, we get

ωtt + q2ωxx =
1

t2
d

dζ

[
(ζ2 + q2)F ′]

∣∣∣∣
ζ=ζ+

+
1

t2
d

dζ

[
(ζ2 + q2)F ′]

∣∣∣∣
ζ=ζ−

= 0

Since ζ+ and ζ− are independent this is only possible if d
dζ

[
(ζ2 + q2)F ′] ≡ 0 or F (ζ) = c1 +

c2 arctan (ζ/q). As ω is clearly not of this form, this suggest that the initial assumption that the
solution admits regular phase and amplitude expansions with bounded derivatives is false. From
the results of [DM05, ER06] we know that the discontinuities exhibit Gibbs phenomena in the
small-time limit; these arbitrarily small wavelength oscillations are dispersed but not destroyed by
the evolution. Further, though we know from the semiclassical Riemann-Hilbert analysis that the
amplitude correction, η, is small, η = O (

√
ǫ log ǫ), it is quite possible that η exhibits rapid oscil-

lations with significant derivatives. All of this suggest that the discontinuities generate interesting
corrections to the phase and amplitude. In particular the phase correction, ω, contributes at first
order and is detected by the inverse-scattering machinery. We believe that both the phase and am-
plitude corrections for discontinuous initial data merit further study. Our focus here is to describe
the regularization of the discontinuities by the semiclassical evolution, so we set these questions
aside for now, but plan to address them in future work.

5. Inverse analysis beyond the first breaking time

In the previous section we showed that for each x ∈ [0, L) the inverse analysis was controlled
before the breaking time T1(x), defined by (89), by the introduction of a g-function which a priori
we assumed to contain a single band interval. The one band ansatz then implied the system of band
and gap inequalities (88). In this section we now consider the inverse problem for times t > T1(x).
The breaking time T1(x) is characterized by the failure of the band condition (88a), as implied
by Lemma 6; the lemma also guarantees that the gap condition (88b) continues to be satisfied for
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times beyond the the first breaking time. The failure of the band condition for a generic choice of
x ∈ [0, L) as t increases beyond the first breaking time T1(x) is depicted in Figure 14. In particular,
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Figure 14. The zero level and sign structure of the modified phase Imϕ0 intro-
duced by the one band g-function as t increases beyond the first breaking time,
T1(x). Shaded regions represent Imϕ0 > 0 and white regions Imϕ0 < 0.

note how the band condition (88a) fails for t > T1(x): a new gap opens across the real axis. To
move the analysis of the inverse problem beyond the first breaking time we return to RHP 4.1 for
the piecewise holomorphic unknownM . In the course of the analysis we will redefine the stationary
points ξk, contours Γk, and introduce a new g-function which accounts for the newly opening gap.

5.1. Introducing a new g-function, the genus one ansatz. As before we introduce our g-
function by making the change of variables

(117) N(z) =M(z)e−ig(z)σ3/ǫ.

as always we demand that g satisfy the generic decay and symmetry properties listed below (82).
Motivated by the appearance of a new gap as discussed above, we seek a new g-function supported
on two symmetric bands γb and γ

∗
b separated by a central gap contour γg∪γ∗g such that γb∪γg = Γν .

We further suppose that the outer endpoints of the bands are fixed at z = ±iq but allow the inner
endpoints, labelled α and α∗, to evolve. Using this ansatz, we seek g as the solution of the following
scalar Riemann-Hilbert problem:

Riemann-Hilbert Problem 5.1 for the genus one g-function Find a scalar function g(z)
such that

1. g is an analytic function of z for z ∈ C\(Γν ∪ Γ∗
ν).

2. g(z) = O (1/z) as z → ∞.
3. g takes continuous boundary values g+ and g− on Γν ∪Γ∗

ν away from the endpoints which satisfy
the jump relations:

(118)

{
g+(z) + g−(z) = θ0 + η z ∈ γb ∪ γ∗b
g+(z)− g−(z) = Ω z ∈ γg ∪ γ∗g

where η and Ω are real constants.
4. As z → p, where p is a endpoint of the bands and gaps, g(z) behaves as follows:

• g(z) = O
(
(z − p)1/2

)
for p = iq or p = −iq.

• g(z) = O
(
(z − p)3/2

)
for p = α or p = α∗.
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If we can construct such a function we define the modified phases as before

(119) ϕk(z) = θk(z)− 2g(z),

but now in terms of the solution g of RHP 5.1. As discussed in Section 4.2, in order for the g-
function to lead to a semiclassically stable limiting problem, we require that it satisfy a system of
band and gap relations of the form (84). It follows from transformation (117) and RHP 5.1 that
the necessary band and gap conditions take the form:

Bands: Im
(
ϕ0−

)
= 0 for z ∈ γb,(120a)

Gap 1: Im (ϕ0) > 0 for z ∈ γg,(120b)

Gap 2: Im (ϕ1) > 0 for z ∈ Γ1.(120c)

Remark. The above conditions imply, using the reflection symmetry of the ϕk, the corresponding
relations in the lower half-plane.

Conditions (120a) and (120b) ensure that the g-function does not introduce large jumps along
Γν∪Γ∗

ν while the last condition (120c) ensures that the jumps along the contours Γ1∪Γ∗
1 introduced

by the pole removing transformation (77) remain small after introducing g.

5.1.1. Constructing the genus one g-function. We begin by seeking a g-function of the form

(121) g(z) =

∫ z

∞
ρ(λ) dλ

for an unknown density ρ where the path of integration is any simple contour which does not
intersect Γν ∪ Γ∗

ν . The density ρ must necessarily be symmetric: ρ(λ∗)∗ = ρ(λ); and solve the
problem resulting from formally differentiating RHP 5.1 .

Riemann-Hilbert Problem 5.2 for the genus two density ρ(z): Find a scalar function ρ
such that:

1. ρ is an analytic function of z for z ∈ C\(γb ∪ γ∗b ).
2. ρ(z) = O

(
1/z2

)
as z → ∞.

3. On γb ∪ γ∗b ρ takes continuous boundary values ρ+ and ρ− which satisfy the jump condition

(122) ρ+(z) + ρ−(z) = θ′0(z), z ∈ γb ∪ γ∗b
4. As z → p, where p is an endpoint of a band or gap interval, ρ(z) behaves as follows:

(123)
• ρ(z) = O

(
(z − p)−1/2

)
for p = ±iq,

• ρ(z) = O
(
(z − p)1/2

)
for p = α, α∗.

The normalization condition and path restriction guarantee that g is a well defined function and
that g(z) = O (1/z) as z → ∞. The advantage of this representation of g is that the unknown
constants η and Ω are expressible as particular integrals of the density ρ. Suppose ρ is a solution
of RHP 5.2, then for any z ∈ γg and allowable paths for evaluating g+(z) and g−(z) it follows by
contour deformation that

(124) g+(z)− g−(z) =

∫

Cb

ρ(λ) dλ = Ω, z ∈ γg ∪ γ∗g ,

where Cb is any positively oriented simple closed contour in C
+ which encloses γb. Alternatively,

the allowable paths could be deformed to the conjugate loop, C∗
b (enclosing γ∗b with negative
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orientation), averaging gives the more symmetric formula:

(125) Ω =
1

2

(∫

Cb

ρ(λ) dλ+

∫

C∗
b

ρ(λ) dλ

)
,

which implies, using the symmetry of ρ, that Ω is a real constant.

Remark. Here and elsewhere we make use of the following elementary fact: if f(z) satisfies the
symmetry f(λ∗)∗ = f(λ) and C is an oriented contour such that C∗ = C then

(∫

C

f(λ) dλ

)∗
=

∫

C

f(λ)∗ dλ∗ =

∫ ∗

C

f(λ∗)∗ dλ =

∫

C

f(λ) dλ.

Similarly, if instead C∗ = −C then:
(∫

C

f(λ) dλ

)∗
= −

∫

C

f(λ) dλ.

Next we consider the jumps of g along the bands and the corresponding constant η. We have,

g+(z) + g−(z) = θ0(z) + η, z ∈ γb(126)

where

η = −θ0(iq) + 2

∫ iq

∞
ρ(λ) dλ.(127)

Repeating the computation for z ∈ γ∗b , we have g+(z) + g−(z) = θ0(z) + η̂, where,

η̂ = −θ0(−iq) + 2

∫ −iq

∞
ρ(λ) dλ.

Observing symmetries, η and η̂ are complex conjugate: η̂ = η∗. However, a necessary component
of RHP 5.1 requires that η be a real constant. By contour deformation, we can express the difference
as a single integral over the gap:

η∗ − η =

∫

γg

θ′0(λ)− 2ρ(λ) dλ

For generic α this integral will be nonzero. The vanishing of this integral constitutes a single real
condition—symmetry implies the integral is imaginary—on the moving endpoint α. This condition
has another important implication: in terms of the modified phase ϕ0, the vanishing of the above
condition becomes

(128)

∫

γg

θ′0(λ)− 2ρ(λ) dλ =

∫

γg

dϕ0 = 0.

This implies that the endpoints α and α∗ lie on the same level set of Imϕ0, a necessity in order to
satisfy the band condition (120a).

We now turn to directly constructing the density ρ. Motivated by the endpoint behavior and
the additive jump condition we introduce

S(z) =

(
z − α

z − iq

)1/2(
z − α∗

z + iq

)1/2
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understood to be branched along the bands γb ∪ γ∗b and normalized to approach unity as z → ∞.
Using S(z) and the Plemelj-Sokhotsky formula, it immediately follows that:

ρ(z) =
S(z)

2πi

∫

γb∪γ∗
b

θ′0(λ)

S+(λ)

dλ

λ− z
,

which can be evaluated by residues yielding the explicit formula

(129) ρ(z) =
1

2
θ′0(z)− S(z) [t(2z + α+ α∗) + (x− L)] .

Clearly, ρ satisfies the analyticity and endpoint conditions of RHP 5.2 for any generic choice of α.
However, for generic α, ρ(z) = O (1/z) as z → ∞. The quadratic decay at infinity is necessary
for g to be analytic at infinity and is essential to deriving formulas (125) and (127) for the jump
constants. In order for ρ = O

(
1/z2

)
for large z, α must satisfy the following moment condition:

− 1

2πi

∫

γb∪γ∗
b

θ′0(λ)

S+(λ)
dλ = t

[
q2 +

1

4

(
3α2 + 2αα∗ + 3α∗2

)]
+

(x− L)

2
(α+ α∗) = 0,(130)

where the first equality follows from evaluating the integral by residues.

5.1.2. Determining the motion of the α(x, t): self-similar solution of the Whitham system. The
moment and gap conditions, (130) and (128) respectively, constitute two real conditions on the
moving endpoints α and α∗ for each (x, t) in the genus one region. For each t > 0 these conditions
are equivalent to the intersection of the zero level sets of the functions

FM (α, x, t) :=
t

4

(
3α2 + 2αα∗ + 3α∗2 + 4q2

)
+

(x− L)

2
(α+ α∗),(131a)

FG(α, x, t) :=

∫ α

α∗

S(λ) [t(2λ+ α+ α∗) + (x− L)] dλ.(131b)

Observing that these functions are linear—as opposed to affine—functions of x−L and t, it follows
that for all t > 0 their zero level sets depend only on the self-similar variable

(132) µ := −x− L

2t

which encodes all of the explicit (x, t) dependence of each function. Geometrically, µ is an angular
variable parameterizing characteristic lines in (x, t)-space passing through x = L. The exterior
region, S0, with no g-function, and the genus zero region, S1, are naturally described in terms of
µ as µ < 0 and µ >

√
2q respectively. The remainder of this section is devoted to the proof of the

following proposition, which states roughly that for each µ in the remaining interval, µ ∈ (0,
√
2q),

the moment and gap functions (131) uniquely determine α(x, t) := A(µ), such that the limiting

values α(0) and α(
√
2q) “match” the exterior and genus one cases.

Proposition 9. There exist a function A : (0,
√
2q) → C

+ such that by taking α = A(µ),
where µ is the self-similar variable (132), the moment and gap equations FM (A(µ′), x′, t′) = 0
and FG(A(µ′), x′, t′) = 0, with FM and FG given by (131), are satisfied for each (x’,t’) such that

t′ > 0 and µ′ ∈ (0,
√
2q). Additionally, α = A(µ) assumes the following limiting values at the

boundaries of its definition.

lim
µ→0

A = iq and lim
µ→

√
2q
A =

q√
2
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Proof. Both FM and FG are analytic functions of α and α∗ so the Jacobian necessary to invoke the
implicit function theorem to find α and α∗ as functions of x and t is

(133) J (α, α∗) := det

[
∂FM

∂α
∂FM

∂α∗

∂FG

∂α
∂FG

∂α∗

]
.

A straightforward computation using (131) shows that

∂FG

∂α
= −∂FM

∂α

∫ α

α∗

λ− α∗

R(λ)
dλ

∂FG

∂α∗ = −∂FM

∂α∗

∫ α

α∗

λ− α

R(λ)
dλ

(134)

where

R(λ) :=
√

(λ− iq)(λ− α)(λ+ iq)(λ− α∗),

is cut along the band intervals γb and γ∗b and normalized such that R ∼ λ2 for λ → ∞. From this
it follows directly that

(135) J (α, α∗) = (α− α∗)
∂FM

∂α

∂FM

∂α∗

∫ α

α∗

dλ

R(λ)
= 2i

(α− α∗)

|α+ iq|
∂FM

∂α

∂FM

∂α∗ K(m),

where K(m) is the complete elliptic integral of the first kind with parameter

(136) m = 1− |α− iq|2
|α+ iq|2 .

Clearly, m ∈ [0, 1] for α ∈ C+, vanishes only for α ∈ R and achieves unity only for α = iq; thus
the Jacobian is finite and nonzero for each α ∈ C

+\{iq}. Just like the Jacobian, the gap equation,
FG, can be expressed in terms of complete elliptic integrals (cf. chpater 22 of [WW96]). Following
this procedure, and employing a Landen transformation [BF54] to simplify the form, the gap and
moment equations FM = 0 and FG = 0 are equivalent to the pair of equations

1

4

(
3α2 + 2αα∗ + 3α∗2

)
+ q2 − µ(α+ α∗) = 0,

|α− iq|2K(m)− Re [(α− iq)(α+ iq)]E(m) = 0.
(137)

where K and E are the complete elliptic integrals of the first and second kind respectively. These
equations together with (136) implicitly define α as a function of µ for each α ∈ C

+\{iq}. Using
these equations we can express α in the convenient form

(138) α = q
(√

4A(m)− (1 +mA(m))2 + imA(m)
)
,

where we have defined

A(m) =
(2−m)E(m)− 2(1−m)K(m)

m2E(m)
.

For each m ∈ [0, 1], (138) is well defined and has the following limiting behavior

α =
q√
2
+

3iq

8
m+O

(
m2
)

m→ 0+,

α = iq − 2
√
1−m+O ((1−m) log(1−m)) m→ 1−.

At these limiting values, we have FM (q/
√
2, x, t) = 2tq(q − µ/

√
2) so µ =

√
2q at m = 0, and

FG(iq, x, t) = −4iqtµ, so µ = 0 at m = 1. This completes the proof. �
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Before moving to other considerations, we will show that the endpoints α and iq of the g-
function describe a special solution for the Riemann invariants of a slowly modulating one phase
wave solution of NLS. The level curves FM = 0 and FG = 0 define α as a smooth function of both
x and t which allows one to define the characteristic speed

(139) c(α, iq) := −∂α
∂t

/
∂α

∂x
.

Implicitly differentiating (134) it follows that

c(α, iq) = −
∂FM

∂t

∫ α

α∗
λ−α
R(λ)dλ+ ∂FG

∂t

∂FM

∂x

∫ α

α∗
λ−α
R(λ)dλ+ ∂FG

∂x

.

The speed c depends on x and t only through the endpoints iq and α. Using the same procedure used
to simplify the integrals in the gap equation in the above proof, we can express the characteristic
speed as

(140) c(α, iq) = −1

2
(α+ α∗)− (α− α∗)(α− iq)K(m)

(α− iq)K(m) + (iq − α∗)E(m)
,

where m is the elliptic parameter defined by (136). Using (139) and (140) we have

(141)
∂α

∂t
+ c(α, iq)

∂α

∂x
= 0,

which is precisely the Whitham equation for the evolution of one Riemann invariant of a slowly
modulating one phase wave solution of NLS [AAD+94]. The generic one phase modulation is
described by two conjugate pairs of Riemann invariants labelled λi; each satisfying an evolution

equation ∂tλi+ci(~λ)∂xλi = 0, i = 1, . . . , 4. Motivated by the self-similar solution for α described by
Prop. 9, if we seek solutions of the Whitham system in the form λi(x, t) := λi(µ), with µ as defined

by (132), the evolution becomes ∂µλi

(
ci(~λ)− µ

)
= 0. So each invariant λi is either constant, just

as the endpoint z = iq in our construction, or they satisfy ci(~λ) = µ. Self-similar solutions of this

type were studied in [Kam97]; there the author shows that setting ci(~λ) = µ with ci given by (140)
one arrives at the implicit system of equations (137) which describe the evolution of the endpoint
z = α. Thus the evolution λ1 = iq, λ2 = α = A(µ), is preciesely a self-similar solution of the
one-phase Whitham system.

5.1.3. Topological structure of the zero level sets. With α selected to satisfy the endpoint equations
(131), the construction of the g-function will be complete if we can select the band and gap contours
to satisfy the conditions set out in (120). Those (x, t) for which these conditions can be satisfied
comprise the region of validity of the genus one g-function ansatz. Satisfying the band and gap
conditions amounts to understanding the topology of the zero level sets of Imϕ0 and Imϕ1. Our
procedure to determine the structure of the zero level sets mimics the proof of Lemma 6. Let
Lk(x, t) := {z : Imϕk(z) = 0}, the essential facts needed to determine the topology of these sets
are contained in the following observations

• The conjugation symmetry ϕ∗
k(z) = ϕk(z

∗) guarantees that R ⊂ Lk(x, t) and allows us to
consider only z ∈ C

+.
• Lk(x, t) cannot contain a closed bounded loop if Imϕk is harmonic inside the loop as this

would imply ϕk is identically zero inside the loop.
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• Any branch of Lk(x, t) in C
+ can terminate only at a critical point of ϕk: the branch points

iq and α, ∞, or any other zero of the corresponding density in C+.

We begin with L0(x, t), using (119), (121), and (129), we have the convenient representation

ϕ0 = ϕ0(p) +

∫ z

p

4tS(λ)(λ− ξ0) dλ

where p is any fixed point in the plane and the path of integration is still understood to avoid
Γν ∪ Γ∗

ν . Additionally, we have defined the µ-dependent real value

(142) ξ0 = µ− 1

2
(α+ α∗).

Simple estimates using (137) and (138) imply that ξ0 is always positive. Two facts are immediately
obvious from this representation. First, for t > 0, L0 depends only on the self-similar parameter µ,
and second, z = ξ0 is the only critical point of ϕ0 not listed above. Using (124) and (126), ϕ0 has
the following local expansions near each critical point, where c is a nonzero constant which depends
on the expansion point:

• As z → iq, ϕ0(z) ∼ −η + c(z − iq)1/2, so one branch of L0 terminates at iq.
• As z → α, (ϕ0)±(z) ∼ −η ∓ Ω + c(z − α)3/2, so three branches of L0 emerge from α
separated by angles of 2π/3.

• As z → ξ0, ϕ0(z) ∼ ϕ0(ξ0) + c(z − ξ0)
2, so one branch of L0 in C

+ terminates at ξ0.
• As z → ∞, ϕ0(z) ∼ −θ0(z), so in addition to the real line, one branch of L0 leaves C+ by
approaching ∞ along a trajectory asymptotically approaching Re z = µ.

Since the constant terms in each expansion are real, each critical point lies in L0, and since no
trajectory leaving α may form a homoclinic orbit the only possibility is that the three trajectories
leaving α terminate at iq, ∞, and ξ0 respectively. It only remains to determine the topology of
those connections. Consider the degenerate case µ = µc =

√
2q; here the branch point α is real

and the two bands degenerately form a single continuous path connecting ±iq. Recalling that µc

parameterizes the first breaking time T1(x) separating the genus zero and genus one regions, it is
not surprising that, comparing (85) and (129), the degenerate genus one phase ϕ0 is identically
equal to its genus zero counterpart along the caustic µc. Just beyond the caustic, that is for
µ = µc − ~, ~ ≪ 1, we can view, for any fixed z bounded away from α(µc), the genus one phase
ϕ0(z) as a small, continuous, perturbation of the genus zero phase. In the genus zero case, we
showed in the course of proving Lemma 6 that Imϕ0(iy) is bounded away from zero for y in any
closed subset of (0, q). This is robust to small perturbations, and it follows that no trajectory of
L0 passes through the open imaginary interval between the real axis and iq for µ sufficiently close
to µc. As the trajectories leaving α cannot intersect each other, this completely determines the
topology of L0(x, t) for µ near µc: the trajectories leaving α connect, in counterclockwise order, to
iq, ∞, and ξ0, see Figure 15. As µ decreases to zero, L0(x, t) deforms continuously and thus the
topology of the level set is preserved. The level set L0(t) separates C

+ into two connected regions,
in each region the sign of Imϕ0 is determined by continuation from its limiting behavior for large z.
The band condition (120a) and the first gap condition (120b) are satisfied by defining γb to be the
unique branch of the level set Imϕ0 = 0 connecting α to iq and taking γg to be any simple contour
connecting α to ξ0 such that it lies everywhere to the right of L0(t), that is, in the region of C+

where Imϕ0 > 0. For convenience we choose γg such that it approaches α and ξ0 along steepest
descent paths of ϕ0, such a choice is depicted in Figure 16.
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Figure 15. The connection problem for the level set Imϕ0. The left figure shows
an allowable ”twisted” configuration of the branches (dashed lines) connecting each
of the critical points in C

+, while the right figure shows the numerical computed
branches for the same choice of α. Each possible configuration is topologically
equivalent and separates C

+ into two connected components on which Imϕ0 is
single signed.
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Figure 16. Numerical computation of Imϕ0 in C
+ for a generic choice of µ ∈

(0,
√
2q). Solid lines represent the zero level set while shaded and unshaded region

where Imϕ0 is positive and negative respectively. The dashed line represents an
arbitrary choice of the gap contour γg which we must choose to lie everywhere in
the region Imϕ0 > 0.

It remains to show that condition (120c) can be satisfied which turns our attention to ϕ1 and
its associated imaginary zero level set L1(x, t). By definition, ϕ1 = ϕ0 + 4Lν(z) but it also has the
convenient integral representation

ϕ1(z) = ϕ1(p) +

∫ z

p

ρ1(λ) dλ

ρ1(λ) = 4tS(λ)(λ− ξ0) + 4L
λ

ν(λ)

(143)
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for any fixed base point p in C; as always the path of integration is understood to avoid Γν ∪ Γ∗
ν

along which ν is branched. The two representations lead to the following simple observations:

• For each z ∈ C
+\{iq} such that Im(ϕ0) ≥ 0, Im(ϕ1) ≥ 4L Im ν(z) > 0. So L1 is bounded

away from L0 except at z = iq. In particular, no branch of L1 connects to α.
• As z → iq, ϕ1(z) ∼ −η + c(z − iq)1/2, so one branch of L1 terminates at iq.
• As z → ∞, ϕ(z) = 2tz2+2(x+L)z+O (1/z), so in addition to the real line, one trajectory of
L1 leaves C

+ by approaching infinity along a curve asymptotic to the line Re z = −(x+L)/2t
• Near any zero, pk of ρ1, ϕ1 ∼ ϕ1(pk) + c(z − pk)

2. If ϕ1(pk) is real, four trajectories of L1

leave pk separated by angles of π/2.

The last points merits further investigation. Clearly, ρ1(0
−) < 0 and limλ→−∞ ρ1(λ) = −∞.

However, for any fixed λ0 < 0, limt→0 ρ1(λ0) = 4Lλ0/ν(λ0) > 0. Thus, for each sufficiently smalll
t, ρ1 has at least two real, negative zeros. In fact, these two are the only zeros of ρ1 in the complex
plane; estimates of the quartic equation underlying ρ1(λ) = 0 show that the quartic always has two
positive real zeros which lie on the other sheet of the Riemann surface associated to ρ1. Now fix
µ ∈ [0,

√
2q], thus fixing the values of α and ξ0. For t sufficiently small such that the real zeros exist

label them ξ1 and z1, ordered ξ1 < z1 < 0. As t increases the two zeros monotonically approach
each other eventually reaching a breaking time T2 at which the two zeros coalesce. For times t > T2
the zeros become complex and ϕ1 has no real critical points. Note that because we solve for T2
along lines µ = const., T2 = T2(x) > T1(x) for each x ∈ [0, L) (cf. (89)). This breaking time T2(x)
is uniquely characterized as follows:

(144) T2(x) is the unique time such that

{
ρ1 = 0
dρ1

dz = 0
has a simultaneous solution.

For each t > T1(x), the connection problem is completely determined by the local structure at each
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Figure 17. Numerical calculation of Imϕ1 as t increases to and beyond T2(x).
Solid lines indicate where Imϕ1 = 0 and dashed lines the branch cut of ϕ1 Note
that once t > T2(x), the region Imϕ1 > 0 (shaded region) no longer reaches the
negative real axis making it impossible to satisfy (120c).

critical point of ϕ1. For T1(x) < t < T2(x) the level set L1(x, t) in C+ consists of the real line, a
branch connecting ξ1 to infinity and a second branch connecting z1 to iq. As t increases beyond the
second breaking time T2(x) the two branches of L1 in C

+ meet on the real line and then move into
the complex plane so that, for t > T2(x), L1 has a single branch in C

+ connecting iq to infinity, see
Figure 17.

The second breaking time t = T2(x) limits the validity of the genus-one ansatz for the g-function.
To satisfy the final condition (120a) the contour Γ1 must be chosen so that it meets the real axis
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at a point p such that the region enclosed between Γ1 and the real interval (p,∞) completely
encloses the locus of pole accumulation i(0, q), and must lie everywhere in the region Imϕ1 > 0.
For T1(x) < t < T2(x), the condition is satisified by taking Γ1 such that it leaves the real axis at
ξ1, the leftmost real critical point of ϕ1 lying everywhere in the region Imϕ1 > 0. However, for
t > T2(x) the set Imϕ0 > 0 pulls away from the negative real axis, so that given any choice of Γ1 a
new gap interval emerges across which condition (120c) fails. For t > T2(x) the situation should be
rectified by replacing the genus-one ansatz with a genus-two g-function with a new band of support
across this newly opening gap. However, our focus in this paper is the semiclassical regularization
of the square barrier so we leave the higher genus transitions as a line of investigation to be pursued
later. For now we state the following proposition which summarizes the above discussion.

Proposition 10. Let

(145) S2 = {(x, t) : x ∈ (0, L), t ∈ (T1(x), T2(x))} .
The genus-one ansatz, consisting of the g-function defined by (121) and (129), the band contour γb
connecting iq and α, and the gap contours γg and Γ1 exist such that the system of band and gap
inequalities (120) are satisfied for each (x, t) ∈ S2.

5.2. Removing the remaining oscillations: N 7→ Q. The completed definition of the g-function
results in the following Riemann-Hilbert problem for N(z) defined by (117):

Riemann-Hilbert Problem 5.3 for N(z). Find a 2× 2 matrix N(z) such that

1. N(z) is analytic for z ∈ C\ΓM .
2. N(z) = I +O (1/z) as z → ∞.
3. For z ∈ ΓM N assumes continuous boundary values, N+ and N−, for z ∈ ΓM which satisfy

N+ = N−VN where,

(146) VN =





eig adσ3/ǫ
(
R†R

)
z ∈ (−∞, ξ1)

eig adσ3/ǫ
(
R†

0R0

)
z ∈ (ξ1,∞)

eig adσ3/ǫ
(
R−1

0 R
)

z ∈ Γ1

eig adσ3/ǫ
(
R†R−†

0

)
z ∈ Γ∗

1(
e−i(ϕ0−+η)/ǫ 0

we−iη/ǫ e−i(ϕ0−+η)/ǫ

)
z ∈ γb

(
e−i(ϕ0−+η)/ǫ −w∗eiη/ǫ

0 e−i(ϕ0−+η)/ǫ

)
z ∈ γ∗b

(
e−iΩ/ǫ 0

wei(ϕ0++Ω)/ǫ eiΩ/ǫ

)
z ∈ γg

(
e−iΩ/ǫ −w∗e−i(ϕ0++Ω)/ǫ

0 eiΩ/ǫ

)
z ∈ γ∗g .

The jumps along R, Γ1, and Γ∗
1 follow directly from definition (117), while the jumps along the

bands and gaps follow from (118) and (119). The important observation to make is that, as the
constants η and Ω are real, the introduction of the genus-one g-function has removed the exponential
growth from the jumps along Γν ∪ Γ∗

ν introduced by the pole removing factorization, replacing it
with oscillations in the bands and exponential decay in the gaps.
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To arrive at a RHP which is asymptotically stable in the semiclassical limit we have to now
introduce factorizations which deform the remaining oscillatory jumps onto contours on which they
decay exponentially to identity. These jumps, which lie on the real axis and the bands γb and γ∗b ,
are of the same character as those in RHP 3.1 and RHP 4.3 considered previously in the exterior
and genus zero cases, respectively. Without repeating the details (c.f. sections 3.2.1-3.2.2), the
necessary factorizations are identical to those introduced in the preceding cases. To define our
transformation we introduce contours Γk and regions Ωk, k = 0, 2, or 3 in C

+ as follows. Take Γ0

to be a semi-infinite ray leaving γg at a fixed point bounded away from α and ξ0 lying everywhere
in the region ϕ0 > 0 and oriented toward infinity; Γ2 is a semi-infinite ray lying everywhere in the
region Imϕ1 < 0 oriented toward ξ1 where it meets the real axis; Γ3 is a finite contour consisting of
two pieces, the first oriented from ξ1 to α passing over the band γb, and the second oriented from α
to ξ0 passing under γb: all of Γ3 lying in the region Imϕ0 < 0. We note as well that the contour Γ0

originates at a point p along the gap contour γg and naturally splits γg into two pieces: γupg oriented

from p to iq and γdown
g oriented from ξ0 to p. As usual we denote the conjugate contours as γupg

∗

and γdown∗
g . The corresponding sets Ωk are those enclosed by their respective Γk and the real axis,

see Figure 18. With these definitions in hand, the following transformation defines a new unknown
Q(z) whose jumps are either near identity or otherwise well approximated by explicit factors for
which a parametrix can be constructed.

Define

Q(z) = Neig adσ3/ǫ LQ

LQ =





R−1
0 z ∈ Ω0

R̂−† (a/a0)
σ3 z ∈ Ω2

R̂−†
0 z ∈ Ω3

R̂0 z ∈ Ω∗
3

R̂ (a∗/a∗0)
−σ3 z ∈ Ω∗

2

R†
0 z ∈ Ω∗

0

I elsewhere.

(147)

Let Γ0
Q =

⋃3
k=0 (Γk ∪ Γ∗

k) and ΓQ = (−∞, ξ0)∪Γν ∪Γ∗
ν ∪Γ0

Q. RHP 5.3, the definition of Q, and the

factorization formulas: (35), (41), (45), and (95) result in the following RHP for the new unknown.

Riemann-Hilbert Problem 5.4 for Q(z): Find a 2× 2 matrix Q(z) such that:

1. Q is analytic for z ∈ C\ΓQ.
2. Q(z) = I +O (1/z) as z → ∞.
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3. Q takes continuous boundary values Q+ and Q− on ΓQ satisfying the jump relation Q+ = Q−VQ
where VQ =

(148)





eigσ3/ǫ V
(0)
Q e−igσ3/ǫ z ∈ Γ0

Q(
0 −w−1eiη/ǫ

we−iη/ǫ 0

)
z ∈ γb

(
0 −w∗eiη/ǫ

w∗−1e−iη/ǫ 0

)
z ∈ γ∗b

(1 + |r0|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0|2)σ3 z ∈ (ξ1, ξ0)





(
e−iΩ/ǫ 0

wei(ϕ0++Ω)/ǫ eiΩ/ǫ

)
z ∈ γupg

(
e−iΩ/ǫ 0

r0+e
i(ϕ0++Ω)/ǫ eiΩ/ǫ

)
z ∈ γdown

g

(
e−iΩ/ǫ −w∗e−i(ϕ0++Ω)/ǫ

0 eiΩ/ǫ

)
z ∈ γup∗g

(
e−iΩ/ǫ −r∗0+e−i(ϕ0++Ω)/ǫ

0 eiΩ/ǫ

)
z ∈ γdown∗

g

,

and V
(0)
Q was previously given by (48).

4. Q admits at worst square root singularities at z = ±iq satisfying the following bounds

Q(z) = O
(

1 |z − iq|−1/2

1 |z − iq|−1/2

)
, z → iq,

Q(z) = O
(

|z + iq|−1/2 1
|z + iq|−1/2 1

)
, z → −iq.

(149)
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Figure 18. Schematic diagram of the contours Γk and regions Ωk in C
+ used to

define the transformation N 7→ Q. Their counterparts Γ∗
k and Ω∗

k in C
− are defined

by conjugation symmetry.

5.3. Constructing a global parametrix in the genus one case. The RHP for Q(z) that
results from the several factorizations above, while defined on an elaborate set of contours, in now
well conditioned to semi-classical approximations. The jumps along the lens opening contours Γ0

Q

all decay exponentially to identity both as z → ∞ and as ǫ → 0+ for each fixed z ∈ Γ0
Q away

from the stationary phase points ξ0 and ξ1 and the branch points α and α∗. The remaining jumps
along the real axis and the band and gap contours all have simple asymptotic behaviors in the
semiclassical limit. Along the real axis the remaining jumps are independent of ǫ and in the bands
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and gaps, the terms in each jump which are not exponentially vanishing are comprised of products
of ǫ-independent factors with constant, ǫ-dependent, complex phases.

We now begin the construction of a global parametrix P with the goal that the error resulting
from this approximation E = QP−1 is uniformly near identity. The parametrix is necessarily
piecewise constructed due to the non-uniformity of the outer approximation near the branch and
stationary phase points. We seek P in the form:

(150) P =





A0 z ∈ U0

A1 z ∈ U1

Aα z ∈ Uα

Aα∗ z ∈ Uα∗

O z elsewhere

where U0, U1, Uα and Uα∗ are sufficiently small, fixed sized, neighborhoods of ξ0, ξ1, α, and α∗

respectively. The local problems are all essentially solved: as in the previous cases, the local models
near ξ0 and ξ1 are described by parabolic cylinder functions while the new models introduced near
the interior endpoints α and α∗ are described, as we will show, by the standard Airy parametrix.
The new outer model in the genus one case is completely different than the outer model constructed
in the previous section for the genus zero problem.

5.3.1. The Genus One Outer Model, O(z). We arrive at the outer model problem by simply drop-
ping those terms of VQ which are exponentially vanishing for each fixed z as ǫ → 0+. This results
in replacing all of the jumps along Γ0

Q with identity and dropping the off-diagonal entries of VQ
along the gap contours γg ∪ γ∗g . The resulting outer model problem is given by:

Riemann-Hilbert Problem 5.5 for the genus one outer model, O(z): Find a 2× 2 matrix
valued function O(z) satisfying the following properties:

1. O is analytic for z ∈ C\ΓO, ΓO := Γν ∪ Γ∗
ν ∪ (−∞, ξ0].

2. O(z) = I +O (1/z) as z → ∞.
3. O takes continuous boundary values O+ and O− on ΓO away from its endpoints. The boundary

values satisfy the jump relation O+ = O−VO where

(151) VO(z) =





(
0 −w(z)−1eiη/ǫ

w(z)e−iη/ǫ 0

)
z ∈ γb

(
0 −w∗(z)eiη/ǫ

w∗(z)−1
e−iη/ǫ 0

)
z ∈ γ∗b

(
e−iΩ/ǫ 0

0 eiΩ/ǫ

)
z ∈ γg ∪ γ∗g

(1 + |r0(z)|2)2σ3 z ∈ (−∞, ξ1)

(1 + |r0(z)|2)σ3 z ∈ (ξ1, ξ0).
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4. O is everywhere bounded except near the endpoints z = ±iq, α, and α∗ where it satisfies the
following bounds

(152)

O(z) = O
(

1 |z − iq|−1/2

1 |z − iq|−1/2

)
, z → iq,

O(z) = O
(

|z + iq|−1/2 1
|z + iq|−1/2 1

)
, z → −iq,

O(z) = O
(

|z − p|−1/4 |z − p|−1/4

|z − p|−1/4 |z − p|−1/4

)
, z → p, p = α or α∗.

Remark. The replacement of the jumps in Γ0
Q with identity results in the outer solution, O(z),

being necessarily singular near each of the endpoints α, α∗, ξ0, and ξ1 (in addition to the given
singularities at ±iq). The choice of quarter root singularities at the gap endpoints and bounded
singularities at the stationary phase points is a choice we make to match the local Airy and parabolic
cylinder local models which we will introduce in neighborhoods of each pair of points respectively.

The solution of this problem is given in terms of elliptic theta functions associated with the
Riemann surface naturally associated to the rational function

(153) R(z) =
√

(z − iq)(z − α)(z − α∗)(z + iq).

To be concrete, we will always understand R to be branched along γb ∪ γ∗b and normalized such
that R(z) ∼ z2 for large z. However, to arrive at this solution we must first reduce the outer
model to the canonical constant jump form by introducing two scalar functions which remove the
z-dependence from the jump matrices. The first of these is the function δ(z) defined by (52). This
function, as in the previous sections, we use to remove the jumps of O(z) along the real axis. To
remove the z-dependence in the bands we introduce the following scalar Riemann Hilbert problem:

Riemann-Hilbert Problem 5.6 for s(z): Find a scalar function s(z) with the following prop-
erties:

1. s is analytic for z ∈ C\(Γν ∪ Γ∗
ν).

2. s(z) takes continuous boundary values, s+ and s−, on Γν ∪ Γ∗
ν satisfying

(154)

s+(z)s−(z) = iw(z)δ(z)−2e−iη/ǫ : z ∈ γb,

s+(z)s−(z) = iw∗(z)−1δ(z)−2e−iη/ǫ : z ∈ γ∗b ,

s+(z)
/
s−(z) = e−iΩ/ǫ : z ∈ γg ∪ γ∗g .

3. As z → ∞, s(z) = eip(z) (1 +O (1/z)), for some linear function p(z).
4. s(z) is bounded and nonzero on any compact set not containing the endpoints z = ±iq where

s(z) = O
(
(z − iq)1/4

)
, as z → iq,

s(z) = O
(
(z + iq)−1/4

)
, as z → −iq.

This problem is very closely related to RHP 4.6 which was part of the constant jump reduction
in the genus zero outer model.
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Proposition 11. The solution of RHP 5.6 is given by s(z) = s0(z)s1(z) where

s0(z) = a(z) exp



iπ

4
+

R(z)

2πi

∫

Γν∪Γ∗
ν

j(λ)

R+(λ)

dλ

λ− z


 ,

s1(z) = exp


− iη

2ǫ
+

R(z)

2πiǫ

∫

γg∪γ∗
g

−iΩ
R(λ)

dλ

λ− z


 .

(155)

Here a(z) is given by (104) and

j(λ) =





log
(

2(z+iq)
q

)
− 2 (χ(z, ξ1) + χ(z, ξ0)) z ∈ γb

− iπ
2 z ∈ γg ∪ γ∗g

log
(

q
2(z−iq)

)
− 2 (χ(z, ξ1) + χ(z, ξ0)) z ∈ γb

where χ(z, a) is defined by (53). Moreover, the polynomial p(z) characterizing the essential singu-
larity of s at infinity is given by

(156) p(z) = p0(z) +
1

ǫ
p1(z)

where

p0(z) =
1

2π

∫

Γν∪Γ∗
ν

(z − λ− Reα)
j(λ)

R+(λ)
dλ+

π

4
,

p1(z) =
1

2π

∫

γg∪γ∗
g

(z − λ− Reα)
Ω

R(λ)
dλ− η

2
.

Proof. That (155) satisfies the jump condition (154) follows from the Plemelj formulae and the
boundary behavior of R(z) and a(z) along their respective branch cuts. The asymptotic behavior
at infinity and the reality of p0 and p1 follow from expanding the Cauchy integral defining s(z) and
the symmetries j(λ∗)∗ = −j(λ) and (Γν ∪ Γ∗

ν)
∗ = (Γν ∪ Γ∗

ν)
−1 (with respect to orientation of the

path). Finally, classical estimates from the theory of singular integrals guarantee that the Cauchy
integrals defining s(z) grow at worst as an inverse square root at each endpoint [Mus92], behavior
exactly balanced by the rational pre-factor R(z). Thus s(z) is bounded and nonzero at each finite
z except the points ±iq where it inherits the singular behavior of a(z). �

Using the functions s(z) and δ(z) we seek the outer model in the form

(157) O(z) = β(z)O(1)(z)s(z)σ3δ(z)σ3 ,

where β is the scalar function

(158) β(z) =

(
z − iq

z − α

)1/4(
z − α∗

z + iq

)1/4

cut along the bands γb∪γ∗b and normalized to approach unity for large z. The resulting RHP for the

new unknown O(1)(z) is analytic away from the bands where it has constant column permutation
jumps and square root singularities at half of the branch points.
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Riemann-Hilbert Problem 5.7 for O(1)(z): Find a 2× 2 matrix valued function O(1)(z) with
the following properties:

1. O(1) is analytic for z ∈ C\(γb ∪ γ∗b ).
2. As z → ∞, O(1)(z) = [I +O (1/z)] e−ip(z)σ3 where p(z) is the linear function (156).

3. O(1)(z) assumes continuous boundary values, O
(1)
+ (z) and O

(1)
− (z), on γb and γ∗b which satisfy

the jump relation

(159) O
(1)
+ (z) = O

(1)
− (z)

(
0 1
1 0

)
, z ∈ γb ∪ γ∗b .

4. O(1)(z) is bounded on any compact set not containing the points z = iq or z = α∗ where it admits
at worst square-root singularities.

Riemann-Hilbert problems like O(1) are well known in the literature of integrable systems and
random matrices [DIZ97, DKM+99b, KMM03, TVZ04]. We provide the details of its construction
here for completeness. The construction begins by ‘lifting’ it onto the genus one Riemann surface
associated with R(z) =

√
(z − iq)(z − α)(z − ᾱ)(z + iq). We denote this surface by Σ and label its

two sheets Σ1 and Σ2 arbitrarily. For any non-branch point z ∈ C we let P k(z), k = 1, 2, denote
its pre-image on the corresponding sheet. The problem is then lifted onto Σ by seeking O(1)(z) in
the form

(160) O(1)(z) =
[
~v (P 1(z)) , ~v (P 2(z))

]
,

where ~v(P ) is a single vector-valued function defined for P ∈ Σ. The jump relation (159) implies
that the new unknown ~v(P ) is holomorphic away from the branch points and the two pre-images of
infinity: ∞1 and ∞2. Near the branch points z = α and z = −iq the bounded behavior of O(1)(z)
implies that any singularity of ~v(P ) is removable, while the square-root singularities of O(1)(z) at
z = iq and z = α∗, due to the double-ramification of the branch points, become poles of the function
~v(P ). These properties together with the singular behavior at each infinity completely specify the
function ~v(P ):

Problem for ~v(P ): Find a vector-valued function v : Σ → C
2 satisfying the following properties:

• ~v is meromorphic on Σ\{∞1,∞2}, and if (vk) denotes the divisor of the component vk, k =
1, 2, over Σ\{∞1,∞2} then,

(161) (vk) + Pα∗ + Piq ≥ 0.

• ~v is essentially singular at each infinity and

~v(P )eip(z) = 1 +O (1/z) , z → ∞1,

~v(P )e−ip(z) = 1 +O (1/z) , z → ∞2.
(162)

Finding the function ~v(P ) necessary to solve the RHP 5.7 is a classical problem in the study of
Riemann surfaces whose solution can be constucted from Baker-Akhiezer functions. These functions
are represented here in terms of ratios of the Θ-functions corresponding to the Riemann surface Σ.
The reader is referred to [FK80] for a general review of the theory of Riemann surfaces and our
construction of the Baker-Akhiezer functions follows [Dub81]. As a first step towards finding ~v, we

introduce a function ~f with the following properties:
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• The component functions f1(P ) and f2(P ) are meromorphic functions on Σ such that

(f1) + Piq + Pα∗ −∞2 ≥ 0,

(f2) + Piq + Pα∗ −∞1 ≥ 0.

• Each component fk is normalized such that fk(∞k) = 1, k = 1, 2.

The existence and uniqueness of such a function can be proved abstractly, but by direct inspection,
the functions

f1,2(P ) =
1

2

[
1± (z(P )− α)(z(P ) + iq)

RΣ(P )

]
(163)

satisfy the above properties. Here z(P ) is the projection of P ∈ Σ onto C and RΣ is the lifting
of (153) to the Riemann surface such that RΣ(P ) ∼ z2 as P → ∞1. Clearly, each component
fk vanishes at the appropriate infinity and has the correct singularities at Pα∗ and Piq. Each
component fk necessarily vanishes at precisely one additional (finite) point in Σ which we label Pk.
Thus, the complete divisor of each component is given by

(f1) = P1 +∞2 − Piq − Pα∗ ,

(f2) = P2 +∞2 − Piq − Pα∗ .
(164)

We now consider the ratio ~ζ defined by the component-wise product

~v = ~f · ~ζ.(165)

The resulting unknown ~ζ is the aforementioned Baker-Akhiezer function. That is, the components

of ~ζ have the following properties:

• Each component ζk is meromorphic on Σ\{∞1,∞2} admitting at most a single simple pole
at the point Pk.

• The local behavior of ~ζ in a neighborhood of each infinity is given by

~ζ(P )eip(z) →
(
1
c2

)
P → ∞1,

~ζ(P )e−ip(z) →
(
c1
1

)
P → ∞2.

(166)

where p(z) is the linear function given by (156) and ck, k = 1, 2 are unknown constants.

To construct ζ we introduce several standard devices on the Riemann surface Σ. First, we fix
a homology basis. As Σ is genus one, the basis consists of only two elements, {a, b}. We take the
a-loop to lie on both sheets, oriented over the first sheet from (γb)− to (γ∗b )− and the b-loop we
take completely on the first sheet as a clockwise loop enclosing γb without intersecting or enclosing
γ∗b , see Figure 19.

Our choice of homology fixes the basis of holomorphic differentials which consists of exactly one
element,

(167) ν = cν
dz(P )

RΣ(P )
,

where cν is a normalization constant chosen so that
∮

a

ν = 2πi.
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b 

a 

γb

b γ
∗

b

Figure 19. Choice of our homology basis {a, b} on Σ. Solid and dotted lines
indicate the contour lines on the first or second sheet respectively.

We will also need the b-period of our basis differential, let

H =

∮

b

ν = 2πi

∮

b

dz(P )

RΣ(P )

/∮

a

dz(P )

RΣ(P )
.(168)

A standard result in the theory of Riemann surfaces is that Re(H) is strictly negative [FK80]. In
this case we can say more; the symmetries ν(P ∗)∗ = ν(P ) and b∗ = b imply that H is always a
purely real (negative) number. H allows us to define two important objects. The Riemann constant
K, we take to be

(169) K = iπ +
1

2
H,

and we take

(170) Θ(w;H) =
∑

n∈Z

exp

(
1

2
n2H − nw

)
.

as the definition of our Θ functions. Θ is an entire and even function of w which satisfies the
automorphic relations

Θ(w + 2πi;H) = Θ(w;H), and Θ(w +H;H) = e−
1
2H−wΘ(w;H).(171)

The zeros of Θ lie on the lattice w = K + 2mπi+ nH, n,m ∈ Z. We choose as the base point on
Σ the branch point P = iq, and define an Abel map A : Σ → Jac(Σ) by

A(P ) =

∫ P

iq

ν.

Finally, let τ be the abelian differential of the second kind with double poles at each pre-image of
infinity, τ = τ0 + ǫ−1τ1:

(172) τk =
z(P )2 − Re(α)z(P ) + cτ

RΣ(P )
dpk(z(P )), k = 0, 1,

where p(z) = p0(z) + ǫ−1p1(z) is real linear polynomial (156). The constant cτ (independent of k)
is chosen so that ∮

a

τ = 0.



THE SEMI-CLASSICAL LIMIT OF FOCUSING NLS FOR A FAMILY OF NON-ANALYTIC INITIAL DATA 63

Note that at each infinity

τ = dp+O
(
dz

z2

)
, P → ∞1, and τ = −dp+O

(
dz

z2

)
, P → ∞2,(173)

Let T = T0 + ǫ−1T1 represent the b-period of τ :

(174) Tk =

∮

b

τk, k = 1, 2,

and observe that the symmetries τ(P ∗)∗ = τ(P ) and b∗ ≡ b imply that T is necessarily real.

Lemma 12. The differential τ1 satisfies the relations,
∮
b
τ1 = −Ω and s1(z) exp

(
− i

ǫ

∫ z

−iq
τ1

)
= 1,

where the path of integration in the exponential is restricted to the first sheet, Σ1, and does not
intersect Γν ∪ Γ∗

ν .

Proof. From (155), s1(z) takes the form s1(z) = exp(ǫ−1ρ(z)), where

ρ(z) = −iη/2 + R(z)

2πi

∫

γg∪γ∗
g

−iΩ
R(λ)

dλ

λ− z
.

Using this notation, the second half of the lemma is proved if we can show that ρ(z)− i
∫ z

iq
τ1 = 0.

To this end, consider the differential dρ. Clearly, dρ is holomorphic on C\(γ∪γ∗); differentiating the
jump relations for ρ we see that for z ∈ γb ∪ γ∗b , dρ+ + dρ− = 0 and for z ∈ γg ∪ γ∗g , dρ+ − dρ− = 0.
Together these facts imply that dρ extends naturally to a meromorphic differential on the Riemann
surface Σ with singularities only at the two infinities. The difference dρ − iτ , from (173), is then
a holomorphic differential. Integrating over an a-cycle, we have for any ẑ ∈ γb,

∮
a
dρ − iτ1 =

ρ+(ẑ
∗) + ρ−(ẑ∗) − (ρ+(ẑ) + ρ−(ẑ)) = 0. As no nontrivial holomorphic differential can have all its

a-cycles vanish, the difference must vanish identically. It follows immediately, letting z̃ represent
an arbitrary point in γg, that T1 =

∮
b
τ1 = −i

∮
b
dρ = −i (ρ+(z̃)− ρ−(z̃)) = −Ω. �

We now combine these many devices to give Kriechever’s formula for the Baker-Akhiezer function.
Define

ζk(P ) = Nk
Θ(A(P )−A(Pk)−K − iT )

Θ(A(P )−A(Pk)−K)
exp

(
−i
∫ P

iq

τ

)
(175)

where the path of integration in the exponential factor is the same as the path in the Abel map
A(P ) and the constant Nk is uniquely chosen to satisfy the normalization condition (166).

Lemma 13. The function ~ζ(P ) defined by (175) is a well defined function from Σ → C
2 for every

ǫ > 0 and solves the Baker-Akhiezer problem defined by (165) with the parameters Nk given by:

(176) Nk =
Θ(0)

Θ(iT0 − iǫ−1Ω)
exp

(
iT0 + i(−1)kY0

)
,

where

(177) Y0 = lim
P→∞1

(
p0(z(P ))−

∫ P

iq

τ0

)
.

Proof. That ~ζ(P ) is well defined follows immediately from the automorphic relations (171) for Θ(P )

and the periods of τ . Let us now show that ~ζ is the required Baker-Akhiezer function. Clearly, for
every choice Nk 6= 0, ζk is meromorphic and its single pole is the unique zero of the Θ-function in
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the denominator. By construction this zero is located at Pk. One needs only to check that Nk can
by chosen such that the normalization condition (166) is satisfied. Clearly, one must set

(178)
1

Nk
=

Θ(A(∞k)−A(Pk)−K − iT )

Θ(A(∞k)−A(Pk)−K)
lim

P→∞k

exp

(
i

[
p(z(P ))−

∫ P

iq

τ

])

which defines Nk provided the right hand side is not identically zero. Recall that

(fk) = Pk +∞k′ − Piq − Pα∗ , k, k′ ∈ 1, 2, k 6= k′.

By Abel’s Theorem A((f)) = 0 so A(Pk) = A(iq) + A(α∗) − A(∞k′). Now A(∞1) + A(∞2) ≡ 0,
and the evaluation of the Abel map at the branching points iq and α∗ can be exactly evaluated for
any concrete choice of paths. Choosing to integrate, for convenience, on the first sheet along the +
sides of the band and gap contours we have A(iq) = 0 and A(α∗) = iπ+H/2 = K. Inserting these
values into (178) and using Lemma 12 and the periodicity relations (171) we have

1

Nk
=

Θ(iT0 − iǫ−1Ω)

Θ(0)
exp

(
−iT0 + i(−1)k+1Y0

)
.

Which is always well defined as T0 and Ω are always real and thus avoids the zeros of the Θ-
function. �

We now remove the Riemann surface from the picture to write our outer solution O(z) in terms
of integrals lying completely on the complex plane. We do so by exploiting the antisymmetry of
the differentials: both differentials η = τ and η = ν share the property that

∫ P 1(z)

iq

η ≡ −
(∫ P 2(z)

iq

η

)
.

To descend the Abel map onto a function from C to C we make the following restrictions. By A(z)
we mean an integral from iq to z lying completely on the first sheet such that the path does not
intersect the band or gap contours Γν ∪Γ∗

ν . These restriction on the path eliminate the addition of
a or b-cycles to the value of the Abel map making A well defined on C.

Recalling the definitions (157) of O(1)(z) and (160) of ~v(P ) we have the following formula for
the solution of the outer model problem RHP 5.5:

(179) O(z) =
Θ(0)

Θ(iT )
exp (−iY0)σ3 T (z)

[
s0(z) exp

(
−i
∫ z

iq

τ0

)
δ(z)

]σ3

,

where T (z) is the matrix

T (z) =




β(z)+β(z)−1

2
Θ(A(z)−A(∞)−iT )

Θ(A(z)−A(∞))
β(z)−β(z)−1

2
Θ(A(z)+A(∞)+iT )

Θ(A(z)+A(∞))

β(z)−β(z)−1

2
Θ(A(z)+A(∞)−iT )

Θ(A(z)+A(∞))
β(z)+β(z)−1

2
Θ(A(z)−A(∞)+iT )

Θ(A(z)−A(∞))


 .

That O(z) as defined by (179) is a solution of the outer model problem follows directly from
Prop. 11, Lemma 13, and the observation that 1

2 (β(z) + (−1)j+kβ(z)−1) are the projections of

β(z)fj(P
k(z)), j, k ∈ {1, 2}, onto C. To control the error problem later it is necessary to know that

the outer model remains bounded as ǫ→ 0. As a consequence of Lemma 12, formula (179) for O(z)
is ǫ-dependent only through the parameter iT = iT0(x, t)− iǫ−1Ω(x, t) appearing in the arguments
of the Θ functions and as Ω(x, t) is always real valued, and Θ is 2πi periodic it follows that the
outer solution is uniformly bounded as ǫ→ 0.
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As one expects the outer solution encodes the leading order asymptotic behavior of the solution
ψ(x, t; ǫ) of the NLS equation (1) for each (x, t) ∈ S2 where the genus-one ansatz successfully controls
the Riemann-Hilbert problem. We record here, for out later use, that leading order behavior:

2i lim
z→∞

zO12(z;x, t) =

(q − Imα))
Θ(0)

Θ(2A(∞))

Θ(2A(∞) + iT0 − iǫ−1Ω)

Θ(iT0 − iǫ−1Ω)
e−2iY0 .

(180)

5.3.2. Construction of the local models. We now describe the construction of the local models near
the band-gap endpoints α, α∗ and the stationary points ξ0 and ξ1. At each of these points the
jump matrices V 0

Q are no longer uniformly near identity which in turn implies that the outer model

O(z) is no longer a uniform approximation of the solution Q(z) to RHP 5.4 in any neighborhood
of these points. The local models near ξ0 and ξ1 are again constructed from the solution ΨPC

of the parabolic cylinder problem, RHP 3.4. The new feature in the genus one case are the local
models near the band-gap endpoints α and α∗. The construction of the local model near such
points is nearly canonical. The local error near these points in controlled by installing a local model
constructed from Airy functions.

Let us consider first the real stationary phase points ξ0 and ξ1. The jump matrix VQ, given by
(148), near these points is essentially the same jump matrix appearing in both the genus zero case
and the quiescent case for x outside the support (cf. (96) and (47)). The local models at each of
these points are constructed from parabolic cylinder functions; the reader is referred to Sections
3.3.2 and 3.3.3 for each model’s motivation and additional details.

Define the pair of locally analytic and invertible functions ζ = ζk(z):

1

2
ζ20 :=

ϕ0+(z)− ϕ0+(ξ0)

ǫ
=

1

ǫ

∫ z

ξ0

4tS(λ)(λ− ξ0) dλ

1

2
ζ21 :=

(ϕ1(z)− ϕ(ξ1)

ǫ
=

1

ǫ

∫ z

ξ1

4tS(λ)(λ− ξ0) + 4L
λ

ν(λ)
dλ

(181)

Each ζk introduces a rescaled local coordinate at ξk and we choose suitably small, fixed size,
neighborhoods Uk of ξk such that the ζk are analytic inside Uk and the images ζ = ζk(Uk) are disks
in the ζ-plane. Next, using Prop. 2 and (54) we define the nonzero and locally holomorphic scaling
functions:

h0 =

[(
ǫ

ϕ′′
0(ξ0)

)iκ(ξ0) (
δhol0 (z)s+(z)

)2
e−iϕ0(ξ0)/ǫ

]1/2
,

h1 =

[(
ǫ

ϕ′′
1(ξ1)

)iκ(ξ1)

δhol1+ (z)δhol1− (z) e−iϕ1(ξ1)/ǫ

]1/2
.

(182)

With the above definitions in hand we define our local models as follows:

A0(z) = β(z)O(1)(z) Â0(z) s(z)
σ3δ(z)σ3 ,

A1(z) = β(z)O(1)(z)s(z)σ3 Â1(z) δ(z)
σ3

(183)
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Figure 20. The jump matrices of VQ near the point z = α.

where the functions Âk are built from the solution ΨPC(ζ, a) of the parabolic cylinder local model,
RHP 3.4:

Â0(z) = hσ3
0 ΨPC(ζ0(z), r0+(ξ0))h

−σ3
0 ,(184a)

Â1(z) = hσ3
1 ΨPC(ζ1(z), −r0(ξ1))h−σ3

1 × U−1(z)eig(z)σ3/ǫF−1(z)e−ig(z)σ3/ǫ.(184b)

Here, we recall that F (z) and U(z) are the folding and unfolding factorizations defined by (69) and
(70) respectively. The definitions (183), (181), and the large ζ expansion ΨPC(ζ) = I + O

(
ζ−1

)

imply that on the boundaries Uk we have

(185) O−1(z)Ak(z) = I +O
(√
ǫ
)
.

Let us now consider the situation near the band-gap endpoints α and α∗. The jump matrices,
up to orientation of the contours, satisfy the symmetry V (z) = V (z∗)† so it is sufficient to consider
only the problem at z = α. The local jump matrices of VQ near z = α are depicted in Figure 20.
Here we have used the relation (94) to write the reflection terms in the jump matrices in terms
of the single locally analytic and nonzero function w(z). We make no approximations of the local
jump matrices, the only error introduced by the local model will be on the boundary where it meets
the outer model. To introduce our local model, let Uα be a neighborhood of α, small enough for
Γν to disconnects Uα into two components; let Uα+ (Uα−) denote the component to the left (right)
of Γν with respect to orientation. Define the pair of functions on Uα:

f(z) :=

{
ϕ0 + η +Ω z ∈ Uα+

ϕ0 + η − Ω z ∈ Uα−
and sgnΓν

(z) :=

{
1 z ∈ Uα+

−1 z ∈ Uα+

The continuity of ϕ0 and jump relations (118) imply that f(z) is analytic in Uα\γb. The function
f(z) motivates the change of variables

(186) ζα(z) :=

(
− 3i

4ǫ
f(z)

)2/3

=

(
−3it

ǫ

∫ z

α

S(λ)(λ− ξ0) dλ

)2/3

which is a locally analytic and invertible and maps Uα to a neighborhood of the origin in the ζ-plane.
We choose the branch such that ζα(γb ∩ Uα) lies along the negative real axis and use our freedom
to deform Γ3 and γg such that | arg(ζα(Γ3 ∩ Uα))| = 2π/3 and arg(ζα(γg ∩ Uα)) = 0. We seek our
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outer model in the form

(187) Aα(z) = Kα(z)ΨAi(ζα(z)) σ2

[
w(z)e−

i
ǫ (η+Ω sgnΓν

(z))
]σ3/2

where Kα(z) is an analytic pre-factor which we will determine later. The matrix ΨAi(ζ) then solves
the following well known Airy Riemann-Hilbert problem in the ζ-plane.

Riemann-Hilbert Problem 5.8 for ΨAi (The Airy RHP): Find a 2×2 matrix valued function
ΨAi(ζ) such that

1. ΨAi is analytic for ζ ∈ C\ {ζ : | arg(ζ)| = 0, 2π/3, π}.
2. As ζ → ∞,

(188) ΨAi(ζ) =
e

iπ
12

2
√
π
ζ−σ3/4

(
1 1
−1 1

)
e−

iπ
4 σ3

[
I +O

(
ζ−3/2

)]

3. ΨAi assumes continuous boundary values (ΨAi)+ and (ΨAi)− on each jump contour satisfying
the relation (ΨAi)+(ζ) = (ΨAi)−(ζ)VΨAi

(ζ) where

VΨAi(ζ) =





(
0 1

−1 0

)
arg(ζ) = π

(
1 e

4
3 ζ

3/2

0 1

)
| arg(ζ)| = 2π/3

(
1 0

e−
4
3 ζ

3/2

1

)
arg(ζ) = 0

This problem, like the parabolic cylinder problem, RHP 3.4, is one of the standard local models
that emerge in the literature of both inverse scattering and random matrix theory, see [DKM+99b]
or [DKM+99a].

Proposition 14. The solution of RHP 5.8 is given by

(189) ΨAi(ζ) =





Ψ̃(ζ)e(
2
3 ζ

3/2−πi
6 )σ3 : arg(ζ) ∈ (0, 2π3 )

Ψ̃(ζ)e(
2
3 ζ

3/2−πi
6 )σ3

(
1 0

−e 4
3 ζ

3/2

1

)
: arg(ζ) ∈ ( 2π3 , π)

Ψ̃(ζ)e(
2
3 ζ

3/2−πi
6 )σ3

(
1 0

e
4
3 ζ

3/2

1

)
: arg(ζ) ∈ (−π,− 2π

3 )

Ψ̃(ζ)e(
2
3 ζ

3/2−πi
6 )σ3 : arg(ζ) ∈ (− 2π

3 , 0)

,

where ω := e2πi/3 and

Ψ̃(ζ) =





(
Ai(ζ) Ai(ω2ζ)
Ai′(ζ) ω2 Ai′(ω2ζ)

)
: ζ ∈ (0, π)

(
Ai(ζ) −ω2 Ai(ωζ)
Ai′(ζ) −Ai′(ωζ)

)
: ζ ∈ (−π, 0)

.
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The solution clearly satisfies the jump conditions along the rays | arg(ζ)| = 2π/3. The normal-
ization conditions follows immediately from the asymptotic behavior of the Airy functions [AS64,
p. 448] and to verify the jump conditons on R one needs the Wronskian relations between the vari-
ous Airy functions [AS64, p. 446] and the fundamental identity Ai(ζ) +ωAi(ωζ) +ω2 Ai(ω2ζ) = 0.
As the solution is standard in the literature, we leave the verification of these facts to the interested
reader.

The last step in the construction of the local model inside Uα is to select the analytic pre-factor
Kα(z) in order to match the outer model along the boundary ∂Uα. From the asymptotic behavior
(188) if we choose

Kα(z) = O(z)
[
w(z)e−

i
ǫ (η+Ω sgnΓν

(z))
]−σ3/2

σ2

[
e

iπ
12

2
√
π
ζα(z)

−σ3/4

(
1 1
−1 1

)
e−

iπ
4 σ3

]−1

then in light of the ǫ scaling in the definition (186) of ζα(z) it follows that

(190) O−1(z)Aα(z) = I +O (ǫ) , z ∈ ∂Uα.

It remains to show that Kα is analytic in Uα. From the definition it is clear that Kα is analytic in
Uα\(γb∪γg), and by explicitly calculating the jumps along these contours using (151) one sees that
Kα has identity jumps along these contours. It follows that at worst Kα has an isolated singularity
at z = α. However, the growth condition (152) together with the factor ζα(z)

−σ3/4 imply that at
most Kα grows as an inverse square root and thus the singularity is removable. This completes the
construction of the local model at z = α.

Building the model at z = α∗ is completely analogous to the construction of the model at
z = α. We summarize the calculations here. We take as our neighborhood of α∗ the conjugate
neighborhood of α: Uα∗ = (Uα)

∗
. Then the model inside Uα∗ is given by

(191) Aα∗(z) = Kα∗(z)ΨAi(ζα∗(z))
[
−w∗(z)−1e−

i
ǫ (η+Ω sgnΓ∗

ν
(z))
]σ3/2

,

where

ζα∗(z) =

(
4i

3ǫ

(
ϕ0 + η +ΩsgnΓ∗

ν
(z)
))2/3

and

Kα∗(z) = O(z)
[
−w∗(z)−1e−

i
ǫ (η+Ω sgnΓ∗

ν
(z))
]σ3/2

[
e

iπ
12

2
√
π
ζα∗(z)−σ3/4

(
1 1
−1 1

)
e−

iπ
4 σ3

]−1

.

Essentially repeating the calculations at z = α, this model exactly removes the jumps of VQ inside
Uα∗ while on the boundary we get the same error estimate as in (190):

(192) O−1(z)Aα∗(z) = I +O (ǫ) , z ∈ ∂Uα∗ .

5.4. The Error RHP, proof of Theorem 1 part three. We now show that the parametrix
defined by eqs. (150), (179), (183), (187) and (191) is a uniformly accurate approximation of the
solution Q(z) to RHP 5.4. We do this by proving that the error matrix

(193) E(z) := Q(z)P−1(z)

satisfies a small-norm Riemann-Hilbert problem. We can then prove the existence of and derive
an asymptotic expansion for E(z). By unravelling the series of explicit transformations this yields
an asymptotic expansion for m(z) the solution of the inverse scattering problem, RHP 2.2 which
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in turn gives an asymptotic expansion for the solution q(x, t) of (1) for each (x, t) ∈ S2 where the
genus-one g-function successfully stabilizes the inverse analysis.

As both Q and P are piecewise analytic whose components take continuous boundary values on
their respective domains of definition, their ratio, E(z) is also piecewise analytic and satisfies its
own Riemann-Hilbert problem.

Ξ1 Ξ0

G0

G1

G2

G3

G3

Γg

¶UΑ

¶U1

¶D
¶U0

Figure 21. The jump contour for the error matrix E in the upper half-plane. The
boundaries ∂U1, ∂U2, and ∂Uα are all fixed sized while the inner loop ∂D scales like
ǫ1/2. The jumps in the lower half-plane follow from Schwartz reflection symmetry.

Riemann-Hilbert Problem 5.9 for the error matrix, E(z). Find a 2× 2 matrix-valued func-
tion E(z) such that

1. E is bounded and analytic for z ∈ C\ΓE, where ΓE is the collection of contours depicted in
Figure 21.

2. E(z) → I +O (1/z) as z → ∞.
3. E(z) assumes continuous boundary values E+(z) and E−(z) for z ∈ ΓE satisfying the jump

relation E+(z) = E−(z)VE(z) where

(194) VE(z) = P−(z)VQ(z)VP (z)
−1P−(z)

−1.

and both VQ and VP are understood to equal identity where Q or P respectively is analytic.

All of the properties of E(z) above are a straightforward consequence of (193) except the bound-
edness of E(z) near the endpoints ±iq. Since the parametrix P (z) has jumps exactly matching
those of Q(z) along γb ∪ γ∗b , E(z) has at worst isolated singularities at ±iq. The local growth con-

ditions (149) and (152) imply that, at worst, Ejk(z) = O
(
|z ± iq|−1/2

)
. Therefore the singularities

are removable and E is bounded.
The following lemma establishes that VE is uniformly near identity and decays sufficiently fast

at infinity to admit an asymptotic expansion for large z.

Lemma 15. For any (x, t) ∈ K ⊂ S2 compact and ℓ ∈ N0 the jump matrix VE defined by (194)
satisfies

(195) ‖zℓ(VE − I)‖Lp(ΣE) = O
(
ǫ1/2 log ǫ

)

for every sufficiently small ǫ and p = 1, 2, or ∞.
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Proof. The jump matrix VE up to the replacement of the phases θk with their g-function conjugated
counterparts ϕk (and the resulting deformation of the contours and stationary phase points) are
nearly identical to those in Lemma 5. For (x, t) in any compact K ⊂ S2 the endpoints α and α∗ lie
an order one distance away from ±iq and each other, and the real stationary phase points ξ0 and
ξ1 exist and are well separated so we can take the four disks U0, U1, Uα, and Uα∗ to have fixed
radii depending only on K. Furthermore, the genus one g-function and the phases ϕk satisfy the
necessary inequalities for the estimates in Lemma 5 to go through with only cosmetic changes away
from the disks Uα and Uα∗ . The Airy models used to define P inside each disks exactly match the
jumps of Q, so the only new errors are on the disk boundaries. However, (190) and (192) imply
that ‖VE − I‖∞ = O (ǫ) for z ∈ ∂Uα ∪ ∂Uα∗ which is subdominant to the O

(
ǫ1/2 log ǫ

)
error terms

produced in U0 and U1. �

The small norm estimate in Lemma 15 allows us to express the solution E(z) of RHP 5.9 explicitly

E(z) =
1

2πi

∫

ΓE

µ(s)(VE(s)− I)

s− z
ds

where µ(s) is the unique solution of (1− CVE
)µ = I and CVE

f := C−[f(VE − I)] here C− denotes
the Cauchy projection operator. In particular, the moment bounds in Lemma 15, justify the large
z expansion

(196) E(z) = I +
E(1)(x, t)

z
+ . . . , where,

∣∣∣E(1)(x, t)
∣∣∣ = O

(
ǫ1/2 log ǫ

)

By unravelling the sequence of explicit transformations m 7→M 7→ N 7→ Q 7→ E, the asymptotic
bounds on E(z) give us an asymptotic expansion for m. Taking z to infinity along the positive
imaginary axis (the direction does not affect the answer) we have m(z) = E(z)O(z)eig(z)σ3/ǫ and
it follows from (18) and (180) that

(197) ψ(x, t) = (q − Imα))
Θ(0)

Θ(2A(∞))

Θ(2A(∞) + iT0 − iǫ−1Ω)

Θ(iT0 − iǫ−1Ω)
e−2iY0 +O

(
ǫ1/2 log ǫ

)

gives the leading order term and error bound of the solution of (1) with initial data (2) for each
(x, t) ∈ S2 in the semi-classical limit.

Acknowledgements

We wish to thank Peter Miller for his comments which vastly improved the final draft of this
manuscript. The authors are supported in part by the National Science Foundation under grants
DMS-0200749, and DMS-0800979.

References

[AAD+94] W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov,
and S. R. Svirshchevskĭı. CRC handbook of Lie group analysis of differential equations. Vol. 1. CRC
Press, Boca Raton, FL, 1994. Symmetries, exact solutions and conservation laws.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For
sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[BC84] R. Beals and R. R. Coifman. Scattering and inverse scattering for first order systems. Comm. Pure
Appl. Math., 37(1):39–90, 1984.

[BDT88] Richard Beals, Percy Deift, and Carlos Tomei. Direct and inverse scattering on the line, volume 28 of

Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.



THE SEMI-CLASSICAL LIMIT OF FOCUSING NLS FOR A FAMILY OF NON-ANALYTIC INITIAL DATA 71

[BF54] Paul F. Byrd and Morris D. Friedman. Handbook of elliptic integrals for engineers and physi-
cists. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer
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