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THE SEMIGROUP PROPERTY OF VALUE FUNCTIONS
IN LAGRANGE PROBLEMS

PETER R. WOLENSKJ

Abstract. The Lagrange problem in the calculus of variations exhibits the prin-
ciple of optimality in a particularly simple form. The binary operation of inf-
composition applied to the value functions of a Lagrange problem equates the
principle of optimality with a semigroup property. This paper finds the infinites-
imal generator of the semigroup by differentiating at t = 0 . The type of limit
is epigraphical convergence in a uniform sense. Moreover, the extent to which
a semigroup is uniquely determined by its infinitesimal generator is addressed.
The main results provide a new approach to existence and uniqueness questions
in Hamilton-Jacobi theory. When L is in addition finite-valued, the results are
given in terms of pointwise convergence.

1. Introduction

In this paper we are concerned with properties of the so-called value function
V^ associated with the following Lagrange problem:

(1.1) inf [   L(x(t), x(t))dt       over x(-)€ AC [0, T]
Jo

satisfying x(0) = t\ and x(T) = n . Here T > 0, AC[0, T] is the set of abso-
lutely continuous functions from [0, T] into R", x(-) signifies the derivative
of x(.), and t, and n are elements of R" . The precise assumptions on the
extended real-valued integrand L (which is referred to as the Lagrangian) will
be given below, but at this point, we merely emphasize that the admittance
of infinite values to L allows for generality in the problem formulation (1.1)
than is perhaps readily apparent. We refer to Rockafellar [22, §4, 24] or Clarke
[5, §1.3] for a detailed discussion in the techniques for which standard control
problems can be reformulated into the form (1.1). The optimal value in (1.1)
is denoted by F(r) (Ç, n). This notation suggests that for fixed T > 0, we are
viewing V^ (•, •) as an (extended) real-valued function of the endpoints t\
and n . The goal of this paper is to characterize the collection {V^jf^o of
value functions.

The approach to our characterization is based upon a (one-parameter) semi-
group property which is satisfied by {V^T)}t>o ■ The binary operation here is
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132 P. R. WOLENSKI

that of inf-composition, which is defined as follows: If Ui and U2 are ex-
tended real-valued functions defined on R" x R" , the inf-composition Ui o U2
is defined on R" x R" into R1 U {±00} by
(1.2) t/,oI/2({, n)= inf {£/,({, y) + c/2(y, /?)}.

y€R"

Hence we say that {C/(r)}r>o is a semigroup if

( 1.3) U{s+t) = U{s) o t/W       for all 5, ? > 0.

The "principle of optimality" (as is relevant to (1.1)) is thus equivalent to the
property that {V^}T>o is a semigroup.

The standard approach to the study of problems of form (1.1) often centers
around the Hamilton-Jacobi equation (HJ)

(M) »2!$Ji+i,(,,v,B««,,))-0.
where the Hamiltonian //(•, •) is given by

H(Ç,p)=mp{(v,p)-L(c:,v)}.
VER"

The partial differential equation (1.4) can be derived (at least formally) from
property (1.3); see Bellman [1] or Pontryagin et al. [20]. However to guarantee
the existence of a solution to (HJ), restrictive smoothness assumptions must
be imposed on the value function. This is the approach followed in [20] and
other subsequent early work. Also, see Cesari [3, p. 203]. But because these
assumptions fail to hold in many of the simplest problems, nonsmooth analysis
has been developed to play an essential role in extending the theory. Loosely
speaking, this takes the form of replacing the classical derivatives in ( 1.4) by
some notion of generalized gradient. This approach is taken in work by Clarke
and Vinter [6], Clarke [4], and Zeidan [33, 34] which employ Clarke generalized
gradients in the derivation of optimality conditions. An alternative notion,
that of viscosity solution, was introduced by Crandall and Lions [11] which in
effect uses Dini subgradients coupled with certain inequalities. The crowning
achievement of the viscosity approach is that under quite general assumptions,
viscosity solutions exist and are unique. See Crandall, Evans and Lions [9],
Lions [17], Crandall, Ishii, and Lions [10], and the papers [12, 16, 18] for further
references. One further concept has recently been introduced by Frankowska
[14], Berkovitz [2], and Vinter and Wolenski [28] in which Dini directional
derivatives are featured rather than subgradients.

The main results of this paper are perhaps more primitive than those just
mentioned.  We are merely interested to what extent the semigroup property
(1.3) determines the value functions. Indeed, the following two natural ques-
tions arise in connection with any (one-parameter) semigroup.

(Ql) What is the infinitesimal generator of the semigroup, and in what sense
is it the "derivative" at / = 0 ?

(Q2) To what extent does the infinitesimal generator characterize the semi-
group?

In the context of problem (1.1), these questions were posed but left open in
Rockafellar [23]. We will provide answers to (Ql) and (Q2) assuming L satis-
fies convexity, coercivity, and Lipschitz-type assumptions. Before stating these
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THE SEMIGROUP PROPERTY OF VALUE FUNCTIONS IN LAGRANGE PROBLEMS 133

assumptions precisely, we will next review the derivation of (1.4) from (1.3).
This will give the pedagogical connection of (Ql) and (Q2) with Hamilton-
Jacobi theory.

First note that if {t/(i)} satisfies (1.3), then for each h > 0, we have

l/«+Ä>(£, ri)-UU(Z, n)= mf{£/(/)(i, 7)-£/«>(£, n) + U^(y, n)}.
yeR"

Dividing by h and making the change of variables y = n - hv , this becomes

i{C"+">«,/))-£/('»({, n)}

(1'5)     -jrff0^-'-*?-^«-«»*^^*,,)).v&w [ h h )

By letting h \ 0 one sees that (1.4) arises from (1.5), provided the derivatives
exist, the same v e R" achieves the inf in (1.5) for all small h, and the
convergence

(1.6) TUw(y, y + hv)^L(n, v)

holds as h \ 0. (Recall that y = n - hv and hence y -* n as h \ 0.) Of
course these are severe provisions.

Note that the function

yW(y, V) := jU^(y, y + hv)    (= ^{U^(y, y + hv) - Um(y, y)}\

which appears in (1.6) is the difference quotient used in finding the direc-
tional derivative of (h, n) ►-> U(h)(y, n) at (0, yjel'x R" in the direction
(1, tijel'xR". Thus one can interpret the limiting behavior of the functions
*PW(y, •) as h \ 0 as the "derivative" of the semigroup {t/w};>0 at t = 0.
In other words, the limit of *pW(y, •) as h \ 0 is the natural candidate for the
infinitesimal generator; the precise manner in which the limit should be taken
will be given in §3—a uniform epigraphical limit. As the previous paragraph
suggests, showing L is the infinitesimal generator of the value function semi-
group (see Theorem 3.1 below) is the semigroup counterpart to showing the
value function satisfies (HJ). The resolution of the question if this "derivative"
at t = 0 characterizes the value functions (see Theorem 3.2 and Theorem 6.2)
is analogous to the determination if (HJ) has a unique solution. Thus, at least
pedagogically, (Ql) and (Q2) are the respective semigroup formulations of the
existence and uniqueness problems in Hamilton-Jacobi theory.

We now state our basic assumptions on L. Throughout the rest of the paper,
L will be assumed to satisfy:

(HI) for each c; e R" , L(¿¡, •) is a proper, closed, convex function,
(H2) for each \ e R" , L(Ç, •) is coercive,
(H3) There exists k > 0 so that for each £, £', and p e R" , we have

\H(Ç,p)-H(i',p)\<X(l + \p\)\Z-a
Recall (cf. [21]) that L(£, •) "proper" means L(Ç, -) never takes the value

-co and is not identically +oc ; "closed" is equivalent to lower semicontinu-
ity; and "coercive" is the property that é\L(t¡, v) -» +co. Assumption (H3)
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134 P. R. WOLENSKI

(known as the strong Lipschitz condition [4]) is equivalent to: there exists k > 0
so that for all £, HJ 6 R" , we have

(1.7) epiL(£, -)C epiL(<¡;', .) + A|{-{'|fl,

where epi L(Ç, •) = {(v, a) € R" x R1 : a > L(£, u)} is the epigraph of L
(£,, •) • (Throughout, the letter B denotes the closed unit ball in the appropriate
dimension. For example, in (1.7) B has dimension n + 1 ). The proof of the
equivalence of (H3) with (1.7) consists of taking Legendre-Fenchel conjugates.
These details are left to the reader.

The assumptions (H1)-(H3) are the global autonomous versions of those
employed in the necessary conditions of Clarke [4, or 5, §4.2]. Early viscosity
results [9, 16] also use similar assumptions, however more recent work [12, 10]
allow for somewhat weaker conditions.

We give here further justification for our assumptions by considering a special
case of (1.1). Suppose F : R" =t R" is a multifunction (i.e. a set-valued map),
and consider the differential inclusion

x(-)£AC[0, T]
(1.8) x(t)£F(x(t))   a.e. * e[0, T],

x(0) = {.

Many essential features of (1.8) are covered within the formulation (1.1) by
letting L be defined as the indicator of F :

\_ -(-co   if v f F(ç).

The reachable set multifunction is defined by /?(r)(£) := {x(T) : x(-) satisfies
(1.8)} . Note that with L as in (1.9), V{7"> is then the indicator of R{T) :

V(T)(t, *) = {
0        if neR^ß),
+co    if rifzR^H).

Hence a semigroup characterization of {V^} subsumes a characterization of
{/?(r)} in terms of the semigroup operation of multifunction composition. For
instance, if the values of F are sets consisting of a single element, such a
characterization becomes a uniqueness theorem in ordinary differential equa-
tions. For differential inclusions, there are also uniqueness theorems which
characterize reachable set multifunctions. The first such we are aware of is
Roxin [26, Theorem 7.1]. A version involving "the funnel equation" is given
by Panasiuk and Panasiuk [19]. Still another version is given by this author
[32] which strengthens the notion of limit in finding the infinitesimal generator,
but enlarges the class over which the reachable set multifunction is unique by
allowing noncontinuous semigroups. All of these versions (essentially) employ
the same assumptions on F . In autonomous form, these are

(HI') for each Ç e R" , F(£) is nonempty, closed, and convex
(H2#) for each £ e R" , F({) is bounded,
(H3')   F is Lipschitz in R" with respect to the Hausdorff metric.
If L is given by (1.9), then the set of assumptions (H1)-(H3) are the natural

extensions of (H1')-(H3') to the more general situation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE SEMIGROUP PROPERTY OF VALUE FUNCTIONS IN LAGRANGE PROBLEMS 135

The plan of the rest of the paper is as follows: Section 2 has preliminaries; the
main results are stated in §3; §4 develops properties of Yosida approximations,
which will be used in a proof in §5; §5 has proofs; §6 considers finite-valued
Lagrangians; and §7 contains pointwise limit theorems.

2. Preliminaries

The word "function", unless explicitly stated otherwise, will always refer to
an extended real-valued function. If / : Rm —> R1 U {±co} is a function, then
the (effective) domain of / is the set dom /:={£: f(Ç) ^ +co} . The epigraph
of /, denoted by epi /, is given by epi / := {(£, a) e Rm x R1 : a > /(£)}.
Recall that / is lower semicontinuous (l.s.c.) if and only if epi / is closed. A
collection {t/(i)}r>o is said to be a l.s.c. semigroup on R" x R" if (1.3) holds
and for each (t, Ç) e [0, co} x R" , the function U{t)(£,, •) is l.s.c.

A metric d is defined on the subsets of R" as follows (the so-called Hausdorff
/j-metric; see Wets [29]): let C and D be subsets of R" . For each m =
1, 2, ... , define

d+(C, D): = inf{f5 > 0 : Cr\mBCD + SB},

d+(C   D) ■ = V2'"1    dmic > D)
a(L,u).     i^i    1+rfjj¡(c>Z)).

and
d(C, D):=max{d+(C, D), d+(D, C)}.

It can be easily shown that a net {Cn}n>o of subsets of R" satisfies d+(Cn,D)
-> 0 as h \ 0 (resp. d(Cn , D) -> 0) if and only if for each m = 1, 2, ...
and e > 0, there exists ho so that for 0 < h < ho, we have d+(Cn, D) < e
(resp. d+{Ch, D) < e and d+(D, Ch) < e).

3. The main results
Again consider the problem (1.1). For h > 0 and Ç, v e R", define

<¡>{h](£, v) := ¿K<A)(^, £ + hv). The following theorem responds to (Ql) as
posed in the introduction. Recall that L is assumed to satisfy (H1)-(H3).

Theorem 3.1. The collection {F(?)};>o  is a l.s.c.  semigroup on Rn x Rn such
that
(3.1) ¿(epi<D(/,)(£, •), epiL(£, •))-> 0   as h \ 0
uniformly over £ in a compact subset of R" .

Our second main result is

Theorem 3.2. Suppose {U^}t>o is a l.s.c. semigroup for which

(3.2) d+(epiL(Ç, •), epi ¥{h){Ç, •)) - 0   ash\0
uniformly for £, in a compact set, where 4/(/,)(<^, v) := jU(h)(£,, £ + hv). Then
for all t > 0 and ¿¡, n e R" , we have
(3.3) U^(í,r¡)<V(t)(^,r¡)-

Theorem 3.2. responds to (Q2). It is in the spirit of similar "upper envelope"
results which appear in Gonzales [15], Vinter and Lewis [27], and Vinter and
Wolenski [28].
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136 P. R. WOLENSKI

Of course it would be desirable if the inequality (3.3) was an equality (under
the additional assumption that d+ in (3.2) is replaced by d ). If L is given as
in (1.9), and the U(t) 's are restricted to be indicators only, then this is indeed
the case. Theorem 3.2 then reduces to the uniqueness theorem in [32]. However
in the more general case (1.1), we can only prove equality in (3.3) with finite
Lagrangians and with further restrictions on the semigroups. This result is given
in §6, where we also discuss the additional assumption. Of course L finite
everywhere precludes the situation (1.9). Hence only for Lagrangians L for
which dorn L(Ç, •) is bounded or dorn L(Ç, •) equals all of R" (in addition
to (H1)-(H3)) that it is known the inequality in (3.3) can be strengthened to
an equality. Our proofs entail time discretization, and it is pertinent that in
these two situations, it is known that minimizers are necessarily Lipschitz (when
domL(¿;, •) is bounded, this is trivial; the case dom L(£, •) = R" is handled
in Clarke and Vinter [7]; see also [8]). In fact, in the intermediate situation,
it may happen that minimizers are AC but not Lipschitz, and our proofs will
fail. "

Pointwise limits cannot replace epigraph limits in (3.1), as the following
simple example illustrates. Let n = 1, F(£) = {£} , and L be as in (1.9). Then
R(')(Ç) = {e7^}, and so for each £ and h > 0, one has K<*)(f, £ + Af) =
+00 while L(£, t¡) = 0. However there are situations where pointwise limits
exist, the most notable being when dom L(t¡, •) = R". This topic will be
addressed in §7. The relationship between epi and pointwise convergence for
convex functions is given by Wets [29]. These results are not applicable here
because 0(/l)(£, •) is not in general convex.

We finish this section by remarking that the assertion "{KW}f>0 is a l.s.c.
semigroup" in Theorem 3.1 is well known. The semigroup property (1.3) is in
fact valid under no assumptions on L provided undefined and infinite integrals
are properly interpreted. See Rockafellar [23]. For proofs under standard cal-
culus of variation and control problem assumptions, see [3, p. 27 and p. 202].
The l.s.c. property is also valid under weaker assumptions than in force here.
Indeed, in existence theory, one is often interested in the lower semicontinu-
ity of the functional J(x) := J0 L(x(t), x(t))dt. From (H3), it follows that
H satisfies "the stronger growth condition" in Rockafellar [24], hence by the
"semicontinuity theorem" in [24], / is l.s.c. It immediately follows from this
that VW (£, •) is 1.S.C

4. YOSIDA APPROXIMATIONS

As mentioned in the introduction the allowance of L to admit infinite values
adds great generality to the basic problem (1.1). But it also creates technical
obstacles that are not always easily overcome. A technique employed here is
to sometimes approximate L by a penalty function La, which is called the
Yosida approximation. For each a > 0, La is defined by

(4.1) LQ(£, v)= inf {L(i, u) + a\u-v\} ,     forf, ueR".
m€R"

The advantage in employing Yosida approximations is that La is finite every-
where and approximates L nicely from below when a is large. We gather
technical information on La in the following proposition. Recall that we are
assuming L satisfies (H1)-(H3).
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THE SEMIGROUP PROPERTY OF VALUE FUNCTIONS IN LAGRANGE PROBLEMS 137

Proposition 4.1. For each a > 0, La possesses the following properties:
(i) For each £, e R", La(Ç, •) is a proper, closed, convex function with

domLa(c¡, •) = R", and minueR»La(£, v) = minvERn L(Ç, v).
(ii) For £,, v G R" and a' > a, we have La(Ç, v) < La>(c¡, v) < L(t¡, v).

(iii) Assumption (H3) holds with L replaced by La, and with the same k.
(iv) Fort,?, veR", La(c¡, v)>La(?, v) - A(l + a)|í -£'|.
(v) lim^i-.oo La(Ç, v)/\v\ = a, and the limit is uniform as £, ranges over a

compact set.
(vi) For m > 0, define po(m) := sup{|u| : L(0, v)/\v\ < m} < +co, and

for a > m, define Pçj(m) - sup{|v| : La(0, v)/\v\ < m}. Then for all m>0,
we have

(4.2) lim Po(m) = po(m).
a—*oo

Remark. A much stronger assertion than (4.2) is true. It can be shown that in
fact the sets {v : 4yLa(0, v) < m} set-converge to {v : é¡L(0, v) < m} .

Proof, (i) These are general properties of the infimal convolution of the convex
functions L(£, •) and £ •->• a\Ç\ (see [21, p. 76]).

(ii) Immediate from the definitions.
(iii) Let Ç, <*', v e Rn . Then

La(Ç, v) = inf{L(c¡, u) + a\u-v\}

> inf {L(f', u + A|£ - Z'\b) + a\u - v\} - X\i - <f|       (by (H3))
ueu"

= inf {£,({', u') + a\u' -v\- A|¿ - <f| \b\ - A|{ - i'|
u'eR"
b€B

= mfLa(?, v + X\Z-?\b)-X\Z-Z'\
b€B

This shows La satisfies (H3) with the same A.
(iv)Lct Ç, ?, veR". Then

La(c¡, v) > inf {L{? ,u) + a\u-v- A|{ -?\b\- A|i -i'|        (by (iii) above)
«em"

> inf {L(£', M) + a|M-u|}-A(l+a) |£-<f|
"" ueR"

(by the triangle inequality)
= LQ(<T, »)-A(l+a)K-€'|.

(v) First, fix ¿f € R" . For any u0 € dom L(£, •) and v e R" , we have

(4.3) R{L(<r'   M0)+«l"0-U|}>^a(í,  V).

As |u| -> co, the left-hand side of (4.3) approaches a. Hence

lim sup -—La(t, v) < a.
\v\—»oo     1^1

We next show that liminf^i^oo -X,La(t, v) > a. If this is not the case, then
there exists e > 0 and a sequence {vk} with \vk\ —> co so that rKLa(t, vk) <
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138 P. R. WOLENSKI

a- e. From (H2), it follows that the inf defining La(Ç, vk) is attained, say
at uk . We have
,. „ L(£, uk)     a\uk - vk\4.4 ,    , kJ +       ,    ,     ' < a - e

Kl \vk\
for all k . If a subsequence of {uk} (which we do not relabel) satisfies \uk\ —► co
as k —> co, in virtue of (H2), we have ¿jL(£, «^ -> oo. From (4.4) it is
immediate that for all k ,

L(£, uk) \uk\
l"*l \Vk\

and hence it must follow that 1^4 —»• 0. But now for large k, L(Ç, uk)
> 0. By letting k —► co in (4.4), we have that a < a - e, a contradiction.
So the sequence {uk} is bounded. Since {L(Ç, uk)} is bounded below, letting
k —► co in (4.4) again gives us the contradiction a < a - e. We conclude
lim^i^oo XLa(t, v) = a. That this limit is uniform over £ in a compact set
follows from directly from (iv) above.

(vi) Fix w>0,ifa>m>0, then p^(m) < co by (v). By (ii) we always
have ßo(m) > Po(m). So we must show limsup,,^^ Pc¡(m) < po(m). If not,
then there exists e > 0, a sequence {ak}k with ak / co as k -* co, and a
sequence {vk}k ç R" so that

«4,, ^> <_m<at

and

(4.6) Po(m) + e< \vk\.
For k < k', we have

Lak(0, vk.) < —-r La.,(0, vk,) < m
M-*y~, "K'-\vk,

by (ii). If a subsequence {vk,} satisfies \vk,\ —> oo, then from (v) we can
deduce that ak = lim^^^ t^-t Lak (0, vk, ) < m , which contradicts ak > m .
Hence the sequence {vk} is bounded, and without loss of generality we assume
vk —* vo ■ Let uk e R" be such that LQk (0, vk) = L(0, uk) + ak\uk -vk\. Then

\Vk~uk\ = —(Lak(0, vk)-L(0, uk))
<*k

(4-7) , J
<*k

< — (\vk\m - infL(0, u))    (by (4.5))
ak V u )

—►0   as k —► oo.

Hence (4.7) implies uk —> v0 . By the lower semicontinuity of L(0, •) we have

(4.8) L(°> *> < liming "*> < hmsup^V** < m.
\V0\ '    ¿-oo \Uk\ fc^oo \Vk\

The last two inequalities of (4.8) follow from the definition of uk and from
(4.5), respectively. Finally, (4.8) says by definition that |t>o| < Po(m), which
contradicts (4.6) because vk —> vq .   □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The next simple lemma provides an estimate that will be used extensively
below. In (4.9), note that La cannot be replaced by L because L may take
on infinite values.

Lemma 4.2. Fix T > 0 and £ G R". Suppose x(-) G ̂ C[0, T], and define
4>{t) = IÓ L(x(s), x(s))ds.

Then for each a > 0 and 0 < t0 < t < T, we have
(4.9)

</>(ti)><f>(to) + (ti-to)UaU,x{t^~^to))-X(\+a)  sup  \x(t)-t\\
I     V h - to     J i0<i<'i J

Proof. We assume 4>(ti) < oo and to < ti, for the result is trivial otherwise.
We have

<t>(h) - 4>(to) = [' L(x(t), x(t))dt
Jt0

> La(x(t), x(t))dt   (by Proposition 4.1(H))
Jt0

> I' La(i, x(t))dt - k(\ + a) [l\x{t)-t\dt

(by Proposition 4.1(iv))

>(ti-to)\LaU,X{tl)-*{to))-k(l+a)   sup   \x(t)-t\)
IV h - h     j t0<t<t¡ )

(by Jensen's inequality).   D

We next give a new proof of a special case of a result due to Rockafellar [24].
This result will feature prominently in our analysis, and the proof given here
will also illustrate the utility of Yosida approximations.

Proposition 4.3. Suppose T > 0, m > 0, and K ç R" is compact. Then
there exists a constant c (depending on T, m, K) so that if x(-) € AC[0, T]
satisfies x(0) G K and J0T L(x(t), x(t))dt < m, then x(-) also satisfies \\x(-)-
x(0)\\<c.
Proof. We first assume T < \ . If the result is false, then there exist for each
k = 1, 2, ... , an absolutely continuous function xk(~) on [0, T] for which
the following conditions (4.10)—(4.12) hold:

(4.10) xk(0)=:tk€K

Define <¡>k(t) := J¡L(xk(t), xk(t))dt.

(4.11) MT)<m.

Let tk€[0, T] so that \xk(tk) -&| = sup0<,<r \xk(t) - £,k\.

(4.12) \xk(tk) -£k\ -» oo   as k -» oo.

By Lemma 4.2 with /0 = 0, tx = tk , and £ = Çk , we have for all a > 0,

<pk(tk)>tk{La(ik, Xkit^-^-k(\+a)\xk(tk)-tk\Y
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Dividing by \xk{tk)-£k\ gives

(A \1\ <J>k(tk) ,. h r     (\        Xk(tk) -Çk\ u. v
(4-13)        \xk(tk)-tk\-\Xk(tk)-tk\La{^k'  —ï—)-^+^

Since 0 < tk < T, from (4.12) we have that !**('*)-&! -> oo as k -» oo. So
letting k —> oo in (4.13), we deduce from (4.10) and Proposition 4.1(v) that

(4.14) liminf      fk[tk\    > a - Tk(\ + a) = (1 - Tk)a - Tk.

Now a > 0 is arbitrary in (4.14), and we assumed (1 - Tk) > 0, hence

(4.15) lim   ,    f*(/*>      =oo.
¿-oo   |x* (**)-& I

Again we use Lemma 4.2, this time with a = 0, io = Ot, h = T and t = tk'-

(4.16) &(r) - </.,(/,) > (7- /fc) {infL(& , v) - k\xk(tk) -&|}.

We have

-oo= lim   ^?"0'(V    (by (4.11), (4.12) and (4.15))
¿-.oo       |Xfc(îfc)-Çfc|

^,lim   ly^T?% ,infL(4, v)-kT   (by (4.16))

= -AT       by (4.12) and since  inf L(¿¡, v) > -oo
I ueR"
\ Í6A:

This contradiction finishes the proof whenever T < \ . However these values
of T do not depend on the size of K or m , so we actually have the conclusion
for all T > 0 .    D

5. Proofs

In this section, we prove Theorems 3.1 and 3.2. The Yosida approximations
will be used in the first part of the proof of Theorem 3.1, and then the rest of
the proofs will involve a reformulation of the basic problem into a differential
inclusion. We begin with a definition.

Definition 5.1. Let K CRn be compact, m > 0, and T > 0. Define

C(K, m, r):=inf|c>0: for all x(-) G AC[0, T]

(5.1) with x(0) G K and  /   L(x(t), x(t))dt < m,
Jo

we also have || x(-) - x(0) || < c >.

The utility of Yosida approximations in this paper is contained in the proof of
the following important proposition.
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Proposition 5.2. There exists a function p:[0, oo)x[0, oo)—>[0, oo) so that
for all m>0 and p > 0, we have

C(pB, mT, T)(5.2) hmsup     KH   '_—-—'-<p(m,p).
T\0 i

Proof. Let /0 = inf„ L(0, v) and m0 = |/o| + 1.
For m> m0, define po(m) = max{m0, sup{|v| : L(\^ < rn}} . This is the

same po as defined in Proposition 4.1, except that we now ensure po(m) > mo .
For m > mo and p > 0, define

(5.3) p(m, p) = po(m(l+kp) + kp) + kp+l.
Define p(m, p) = p(mo, p) whenever m < mo . We will show that (5.2) holds
for this p. It suffices to consider only the case when m>mo-

Fix m > mo and p > 0. We claim that there exists a > 0 so that

(5.4) \t\<P   and '—-<m   implies   \v\<p(m,p).

To prove (5.4), first define

Po(m') = max < wo» sup < \v\ : '—- < m! \ \

for a large and m' > mo . By Proposition 4.1(vi), there exists large a so that

(5.5) p%(m(kp+ l) + kp) <po(m(kp+ I) + kp) + 1.

Now suppose \t\ < p and  H^j v) < m .  By Proposition 4.1 (iii), there exists
v' G v + kpB so that

(5.6) La(0, v')<La(0, v) + kp.

If |t>'| <  1, then  \v\ < kp + 1 < p(m, p).   So suppose  \v'\ >  1.   Then
ft < 1 + ^ < Xp + 1, and hence

(5.7)        —wr--^\-w\+v\ (by(5-6))
< m(kp+ \) + kp.

From (5.7) and the definition of pfi , we have \v'\ < p^(m(kp+ l)+kp), which
by (5.5) is < po(m(kp + 1) + kp) + 1. From (5.7), we have

\v\ < \v'\ + \v - v'\ < po(m(kp + 1) + kp) + 1 + kp = p(m, p).
Therefore the claim (5.4) is verified.

Now suppose the conclusion of the proposition is false for our choice of
p(m, p) as defined in (5.3). Then there exists m > mo, p > 0, and sequences
Tk\0 and xk(-) G AC[0, Tk] so that the following (5.8)-(5.10) hold. To
simplify the notation, set tk = xk(®) » define </>k(t) := J0'L(Xk(s), xk(s))ds,
and let tk e [0, Tk] be such that \xk(tk) -41 - sup {\xk(t)-tk\ ■0<t<Tk}.

(5.8) |&|</>,

(5.9) ^<m,
Ik
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\xk(tk) ~ik(5.10) > p(m, p).
Tk

Let a > 0 be chosen so that (5.4) holds.  By Lemma 4.2 applied to ti =
tk, to — 0, and t = tk > we have

(5.11) Mtk)>tk{La(tk, Xk{t^~^-X(l+a)\xk(tk)-tk\}.

Dividing (5.11) by \xk(tk)-tk\ gives

a\t\                         <f>k{tk)      ^ La(tk, Vk)     ,3/1,    \
(5-12) \xk(tk)-tk\-—^\-^(1+a)'

where vk := Xk^~ik . Since tk <Tk, from (5.10) we have that \vk\ > p(m, p),
whence from (5.4) it follows that La^k',Vk} > m . Let k approach oo in (5.12).
We conclude

(5.13) lim inf     **<'*>      > m.
¿-.oo    \Xk{tk)-Çk\

Again we resort to Lemma 4.2, this time with t\ = Tk, to = tk, t = tk > and
a = 0;

<t>k(Tk) - <t>k(tk) > (Tk - tk) {inf L(tk , v) - k\xk(tk) - tk\}

> Tk {-\£0\ -Xp- k\xk(tk) - tk\}    (by H3)
Next we put things together:

m ™ ^umc„n Í       mTk <t>k(tk)m > lim sup
p(m, p) r-oo     \\xk(tk)-tk\      \Xk{tk)-tk\

(by (5.10) and (5.13))

> lim sup
¿—.oo {^f1} <»<»»

> limsup |^-ZL_ (|¿0| + xp) - Tkk}    (by (5.14))

^-pJmh)m+Xp)    (by(5-10))-
Therefore m(p(m, p)-\) < \io\+kp, which contradicts the choice of p(m, p)
in (5.3). This concludes the proof of Proposition 5.2.   D

Proof of Theorem 3.1. Let K ç R" be compact, m > 0, and e > 0. Recall
that <!>(')(£, v) = \V^(t, t + tv). We first show that there exists T > 0 so
that

(5.15) epi<D(i)(£, -)nmBC epi L(t, •) + eB
for all £ G K and 0 < t < T.

Set p = sup{|¿;| : t G K}. By Proposition 5.2, there exists T0 > 0 so that
0 < t < T0 implies C(pB, mt, t) < (p(m, p) + \)t. We take

:=min{r°'   (p(m,P) + l)k}-
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Now suppose t G K, 0 < t < T, and 0(i)(£, v) < m. By the existence
theory in [21], there exists x(-) G ̂ 4C[0, t] with x(0) = t, x(t) = t + tv and
satisfying

rt
L(x(s), x(s)) ds = V(t)(t, t + tv)< mt.

>o
By the definition (5.1) of C(pB, mt, t) and the choice of T, we have

(5.16) \x(s)-t\<C(pB, mt, t) < fa
for all 0 < 5 < t. Hence

OM(í, v) = \ f' L(x(s), x(s))ds
t Jo

>- [ inf{L(t, x(s) + k\x(s) - t\b)}ds(5.17) -tJ0M

-k\ i \x(s)-t\ds   (by(H3))
1 Jo

>- / inf L(t, x(s) + eb)ds-e   (by 5.16).
t Jq  b£B10

The function (s, b) i-> L(£, x(s) + eè) is a normal integrand on [0, t]x B
in the sense of Rockafellar [25]. By [25, Theorem 2K], the map

s =ï arg minftefi L(t, x(s) + efc)
is a measurable multifunction, and by (H2) it has domain of full measure.
Therefore there exists a measurable selection b(s) (cf. [25, Corollary 1C]). Plug-
ging b(s) into (5.17), we obtain

Ow(£ ,v)>-¡L(t, x(s) + eb(s)) ds - e
(5.18) tJo {

> L (t, v + E- /  b(s)ds) - e.

The last inequality follows from Jensen's inequality and that x(-) was chosen
so that v = ííí^í . By setting u = v + e\ J0' b(s)ds, we have by (5.18) that

(5.19) \u-v\<£   and   0(í)(¿, v) > L(t, u) - e.
Finally, since the only restriction on v was that G>(í)(¿;, v) < m , we conclude
from (5.19) that (5.15) holds.

Next we show that there exists T > 0 for which the opposite inclusion

(5.20) epi L(t, •) n mB ç epi <D(i)(£, -) + eB
holds for all 0 < t < T and t G tf.

Let Km = {t G K : epi L(£, •) n mB ¿ 0} . If Km = 0, then (5.20) is triv-
ial. So assume Km ± 0 and define Fm: Rn x R1 =i R"+1 by Fm(t, 4>) =
epi L((^, •) n (R" x (m + \)B). (Fm is independent of the last coordinate
4> G R1). As a consequence of (H3), there exists ô > 0 so that Fm(t, <A) ̂ 0
for (¿;, ci) e (iTm + r55) x R1 . It is an easy matter to check that Fm satisfies the
hypotheses in [32, §3]. We apply [32, Lemma 5.4] with (in the notation of [32])

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



144 P. R. WOLENSKI

X = interior of (Km + ôB) x R1, K = Kmx {0} , and F = Fm . We conclude
that there exists T > 0 so that for any t G Km and (v, r) e Fm(¿;, 0), there
exists (x(-), </>(•)) G j4C[0, T] for which the following hold:

(5.21)

(5.22)

(5.23)

(x(t), 0(0) G /v,(x(0, 0(0)   a.e. ? G [0, 71,
x(0) = t,        0(0) = 0,

*(*)-{

0(0

-v  <e   for all /G [0, T],

<e   for allí G [0, T].

By (5.21) and the definition of Fm , we have

<p(t) > L(x(t), x(t))    a.e. 0 < í < 7\

which after integrating from 0 to / becomes:

(5.24) 0(0 > / (x(s), x(s)) ds   for all t g [0, 71.
Vo

>

Now let t G K and (w , r) G epi L(t, •) n mB (C Fw(<^, 0)). Then f e tfm .
Let (x(-), 0(-)) be chosen so that (5.21)-(5.23) hold, and set v(t) = *&=$■.
Then for all 0 < t < T, we have

r>^p--e   (by (5.23))

| f L(x(s), x(s))ds-E   (by (5.24))
' Jo

>-V^(t,   X(t))-E

= &<\t,   V(t))-E.

Conjoining (5.22) with the last line, we deduce that

(v, r) Gepi<D(/)(£, -) + eB

for all 0 < t < T. Recall that T was chosen independantly of t G K, hence
(5.20) has been verified.

In light of the comments immediately succeeding the definition of of in §2,
the verification of (5.15) and (5.20) has completed the proof of Theorem 3.1.   □

Proof of Theorem^.2. We now suppose {U^}t>o is a l.s.c. semigroup for which
(3.2) holds. Fix t, n e R" and t > 0. We must show U^(t, n) < V^(t, rj).

The method of proof uses a reformulation of ( 1.1 ) into a differential inclusion
similar to the second half of the proof of Theorem 3.1. This proof resembles
the proof of Theorem 3.2(i) in [32], but for the purposes of completeness and
clarity, the full details are given here.

Define F : R" x R1 n R"+1 by F(t, 0) = epi L(t, •). For { G R" , define
RW(t):={(x(T),<t>(T)):(x(-), cp(.))eAC[0, T], (x(t), 4>(t))eF(x(t), 0(0)
a.e. iG[0, T], x(0)=t, 0(0) = 0}. Let e>0.
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Note that F has closed convex values, and satisfies F(t, 0) ç F(f, 0') +
X\t - t'\B ■ We assume V^^t, r\) < +00, for otherwise there is nothing to
prove. This assumption is equivalent to (n, V^T\t, n)) G R^T\t) • We will
apply a C1 approximation result due to Filippov [13] (see [31, Proposition 3.2]
for a straightforward proof of this result in the case where F takes compact
values, and [30, Proposition 2.3] for the general case). It follows from [13,
Theorem 6.1] that there exists C1 functions x(-) and (/>(•) into R" and R1
respectively so that

(5.25)

(5.26)

(5.27)

x(0) = t,    0(0) = 0,

\x(T)-n\ <e,

4>(T)-V^(t, l)<e,

(5.28) 0(0 > L(x(t), x(t))   for t G [0, T].
Set p = sup0<(<r \x(t)\ + ^eAr and m = sup0<;<r |0(O| + 2EelT. Recall
that ^''(y, v) := \U^(y, y + tv). By assumption (3.2), there exists N large
so that if 0 < / < jj and y G pB, then we have

(5.29) epi L(y, •) n mB ç epi V{,)(y, •) + eB.

Since x(-) and </>(•) are continuous, N can be enlarged if necessary to ensure
that if0<s<£ and 0</<T-^, then

x(t + s) - x(t)
(5.30)

and

(5.31) 0(i + 5)-0(O

x(t)

-0(0

< e

< e

both hold. Set h = ^ and t¡ = jh. Define sequences {^(0)}f=0' {y(^j))f=o
in R" and {i//(tj)}y=0, {v(tj)}f=0 in K' inductively as follows: (the dots on
y and y/ here do not denote derivatives, but do suggest how they will be used).
Let y(to) = x(t0), y(t0) = x(t0), y/(t0) = 4>(to), V(to) = 0(*o) • Suppose for
j = k < N - 1, the vectors and numbers are defined so that

y(tk) - y(tk-\)\(15.32)

(5.33)

(5.34)

(5.35)

(5.36)

J>(í¿-i)~ <e,

1
U^(y(tk-i), y(tk)) < L(y(tk_i), y(tk-i)) + E,

y/(tk)>L(y(tk), y(tk)),

vnax{\x(tk) - y(tk)\, Wk) - ij/(tk)\} < X\x(tk) - y(tk)\,

max{\x(tk) - y(tk)\, \(p(tk) - y/(tk)\} < 2he
1 -ak\
\-a) '

where   a = 1 + hX.
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When k = 0, (5.32)—(5.35) are either vacuous or trivial.
The right-hand side of (5.36) equals y(l + hX)k - 1), which is always less

than or equal to ^eAr . Therefore (5.34), (5.36), and the definitions of m and
p imply that L(y(tk), y(tk)) < m and \y(tk)\ < p. Consequently from (5.29)
with y = y(tk), y(tk+i) can be chosen to satisfy

m _ y(tk+l)-y(tk)(5.37)

and

(5.38) \u^(y(tk), y(tM))<L(y(tk), y(tk)) + e.

By assumption (H3),

epiL(x(^+1), -)çepiL(y(tk+i), •) + k\x(tk+i) -y(tk+i)\B.

Since (x(ifc+1), 0(i/t+1))G epi L(x(tk+i), •), there exists y(tk+i) and w(tk+i)
so that

(5.39) (y(tk+i), w(tk+i))etpiL(y(tk+i), •)

and

(5.40) m&x{\x(tk+i)-y(tk+i)\, \kh+\)-¥(tk+\)\}<X\x(tk+i)-y(tk+i)\.

Also we have

\x(tk+\) -y(tk+\)\ < \x(tk+i) - x(tk) - hx(tk)\ + \x(tk) -y(tk)\
+ h\x(tk) -y(tk)\ + \y(tk) + hy(tk) -y(tk+x)\

<hs + 2hE (^y^-) + 2h2Xe (^r^- )

by (5.30), (5.36), (5.35) and (5.36), (5.32), respectively

= 2i,£'1-«"+l

1-Q

Replacing x's by 0,J and y's by y/'s in the last calculation gives a correspond-
ing estimate for \(f>(tk+i) - w(h+\)\ ■ Hence

(5.41)      max{|x(^+1)-j;(ifc+1)|, \<t>{tk+\)-v(tk+i)\}<2he' 1 -a

The lines (5.37)-(5.41) restate (5.32)-(5.36) for the case j = k + I .   Now
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putting things together, we have
(5.42)

N-l

U{T)(y(to), y(tN)) < Yl U^Wtk) > y{tk+i))   (by the semigroup property)
¿=o

< j ¿ hL(y(tk), y(tk))\ + eT   (by (5.33))
l¿=o J

< { £ MW*) + Mx(tk) - y{tk)\] \ + eT
U=o J

(by (5.34) and (5.35))

< JE/z0(4)l+2e^rr + er   (by (5.36)).
l¿=o J

Of course the y's constructed above depend on e and N. Let y#,e denote
the end point y(tf¡) so constructed, and let (xe, 0£) be the (x, 0) used in
(5.25)-(5.28). We have that

lim sup \yN,e-ri\ < lim sup \yN,e~ xe(T)\ + \xE(T) - n\
A'—»oo N—.oo

(5-43) lT
< ~— + e    (by (5.36) and (5.26)).

A

All the pieces are finally in place. We have

U{T)(t, n) < liminf    UiT)(t, yN e)   (by l.s.c. of C/(r)and (5.43))
e—»0

N—»oo

<limjionf    |¿^0£(í,) + 2£^r + er|    (by (5.42))
iV^oo I ¿=0 J

< lim inf    Í0£(r) + 2e^r + el
e—»0 l J

(since 0(-) is continuous and 0(0) = 0)

= V^(t, n)    (by (5.27)).
This concludes the proof of Theorem 3.2.   D

6. Finite Lagrangians

The problem (1.1) with L finite-valued is known as the basic problem in the
calculus of variations. Its research history is indeed a long one. This section
singles out finite Lagrangians for special treatment, although we draw upon the
previous material in the proofs and still use epigraphical convergence. Point-
wise limit results will appear in §7, and will be seen to be pertinent to finite
Lagrangian problems. The manner of presentation is chosen so as to unify the
treatment of classical finite-valued problems with possibly infinite-valued ones.
In this section, we assume in addition to (H1)-(H3) that L is finite everywhere.
It follows from (H3) and the convexity assumption in (HI) that L is locally
Lipshitz on R" x R" . Our main result here is Theorem 6.2, which reverses the
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inequality in (3.3). Hence a characterization of the value function semigroup is
obtained among all l.s.c. semigroups with the same infinitesimal generator, but
which also must satisfy an additional property.

Definition 6.1. Suppose {t/(r)}r>o is a l.s.c. semigroup and t, n e Rn and
T > 0. Then x(-) G AC[0, T] is optimal with respect to U (or optimal w.r.t.
C/)at (t, n, T) if x(0) = t, x(T) = n, and

U{t~s\x(s), x(t)) = Uw(x(s), x(s + h)) + U{'-s-h)(x(s + h), x(t))

for all 0 < s < t < T and 0<h<t-s.
Theorem 6.2. Assume L is finite valued and satisfies (H1)-(H3). Suppose that
{U(tï}t>o is a l.s.c. semigroup for which

(6.1) d(epi^h)(t, •), epiL(t, •))-» 0   as h \ 0

uniformly for t in a compact set, where ^^(t, v) := j¡U^(t, t + hv). Then
for each (t, n, T) e R" x Rn x [0, co] for which there exists an x(-) Lipschitz
on [0, T] that is optimal w.r.t. U at (t, n, T), we have

U^(t, n) = V^(t, tl).
It is difficult to ascertain the cruciality of hypothesizing the existence of a

Lipschitz x(.) in the statement of the theorem. Indeed, it is only verified in
the case U = V by quoting a deep result of Clarke and Vinter. The regularity
theorem [7, Corollary 3.1] states that an optimal solution to (1.1) is necessar-
ily Lipschitz. Also, see [8] for related results of this type. The principle of
optimality directly gives that an optimal solution to (1.1) is optimal w.r.t. V
as defined in Definition 6.1. Hence the value function semigroup satisfies the
conditions of the theorem for all (t, n, T) e R" x R" x [ 0, oo ). It seems
to be no easy matter to construct a l.s.c. semigroup for which (6.1) holds but
the added hypothesis fails. On the other hand, our proof that U = V depends
heavily upon it.

Another interesting question is whether an x(-) optimal w.r.t. V must solve
(1.1). If x(.) is in addition Lipschitz, then this is true, and can be proved using
Proposition 6.3 below and Theorem 3.1. As just recalled from Clarke and Vinter
[7], all solutions of (1.1) are Lipschitz, but the question remains open whether
an absolutely continuous x(-) that is not Lipschitz can be optimal w.r.t. V.
We suspect the answer to be no, but do not believe the methods employed here
can show this.

In the next proposition, we will only use the "only if implication, but the
equivalence shows that (6.2) could be assumed in Theorem 6.2 in place of the
Lipschitz assumption on x(-) without changing the content of the theorem.

Proposition 6.3. Suppose L and {i/(r)}r>o are as in Theorem 6.2, and suppose
x(-) G AC[0, T] is optimal w.r.t. U at (t, n, T) G R" x R" x [0, oo]. Then
x(.) is Lipschitz if and only if there exists m > 0 so that for all t e[0, T] and
h g [0, T - t], we have

(6.2) ^-Uw(x(t), x(t + h))< m.

Proof. First, suppose x(-) is Lipschitz on [0, T] of order /. Let m =
sup{L(£, v) :    (t, v) G {range of x(.)} x IB}.   Then for t e [0, T]  and
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h G [0, T - t], we have

\üw(x(t), x(t + h))<\v^(x(t), x(t + h))   (by Theorem 3.2)

149

h
rt+h1    f+"< t L(x(s), x(s)) ds   (by definition of V)

< m   (by definition of m).
Hence (6.2) holds.

Now suppose (6.2) holds for some m > 0.  It follows from (6.1) that for
t G [0, T] and all small h > 0 with t + h<T that

epi Yh)(x{t), •) n mB ç epi L(x(t), -) + B.
From this and (6.2), an element veR" exists for which

x(t + h) -x(t)\
h < 1

and

(6.3) L(x(t), v)<m+l.
Let p = sup{|v| : t G range of x(-) and L(t, v) < m + 1}. It immediately
follows from (6.3) that

x(t + h)-x(t) <P+ 1

for all t G [0, T] and all small h , hence x(-) is Lipschitz on [0, T].   D

Proof of Theorem 6.2. Let (t, t], T) G R" x R" x [0, oo]. It has already been
shown in Theorem 3.2 that U^(t, n) < V^'\t, V) • Suppose x(-) is Lip-
schitz on [0, T] which is optimal w.r.t. U at (t, t], T). We must show
U^(t,r1)>VW(t,rj).

Let e > 0 be arbitrary. We fix some notation. Let K ç R" be compact
whose interior contains the range of x(-). Also, let £ := Lipschitz constant of
x(.), Ao := Lipschitz constant of L on K x (Í + e)B ç R" x R", and m be
such that (6.2) holds. From (6.1) there exists ho > 0 so that

(6.4) epi »P(A)(y, •) n mB c epi L(y, •) + eB
for all y G K and 0 < h < ho. Choose N large enough so that ^ <
min {ho, e}, and set h = j¡¡ and t¡ = jh, j = 0, 1, ..., N. From (6.2)
and (6.4), there exist v}■ e R" , j = 0, 1, ..., N - 1, so that

(6.5) |^_x(0+,)rx(0)|<£

and

(6.6)
1

L(x(tj), Vj) < j¡U{h)(x(tj), x(tj+i)) + e.

Now let y(-) : [0, T] —> R" be the piecewise linear interpolation of {x(tj)}^=0
That is

(6.7) y(t) = x(tJ) + Xitj+l)~X{tj)(t-tJ)
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whenever t¡ < t < O+i • We may assume N is large enough so that y(-) is
contained in K. We have

V^it, n)< I  L(y(t),y(t))dt
Jo

Jf £'L(m. «*Úf«!a)a,h- .j
(

- ]C  {hLixtfj), Vj)+k0h
7=0    I

x(tJ+i)-x(tj)
Vj        h

N-\

+A0 j' ' |^(0-x(0)|i//|

(since L is Lipschitz of order Ao on K x (I + e)B)

< ¿ {l7(/°(x(0), x(ry-+i)) + Ae + A0Ae + A0Ae/}
7=0

(by (6.6), (6.5), (6.7) and h < e respectively)
= U^T\t, r,) + E(l+X0 + X0l)T

(since x(.) is optimal w.r.t. Í7).

Since e was arbitrary, the conclusion of Theorem 6.2 is verified.   D

7. Pointwise convergence

The interior of a subset A C R" is denoted by int A . In this final section
we show that L(t, v) is the pointwise limit of &h\t, v) as h\0 provided
v G int dom L(t, •). This would follow immediately from Wets [29, Corol-
lary 4] if 0(A)((^, •) was convex. Convexity, however, is generally not present.
The particular nature of value functions allows for the same conclusion to be
drawn. In the case of finite-valued Lagrangians, domL(<^, •) = R" and hence
the above applies. Moreover, we will see in Theorem 7.4 that Theorem 6.2 can
be rephrased in terms of pointwise limits.

Theorem 7.1. Suppose L satisfies (H1)-(H3), and let K be any compact subset
of {(t,v):t^Rn , v GintdomL(£, •)}. Then

(7.1) jV^h\t,t + hv)^L(t,v)    ash\0

uniformly over (t, v) G K.
Proof. Let t G R", and suppose v g int dom L(t, •). Let e > 0, which we
assume is < 1. It is sufficient to show there exists So > 0 and Ao > 0 so that
(n, u) G (t, v) + ô0B and 0 < A < A0 imply |<E>(A)(r7, u) -L(n, u)\ < e (where
<&W(n,u):=j;VW(ri, n + hu)).

Recall that convex functions are locally Lipschitz on the interior of their
domain [21, Theorem 24.7]. This fact and (H3) combine to yield that L is
locally Lipschitz near (t,v).  Choose 0 < r5, < 1  and Xi > 1  such that L
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is Lipschitz of order Xi on (t, v) + S\B . Set Ao = x ,J,+â , . Then for each
(n, u) G (t, v) + SiB and 0 < A < A0 , we have

&h)(r¡,u) = ^V^(n,n + hu)<j( L(n + tu,u)dt

< L(n, u) + AoAi \u\ < L(n ,u) + e
Conversely, let m be an integer larger than \v\ + 1 and sup{|L(n, u)\ + 1 :

(n, u) G (t, v) + ¿i B} . As a consequence of Theorem 3.1, we can shrink A0 if
necessary so that

(7.3) epi *<*>(>/, OnmßCepiL^, •) + ^Ç-B2ki

for each r\ ̂ t+àxB and 0 < A < A0. If (rç, u) G (£, v) + ^-ß and 0 < A < A0,
then (7.2) and the definition of m imply that (u, <^h\r\, u)) e epiO(A)(>?> -)n
mB. Consequently from (7.3), one can find u' G u + j^-B such that

pX
(7.4) ^h\r,,u)>L(ri,u')-^-.

Observe that j- < 1, so that (n, u') G (r¡, u) + ^-5 ç (t, v) + ¿iß, and recall
that L is Lipschitz of order Ai on (£, v) + SiB . Consequently, from (7.4) we
have

(7.5) <D<*>(>7, u) > L(n, u) - kx\u -u'\-^-> L(n, u) - e.
¿Ai

We have shown (7.2) and (7.5) hold for each (n,u) G (n, v) + Ïj-B and
0 < A < Ao, which concludes the proof.   D

Of course Theorem 7.1 has content only when int dom L(t, •) ^ 0, whereas
Theorems 3.1 and 3.2 do not require this. For the case when L is finite valued
everywhere, it is now immediate that epi convergence in Theorem 3.1 can be
replaced by uniform pointwise convergence. At the end of the section, we show
the same conclusion is valid with the assumptions (H1)-(H3) replaced by local
Lipschitz and strict convexity. But next we give versions of Theorems 3.1 and
6.2 for finite-valued Lagrangians with pointwise convergence.

Corollary 7.2. Suppose L satisfies (H1)-(H3) and in addition is finite-valued.
Then for each compact subset K ç R" x R" ,

(7.6) jVW(t,t + hv)^L(t,v)    ash\0

uniformly over (t,v)£K.

Theorem 7.3. Theorem 6.2 remains valid if (6.1 ) is replaced by : for each compact
K Ç R" x R" ,

(7.7) V{h)(t,v)^L(t,v)       ash\0

uniformly over (t, v) G K .

The proof consists of showing that (7.7) implies (6.1). In fact, the next
proposition asserts that (7.7) and (6.1) are equivalent.
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Proposition 7.4. Let L be as in Theorem 6.2, and suppose {U^}t>o is a l.s.c.
semigroup. Then (7.7) and (6.1) are equivalent.
Proof. First, assume (7.7) holds. We show the validity of (6.1). Let e > 0, p >
0 and m > 0. By (7.7) there exists A0 > 0 so that

\yW(t,v)-L(t,v)\<E
whenever 0 < A < Ao and (t, v) g pB x mB . It then follows immediately

epi VM(t ,-)nmBC epiL(t, ■) + eB

and

epi L(t ,-)nmBC epi ¥(A)(£, •) + eB

whenever 0 < A < Ao and t G pB. This is sufficient to conclude that (6.1)
holds.

Now suppose (6.1) holds. Let K ç R" x R" be compact and e > 0. From
Theorem 3.2 we have C/(r)(í> V) < V^Kt, *l) for all T, t and n. Hence it
follows from Theorem 7.1 that

(7.8) ¥<A>(£, v) < <&{h)(t,v)<L(t,v) + E

whenever (t,v)eK and A is small. To obtain the lower bound L(t, v) - e
of 4/(A)(<^, v), one can proceed as in the proof of Theorem 7.1 commencing at
(7.3). Simply substitute »pW for <p(A). The conclusion is that (7.7) holds.   D

We finish by showing that Corollary 7.2 is valid if the hypotheses (H1)-(H3)
are replaced by L locally Lipschitz in (t, v) and strictly convex in v . To see
this, we need the following theorem of Clarke and Vinter, see [8, Proposition
5.1].
Theorem 7.5 [8]. Suppose I:l"xl"^l' is locally Lipschitz in (t, v) and
strictly convex in v. Let K ç R" x R" be compact.  Then there exists ho > 0
and r0 > 0 so that whenever 0 < A < Ao and (t, ^Tp) G K, a minimizer x of
problem (1.1) with T = h and end points (t, n) is C1 and satisfies \x(t)\ < ro
for all 0 < t < A.
Theorem 7.6. Suppose L : Rn x Rn —> R1 ¿s locally Lipschitz in (t, v ) and
strictly convex in v . Then for each compact K ç R" x R" , we have

jV(h)(t,t + hv)^L(t,v)    as A ̂  oo

uniformly over (t,v)eK.
Proof. Let Ao and ro be chosen as in Theorem 7.5. Let p = \K\ + Aoro, and
define

{L(t,v) if (t,v)epB xr0B,

L\PW\,V) ifI^^^M^o,
+00 if \v\ > r0.

Let V(T\t, rj) be the value function associated with L, and 0(A,(^> v) =
\V(h\t, t + hv).   If (t,v) G K and 0 < A < A0, then a minimizer x
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of (1.1) with T = h and endpoints (t,t + hv) with satisfies (x(0, x(t)) G
pB x roB. Therefore for these values of h, t, and v , we have <P(A)(¿;, v) =
<P(A)(£, v). Note that L satisfies (H1)-(H3), and hence Theorem 7.1 asserts

that <P(A)(<^, v) —> L(t, v) as A \ 0 uniformly over (t,v)eK. We have seen
that <DW = $<A) on K for small A, and L = L on K. Therefore <D<A) -> L
as A \ 0 uniformly on K.
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