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THE SEMIGROUP OF VARIETIES

OF BROUWERIAN SEMILATTICES
BY

PETER KÖHLER

Abstract. It is shown that the semigroup of varieties of Brouwerian

semilattices is free.

Semigroups of varieties have first been studied in the case of groups, where

Neumann, Neumann and Neumann-and independently Smerkin-have dis-

covered a surprising result: The semigroup of varieties of groups is a free

monoid with zero ([13], [14], [18]). Since then various authors have investi-

gated semigroups of varieties of group-like structures such as quasigroups,

rings, lattice-ordered groups and Lie-algebras ([2], [5], [8], [15], [19]).

It was Mal'cev who considered the general case, and he succeeded in giving

a sufficient condition under which the subvarieties of a given variety form a

semigroup [7]. ¡Exploiting this idea Köhler studied the semigroup of varieties

of Brouwerian algebras and Blok and Köhler did this for the semigroup of

varieties of generalized interior algebras ([6], [1]). Nearly all the cited papers

centered around the question whether a result similar to the one for groups

could be obtained. This paper continues these efforts in giving a positive

answer to the question above for the variety of Brouwerian semilattices.

The paper is divided into two parts. The first one introduces the notion of

an extension of a Brouwerian semilattice. Based on ideas originally in-

troduced by Nemitz [10] and most elegantly generalized by Schmidt ([16],

[17]) it is proven that every extension of a Brouwerian semilattice by another

can be imbedded into some special kind of extension which we call strongly

splitting extension. The second part introduces the multiplication of varieties

of Brouwerian semilattices, thus giving the "set" of varieties a semigroup

structure. Based on results from § 1 and using techniques originally developed

in [6] it is finally proven that the semigroup of varieties is a free monoid with

zero.

0. Preliminaries. A Brouwerian semilattice is an algebra (S, ■,*, 1> where

(5, -, 1) is a meet-semilattice with the greatest element 1, and where the
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binary operation * denotes relative pseudocomplementation, i.e. z < x *y

holds for elements x, y, z of S if and only if zx < y. It is well known that the

class BS of Brouwerian semilattices is a variety, equations detenruning BS

have first been given by Monteiro [9]. The following rules of com-

putation-which will be frequently used throughout the paper-may be found

in [10]:

x < y <=>x * y = 1,

1 * x = x,

x *y > y,

x(x *y)- xy,

xy * z = x * ( y * z),

x * yz - (x * v)(x * z),

X * ( v * z) = (x * v) * (x * z),

x<y=*y*z<x*z   and   z*x<z*y.

It is known also from [10] that congruences on Brouwerian semilattices are in

1-1-correspondence with filters. To be more precise: If F is a filter of the

Brouwerian semilattice S, then the relation

Of = {<*> y)\x> y e s> (* *y)(y *x)ef)

is a congruence of 5 with [l]9f = F. Moreover, the mapping F h» 0F is an

isomorphism between the lattice S(5) of all filters of S and the congruence

lattice of S. This explains our notation L/F for the quotient algebra and [x]F

for the congruence class of x modulo 0F. Consequently S is subdirectly

irreducible if and only if S \ {1} has a greatest element.

If /: Sx -> S2 is a homomorphism between the Brouwerian semilattices 5,

and S2 then the kernel of/

ker/= {x£5,|/x = 1}

is a filter of Sx. If / is onto S2 then the Homomorphism Theorem can be

stated as 5,/ker/ s S2. For any element a of a Brouwerian semilattice S the

mapping fa: S -> S defined by fax = a * x is an endomorphism of S and

ker/ = [a) = {x E S\a < x} is the principal filter generated by a. Also the

constant mapping 1-which is equal to f0 if S has a smallest element 0-is an

endomorphism of 5. As usual End S will denote the endomorphism monoid

of S.
The variety BS is known to be locally finite, i.e. finitely generated Brou-

werian semilattices are finite [12]. Clearly this also holds for every subvariety

of BS. If S is a finite subdirectly irreducible Brouwerian semilattice then

K(S)-the variety generated by 5-splits in the lattice of subvarieties of BS, i.e.

the class BS: S of all Brouwerian semilattices which do not contain an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIETIES OF BROUWERIAN SEMILATTICES 333

isomorphic copy of S as a subalgebra is a variety [12].

For any natural number « the set n = {0,...,«- 1} endowed with the

natural order is a subdirectly irreducible Brouwerian semilattice. The two

papers [11] and [12] emphasize the importance of the splitting varieties BS: n.

Here we just note that Q = V(2) = BS: 3 is the smallest nontrivial sub-

variety of BS.
For other notions from Universal Algebra we refer to [3].

1. Extensions of Brouwerian semilattices. Let S, Sx, S2 be Brouwerian

semilattices. Then S is called an extension of Sx by S2 if there exists a short

exact sequence

/     g
l—> SX->S—*S2—>1,

or equivalently, if S has a filter F such that F = Sx and S/F ¡s S2. S is a

splitting extension if g is a retraction, i.e. there exists a homomorphism «:

S2-* S such that gh = id5. If, moreover, g is a closure retraction, i.e.

hgx > x for all x £ S, then S will be called a strongly splitting extension of Sx

by S2. Strongly splitting extensions of Brouwerian semilattices have been

deeply investigated by Schmidt ([16], [17]) who called them quasi-decomposi-

tions. We recall the following construction and characterization theorems,

which are essentially due to him [17, Theorem 10.1]. In fact, Schmidt traces

them back to Nemitz [10], who treated the special case of a strongly splitting

extension of a Brouwerian semilattice by a Boolean algebra.

We begin with some definitions. Let Sx, S2 be Brouwerian semilattices. A

mapping <p : Sx -» End S2 will be called admissible, if <p is a homomorphism of

semigroups with identity, i.e. <pl = ids and <p(ab) = (<pa)(<p6) hold, and if,

moreover, q>(a)x > x for every a E Sx and every x £ S2. Every admissible

mapping q>: Sx -» End S2 induces an equivalence relation R^ on Sx X 52-we

will write simply R if no ambiguity can occur-where R is defined by

<a, x}R(b, v)<=>a = b   and   q>(a)x = <p(b)y.

R is even a semilattice congruence, so that the quotient set Sx * S2= SXX

S2/R becomes a semilattice. In addition, we have:

Theorem 1.1. Let Sx, S2 be Brouwerian semilattices and let <p: Sx -» End S2

be admissible. Then the definition

R(a, x> * R(b,y) = R(a * b, <p(a)(x * v)>

makes Sx * S2a Brouwerian semilattice. Sx * S2 is a strongly splitting exten-

sion of S2 by Sx.

Two standard examples should be mentioned. Clearly the direct product of

Sx and S2 is a strongly splitting extension which is obtained by letting

<pa = id5 for all a E Sx. On the other hand, if we define <p by
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fid.     ifa = l,(pa = Is*
U        iffl^l,

then <p is admissible. The resulting algebra Sx * S2 will be denoted by

S^fS^-as poset SxfS2 is isomorphic to the disjoint union of Sx \ {1} and S2

with all elements of S2 greater than those of Sx \ (1}.

Theorem 1.2. Let S be a strongly splitting extension of S2 by Sx. Then there

exists an admissible mapping q>: Sx -» End S2 such that S = Sx *   S2.

There is still the problem to give a construction for arbitrary extensions-

perhaps similar to the known factor set multiplication in the case of groups.

We can prove, however, that any extension can be imbedded into a suitable

strongly splitting extension.

To do this let us introduce the following notion: If S is a Brouwerian

semilattice let S~ = H([a)}aSS/9 where 9 is the congruence defined by

<xa)aeS9(ya)a£S^3a E S V6 £ S(b < a=>xft = yb).

It is easy to see that S is isomorphic to a subalgebra of S~, and if S has a

smallest element then S~ = S. Also for reference in §2 note that S~ E

V(S).

Theorem 1.3. Let S, Sx, S2 be Brouwerian semilattices such that S is an

extension of S2 by Sx. Then S can be imbedded into a strongly splitting extension

of S2   by Sx.

Proof. Without loss of generality we may assume that S2 is a filter of S

and Sx is the quotient S/S2. First observe that for any x £ S the mapping

a(x): S2 -» S2~ defined by

a(*)[<*«>«es2],-[<(« * x) * O.esjj

is an endomorphism of S2~. In fact, we only have to show that a(x) is well

defined, but this is immediate from the definition of 9. Moreover, let x,y E S

such that x £ [y]s . Then (x * v)( v * x) E S2 and an easy computation

shows that for any b E S2 with b < (x * y)(y * x) we have b * x = b * y.

This proves that x £ [y]s implies a(x) = a(y). Hence we can define <p:

Sx -» End S2~ by <p[x]S2 = a(x). Also it is easy to see that <p[l]S2 = ids-, as

well as <p[x]Si[(zayaeSJ9 > [(za)>a(BS)g. Moreover, for x, y £ S we have

•P^k^Md^^L = *[*k[<(a *y) * Za)aeSl]e

= [{(a * x) * ((a *y) * ¿J)oeSJ9 =[<(«* x)(a * v) * *a>«es2],

-[<(« * xy) * OaesJe = 9[JÇV]s2[<z«>«esJfl-

Thus q> is an admissible mapping.
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Now define a mapping h: 5 -> Sx *  S2~ by

hx = R([x]Si, [<(a*x)*x>aeSJe) -

note that (a * x) * x > a. We show that « is a 1-1-homomorphism. So let

x, v £ S. Then

A(xy) = /?([xv]v [((a * xy) * xv>agSJff)

and

hx-hy = *([*]s2b]s2> [<((« * *) * *)((* •>) *y))aes2]e}-

In order to prove h(xy) = hx-hy it thus suffices to show that for any a E S2

(a * xy) * ((a * xy) * xy) = (a * xy) * ((a * x) * x)((a *y) *y).

This is easily done:

(a * xy) * ((a * x) * x)((a *y)*y)

= ((a * x)(a *y)* ((a * x) * x)) • ((a * x)(a *y)* ((a * y) * y))

= ((« *y) * ((a * x) * x)) • ((a * x) * ((a *y) * v))

= (a * x)(a *y) * xy = (a * xy) * xy

= (a * xy) * ((a * xy) * xy).

Similarly

«(x * y) = /?([x *y]Si, [((a * (x *y)) * (x *y))aeS2]$)

and

«x * hy = r([x]Si * [y]s2,<p[x]S2[{((a * x) * x) * ((a * v) *y))aeS2]g)

and again it will be sufficient to show that for any a E S2

(a * (x * y)) * ((a * (x *y)) * (x *y))

= (a*(x *y)) * [(a * x) * (((a * x) * x) * ((a * v) * y))).

For simplicity let us abbreviate the left-hand side with b and the right-hand

side with c. Then

c = (a * xy) * (((tz * x) * x) * ((a * y) * y))

= (a*y) *(x* ((a*y) *v))

= x* ((a *y) *y) = x(a * y) * v,

and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



336 PETER KÖHLER

b = (a*(x*y))*(x*y)

= (x * (a *y))x * y = x(a * v) * v.

Thus b = c, and so A is a homomorphism.

Finally let

A*-l«*<[l]s„[<l>fl6sJ,>.

Then x E S2 and <(o * x) * x}aeS9{iyaBS, i.e. there exists some a E S2

such that (¿ * x) * x = 1 whenever b E S2, b < a. In particular ax £

52-since x £ S2-and ox < a, hence 1 = (ax *x)*x = l*x = x. Thus h is

a 1-1-homomorphism, and the theorem is proven.

Next, we will discuss the functorial aspect of the construction of strongly

splitting extensions; we will construct homomorphisms between strongly

splitting extensions from appropriate pairs of homomorphisms between the

constituents.

Theorem 1.4. Let Sx, S2, S3, S4 be Brouwerian semilattices, and let <p:

Sx -> End S2, {: S3 -» End S4 be admissible. Suppose that /: Sx -» S3, g:

S2 -* S4 are homomorphisms such that for every a E Sx the diagram

s2    -»    s2

(*) si is
s4    ->    s4

is commutative. Then the mapping h: Sx* S2-> S3 * S4 defined by hR(a, x>

= R(fa, gx) is a homomorphism.

Proof. First we have to show that h is well defined. So let <o, x)R{b, v),

i.e. a = b and <p(a)x = <p(b)y. But then (*) implies fa= fb and i(fa)gx =

g<p(a)x = fff>(b)y = £(fi)gy, hence {fa,gx)R{fb,gy}. Obviously A is a
semilattice homomorphism. Moreover, for any a,b E Sx and x, y £ 52 we

have

h(R(a, x> * R(b, y» = hR(a * b, <p(a)(x * v)>

= R(ja *fb, ï(fa)(gx * gy)> = R(fa, gx) * R(Jb, gy)

= R(f(a * ¿7),g<p(a)(x *^)> = R(fa *fb, t(fa)g(x * v)>

- «iî<a, x> * hR(b,y}.

This completes the proof.

This theorem has an immediate corollary:

Corollary 1.5. Let Sx, S2 be Brouwerian semilattices, let <p: Sx-> End S2

e admi.

SX*S2.

be admissible. If S is a subalgebra of Sx, then S *  S2 is a subalgebra of
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The following lemma is a partial converse of Theorem 1.4. Roughly spoken,

it says that every homomorphic image of a strongly splitting extension is

again a strongly splitting extension. For better reference in §2 we will state it

in terms of filters rather than in terms of homomorphisms.

Lemma 1.6. Let Sx, S2 be Brouwerian semilattices, let <p: Sx-*EndS2 be

admissible. Suppose that F is a filter of Sx * S2. Then F = Fx* F2 for some

filters Fx of Sx, F2 of S2. Moreover, there is an admissible mapping {:

Sx/Fx -» End S2/F2 such that

Sx *v S2/Fx *v F2 s Sx/Fx *£ S2/F2.

Proof. We define

Fx = {a\a E Sx, 3x £ S2 R(a, x> £ F],

F2 = {x|x £ S2, 3a £ Sx R(a, x> £ F).

It is easily checked that both of Fx and F2 are filters, and that F = Fx * F2.

Now let a E [b]F¡, then R((a * b)(b * a), l) £ F. Moreover, for any x £ S2

we have

<p((a * b)(b * a))((q>(a)x * <p(b)x)(<p(b)x * <p(a)x))

= (<p(ab)x * <p(ab)x)(q>(ab)x * <p(ab)x) = 1.

This shows that

R((a * b)(b * a), 1>

- R((a* b)(b * a), (<p(a)x * <p(b)x)(<p(b)x * <p(a)x)) £ F.

As a consequence (<p(a)x * <p(b)x)(<p(b)x * <p(a)x) E F2 or <p(a)x £

[<p(b)x]f2. This observation makes it clear that we can define an admissible

mapping £: Sx/Fx -»End S2/F2. So let a £ Sx, then we have the following
diagram:

<p(a)

S2 —»        S2

S2/F2   ->        S2/F2
ta

Since q>(a)x > x for all x £ S2 it follows that F2 = ker v Q ker(np(tz)). Thus

there exists a unique endomorphism ya completing the diagram. î argu-

ment above shows that ya is independent from the choice of a £ [u¡F. Thus

the mapping £: Sx/Fx -> End S2/F2 given by t[a]F¡ = ya is well defined and

clearly admissible.

Now the diagram shows that the assumptions of Theorem 1.4 are fulfilled.

Thus   the   mapping   h:   Sx *   S2 -» Sx/Fx *   S2/F2   defined   by
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hR(a, x> = R([a]F¡, [x]^) is a homomorphism onto Sx/Fx *¿ S2/F2.

Moreover,

ker« = {R(a, x)\[a]Fi = Fx, [x]Fi = F2)

= {R(a, x)\a EFx,xEF2} = Fx *^ F2.

The Homomorphism Theorem proves the rest of the statement.

It should be noted, however, that using the full details of the proof of

Theorem 1.2 a shorter proof of this lemma could have been given.

2. Varieties of Brouwerian semilattices. For classes K1; K2 of Brouwerian

semilattices let K, • K2 be the class of all extensions of algebras of K[ by

algebras of K2. If, in particular, K] and K2 are varieties, then K, • K2 is again a

variety, an observation which in full generality is due to Mal'cev [7, Theorem

7]. Thus the collection of all subvarieties of BS is endowed with a groupoid

structure, the resulting groupoid will be denoted by G (BS). In fact, G (BS) is

even a semigroup, as also follows from [7, Theorem 8]. Clearly multiplication

in G (BS) respects inclusion, BS is the zero and the trivial variety T is the unit

of this semigroup. Rephrasing the proofs and the examples given in [1] one

can see that multiplication from the right distributes over joins and meets

taken in the lattice of subvarieties, but left multiplication does not.

A variety KÇBS will be called (multiplicatively) indecomposable if it

cannot be written as a nontrivial product. Clearly C2 is an indecomposable

variety, and as in [6] one can prove that for any natural number « we have

Qi = BS: n+2. Thus the powers of C2 generate BS, and this also shows that

every proper subvariety of BS is a finite product of indecomposable varieties.

We will even show that this representation is unique, i.e. G(BS) is a free

monoid with zero. We will start our investigations with a consequence of

Theorem 1.3.

Lemma 2.1. Let K,, K2 £ G(BS). Then the product variety Kx ■ K2 is gener-

ated by the strongly splitting extensions of algebras of Kx by algebras of K2.

Furthermore, we can give a characterization of the product variety which

will prove to be very useful in the following. The idea also goes back to

Mal'cev [7]. So let K be a subvariety of BS and suppose that S is a

Brouwerian semilattice. Then we put

At(S) = H {F\F E S(S), S/F E K}.

Then DK(S) is a filter of S, and, as a subdirect product of the family

[S/F\F E S(5), S/F E K}, S/DK(S) belongs to K. In fact, S/DK(S) is the
maximal homomorphic image of S in K. Moreover, we have:

Lemma 2.2. Let Kx, K2 be subvarieties of BS, and suppose that S is a
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Brouwerian semilattice. Then S E K, • K2 if and only if DKz(S) E K,.

Proof. Let 5 £ K, • K2, then there exists F E %(S) such that F E Kx and

S/F E K2. But this implies DK2(S) Ç F and hence DKi(S) E K2. The con-

verse part follows immediately from the fact that S/DK2(S) £ K2.

The following lemma is basic for proving that every proper subvariety of

BS is right cancellable.

Lemma 2.3. Let Sx, S2 be Brouwerian semilattices; suppose that <p: Sx -»

End S2 is admissible. Let Kbe a subvariety of BS. Then the following hold:

(1) There exists a filter F of S2 such that DK(S2) Q Fand

^k(5,*9)52) = Z)k(51)*vF.

(2)IfSx £ K and if there is some a E DK(SX) such that q>(a) = 1, then

Dk(Sí\S2) = Dk(S1)*vS2.

Proof. By Lemma 1.6 we have DK(SX * 5"2) = Fx * F2 for some filters Fx

of Sx, F2 of S2. Since

St *9 S2/DK(SX *vS2)^ Sx/Fx *f S2/F2

for some admissible mapping £ we must have Sx/Fx £ K and S2/F2 E K.

This implies DK(SX) Ç Fx and DK(S2) Q F2. On the other hand

Sx * S2/DK(SX) * S2 = SX/DK(SX) E K again by Lemma 1.6. Thus

DK(§X * S2) = Fx * F2Q DK(SX) * S2, which implies Fx ç DK(SX). So (1)

is proven.

To prove (2) observe that <p(a) = 1 for some a E DK(SX) implies

(a, x)R(a, 1> for all x £ S2. Hence R(a, x) E DK(SX) * F2 for all x £ S2

and thus S2 Q F2.

As an immediate consequence of this lemma let us note that the equality

DK(SX X S2) = DK(SX) x DK(S2) holds. Also if Sx £ K we have that

AtiSit^) = At(Si)t'S'2. But more importantly:

Theorem 2.4. Let K, K„ K2 £ G(BS), and suppose that K ¥= BS. Then

K,   K ç K2   K implies Kx C K2 and Kx • K = K2 • K implies K, = K2.

Proof. First observe that it suffices to show that K, = {/^(S^S £ K, •

K}, since this implies K! = {/^(S)^ £ K, • K} Ç {ÖK(5)I^ £ K2- K} =
K2. Also-because of Lemma 2.2-only the inclusion K, Ç (£>K(5)|S £ K, • K}

has to be shown. So let S E K,. Since K ¥= BS there exists a finite algebra

Sx E BS \ K. We may even assume that Sx is subdirectly irreducible and

Sx a 52f2 for some S2 E K. Then S2-\S E Kx ■ K. By Lemma 2.3 we have

DK(S2-fS)C Z)K(5'2)f5 = {l}tSs S. By Lemma 1.6, DK(S2-\S) = {1}|F

for some filters F of S. Suppose F=£ S. Then, again by Lemma 1.6, we have
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S2-fS/DK(S21[S) s SJS/F £ K. Since F i- S implies that 2 is isomorphic
to a subalgebra of S/F, it follows that 52f2 is isomorphic to a subalgebra of

S^S/F. But this would imply 5, £ K, contradictory to our choice of Sx.

Hence F = S and so S at DK(S2-\S).
The rest of the paper will be occupied by the proof of the freeness of

G(BS).

Lemma 2.5. Let K be a subvariety of BS; and suppose that X is a subclass of

BS which is closed under finite direct products. Then

K • V(X) = V[SX *  S2\SX EX,S2EK,tp admissible}.

Proof. Clearly K • V(X) is generated by its finitely generated free alge-

bras. Thus it suffices to show that for any natural number n the free algebra

FK.y(X)(n) on « generators of the variety K • V(X) is isomorphic to a

subalgebra of Si * S2 for some algebras Sx £ X, S2 E K and some admissi-

ble mapping <p. First note that FK.y(X)(n)/DV(X)(FK.y,X)(n)) s FV(X}(n) and

Dv(X)(Fnv(X)(n)) e K. Thus Theorem 1.3 implies that FK.vm(n) can be

embedded into FV(X)(ri) * S2 for some 52 £ K and some admissible mapping

<p. In fact since FK.KW(«) is finite we may even take S2 = Dv(X)(FKV(X)(n))-

Now X is closed under finite direct products and Fvm(n) is finite, thus

FV(X)(n) is a subalgebra of some Sx E X. It remains to show that we can

extend <p from FViX)(ri) to Sx. But again since FviXy(n) is finite this is an

immediate consequence of the injectivity of finite Brouwerian semilattices in

the category of semilattices [4, Corollary 2.9].

Lemma 2.6. Let K,, K2, K3, Kt be subvarieties of BS such that K2 g K4 and

K, • K2 = K3 • K4. Then there is a nontrivial variety K such that K, • K = K3.

Proof. Define K = V{DKf(S)\S E K2). Since K2 ÇZ ¥.4, K is nontrivial.

Also since by Lemma 2.2, K2 Ç K • K4 we have K3 • K4 = K, • K2 Ç K, • K •

K4 and right cancellation (Theorem 2.4) yields K3 ç K, • K.
To prove the converse inclusion first note that by the remark following

Lemma 2.3 the class {/>K4(S')|5 £ K2} is closed under finite direct products.

Thus by Lemma 2.5 it suffices to show that

i/)K4(S2) *   SX\SX £ K„ S2 E K2, <p admissible] £ K3.

So let S2 E K2, S1! £ K,, <p: />k4(5'2) -» End Sx admissible. First we extend <p

to <p, by defining

i<px    if x £ />k4(S2),

9,*~{l      ifx££»K4(52).

Then <px is admissible too. With <p2: 52 -> End Sx defined by
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f ids      if X = 1,

l 1 if X =5* 1,

we form |: S2X S2~* End 5,, £<x, y) = ç>i(x)q>2(y), and obviously £ is again

admissible. Then (S2 X SJ * S, £ K, • K2 = K3 • K,,, and thus DKt((S2 X

S2) * Sx) E K3. But since D^SJ ^ {1}, there is some <x, v> £ /^(S^ X

Sy such that £<x, v) = 1. By Lemma 2.3(2) this implies

Dj¿S2 X S2) *t Sx) = /^(^ X S2) *( Sx

= {DK4(S2)xDKt(S2))*îSx.

Finally D^S^ * Sx is isomorphic to a subalgebra of (D^S^ X

At/Sz)) *( S\ by dorollary 1.5 and thus D^S^ *  Sx E K3.
Now we can state the announced theorem on the semigroup of subvarieties

of BS:

Theorem 2.7. C(BS) is a free monoid with zero on 2"° generators.

Proof. Let K, • K2 = K3 • K4 for some proper subvarieties K„ K2, K3, K^ of

BS where K, and K3 are indecomposable. Then Lemma 2.6 shows that

neither K2 £ K4 nor K4 £ K2 can hold. Thus K2 = K4 and by Theorem 2.4

also K, = K3.

An obvious induction based on this shows that the representation of a

proper subvariety as a finite product of indecomposable varieties is in fact

unique. This means that G(BS) is free. Wroñski has shown that C(BS) has

2N° elements [20].
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