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Abstract. We prove that the semirings of 1-preserving and of 0,1-preserving endomor-
phisms of a semilattice are always subdirectly irreducible and we investigate under which
conditions they are simple. Subsemirings are also investigated in a similar way.
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1. Introduction

Congruence-simple semirings were investigated in the papers [1], [2], [3], [6], [7]

and [9]. A special attention was paid to finite, additively idempotent semirings in

connection with possible applications to public key cryptography (see [4], [7] and

[9]). In the present short paper we investigate for (congruence-) simplicity various

endomorphism semirings of semilattices, namely those consisting of endomorphisms

preserving the largest and/or the least element.

Let M be a nontrivial (join) semilattice with the largest element that will be

denoted by 1M , or just 1. We denote by E
1
M the semiring of the endomorphisms f

of M such that f(1) = 1. If M has also the least element (denoted by 0M or just 0),

we denote by E
01
M the semiring of the endomorphisms f ofM such that f(0) = 0 and

f(1) = 1. We will prove that every subsemiring of E1
M containing all endomorphisms

with range of cardinality at most 2, and also every subsemiring of E01
M containing all

endomorphisms with range of cardinality at most 3, is subdirectly irreducible. The

description of their monoliths will make it possible to say precisely which of these
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subsemirings are simple. The results for E
1
M and for E

01
M are quite similar. The

proofs differ only in details.

2. The interval of semirings between F
1
M and E

1
M

We denote by F
1
M the subsemiring of E

1
M generated by the set Y 1

M of the elements

of E1
M that are endomorphisms with range of cardinality at most 2. Denote by G

1
M

the subsemiring of E1
M consisting precisely of the endomorphisms f ∈ E

1
M for which

there exists a g ∈ Y 1
M with > g. It is easy to check that G

1
M is indeed a semiring

and that F1
M ⊆ G

1
M ⊆ E

1
M .

Denote by 1̄ the largest element of E1
M , i.e., the constant endomorphism of M

with value 1.

For a pair a, b of elements of M such that b 6= 1 denote by τa,b the endomorphism

defined as follows: τa,b(x) = a for x 6 b and τa,b(x) = 1 if x � b. It is easy to see that

for M finite, Y 1
M is precisely the set of all the endomorphisms τa,b (a, b ∈ M , b 6= 1).

This may not be true if M is infinite. For example, let M be the semilattice of

nonnegative integers (with respect to the usual ordering of integers) with the largest

element added. The endomorphism f sending the largest element to itself and all

the other elements to the smallest element belongs to Y 1
M but is not equal to any

τa,b. (It is not even above any τa,b.)

Theorem 2.1. Let M be a nontrivial semilattice with 1. Every subsemiring

E of E1
M containing F

1
M is subdirectly irreducible. Its monolith is the congruence

B2 ∪ idE where B = E ∩ G
1
M .

P r o o f. If f ∈ B then clearly g ∈ B for any g ∈ E with g > f . If f ∈ B

and g ∈ E then gf ∈ B and fg ∈ B. (Indeed, we have f > h for some h ∈ Y 1
M ;

then gf > gh and fg > hg, where both gh and hg are also at most two-valued.) It

follows from these two observations that B2 ∪ idE is a congruence of E. Since B has

cardinality at least 2, it is a nontrivial congruence.

Let R be an arbitrary nontrivial congruence of E; we need to prove that B2 ∪ idE

is contained in R. We have (f, g) ∈ R for two distinct elements f, g of E. Since

f 6= g, there exists an element b ∈ M such that either f(b) � g(b) or g(b) � f(b).

Without loss of generality, g(b) � f(b). Of course, b 6= 1 and f(b) 6= 1. For any

a ∈ M we have (τa,b, 1̄) = (τa,f(b)fτb,b, τa,f(b)gτb,b) ∈ R. For any c ∈ M different

from 1 we get (τa,c, 1̄) = (τa,bτb,c, 1̄τb,c) ∈ R. Thus (τa,c, 1̄) ∈ R for all c 6= 1.

Let h ∈ Y 1
M and let a be the only element of h in the range of h that is different

from 1. From (τa,a, 1̄) ∈ R we get (h, 1̄) = (τa,ah, 1̄h) ∈ R.

Since (h, 1̄) ∈ R for all h ∈ Y 1
M , it is clear that also (h, 1̄) ∈ R for all h ∈ B. �
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Theorem 2.2. Let M be a nontrivial semilattice with 1 and E a subsemiring

of E1
M containing F

1
M . Then E is simple if and only if it is contained in G

1
M . In

particular, G1
M is always simple.

P r o o f. This follows immediately from 2.1. �

Theorem 2.3. Let M be a nontrivial semilattice with 1. The semiring E
1
M is

simple if and only ifM has the least element and 1 is a join-irreducible element ofM .

Consequently, if M is finite then E
1
M is simple if and only if M is a lattice with a

single coatom.

P r o o f. By 2.2, E1
M is simple if and only if E

1
M = G

1
M , which takes place if and

only if every element of E1
M is above at least one element with range of cardinality

at most 2.

Let E
1
M be simple. Then f 6 idM for some f ∈ E

1
M with range contained in

{a, 1}, for some a ∈ M . Put I = {x ∈ M : f(x) = a}, so that I is a subsemilattice

of M . For all x ∈ M we have f(x) 6 x. Thus a 6 x for all x ∈ I and 1 6 x for all

x /∈ I. This is possible only if a is the least element of M and I = M − {1}. Thus

M − {1} is a subsemilattice, which means that 1 is a join-irreducible element.

Conversely, let M have the least element a and let M − {1} be a subsemilattice.

Denote by h the endomorphism sending 1 to 1 and any other element of M to a.

Then h has the range of cardinality 2 and f > h for all f ∈ E
1
M . �

3. The interval of semirings between F
01
M and E

01
M

LetM be a nontrivial semiring with the least element 0 and the largest element 1.

We denote by F
01
M the subsemiring of E

01
M generated by the set Y 01

M of the elements

of E01
M that are endomorphisms with range of cardinality at most 3. Denote by G

01
M

the subsemiring of E01
M consisting precisely of the endomorphisms f ∈ E

01
M for which

there exists a g ∈ Y 01
M with f > g. It is easy to check that G

01
M is indeed a semiring

and that F01
M ⊆ G

01
M ⊆ E

01
M .

By an ideal ofM we mean a nonempty subset I such that a, b ∈ I implies a∨b ∈ I

and a ∈ I implies x ∈ I for all x 6 a. Every ideal of M contains the element 0. An

ideal is proper if and only if it does not contain the element 1. For a ∈ M denote by

↓ a the ideal {x ∈ M : x 6 a}.

Let a ∈ M and let I be a proper ideal ofM . We denote by ηa,I the endomorphism

of M defined as follows: ηa,I(0) = 0; ηa,I(x) = a for x ∈ I − {0}; ηa,I(x) = 1 for

x /∈ I. Clearly, ηa,I ∈ E
01
M .

Put 1̄0 = η0,{0}, so that 1̄0 is the largest element of E
01
M .
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Theorem 3.1. LetM be a nontrivial semilattice with 0 and 1. Every subsemiring

E of E01
M containing F

01
M is subdirectly irreducible. Its monolith is the congruence

B2 ∪ idE where B = E ∩ G
01
M .

P r o o f. Clearly, B2∪ idE is a nontrivial congruence of E. Let R be an arbitrary

nontrivial congruence of E; we need to prove that B2 ∪ idE is contained in R.

Since R is nontrivial, there exists a pair (f, g) ∈ R such that f < g. There is an

element a ∈ M with f(a) < g(a). Put J =↓ f(a), so that J is a proper ideal of M .

For any proper ideal I we have (η0,I , 1̄0) = (η0,J ; f ; ηa,I , ; η0,J ; g ; ηa,I) ∈ R.

Let h ∈ E be an endomorphism with range {0, a, 1} where 0 6 a < 1. Put

I = h−1{0, a} = {x ∈ M : h(x) ∈ {0, a}}, so that I is a proper ideal of M . Clearly,

h > η0,I . Since (η0,I , 1̄0) ∈ R, it follows that (h, 1̄0) ∈ R.

Thus (h, 1̄0) ∈ R for all h ∈ Y 01
M . From this it follows that (h, 1̄0) ∈ R for all

h ∈ B. Thus B2 ∪ idE ⊆ R. �

Theorem 3.2. Let M be a nontrivial semilattice with 0 and 1 and E a subsemir-

ing of E01
M containing F

01
M . Then E is simple if and only if it is contained in G

01
M . In

particular, G01
M is always simple.

P r o o f. This follows immediately from 3.1. �

Theorem 3.3. LetM be a nontrivial semilattice with 0 and 1. The semiring E
01
M

is simple if and only if 1 is a join-irreducible element.

Consequently, if M is finite then E
01
M is simple if and only if M is a lattice with a

single coatom.

P r o o f. By 3.2, E01
M is simple if and only if E

01
M = G

01
M if and only if every

element of E01
M is above at least one element with range of cardinality at most 3.

Let E
01
M be simple. Then f 6 idM for some f ∈ E

01
M with range contained in

{0, a, 1}, for some a ∈ M . Put I = {x ∈ M : f(x) ∈ {0, a}}, so that I is a proper

ideal of M . For all x ∈ M we have f(x) 6 x. Thus 1 6 x for all x /∈ I. This is

possible only if I = M − {1}. Thus M − {1} is an ideal of M .

Conversely, let 1 be join-irreducible, so that M − {1} is an ideal of M . Then the

mapping h, sending 1 to 1 and any other element of M to 0, is an endomorphism

of M preserving both 0 and 1. This h has the range of cardinality 2 and f > h for

all f ∈ E
01
M . �
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