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ABSTRACT.  We define the tensor product A ® S for arbitrary semilat-
tices A and B.   The construction is analogous to one used in ring theory (see
14], [7], [8]) and different from one studied by A. Waterman [12], D. Mowat
[9], and Z. Shmuely [10].  We show that the semilattice A <3 B is a distributive
lattice whenever A and B are distributive lattices, and we investigate the relation-
ship between the Stone space of A <s¡ B and the Stone spaces of the factors A
and B.   We conclude with some results concerning tensor products that are pro-
jective in the category of distributive lattices.

1. Preliminaries. For terminology and basic results of lattice theory and uni-
versal algebra, consult Birkhoff [3] and Grätzer [5], [6]. The join and meet of
elements ax,. . . , an of a lattice are denoted by 2Z"=1 a¡ and ITjLj a¡ respectively.
All semilattices considered are join-semilattices. The smallest and largest elements
of a lattice, if they exist, are denoted by 0 and 1 respectively. We denote by 2
the two element lattice consisting of 0 and 1. The category of distributive lat-
tices is denoted by V.

2. Existence of the semilattice tensor product.
Definition 2.1. Let A, B and C be semilattices. A function f:A x B

—* C is a bihomomorphism if the functions ga:B —*■ C defined by ga(b) =
f(a, b) and hb : A —> C defined by hb(a) = f(a, b) are homomorphisms for all
aEA and b SB.

Definition 2.2. Let A and B be semilattices. A semilattice C is a tensor
product of A and B if there is a bihomomorphism f:A x B —► C such that C
is generated by f(A x B) and for any semilattice D and any bihomomorphism
g:A x B —► D there is a homomorphism h:C—>D satisfyingg = hf.

Note that since f(A x B) generates C, the homomorphism h is necessarily
unique.

Theorem 2.3. Let A and B be semilattices.  Then a tensor product of A
and B exists and is unique up to isomorphism.

Proof. Let K be the free semilattice on A x B and let w be the canonical
inclusion map of A x B into K.  Let p be the set of all ordered pairs of the
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form (w(a, b), w(av bt) + w(a2, b2)), where a, av a2GA;b, bv b2 G B; and
either a = ax + a2 and b = bx = b2, or a = aY = a2 and b = bx + b2. Let
o be the smallest congruence relation in K containing p. Let C = K/a, u be the
canonical homomorphism from K onto C, and / = uw.

By the choice of a it is clear that / is a bihomomorphism. Let D be any
semilattice and let g : A x ß —► D be any bihomomorphism. There is a unique
homomorphism s:K—+D such that g = sw.  Since g is a bihomomorphism, the
kernel relation of s, kers, contains a, where kers is defined to be {(x, y)EK xK:
s(x) = s(y)}. Therefore ker« = a Ç kers, so that s = hu for some unique homo-
morphism h : C —> D.  Then h is such that g = sw = huw = hf.  Finally, since
w(A x B) generates K, uw(A x B) generates Kfa, so that f(A x B) generates C.
This shows that the semilattice C and the bihomomorphism / satisfy the condi-
tions of the definition of a tensor product.

The uniqueness of a tensor product is clear from its definition as a solution
of a universal problem.

The tensor product of A and B is denoted by A ® B and the image of
(a, b) under the canonical bihomomorphism/:.4 x B —>A ® B is written as
a ® b. In this notation the proof of Theorem 2.3 shows that A ® B is the semi-
lattice generated by the elements a ® b (a E A, b S B), subject to the bihomo-
morphic conditions (ax + a2) ® b = (at ® b) + (a2 ® b) and a ® (ôx + b2) =
(a ® bx) + (a ® ¿>2) for all a,ava2E.A and ô, ôlf ô2 e 5. Every element of
A ® 5 can be written in the form S"=1 (at ® &,) for some at e /I and fy G B,
i- 1.n.

Lemma 2.4. ¿ef .4 and ß 6e semilattices and let a,a¡EA and b, bt e ß
fori=\,...,n.  Then a®b< Z^ (a, ® ft,) //and on/;> ///or every bihomo-
morphism g:A xfi->2, g(a, o) = 1 implies g(a¡, b¡) = 1 for some i.

Proof. We recall that if 5 is a semilattice and x.yES, then jc < y if and
only if for every homomorphism h :S —*■ 2, h(x) = 1 implies h(y) = 1. Also
note that there is a one-to-one correspondence between homomorphisms
h : A ® B —■> 2 and bihomomorphisms g : .4 x ß —»■ 2.  Then

a®6<¿(a/®¿i)
i

<=> for every homomorphism h:A ® ß —»-2,

Ä(a ® 6) = 1 implies /j( ¿ (a¡ ® ô,)] = 1

«=* for every homomorphism A : 4 ® ß —>• 2,
/i(a ® b) = 1 implies A(af ® b¡) = 1 for some i

<=* for every bihomomorphism g : A x ß —► 2,
g(a, 6) = 1 implies g(af, ôf) = 1 for some i.

Next let A and ß be semilattices and let a,, a, G A and ô,, 62 G ß.  If
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ax <a2 and bx < ft2, then it follows from the order preserving properties of the
canonical bihomomorphism that ax ® bx < a2 ® b2.

We now restrict our attention to distributive lattices. For any positive in-
teger n, let n be the set {1,... , n}.

Theorem 2.5. Let A and B be distributive lattices and let a, a¡EA and
b, bt G B for i = 1,. .., n.  Then a®b<"L%x (a¡ ® b¡) if and only if there
exist nonempty subsets Sx.Smofn such that a < 1IJLX fll&s.at and b <

Proof. We recall that if L is a distributive lattice and x, y EL, then
x jí y if and only if there is a lattice homomorphism h : L —* 2 such that
h(x) = 1 and hfy) = 0.

Now assume that a ® b < 2" (a, ® */)• ^ we suPPose tnat a i* 2"af, then
there is a lattice homomorphism h :A —*■ 2 such that h(a) = 1 and hCZxa¡) = 0.
So h(a¡) = 0 for all i. Let g :A x B —*■ 2 be defined by g(x, y) = h(x). Then
g is a lattice bihomomorphism, g(a, b) = 1 and g(a¡, ft,) = 0 for all /.  Hence
a® b *fc 2" (a¡ ® b¡) by Lemma 2.4 and we have a contradiction. Thus we must
have a < 2"/^. Similarly b < 2" ft,. Let Sx,. .. , Sm be all the nonempty sub-
sets S of n such that b < 2^0,. Then ft < lT^ 2,^.0,.

We claim that a < 2™t nfes.af. This is equivalent by the distributivity of
A to showing that a < 2^Lt¿z,.   for each choice of /, ESX,... , im E Sm. Sup-
pose that for some ix ESX,. . . , imE Sm we have a =£ 2Z%=xa¡ . Let / =
{/,,. . . , im} and let / = {x E n :x £ 7}. Note that since a < 2?af, / ¥= a, so
that / * 0.

Now if ft ^E S^jift, then there is a lattice homomorphism h:B—+2 such
that 7i(ft) = 1 and /z(2ie/,ftf) = 0. Hence A(ft.) = 0 for all i G /. Also since
a ^ 2™=1úr/   there is a lattice homomorphism/: A —► 2 such that/(a) = 1 and
/(S^=1a/fc) - 0. So f(a¡k) - 0 for Jfc - 1.m.  Let g:A x 5 -* 2 be de-
fined by ¿(x, y) = f(x)h(y). Then g is a lattice bihomomorphism, g(a, ft) = 1,
and gO,., ft,) = 0 for all i e n. Hence a ® ft 1E 2" (af ® ft,) by Lemma 2.4 and
we have a contradiction. Thus ft < 2/G/,ft/.

It follows that / = Sj for some / = 1.m.  But then we have both
ijEI and /;- E /. This is a contradiction. Therefore a < 2£Lj af   for every
choice of ixESx.im e Sm, so that a < V¡LX niBS.a(, and the first half of
the proof is complete.

Conversely, assume there exist nonempty subsets Sx.Sm of n such
that a < 2£, nies.a. and ft < H£, S.^.6,..

Since 5 is distributive,

* <    z    n v
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Hence

a®b<(z n «,W   z    n bik)
\)=1   ieSj     )      \ikesk;i<k<m fc=l      KJ

=z    z    (n *,®n O-
/'=1   ¡kBSk;Kk<m \z'eS/ *=1        /

Let ; be such that 1 </ < m and let it G 5X,. . . , im G 5TO. Then
_ m _ nn a, ® n »/t < ru ® *,,<*,, ® *,, <z(«/ ® *«•)•

iSSy fc=l      K       zeSy ' ' '        I

Summing over all terms, we obtain
m t m \        n

Z       Z      (IT «i®n hk<Z(«,®*,)-
/=1   /fcGSi;;l<ifc<m \ieSy fc=l     "/        l

Hence a ® 2> < 2? (af ® ft,-).
We remark that the proof of Theorem 2.5 shows that if a ® è < 2"(a, ® b¡)

then a < 2?af and b < 2? &,.

Theorem 2.6. Lei .4 a«íí B be distributive lattices.  Then A ® B is a dis-
tributive lattice. If 2™ (a, ® b¡) and 2"(c;- ® dj) are arbitrary elements of A ® B,
then their greatest lower bound is 2/f /)emxn(a/c/ ® M/)-

Proof. It is easy to verify that 2,-f/-(«¿cy ® fydy) is a lower bound for
21,(a/ ® 6f) and 2?(c; ® dy).

To prove that 2, Aa¡Cj ® b¡dj) is the greatest lower bound, it is enough to
show that for any a G A, beB, a ® 6 < 2^(3, ® 6,.) and a ® ô < 2^^- ® d¡)
imply that a®b< 2//(aic/ ® b¡d¡). So assume that a ® b < 217(a/ ® b¡) and
a ® b < 2"^- ® dy). Then by Theorem 2.5, there exist nonempty subsets
Sv .. . , Sr of m such that a < ¿Zrk=1 U¡es a¡ and ô < n£=12/65. ft,. There ex-
ist nonempty subsets Tj,. . . , !TS of n such that a < 2,=1 n;er c¡ and ô <
IIp-j 2yer dy. Since ̂ 4 and ß are distributive, we have

«<(z n *)(¿ nV)
í ziïn «,un^i-t t   nfc=i /=i LA'&s*    / 1,/er, ')]      *=i /=i (/,/)es,

(ft z *,) (ft z*,)
\fc=i iesft   / \/=i/er,   y

fl«c/
i)<=SkXT¡

and

Z><

ft ft [7 ̂  M fz "Al - n ft #fc=i /=i j_\/esfc   / ver/   J]     k=1 /=1 ft
Z       My

/)esfcxT,
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Hence if we consider the family of sets Sk x T¡ (k = 1,.. ., r, I = 1,
... , s) as a collection of nonempty subsets of m x n, it follows from Theorem
2.5 that a ® ft < 2u(a,cf ® b¡dj).

Hence 2^(3^ ® b¡df) is the greatest lower bound of 2i'(fl/ ® ft,) and
2"(cy ® if), and so A ® B is a lattice. In view of the expression obtained for
the greatest lower bound, it is clear that the lattice A ® B is distributive.

We note that Theorem 2.6 implies that nnx(a¡ ® ft,) = Ula¡ ® H?b¡ and in
particular (aj ® b)(a2 ® ft) = ûjfl2 ® ft and (a ® ftt)(a ®b2) = a® bxb2.

The word problem for the semilattice tensor product of distributive lattices
reduces to the problem of determining when an inequality of the form a ® ft <
2"^ ® ft,) holds and Theorem 2.5 provides a characterization of such inequal-
ities.

Let A and B be distributive lattices and let Ax and Bx be sublattices of A
and B respectively. Let ®x be the canonical bihomomorphism from A x x Bx
into Ax® Bx and let ® be the restriction to Ax x Bx of the canonical bihomo-
morphism from A x B into A® B.  It follows from the definition of the tensor
product that there is a canonical homomorphism h from Ax ® Bx into A® B
such that for all a E Ax and ft E Bx, h(a ®x ft) = a® ft. It is easy to see using
Theorem 2.5 that h is one-to-one. Thus A x ® Bx is embedded under the canon-
ical mapping A as a sublattice of A ® B.  Hence we say that A x ®BX is canon-
ically isomorphic to a sublattice of A ® B.

3. The structure of the semilattice tensor product. In this section we give
several results regarding the structure of the semilattice tensor product. We ex-
amine the Stone space of the tensor product and we compare the tensor product
to the free product. We also characterize the join-irreducible elements of the
tensor product.

We begin with two results concerning congruence relations of the tensor
product. The proofs are fairly straightforward, and we leave them as exercises
for the reader.

Let A and B be semilattices and let p and o be (semilattice) congruence
relations on A and B respectively. The congruence relation on A ® B generated
by p and o is defined to be the smallest congruence relation on A ® B contain-
ing all ordered pairs of the form (ax ®bx,a2® ft2), where (ax, a2) E p and
(ft,, ft2) e a.

Theorem 3.1. Let A and B be semilattices and let p and a be congru-
ence relations on A and B respectively.  Let t be the congruence relation on
A® B generated by p and a.  Then A/p ® B/o is isomorphic to (A ® B)It.

Now let A and B be distributive lattices and let p and a be lattice congru-
ence relations on A and B respectively. The semilattice congruence relation on
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A® B generated by p and a is defined in the same way as before.

Theorem 3.2. Let A and B be distributive lattices and let p and a be
lattice congruence relations on A and B respectively. Let t be the semilattice
congruence relation on A® B generated by p and a.  Then r is a lattice congru-
ence relation and Afp ® B/a is isomorphic to (A ® ß)/r.

Let A and B be distributive lattices With a largest element 1. We denote
by A * B the free product of A and ß in the category Vi of distributive lattices
with 1 and lattice homomorphisms preserving 1.  For details concerning the def-
inition and basic properties of free products, see Grätzer [5, pp. 183—186].

Theorem 3.3. Let A and B be distributive lattices with a largest element.
Then A® B is isomorphic to A * B.

Proof.  Since A * B is unique up to isomorphism it suffices to show that
A® B satisfies the conditions of the definition of A * B.

It is clear that A ® B is in Vx since A ® B has a largest element 1 ® 1.
Let/i :A -+A ® B be defined by /x(a) = a ® 1. Then

/iO*i + «2) " (fli + a2) ®. 1 = («l ® 0 + 0*2 ® 0 =A(«i) +/i(a2)-

Similarly fx(axa2) =/1(a1)/1(a2). Also/^1) = 1 ® 1. lffx(ax) =fx(a2) then
ax ® 1 = a2 ® 1, so a1 = a2. Thus/j is a one-to-one Vx homomorphism.  Sim-
ilarly if we define f2:B—+A ® B by f2(b) = 1 ® b then f2 is a one-to-one Vx
homomorphism.

Now/^) U/2(ß) = {a ® 1 :a EA} U {1 ® b :b EB}. Hence for all
a G A and b G B the sublattice of A ® B generated by fx{A) U /2(ß) contains
(a ® 1)(1 ® b) = a ® b.  Thus the sublattice generated by fx(A) U /2(ß) is
A®B.

Let C be in Vx and let gx :A —> C, g2 :B —* C be Vx homomorphisms.
Let g : A x ß —»■ C be defined by #(a, 6) = ^(a)^^). Then g is a semilattice
bihomomorphism.  Hence there is a semilattice homomorphism h : A ® B —*■ C
such that h{a ® b) = g(a, b) = gx{a)g2(p). Then if Zt(a, ® b¡) and 2/(c/. ® d;.)
are arbitrary elements of A ® B, we have

A(Z(*i ® */)Z>/ ®rf/)) = * ( Z«V/ ®M/))
= ZA(«,c, ® &fd» = Z*1(a/c/)*2(M/)

»./ z'./

= T,gi(«i)gi(ïi)g2Q>t)it(dj) = [ÇSi(*ifca0|)] [Z^iC^H-)]
= Jzac«,®*,)][z^/®rf/)l -A(l>,®b$)h(X(ci®rfA
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Also 7j(1 ® 1) = ^(1)^2(1) = 1. Thus ft is a P, homomorphism. For all a EA
we have hfx(a) = h(a ® l) = gx(a)g2(l) =gx(a). Thus hfx = gx. Similarly
hf2 = g2. Hence A® B satisfies the conditions of the definition of A *B and
so A ® B is isomorphic to A *B.

Let Fv (a) denote the free Vx lattice with a free generators.

Corollary 3.4. FVl(a) ® Fv (ß) is isomorphic to Fv (a + ß).

Proof.  Since Fv (a) * Fv (ß) is isomorphic to Fv (a + ß), this result
follows immediately from Theorem 3.3.

Note that Fv (a) is simply the free distributive lattice with a free genera-
tors to which a new largest element is adjoined.

We now investigate the relationship between the Stone space of a tensor
product and the Stone spaces of its factors.  It is convenient to assume that the
distributive lattices under consideration have a smallest element. The Stone
space S(L) of a distributive lattice L is the set of all prime filters of L, topolo-
gized by taking as a basis for the open sets the family {x*:xE L}, where
x* = {F E S(L) : x E F}. Prime filters of L are necessarily nonempty, proper
subsets of L.  For details, see Stone [11]. Let S'(L) = S(L) U {¿} and topol-
ogize S'(L) by using as a basis for the open sets the family {x*:x E L], where
now x* = {FE g(L):x E F}. Thus S'(L) is obtained from S(L) by adding a
new element L, and L belongs to every nonempty open set.

Theorem 3.5. Let A and B be distributive lattices with a smallest ele-
ment.  Then the spaces S'(A ® B) and ¡¡"(A) x S'(B) are homeomorphic.

Proof. If FES'(A ® B), let Fx = {aEA:a® bEF for some ft EB}
and F2 = {ft EB:a® ft G F for some a G A}. It is readily verified that Fx E
S\A) and F2 E S'(B). Thus the map <p : S'(A ® 5) —► S'(A) x S'(B) given by
4>(F) = (Fx, F2) is well defined. Note that we have a ® ft G F if and only if
a E Fx and ft G F2. Now if F, G E S'(¿ ® E) and <p(F) = <p(G), then (Fv F2)
= (Gx, G2), so that a ® b G F if and only if a ® ft G G, and this implies that
F = G.  Thus <f> is one-to-one.

Next let (Fx, F2) E S'(A) x S'(B) be given and put F = {2^(a,. ® ft,.) G
A ® B : 2j (a,. ® ft,.) > a ® ft for some a G F, and ft G F2\   It is easy
to see that F is a filter. To show that F E S'(A ® B), we may suppose
without loss of generality that 2" (a,. ® ft,) G F, so that 2" (a¡ ® b¡)>a® b
for some aEFx, ft EF2. Then by Theorem 2.5 there exist nonempty subsets
Sx,.. . , Sm of n such that a < X^lx UiGS.af and ft < U^x 2/&ç..ft/. Hence
s£i uiesai e Fi wd n£i 2,es A G F2, so that Uies. ai G Fx for some
f0 E m and 2,es. ft,. G F2. Hence ft,.   G F2 for some i0 G 5;-   and af   G Fv
Thus fl,-0 ® ft,.Q G F.  Hence F is a prime filter or A ® B.  It is clear that <p(F) -
(Fx, F2) and so <p is onto.
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Now

0((a ® b)*) = {<j>(F):FE(a ® b)*} = {<f>(F):a ® be F}
= {(Fx, F2) : a G Fx and b G F2}
= {(Fx, F2):FX G a* and F2 G 6*} = a* x b*.

Thus the image of a basic open set in S\A ® B) is open. Since <p is one-to-one
and onto, 0_1(a* x b*) = (a ® 6)*. Hence the inverse image of a basic open
set is open. Thus <p is a homeomorphism.

We now characterize the join-irreducible elements in the tensor product.

Theorem 3.6. Let A and B be distributive lattices. The join-irreducible
elements of A ® B are the generators a ® b such that a is join-irreducible in A
and b is join-irreducible in B.

Proof.  First, it is clear that a join-irreducible element of A ® B must be
a generator.

Let a ® b be join-irreducible in A ® B and suppose a < 2"af. Then
a ® b < (2" a,) ® b = 2" (a, ® b). Hence a ® b < a, ® b for some i and so
a < af. Thus a is join-irreducible. Similarly b is join-irreducible.

Now let a and b be join-irreducible and assume a ® 6 < 2" (a, ® o,). Then
by Theorem 2.5 there exist nonempty subsets Sv . . . , Sm of n such that a <
2^j Uies.at and ft < 11^ 2ies.of. Since a is join-irreducible, a < n/es. a,
for some /„ G m; also b < 2/es. of. Since Sj  is nonempty and 6 is join-irreduc-
ible, b < b.   for some i0 G S,\ and a < a, . Hence a ® b <a¡   ® b¡   and so
a ® 6 is join-irreducible in A ® B.

It is well known that a finite distributive lattice is isomorphic with the set
of all hereditary subsets of its set of nonzero join-irreducible elements, partially
ordered by set inclusion [6, p. 72]. Hence the characterization of the join-irre-
ducible elements of A ® B given by Theorem 3.6 provides us with a simple way
of obtaining a picture of A ® B when A and ß are finite. We simply form the
poset of the nonzero join-irreducible elements of A ® B, using Theorem 3.6;
A ® B is then the lattice of all the hereditary subsets of this poset.

Theorem 3.7. Let A and B be chains.  Then every element of A ® B
can be expressed in an essentially unique way as an irredundant sum of generators.

Proof.  Let 2^0, ® b¡) and 21'(c/ ® d¡) be arbitrary elements of A ® B.
Without loss of generality we may assume that al < ••• < a„, bx > ••• >bn,
cx < ••• <cm, dt > ••• >dm (re-index and use absorption if necessary). Note
that by Theorem 3.6, every generator in A ® B is join-irreducible. Suppose that
2?(a, ® b() = Sf (cj ® df). Then ax ® bl < 2(c; ® d¡), so a1 ® bl < ch ®
d,   for some j\ G m.  Since c,   ® d,   < 2(a, ® b¡) we have c¡   ® d¡   < a,   ®
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ft,   for some ix G n. Then ax ® ft, < e,  ® d,  < a,   ® ft, , so that ax = a, ,
ftj = ft,   and hence a, ® ft, = cy  ® A . Similarly we obtain a2 ® ft2 =
C/2 ® rf/2' * • - ' an ® *n = C/„ ® <*/,, for SOme '»• •••»/» € »<   Since 2(ai ® fti)
= 2(cy ® dy) there can be no further terms in the second sum, and m = n.
Moreover, in view of our initial assumptions, we have /, = 1 ,...,/„=«, so
that ax ® bx = cx ® dx,. . . , an ® bn = cn ® dn. Thus after redundant
terms have been eliminated every element has a unique representation as a sum
of generators, except for the order of the terms.

We point out that Theorem 3.7 is false for arbitrary distributive lattices.
As an example, let A - 2 and B = the diamond (the four element lattice
{0, a, ft, 1} with a and ft incomparable). Then in A ® B we have (1 ® a) +
(0 ® ft) = (1 ® a) + (0 ® 1). Thus there is an element in A ® B that can be
expressed in two essentially different ways.

Finally it should be observed that several of the results in §§2 and 3 that
were shown to hold for the semilattice tensor product A ® B of distributive
lattices A and B remain valid when A and B are arbitrary semilattices. In fact,
Lemma 2.4 and the remark following it were proved for arbitrary semilattices,
and they can be used to prove that the following results hold in the general case:
Theorem 3.6; the remark following Theorem 2.5; the remark following Theorem
2.6 (provided that I!"a, and 11"ft, exist); and one direction of Theorem 2.5,
namely, if a ® ft < 2JLj (a, ® ft,) then there exist nonempty subsets Sx,... ,Sm
of n such that ft < 2,GiS.ft, for / = 1, . . . , m and a < 2£L1a,   for each choice
ofh^s,.imes'm.

4. Projective tensor products.

Theorem 4.1. Let A and B be distributive lattices.  Then A and B are
retracts of A ® B.

Proof.  Let g : A x B —*■ A be defined by g(a, ft) = a.  Then g is a semi-
lattice bihomomorphism.  Hence there is a semilattice homomorphism
ft :A ® B —► A such that A(a ® ft) = a.  Then if 2,(a, ® ft,) and 2/(cy ® dj)
are arbitrary elements of A ® B, we have

ä(1>,® **)!>/®rf/))

- Aß>/*/ ® W) - IX*.-*/ ® b,dj)
\U )     U

=I>f<7 = (2>,) fee,} =ZM«/®fti)Zft(c/®d/)
= ft(Ç(a,®ft,)\ft^(c/®i7/)V
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Hence h is a V homomorphism. Let /: A —* A ® B be defined by /(a) =a®b0,
where b0 is a fixed element of ß.  Then / is a V homomorphism. For all a G A
we have A/(a) = h(a ® bQ) = a so that hf is the identity map on A.  Thus .4 is
a retract of 4 ® B.  Similarly ß is a retract of A ® B.

Corollary 4.2. Let A and B be distributive lattices. If A® Bis V pro-
jective, then A and B are V projective.

Proof.  Since a retract of a V projective distributive lattice is V projective,
this follows directly from Theorem 4.1.

Corollary 4.2 has the following partial converse; the example given at the
end shows that it cannot be extended.

Theorem 4.3. Let A and B be finite distributive lattices. If A and B are
V projective then A ® B is V projective.

Proof.  If A and ß are finite, then A ® B has a finite number of genera-
tors and so is itself finite. Now by [1, Theorem 7.1] a finite distributive lattice
is V projective if and only if the product of any two join-irreducible elements is
join-irreducible. Suppose A and ß are V projective and let ax ® bx and a2 ® b2
be join-irreducible elements of A ® B.  It follows by Theorem 3.6 that ax, a2
and 6j, b2 are join-irreducible in A and B respectively. Since A and ß are V
projective, aja2 and bxb2 are join-irreducible. Hence (ax ® bj)^ ® b2) =
axa2 ® bxb2 is join-irreducible.  Thus A ® B is V projective.

We give an example to show that the hypothesis of finiteness in Theorem
4.3 is essential. Let A and ß be the set of nonnegative integers with the usual
ordering, and if x is a nonnegative integer, let x+ denote x + 1. Then A and ß
are V projective since a chain is V projective if and only if it is countable [1, Theo-
rem 8.2]. Now a necessary condition that A ® ß be V projective is that every
element of A ® ß be expressible as a finite product of meet-irreducible elements
[2, Theorem 3]. But we assert that there are no meet-irreducible elements in
A ®B. For let 2" (a, ® b¡) be an arbitrary element of A ® B, where we suppose
without loss of generality that ax < • • • < an and bx > • • • > bn. Then

ZO*,®6/)i

= jfe, ® b t ) + Z (a, ® b()j [ "Z (a, ® bt) + (a+ ® bn)J .

For clearly, 2"(af ® b¿) is less than or equal to the right-hand side. On the other
hand,
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[(*i ® bf ) +Z (a, ® ft,jj [V (a, ® b() + (a+ ® b¿¡\
n-l

= («i ® ¿Î)  Z («, ® *,) + («i ® btX4 ® ô„)
1

n-1

+Z («,• ® ¿<) Z («i ® *,) + « ® *„) Z («,• ® *>t)i
< Z («i ® *,) + («i«i ® VÍ)+ Z («,- ® ¿,) +Z (*/ ® b¡)

1 2 2

<Z («, ® *,) + («i ® *„) <Z («, ® bt) + («i ® &i) <Z («, ® */)•
1 1 1

Now if 2ï(a,. ® b¡) = (ax ® ô+) + 22 (af ® ô,.), then ax ® b+ < 2?(a, ® ft,),
and hence by Theorem 2.5, ft* < 2"ft, = ft x, which is a contradiction. There-
fore

Similarly

Z (at ® ft,) < (a, ®'ft+) + X (a, ® ft,).

£ («, ® ft,) < "Z («, ® *,) + (aj; ® bn).
i i

Thus 2 j (a, ® ft,) is the product of two larger elements, and is therefore not
meet-irreducible. So A ® B has no meet-irreducible elements; hence it is not V
projective.

5. Connections with other tensor products. A tensor product of lattices
that is different from the one defined in our paper has been studied by D. Mowat
[9], Z. Shmuely [10], and A. Waterman [12]. For complete lattices A and B,
a complete join morphism is a mapping from A into ß which preserves 0 and
arbitrary joins. The tensor product A ® B of complete lattices A and ß is de-
fined to be the set of all complete join morphisms from A into the dual of B,
ordered by the pointwise partial order [10, p. 2]. This tensor product has the fol-
lowing properties: for complete lattices A, B and C and arbitrary posets M and N,
we have (i)A ® ß =* ß ® A; (ii) (A ® B) ® C ̂  A ® (B ® C); (iii) A ® 2**
~ AM; (iv) 2M ® 2N a 2MXN.

The semilattice tensor product studied in the present paper does not satisfy
properties (iii) and (iv).  If A = 2 and M and N are the one element poset then
both (iii) and (iv) assert that 282*2. But 2 ® 2 consists of five elements,
including four distinct generators. Property (i) holds for the semilattice tensor
product. We have the following result for property (ii).
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Theorem 5.1. Let A, B and C be finite distributive lattices.   Then
(A®B)®C = A® (B®C).

Proof.  By Theorem 2.6, (A ® B) ® C and A ® (B ® C) are distributive
lattices.  It follows from Theorem 3.6 that the join-irreducible elements of
(A ® B) ® C are of the form (a ® ft) ® c where a, ft, c are join-irreducible in
A, B, and C respectively. We have (ax ® ftt) ® c, < (a2 ® ft2) ® c2 if and
only if ax < a2, bx < ft2 and cx < c2. Similarly the join-irreducible elements of
A ® (B ® C) are of the form a ® (b ® c) where a, ft, c are join-irreducible in
A, B and C respectively, and ax ® (bx ® cx) < a2 ® (ft2 ® c2) if and only if
ax < a2, bx < ft2 and cx < c2. Thus the poset of nonzero join-irreducible ele-
ments of (A ® B) ® C is isomorphic with the poset of nonzero join-irreducible
elements of A ® (B ® Q. Since (A ® E) ® C and A ® (B ® C) are finite, it
follows that (A ® B) ® C is isomorphic with A ® (B ® C).
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