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lthough numerical methods have been used for many centuries

to solve problems in science and engineering,  the importance

of computation grew tremendously with the advent of digital

computers. It became immediately clear that many of the

classical analytical and numerical methods and algorithms

could not be implemented directly as computer codes,

although they were well suited for hand computations. What was the rea-

son? When doing computations by hand a person can choose the accura-

cy of each elementary calculation and then estimate, based on intuition

and experience, its influence on the final result. In contrast, when compu-

tations are done automatically, intuitive error control is usually not possi-

ble and the effect of errors on the intermediate calculations must be

estimated in a more systematic way. Due to this observation, starting

What factors contribute to
the accurate and efficient
numerical solution of
problems in control systems
analysis and design?
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essentially with the works of J. Von Neumann and A. Tur-

ing, modern numerical analysis evolved as a fundamental

component of machine computation. One of the central

themes of this analysis is the solution of computational

problems in finite precision (or machine) arithmetic tak-

ing into account the properties of both the mathematical

problem and the numerical algorithm for its solution. On

the basis of such an analysis, numerical methods may be

evaluated and compared with respect to the accuracy that

can be achieved.

When solving a computational problem on a digital

computer, the accuracy of the computed solution general-

ly depends on three major properties:

1) the machine arithmetic—the rounding unit (or the

relative machine precision) and the range of this

arithmetic

2) the computational problem—the sensitivity of its

solution relative to changes in the data, often esti-

mated by the conditioning of the problem

3) the computational algorithm—the numerical stabili-

ty of this algorithm.

It should be noted that only by taking into account all

three factors are we able to estimate the accuracy of the

computed solution.

In this article we discuss the sensitivity of three impor-

tant problems in linear control theory that are solved  fre-

quently in a number of applications. These problems are

pole placement, linear-quadratic optimal control, and opti-

mal H∞ control. Let us briefly recall these problems.

Consider a linear time-invariant dynamical system in

state-space form

ẋ = Ax + Bu, x(t0) = x0, (1)

where x(t) ∈ Rn is the state at the time t, x0 is an initial

vector, u(t) ∈ Rm is the control input of the system and

the matrices A ∈ Rn,n , B ∈ Rn,m are constant. (Here Rn,m

denotes the set of real n × m matrices.) The classical pole

placement problem is to find a state-feedback control law

u = Kx such that the closed-loop system ẋ = (A + BK)x

has prescribed poles or, in linear algebra terminology,

that the spectrum of the closed-loop system matrix

A + BK is a given collection P of complex numbers sym-

metric with respect to the real axis. For a discussion of

the theory of pole placement and related problems, we

refer the reader to classical monographs in linear control

theory such as [1]. Here, we discuss the conditioning of

the pole placement problem. This topic has generated

some controversy in the literature, and we bring different

viewpoints together.

Another important basic problem in control is the 

linear quadratic control problem. The objective of this

problem is to find a control u such that the closed-loop

system is asymptotically stable and the performance index

S(u) =

∫
∞

0

[
x(t)

u(t)

]T [
Q S

ST R

] [
x(t)

u(t)

]
dt (2)

is minimized. Here Q = QT ∈ Rn,n , R = RT ∈ Rm,m is posi-

tive definite and 
[

Q S

ST R

]
is positive semidefinite. An impor-

tant feature of this problem is that the optimal control can

be realized as a linear state feedback u = Kx. The classical

theory for this problem can be found in the monographs

[2]–[4]. In this article we show that the classical approach

of using Riccati equations is not generally the best way to

solve the linear quadratic control problem.

The third problem included in our discussion is the

optimal H∞ control problem, which arises in the context of

robust control in the frequency domain (see [5]). In this

problem one studies the linear system

ẋ = Ax + B1u + B2w, x(t0) = x0,

z = C1x + D11u + D12w,

y = C2x + D21u + D22w, (3)

where A ∈ Rn,n , Bk ∈ Rn,mk , Ck ∈ Rpk,n for k = 1, 2, and

Dij ∈ Rpi,mj for i, j = 1, 2. Here u(t) ∈ Rm1 is the control,

w(t) ∈ Rm2 represents noise, modeling errors, or an

unknown part of the system; y(t) ∈ Rp2 describes measured

outputs; and z(t) ∈ Rp1 describes the regulated outputs.

The objective of optimal H∞ control is to find a controller

q̇ = Ãq + B̃y,

u = C̃ q + D̃y, (4)

that internally stabilizes the system and minimizes the H∞-

norm of the closed-loop transfer function Tzw from w to z.

For an explicit formula of the transfer function, see [5].

Although this problem is frequently solved in practice, the

sensitivity analysis and the development of reliable numer-

ical methods are far from mature. Consequently, we high-

light some of the questions that need to be studied.

The sensitivity of computational problems and its

impact on the results of computations are discussed in sev-

eral textbooks and monographs such as [3], [6], and [7].

Basic Concepts of Numerical Analysis
Three factors determine the accuracy of the results of a

numerical computation: floating point arithmetic, condi-

tioning, and stability.

Some Basics of
Floating Point Arithmetic
A digital computer has only a finite number of internal

states, and hence it can operate with a finite, although

possibly large, set of numbers called machine numbers.

As a result, we have the so-called machine arithmetic,

which consists of the set of machine numbers together
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with the rules for performing algebraic operations on

these numbers.

There are different machine arithmetics, the most wide-

ly used being the ANSI/IEEE 754-1985 Standard for Binary

Floating Point Arithmetic [8], [6, Chap. 2]. We consider

several issues that are essential in every computing envi-

ronment. For a detailed treatment of this topic see [6]. For

simplicity we consider  real arithmetic.

Let M ⊂ R be the set of machine numbers. The set M is

finite, contains the zero 0 and is symmetric with respect to

0, that is, if x ∈ M then −x ∈ M.

To map x ∈ R into M, rounding is used to represent x

by the number x̂ ∈ M [denoted also as rd(x)], which is

closest to x, including a rule for breaking ties when x is

equidistant from two machine numbers. Of course, ̂x = x if

and only if x ∈ M. We shall use the hat notation to denote

quantities computed in machine arithmetic.

Some strange things may happen in M: an arithmetic

operation may not be performed even if the operands are

from M; the associative law is violated; and the distribu-

tive law may be violated.

Since M is finite, there is a  large positive number

L ∈ M such that any x ∈ R can be approximated in M if

and only if |x| ≤ L. Moreover, there is an extremely small

positive number l ∈ M such that if |x| < l then x̂ = 0 even

when x �= 0.We say that a number x ∈ R is in the standard

range of M if l ≤ |x| ≤ L. In the IEEE double precision arith-

metic we have L ≈ 10308, l ≈ 10−324 [8], [6, Chap. 2].

If a number x with |x| > L appears as initial data or as

an intermediate result in a computational procedure real-

ized in M, then the computations are usually terminated.

This event is called an overflow and must be avoided. If a

number x �= 0 with |x| < l appears during the computa-

tions then it is rounded to x̂ = 0, and this event is known

as underflow. Although not so destructive as overflow,

underflow should also be avoided. Over- and underflow

may be avoided by appropriate scaling of the data.

Example 1: Consider the computation of the norm

y = ‖x‖ =
√

x2
1 + x2

2
of the vector x = [x1, x2]T , where the

data x1, x2 and the result y are in the standard range [l, L]

of M. In particular, we have l ≤ |xi| ≤ L . If, however,

x2
1 > L, then the direct calculation of y gives overflow.

Another difficulty arises when x2
1 < l and x2

2 < l. Then we

have the underflow rd(x2
1) = rd(x2

2) = 0 resulting in the

wrong answer ŷ = 0, while the correct answer is y ≥ l
√

2.

Overflow may be avoided by using the scaling ξi := xi/s,

s := |x1| + |x2| (provided s ≤ L) and computing the result

from y = s
√

ξ2
1 + ξ2

2 . Underflow can also be avoided by this

scaling (we shall have at least ŷ ≥ l when x2
1 < l and

x2
2 < l).

Another important characteristic of M is the rounding

unit (relative machine precision, or machine epsilon),

denoted by ε, which is half the dis-

tance from one to the next larger float-

ing point number. If 1/L ≤ |x| ≤ L ,

then the relative error in the approxi-

mation of x by its machine analogue x̂

satisfies the bound

|x − x̂|
|x|

≤ ε.

In IEEE double precision arithmetic

we have ε ≈ 1.1 × 10−16 , which implies that rounding is

performed with a small relative error. Most machine arith-

metics, including IEEE arithmetic, are built to satisfy the

property that arithmetic operations on two numbers are

performed  accurately in M, with a relative error of order

of the rounding unit ε.

Computational Problems
The second important feature in assessing the results of

computations in finite arithmetic is the formulation of the

computational problem. Most problems can be written in

explicit form as y = f(x) or in implicit form by means of the

equation ϕ(x, y) = 0. Here typically the data x and the

result y are elements of vector spaces X and Y , respective-

ly, and f : X → Y , ϕ : X × Y → Y are given functions.

Suppose that the data x are perturbed to x + δx, where

the perturbation may result from measurement, modeling,

or rounding errors. Then the result y is changed to y + δy,

where δy = f(x + δx) − f(x). Thus, δy depends on both the

data x and its perturbation δx.

The estimation of the sensitivity of the problem, that

is, of some quantitative measure µ(δy) of the size of δy as

a function of the corresponding measure µ(δx) of δx, is

the aim of perturbation analysis of computational prob-

lems. If x = [x1, . . . , xm]T and y = [y1, . . . , yn]T are vec-

tors, then we may use a vector norm, µ(x) = ‖x‖ as the

quantitative measure.

To illustrate the idea of perturbation analysis we con-

sider the solution of the Lyapunov equation, which is

another basic problem in computational control.

Example 2: Consider the Lyapunov equation AT X+
X A = C , where A, C , and the solution X are real 

6 × 6 matrices with C = C T and X = X T . For a particular

example of this equation we generated 10,000 additive per-

turbations δc11, δc12, δc22 in the corresponding entries of the

right-hand side C , each of size 10−6 × ‖C ‖, and computed
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the variations δx11, δx12, δx22 in the entries of the solution

X . In Figure 1 we show the perturbations in the right-hand

side, the corresponding variations in the solution, and an

appropriate sensitivity estimate. The sensitivity estimate,

which is an upper bound on the size of perturbations in the

solution, has the form of a linear estimate ‖δX‖ ≤ β‖δC ‖ for

some positive constant β. Clearly, for some directions the

corresponding perturbations δC lead to relatively small

changes in the solution. Hence the norm-based sensitivity

estimate is pessimistic for these particular perturbations.

To derive sensitivity estimates, we need some basic

mathematical concepts. Recall that a function f : X → Y is

Lipschitz continuous at a point x ∈ X if there exist r > 0

and M > 0 such that ‖f(x + δx) − f(x)‖ ≤ M‖δx‖ for all

‖δx‖ ≤ r. The quantity

M = M(x, r) := inf

{
‖f(x + δx) − f(x)‖

‖δx‖
: δx 	= 0, ‖δx‖ ≤ r

}

(5)

is the Lipschitz constant of f in the r-neighborhood of x. Lip-

schitz continuous functions satisfy the perturbation bound

‖δy‖ ≤ M(x, r)‖δx‖ for all ‖δx‖ ≤ r.

A computational problem y = f(x), where f is Lipschitz con-

tinuous at x, is regular at x; otherwise the problem is singu-

lar. If x is not in the domain of f , then the problem is singular.

Example 3: Consider the polynomial equation

(y − 1) p = yp − pyp−1 + · · · + (−1)p = 0,

which has a multiple solution y = 1. If the constant term

(−1)p is perturbed to (−1)p − 10−p , then the perturbed

equation has p different roots yi = 1 + 0.1εi , i = 1, . . . , p,

where ε1, . . . , εp are the primitive pth roots of one. Thus a

relative change of 10−p in one of the coefficients leads to a

relative change of 0.1 in the solution.

To characterize when a problem has the property that

small changes in the data can lead to large changes in the

result, we introduce the concept of condition number. For

a regular problem, let M(x, r) be as in (5). Then the num-

ber K(x) := limr→0 M(x, r) is called the absolute condition

number of the computational problem y = f(x). For singu-

lar problems we set K(x) = ∞. 

We have

‖δy‖ ≤ K(x)‖δx‖ + 
(δx), (6)

where the scalar quantity 
(h) ≥ 0 satisfies 
(h)/‖h‖ → 0

for h → 0.

Suppose now that x 	= 0 and y = f(x) 	= 0. Then setting

δx := ‖δx‖/‖x‖, δy := ‖δy‖/‖y‖ we have the bound

δy ≤ k(x)δx + ω(δx), ω(h) := 
(h)/‖y‖,

where ‖ω(h)‖/‖h‖ → 0 for h → 0 and k(x) := K(x)(‖x‖/‖y‖)is

the relative condition number of the problem y = f(x).

Condition numbers can be defined analogously for

implicit problems of the form ϕ(x, y) = 0, where x is the

data and y is the solution.

A regular problem y = f(x) is well conditioned (respec-

tively, ill-conditioned) if the relative condition number k(x)

is small (respectively, large) in the context of the given

machine arithmetic.

The computer solution of an ill-conditioned problem

may lead to large errors. In practice, the following rule of

thumb may be used for the computational problem

y = f(x).

Suppose that εk(x) < 1. Then one can expect approxi-

mately − log10(εk(x)) correct decimal digits in the largest

components of the computed solution vector y.

Indeed, as a result of rounding the data x we work with

x̂ = x + δx, where ‖δx‖ ≤ ε‖x‖. If no additional errors are

made during the computation, then the computed result is

ŷ = f (̂x) and we have

‖f (̂x) − f(x)‖ ≤ K(x) ‖δx‖ + 
(x) ≤ εK(x)‖x‖ + 
(x).
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Figure 1. Perturbed solutions of a Lyapunov equation and a

sensitivity estimate. The small sphere shows the perturbations

of the right-hand side, the ellipsoid represents the

corresponding variations in the solution, and the large

sphere shows the norm-based sensitivity estimate. For some

perturbations the sensitivity estimate is quite pessimistic.

∆
C

2
2
, 

∆
X

2
2

6

4

2

0

–2

–4

–6

× 10
–6

× 10
–6

× 10
–6

6

4

4
6

2

2
0

0
–2

–4
–6

∆C12, ∆X12 ∆C11, ∆X11



Thus the relative error in the computed result satisfies the

approximate inequality

‖̂y − y‖

‖y‖
≤

εK(x)‖x‖

‖y‖
= εk(x).

However, this rule of thumb may give pessimistic results,

since it describes a worst case situation [9].

Closely related to the sensitivity is the problem of esti-

mating the distance to the nearest singular problem. Con-

sider a computational problem y = f(x). The quantity

Dist(f, x) = min{‖h‖ : the problem y = f(x + h) is singular}

is the absolute distance to singularity of the problem x 	= 0,

the quantity Dist(f, x)/‖x‖ is the relative distance to singu-

larity of the problem.  For many problems the relative dis-

tance to singularity and the relative condition number of

the problem are inversely proportional [9].

Example 4: The problem of solving the linear system

Ay = b with a square matrix A and data x = (A, b) is regu-

lar if and only if the matrix A is nonsingular. The relative

distance to singularity for an invertible matrix A is

1/cond(A) , where cond(A) := ‖A‖ ‖A−1‖ is the relative

condition number of A relative to inversion [6, Thm. 6.5].

Another difficulty is the mathematical representation

of the computational problem that  needs to be solved.

In particular, in control theory, several different frame-

works are used. A classical example for such different

frameworks is the representation of linear systems by

means of matrices and vectors, as in the classical state-

space form (1), as rational matrix functions (by means of

the Laplace transform), or even in a polynomial setting

[10], [11]. These different approaches have different

mathematical properties and taste often determines

which framework is preferred.

From a numerical point of view, however, the chosen

approach is typically not a matter of taste, since the sensi-

tivity is drastically different. Numerical analysts usually

prefer the matrix/vector setting over polynomial or ratio-

nal functions, while for users of computer algebra systems

the polynomial or rational approach is often more attrac-

tive. The reason for the preference for the matrix/vector

approach in numerical methods is that the sensitivity of

the polynomial or rational representation is usually higher

than that of a matrix/vector representation. This fact is

often ignored in choosing frameworks that are mathemati-

cally more elegant but numerically inadequate.

Example 5 [12]: Consider the computation of the eigen-

values of the matrix A = QT diag(1, 2, . . . , 20)Q, where Q

is a random orthogonal matrix. Clearly the matrix is sym-

metric and therefore diagonalizable with nicely separated

eigenvalues 1, 2, . . . , 20. The problem of computing the

eigenvalues of A is well conditioned, and numerical meth-

ods such as the symmetric QR algorithm lead to highly

accurate results; see [13]. For example, eig from MATLAB

[14] yields all eigenvalues to at least 15 correct digits.

The usual textbook approach for computing eigenvalues

taught in first-year linear algebra is that the eigenvalues of A

are the roots of the characteristic polynomial

det(λ I − A) = (λ − 1)(λ − 2) · · · (λ − 20). Using a numerical

method such as roots from MATLAB to compute the roots

of this polynomial, however, yields highly inaccurate large

eigenvalues 20.0003, 18.9970, 18.0117, 16.9695,  16.0508,

14.9319, 14.0683, 12.9471, 12.0345, 10.9836, 10.0062, 8.9983,

8.0003. The accuracy of the small eigenvalues is slightly bet-

ter. There are several reasons for the inaccuracy. First, the

coefficients of the polynomial range in the interval

[1, 20!] ≈ [1, 2.4 × 1018] and cannot all be represented accu-

rately in  IEEE double precision arithmetic, while the entries

of the matrix range in the ball of radius 20 around the origin.

Second, the sensitivity of the larger roots with respect to

perturbations in the coefficients is large in this case.

In this section we discussed the sensitivity and condi-

tioning of a computational problem. This sensitivity is a

property of the problem and its mathematical representa-

tion in the context of the machine arithmetic used,and

should not be confused with the properties of the compu-

tational method that is implemented to solve the problem.

In practice, linear sensitivity estimates of the type

δy ≤ k(x)δx are usually used, occasionally leading to under-

estimation of the actual perturbation in the solution. Rigor-

ous perturbation bounds can be derived by using

nonlinear perturbation analysis [15].

Computational Algorithms
Here we discuss properties of computational algorithms

and the accuracy of the computed result.

An algorithm for computing y = f(x) is a decomposition

f = Fr ◦ Fr−1 ◦ · · · ◦ F1, (7)

which gives a sequence xk = Fk(xk−1), k = 1, . . . , r , with

x0 = x and y = xr . Although the computation of Fk(ξ) usual-

ly requires simple algebraic operations on ξ such as arith-

metic operations or taking roots, subproblem computation

may also be more complicated such as solving a system of

linear equations or computing the eigenvalues of a matrix.

The algorithm either gives the exact answer in exact

arithmetic or, for some problems such as eigenvalue prob-

lems or the solution of differential equations, gives an

approximate answer in exact arithmetic. We will not ana-

lyze the latter case here, but rather we investigate what

happens to the computed value of xr when the computa-

tions are done in machine arithmetic.

It is important to mention that two different algorithms,

say (7) and f = �s ◦ �s−1 ◦ · · · ◦ �1 for computing y = f(x),

may give completely different results in machine arith-

metic, although in exact arithmetic they are equivalent.
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In what follows, we suppose that the data x is in the

standard range of the machine arithmetic with character-

istics L, l, ε, and that the computations do not lead to

overflow or to a destructive underflow. As a result, the

answer computed by the algorithm (7) is ̂y. Our goal is to

estimate the absolute error E := ‖ŷ − y‖ and the relative

error e := E/‖y‖ (for y �= 0) of the computed solution ŷ in

the case of a regular problem y = f(x) when x belongs to

a given set X0.

Definition 1 [12], [6], [3]: The algorithm (7) is numeri-

cally stable on the set X0 if the computed quantity ŷ for

y = f(x), x ∈ X0, is close to the solution f (̂x) of a problem

with data ̂x near to x in the sense that

‖̂y − f (̂x)‖ ≤ εa‖y‖, ‖x̂ − x‖ ≤ εb‖x‖, (8)

where the constants a, b > 0 do not depend on x ∈ X0.

For a problem with inexact data, perhaps itself being

subject to rounding errors, numerical stability is in general

the most we can ask of an algorithm. If in Definition 1 we

take a = 0,then the algorithm is numerically backward sta-

ble. Backward error analysis, introduced by Wilkinson

[12], can be used to show that the solution computed by

an algorithm is the exact solution of a perturbed problem,

where the perturbation is the equivalent data error.

As in [3], using the inequalities (8) and

‖f(x + δx) − f(x)‖ ≤ K(x)‖δx‖ + 	(δx) (see (6)), we obtain

the absolute error estimate

E := ‖̂y − y‖ = ‖̂y − f (̂x) + f (̂x) − f(x)‖

≤ ‖̂y − f (̂x)‖ + ‖f (̂x) − f(x)‖

≤ εa‖y‖ + K(x)‖x̂ − x‖ + 	(̂x − x)

≤ εa‖y‖ + εbK(x)‖x‖ + 	(̂x − x).

Dividing by ‖y‖ yields the relative error estimate

e :=
‖̂y − y‖

‖y‖
≤ ε

(
a + bK(x)

‖x‖

‖y‖
+

ω(̂x − x)

ε

)
.

Since ω(̂x − x)/ε → 0 for ε → 0, by ignoring this term, we

obtain the approximate estimate

e ≤ ε

(
a + bK(x)

‖x‖

‖y‖

)
= ε(a + bk(x)) (9)

for the relative error in the computed solution.

Inequality (9) clearly shows the influence of the three

major factors that determine the accuracy of the comput-

ed solution:
● the machine arithmetic, the rounding unit ε and

implicitly the range of M through the requirement to

avoid over- and underflow
● the computational problem, the relative condition

number k(x)

● the computational algorithm, the constants a and b.

Inequality (9) is an example of a condition number-

based accuracy estimate for the solution, computed in

machine arithmetic. To assess and trust the accuracy of

results, condition and accuracy estimates should accom-

pany every computational procedure. Many modern soft-

ware packages provide such estimates [16], [17]. However,

it is unfortunately common practice in industrial use to

turn these facilities off, even though this service warns the

user of numerical methods about possible failure.

As we saw in (7), computational problems are typically

modularized and thus can be solved as a sequence of sub-

problems. This decomposition facilitates the use of compu-

tational modules and is one of the reasons for the success

of numerical analysis. One should be aware, however, that

modularization can lead to substantial numerical difficul-

ties. Such difficulties arise if one or more of the created

subproblems Fi is ill-conditioned or singular.

Example 6: The scalar identity function y = f(x) = x

may be decomposed as f = F2 ◦ F1, where F1(x) = x3 and

F2(z) = z1/3 . Here the function F2 is not Lipschitz continu-

ous at 0.

But even if the functions F1, F2 are Lipschitz continuous

with constants K1, K2 respectively, then it may happen

that one (or both) of these constants is large. We obtain

the estimate 

‖f(x + h) − f(x)‖ = ‖F2(F1(x + h)) − F2(F1(x))‖

≤ K2‖F1(x + h) − F1(x)‖ ≤ K2K1‖h‖,

where the quantity K2K1 may be much larger than the

actual Lipschitz constant K of f .

Example 7: Consider the identity function y = f(x) = x

in R2 . Define F1(x) = A−1x and F2(z) = Az , where the

matrix A ∈ R2,2 is nonsingular. Then K = 1 while both

K1 = ‖A−1‖and K2 = ‖A‖ may be arbitrarily large. If the

computations are carried out with maximum achievable

accuracy, then the computed value for A−1x is

F̂1(x) = ( I2 + E1)A−1x , where E1 := diag(ε1, ε2) and

|ε1|, |ε2| ≤ ε . Similarly, the computed value for A(A−1x)

becomes ( I2+E2)AF̂1(x) = ( I2+E2)A( I2+E1)A−1x , where

E2 := diag(ε3, ε4) and |ε3|, |ε4| ≤ ε . Suppose that

ε1 = −ε2 = ε ≃ 10−16 , ε3 = ε4 = 0 and 

A =

[
a a + 1

a − 1 a

]
, x =

[
1

−1

]
,

where a = 108 . Then the computed result is x̂ = x + εξ ,

where ξ = [ξ1, ξ2]T and ξ1 = 4a2 + 2a − 1, ξ2 = 4a2−

2a − 1. Thus, the actual relative error in the solution of the

decomposed problem is ε(‖ξ‖/‖x‖) ≃ 4a2 ε ≃ 4, and there

are no correct digits in the computed result.
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In the following sections we look at three basic prob-

lems in control theory and analyze their sensitivity.

Pole Placement
Pole placement is an important tool for many applications

of modern control theory. In linear algebra terminology,

the pole placement problem is as follows.

Problem 1: For a given pair of matrices S = (A, B ) with

A ∈ Rn,n , B ∈ Rn,m and a given collection of n complex

numbers P = {λ1, . . . , λn} ⊂ C (closed under conjugation),

find a matrix K ∈ Rm,n such that the collection of eigenval-

ues of A + BK is equal to P .

It is well known (see [1]) that a feedback gain matrix K

exists for all collections P ⊂ C (symmetric relative to the

real axis) if and only if (A, B) is controllable, that is,

rank[A − λ In, B] = n, for all λ ∈ C. There is a large litera-

ture on the numerical solution of this problem; see [18]--

[21]. Even though numerical backward stability has been

shown for some of these methods (see [19], [20], and [22])

it is often observed that the numerical results are inaccu-

rate. In view of our discussion, if a numerically stable

method yields highly inaccurate results, then this inaccura-

cy must be due to the ill-conditioning of the problem. The

analysis of the conditioning of the pole placement problem,

however, led to differing conclusions; see [23]--[26].

Since controllability is a requirement for the ability to

assign arbitrary sets of poles, it must be expected that numer-

ical difficulties arise when the problem is near to an uncon-

trollable problem. The distance to uncontrollability is defined

as the minimum of the quantity ‖[δ A, δB]‖, where the pair

(A + δ A, B + δB) is uncontrollable; see [27]. A bound for this

distance may be determined by computing

minλ∈C σn[A − λ I, B] (see [27]) where σn[A − λ I, B] denotes

the smallest singular value of the matrix [A − λ I, B].

As we saw, numerical problems can also arise when a

problem is approached by means of  a multistep proce-

dure, where an intermediate step is ill-conditioned. For

example, pole placement is usually a two-step procedure,

which first brings the pair (A, B) to a simpler form [3], [28]

and then assigns the poles in this simpler form. To evalu-

ate a particular numerical method, the conditioning of

both subproblems needs to be analyzed.

If one studies the  literature of the pole-placement

problem, this ill-conditioning is only partially reflected

and the discussion is quite controversial. This controver-

sy has several sources such as nonuniqueness of the solu-

tion in the multi-input case as well as data representation.

Another reason for confusion is that one has to define

what the solution of the problem is. Theoretically, the

solution is the feedback matrix K , or the set of all such

matrices. But relative to the computed solution, there are

three different issues. First, there is

the computed value K̂ of K . Second,

we have the closed-loop matrix

A + BK̂ or its rounded value

rd(A + BK̂). And third, we have the

resulting spectrum of A + BK̂ , which

should be equal to P but usually dif-

fers from P . Although all  of these

quantities are computed “solutions”

of the pole placement problem, they

exhibit largely different perturbation behavior. We now

summarize these different viewpoints.

Perturbation analysis for the gain matrix consists of

determining bounds on the change δK in the gain matrix K

as a function of the changes δ A, δB in the system matrices

A, B and the changes δλ1, . . . , δλn in the desired poles. In

this case, whether or not the closed-loop system matrix

A + BK or its spectrum is sensitive is not the subject of

sensitivity analysis. Of course, in the multi-input case it is

possible to use the n(m − 1)-parametric freedom (if the

rank of B is m) in the gain matrix K to minimize some mea-

sure of the sensitivity of the eigenstructure of A + BK , or

to achieve other design purposes, such as minimizing ‖K‖,

or maximizing the stability radius of A + BK ; see [18],

[21], and [29]. Since for m > 1 the gain matrix K lies in an

unbounded n(m − 1)-dimensional algebraic variety in Rm,n,

the sensitivity analysis must guarantee that there exists at

least one solution to the perturbed problem for which the

perturbation bounds for δK hold. At the same time both

the original and perturbed problems may have solutions of

arbitrary large norm. Explicit perturbation bounds for K ,

both local and nonlocal, have been derived in [24].

Let 
 := diag(λ1, . . . , λn) and δ
 := diag(δλ1, . . . , δλn).

An estimate in terms of relative perturbations

δK := ‖δK‖F /‖K‖F is given by

δK ≤ cAδA + cBδB + c
δ
 + O
(
‖δ‖2

)
,

where cA := C A‖A‖F /‖K‖F , cB := C B‖B‖F /‖K‖F , and

c
 := C
‖
‖F /‖K‖F are the relative condition numbers

with respect to the perturbations in A, B, and 
, respec-

tively, δA := ‖δ A‖/‖A‖F , δB := ‖δB‖F /‖B‖F , and

δ
 = ‖δ
‖F /‖
‖F . Here C A, C B, C
 are the corresponding

absolute condition numbers and δ := [δA, δB, δ
]T . This

analysis shows that the problem of computing the feed-

back gain K is well or ill-conditioned if the overall relative

condition number 
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using Riccati equations is not generally

the best way to solve the linear quadratic

control problem.



cPA := cA + cB + c� (10)

is small or large in the context of the machine arithmetic

used [24].

In general, the sensitivity of the computation of K does

not depend substantially on the desired spectrum P . At

the same time, the eigenstructure (the eigenvalues in par-

ticular) of the matrixA + BK may be  sensitive to perturba-

tions in the data. As a result, the spectrum of the

perturbed closed-loop system matrix A + BK̂ may be far

from P , even if K̂ (the computed value for K) is obtained

by a numerically stable algorithm or even exactly.

Example 8 [25]: Let A = diag(1, . . . , 20) , P =

{−1, . . . ,−20}; let B be formed from the first m columns of

a random 20 × 20 orthogonal matrix. The MATLAB pole

placement code place of the Control System Toolbox Ver-

sion 4.1, which is an implementation of the method given

in [18], was used to compute the feedback gain K . For m

from one to ten the feedback was computed 20 times with

20 random matrices B with orthonormal columns. In Table

1 the geometric means (over the 20 experiments) of the

norm of the computed feedback matrix K̂ and

err = max1≤i≤20 |̂λi − λi| are listed, with λi and the real

parts of the resulting poles ̂λi arranged in increasing order.

For all 400 tests, the pair (A, B) was controllable with a

large distance to uncontrollability. Nevertheless, for m = 1

the method produced an error message “Can’t place eigen-

values there” and, for m = 2, 3, a warning “Pole locations

are more than 10% in error” was displayed. Other pole

placement algorithms have similar difficulties for small m;

see [25] and [26]. The eigenvalues of the closed-loop sys-

tem are highly sensitive, and their computed values may

have positive real parts regardless of how the feedback is

computed. If the data of the problem are slightly per-

turbed, for example due to measurement errors, then the

resulting feedback design may fail completely.

An analysis of the sensitivity of the spectrum and the

eigenvectors of the closed-loop matrix A + BK has been

carried out in [25] and [26]. The major factors in the condi-

tioning of the closed-loop spectrum include the norm of K ,

the distance to uncontrollability, and the condition num-

ber of the closed-loop eigenvector matrix. We have the fol-

lowing possibilities.
● The gain matrix K is sensitive, for example, since the

distance to uncontrollability is small. A small change

in A, B may lead to a large difference between K̂ and

K . In general, this difference results in large errors

for the eigenvalues of the computed closed-loop sys-

tem matrix.
● The norm of the gain matrix K is large. Then the dif-

ference ‖K̂ − K‖, which is of order at least ε‖K‖,

may also be large, and this gain perturbation per-

turbs the eigenvalues of A + BK̂ .
● The eigenvalues of A + BK are sensitive to perturba-

tions for any (or for the particular) choice of K . This

situation occurs, for example, in the case of dead-

beat control of discrete-time systems

x(t + 1) = Ax(t) + Bu(t), where the closed-loop poles

are all equal to zero and contained in the same Jor-

dan block. Here, the perturbations in the eigenvalues

of A + BK may be of order η1/n, where η is the size

of the perturbations in the data.

These three factors are all independent and may appear

alone or in some combination. Moreover, in some cases

the minimum sensitivity of the gain matrix is achieved

exactly when the eigenstructure of the closed-loop system

matrix is maximally sensitive.

Example 9: Consider the pole-placement problem for

the  case n = 2, m = 1 with

A =

[
λ1 1

β λ2

]
, B =

[
0

1

]
.

If the desired poles are λ1, λ2, then K = [−β, 0] yields

C� =

√
1 + 2µ +

√
1 + 4µ4, C A =

√
2 + 4µ2,

C B := µ +

√
1 + µ2,

where µ := |λ1 − λ2|/2. Here the minimum sensitivity of 

K is achieved for λ1 = λ2, which corresponds to maximum

sensitivity of the closed-loop poles, since this is the worst

case in the perturbation theory for eigenvalues [13].

Example 10: In this example based on [24], we study the

overall relative condition number cPA in (10) for comput-

ing K for the controllable pair of matrices

A =




0 3 0 4 0 −7

−9 0 −3 0 7 0

0 1 0 0 0 −1

−4 0 −1 0 4 0

0 3 0 4 0 −7

−9 0 −2 0 8 0




, B =




0

0

1

0

−1

0




.
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m K̂ err

2 2.5 × 106 2.0 × 101

3 1.3 × 106 1.2 × 101

4 2.3 × 105 1.2 × 10−3

5 3.4 × 105 1.6 × 10−6

6 1.0 × 104 3.1 × 10−8

7 4.2 × 103 1.3 × 10−9

8 2.1 × 103 1.3 × 10−10

9 1.1 × 103 1.9 × 10−11

10 8.9 × 102 6.3 × 10−12

Table 1. Norms of the feedback gain matrix
and error in the assigned spectrum for different
numbers m of control inputs.  The pole placement
problem is highly sensitive for small values of m.



We take λ3 = · · · = λ6 = −1 and vary λ1, λ2. In Figure 2 we

show the dependence of cPA on the real part σ and imagi-

nary part ω of λ1 = σ + jω, λ2 = σ − jω . We see that the

computation of K remains well conditioned for large

variations in λ1, λ2. The minimum of the overall condition-

ing is achieved for λ1, λ2 near to −1. Choosing all desired

poles equal to −1 yields the gain matrix K =

[−6.3, −2.3, −0.7, −3.1, 5.3, 5.35] and the relative condi-

tion numbers c� = 1.420, cA = 37.27, and cB = 2.360.

In Figure 3 we show the distribution of the closed-loop

poles (the so-called pseudospectrum) for 2,000 perturba-

tions in A + BK of norm 10−8, computed by the function

ps from Matrix Computation Toolbox [30]. Clearly, the

large sensitivity of the closed-loop poles is not related to

the conditioning of computing K .

So far, we have mentioned only the nonuniqueness of

the choice of K in the multi-input case. There are several

possibilities for using this freedom to optimize a robust-

ness measure: one could minimize ‖K‖ (see [19] and

[31]), or the stability radius of A + BK , or the condition

number of the closed-loop eigenvector matrix as in [18]

(in this case the poles must be pairwise distinct), or the

feedback norm and the eigenvalue sensitivity together

[21]. In general, one should ask the following question:

Does one really have a fixed collection of poles or rather,

does one have a specific region in the complex plane

where one wants the closed-loop poles to be?

If the latter is the case, then not only the minimization

over the freedom in K but also a minimization over the

position of the poles in the given set should be used, lead-

ing to the optimized pole placement problem [29], [32];

see [33] for such an approach.

Problem 2: For given matrices A ∈ Rn,n, B ∈ Rn,m and a

given set P ⊂ C, find a matrix K ∈ Rm,n such that the

eigenvalues of A + BK are contained in P and at the same

time some robustness measure is optimized.

A clear and practical formulation of a general robust-

ness measure, as well as suitable algorithms for determin-

ing the optimal pole assignment, depend on both the

application and the set P . In the stabilization problem, P is

the left-half plane, or, in the case of damped stabilization, a

subset of the left-half plane. If the set P is too small, such

as when it has exactly n points, then optimizing a robust-

ness measure may still yield a  sensitive closed-loop spec-

trum, but if the set P is large, then better results may be

obtained. The general sensitivity analysis for this opti-

mized pole placement problem is an open problem.

Linear-Quadratic Control
In this section we discuss the linear-quadratic control

problem of minimizing (2) subject to (1). Application of the

maximum principle [2] leads to the equivalent problem of

finding an asymptotically stable solution to the two-point

boundary value problem of Euler–Lagrange equations

Ec





ẋ

µ̇

u̇



 = Ac





x

µ

u



 , x(t0) = x0, lim
t→∞

µ(t) = 0, (11)

with the matrix pencil
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Figure 2. Pole assignment conditioning as a function of the

real and imaginary parts of λ1, λ2. The minimum of the

condition number is achieved for λ1, λ2 near −1.
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αEc − βAc := α





I 0 0

0 − I 0

0 0 0



 − β





A 0 B

Q AT S

ST BT R



 (12)

and the Lagrange multiplier (costate) µ.  Furthermore, if R

is well conditioned with respect to inversion, then (11)

may be reduced to the two-point boundary value problem 

[

ẋ

−µ̇

]

= H

[

x

−µ

]

, x(t0) = x0, lim
t→∞

µ(t) = 0, (13)

with the Hamiltonian matrix

H=

[

F G

H −F T

]

:=

[

A − BR−1ST BR−1 BT

Q − S R−1ST −(A − BR−1ST )T

]

.

These different mathematical representations for comput-

ing the optimal control can exhibit different levels of sensi-

tivity.

The classical approach for solving the boundary value

problems (11) and (13) [2], [4], which is implemented in

most design packages, is a two-step procedure. One com-

putes first X , the positive semidefinite (stabilizing) solu-

tion of the associated algebraic Riccati equation

0 = H + X F + F T X − X GX, (14)

and then obtains the optimal stabilizing feedback as

u = −R−1(ST + BT X )x.

Another technique is the deflating subspace approach

of Van Dooren [34]. Suppose (Ec,Ac) has an n-dimensional

deflating subspace associated with eigenvalues in the left-

half plane. Let this subspace be spanned by the columns of

a matrix

U :=





U1

U2

U3



 . (15)

Then, if U1 is invertible, the optimal control is a linear feed-

back of the form u = Kx = U3U−1
1 x . The solution of the

associated Riccati equation (14) is then X = U2U−1
1 ; see

[2] for details. In this case the solution per se of the Riccati

equation is not needed to determine the feedback gain.

By analogy with the discussion of the pole-placement

problem, we first consider the distance to the nearest sin-

gular problem. The requirement that the closed-loop sys-

tem be asymptotically stable leads to the requirement that

the system (1) is stabilizable, that is, rank [A − λ In, B] = n,

for all λ in the closed right-half plane. The distance to

unstabilizability is defined as the minimum of the quantity

‖[δ A, δB]‖, such that the pair (A + δ A, B + δB) is not sta-

bilizable. This distance can be determined by studying the

smallest perturbation so that the matrix pencil (12) no

longer has exactly n finite eigenvalues in the open left-half

complex plane, and hence we have to discuss the pertur-

bation theory of eigenvalues and invariant subspaces of

matrix pencils. Such analysis is  beyond the scope of this

article; see [35] and [36] for details.

It is clear that the three approaches to determining the

feedback gain K may lead to different numerical results

due to the different levels of sensitivity of the subprob-

lems. For example, we see that to use the representation

(13), the invertibility of R is required, and thus it is clear

that the sensitivity of the computation of K = U3U−1
1 is dif-

ferent from that of the procedure of first computing

X = U2U−1
1 and then forming K = −R−1(ST + BT X ). Con-

sider the following example.

Example 11 [32]: Let U be a randomly generated real

orthogonal matrix, let S = 0, and let 

A = U

[

2 0

0 1

]

UT , B = U, R =

[

0.5 0

0 γ

]

,

Q = U

[

6 0

0 3γ

]

UT ,

where γ > 0. The stabilizing solution of the Riccati equa-

tion (14) and the associated feedback are given by

X = U

[

3 0

0 3γ

]

UT , K = −

[

6 0

0 3

]

UT ,

and the resulting closed loop spectrum is {−4,−2}. Since

both K and the spectrum are independent of the value of

γ and since U is orthogonal, we see that the spectral norm

‖K‖2 = 6 is small and hence we do not expect large pertur-

bations in the solution X . The solution procedure based

on the Riccati equation, however, depends on γ .

In Table 2 we compare the accuracy of the results

obtained by the MATLAB function care from the MATLAB

Control Toolbox [14], which is a solver for algebraic Ric-

cati equations and those obtained by computing the deflat-

ing subspace by the MATLAB function qz. The Riccati

solution is used to compute K = −R−1 BT X while, by using

the deflating subspace (15) of αEc − βAc, the feedback K is

γ Method
‖X̂−X‖2

‖X‖2

‖K̂−K‖2

‖K‖2

10−2 care 7.0 × 10−16 1.3 × 10−15

qz 2.4 × 10−16 4.9 × 10−15

10−6 care 3.1 × 10−12 3.2 × 10−9

qz 2.6 × 10−15 4.7 × 10−11

10−9 care 2.1 × 10−8 1.3 × 10−4

qz 1.6 × 10−15 5.9 × 10−9

10−13 care 9.2 × 10−5 3.9 × 101

qz 1.7 × 10−15 5.0 × 10−4

Table 2. Comparison of the Riccati
and deflating subspace approaches. The latter
method exhibits significantly lower sensitivity.



directly obtained as U3U−1
1 . The relative error in X and K

for the two methods as a function of  different values of γ

are listed in Table 2. We see that direct computation of the

optimal control based on  computation of the invariant

subspace (using qz) yields  smaller relative errors than the

solution based on the Riccati equation (using care).

As in the pole-placement problem, we also have to ask

what constitutes a solution to the problem. This solution

could be the feedback gain K = −R−1 BT X = U3U−1
1 or

the closed loop matrix A + BK or its spectrum. Examples

8 and 9 (which can be constructed from optimal control)

show that these problems can have very different levels

of sensitivity.

The discussion demonstrates the importance of ana-

lyzing the sensitivity of the computational problem and

that a different modularization of the computational

problem can lead to significantly different results. We see

that the solution of the linear-quadratic control problem

based on the solution of the algebraic Riccati equation

presents a dangerous detour that may lead to poor

results. However, this detour is not necessary, since the

feedback and the closed-loop matrix may be computed

from the deflating subspace. The situation is worse in the

case of descriptor systems (see [2] and [37]) where the

Riccati equation may be unrelated to the solution of the

optimal control problem.

On the other hand, the Riccati equation approach is

well analyzed, and efficient numerical software for the

solution of algebraic Riccati equation is available, while

the development of structure-preserving solution methods

for the eigenvalue problem (12) has not yet matured [37].

We need to be able to judge when the conditioning of the

Riccati equation is worse than the conditioning of the opti-

mization problem itself. Therefore, we now discuss the

conditioning of the algebraic Riccati equation (14). We

assume that there exists a non-negative-definite solution X

such that F − GX is stable.

Let the coefficient matrices F , G, H in (14) be subject

to perturbations δF , δG, δH, respectively, so that, instead

of the initial data, we have the matrices F̃ = F + δF ,

G̃ = G + δG , and H̃ = H + δH . The aim of perturbation

analysis of (14) is to investigate the variation δX in the

solution X̃ = X + δX due to the perturbations δF , δG, δH.

It is assumed  that the data perturbations preserve the

symmetric structure of the equation, that is, the perturba-

tions δG and δH are symmetric. If ‖δF ‖, ‖δG‖, and ‖δH‖

are sufficiently small, then the perturbed solution X̃ is well

defined [39]. The condition number of the Riccati equation

(14) is defined as (see [38])

KR = lim
α→0

sup

{
‖δX‖

α‖X‖
: ‖δF ‖ ≤ α‖F ‖, ‖δG‖ ≤ α‖G‖,

‖δH‖ ≤ α‖H‖

}
.

For a sufficiently small α we have (to first order)

‖δX‖/‖X‖ ≤ KRα. Let X̂ be the solution of the Riccati equa-

tion computed by a numerical method in finite arithmetic

with rounding unit ε. If the method is backward stable,

then we can bound the relative error in the solution by

‖X̂ − X‖

‖X‖
≤ p(n)KRε,

where p(n) depends polynomially on

n. This bound shows the importance

of the condition number in the accu-

racy estimation of the computed solution.

The determination of the exact condition number KR is a

difficult task. To a first-order approximation, δX can be rep-

resented as

δX = −�−1(δH) − �(δF ) + 
(δG), (16)

where the operators �(Z ) := F T
c Z + Z Fc , �(Z ) :=

�−1(Z T X + X Z ) , and 
(Z ) := �−1(X Z X ) determine the

sensitivity of X with respect to the perturbations in

F , G, H, respectively, and Fc = F − GX . Based on (16),

[38] suggested the approximate condition number

KB :=
‖�−1‖‖H‖ + ‖�‖‖F ‖ + ‖
‖‖G‖

‖X‖
, (17)

where ‖�−1‖, ‖�‖, ‖
‖ are the corresponding induced

operator norms. Note that [40]

∥∥∥�−1
∥∥∥

F
=

1

sep(F T
c ,−Fc)

,

where

sep
(

F T
c ,−Fc

)
:= min

Z �=0

‖F T
c Z + Z Fc‖F

‖Z‖F

.

Figures 4 and 5 show the relative variations ‖δX‖F /‖X‖F in

the solutions of well-conditioned and ill-conditioned Riccati

equations, respectively, for small relative perturbations in

the matrices F and G. While in the case of well-conditioned

Riccati equations the change in the solution is of the order

of the perturbations in the data, we see that in the case of

ill-conditioned Riccati equations the change in the solution

is 10,000 times larger than the perturbations in the data.
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accompany every numerical method.



An important practical issue is how to inexpensively

estimate the quantities in the condition number (17) and

other condition numbers. This estimation is now a routine

matter thanks to the development of efficient matrix norm

estimators, and in particular the LAPACK norm estimator

xLACON, [16], [41], [6, Chap. 15], that computes an esti-

mate of the 1-norm ‖B‖1 given only the ability to evaluate

matrix-vector products Bz and BT y for judiciously chosen

z and y. The use of this estimator for condition estimation

in nonsymmetric eigenproblems and matrix Sylvester

equations was developed in [42] and [43], respectively. For

Riccati equations it is possible to take advantage of the

solution symmetry, thus significantly reducing  the cost of

the estimation.

For the Riccati equation we may use the condition esti-

mator to obtain ‖�−1‖F from the Lyapunov equation

F T
c Z + Z Fc = C . An estimate of ‖�‖1 can be obtained in a

similar manner by solving the Lyapunov equations

F T
c Y + Y Fc = VT X + XV,

FcZ + Z F T
c = VT X + XV

while ‖�‖1 can be estimated by solving the equations

F T
c Y + Y Fc = XVX,

FcZ + Z F T
c = XVX .

As in the case of other condition estimators it is always

possible to construct special examples where the value

produced by xLACON underestimates the true value of the

corresponding norm by an arbitrary factor. However, in

practice severe underestimation happens only in rare cir-

cumstances. To demonstrate the performance of these

estimators consider the following example.

Example 12: Consider a family of Riccati equations, con-

structed as F = T F0T−1 , G = T−T G0T−1 , H = T H0TT ,

where F0 = diag(F1, F1) , G0 = diag(G1, G1) , H0 =

diag(H1, H1) are diagonal matrices with F1 =

diag(−1 × 10−k,−2,−3 × 10k) , H1 = diag(3 × 10−k, 5, 7×

10k), G1 = diag(10−k, 1, 10k), and T is a nonsingular trans-

formation matrix. The solution of the Riccati equation is

then given by X = T−T X1T−1 where X1 is a diagonal

matrix whose entries are determined simply from the

entries of F1, G1, H1. To avoid large rounding errors in con-

structing and inverting T , this matrix is chosen as

T = T2ST1, where T1 and T2 are the elementary reflectors

and S is the  diagonal matrix given by 

T1 = In − 2[1, 1, ..., 1]T [1, 1, ..., 1]/n,

T2 = In − 2[1,−1, 1, ..., (−1)n−1]T [1,−1, 1, ..., (−1)n−1]/n,

S = diag(1, s, s2, ..., sn−1), s > 1.

By varying the scalar s it is possible to modify the condi-

tion number of T with respect to inversion, since

cond2(T) = sn−1. The solution is obtained with

X1 = diag(X2, X2), and X2 = diag(1, 1, 1).
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Figure 4. Perturbed solutions of a well-conditioned Riccati

equation. The magnitude of variations in the solution is of the

same order as the magnitude of perturbations in the data.

Figure 5. Perturbed solutions of an ill-conditioned Riccati

equation. The magnitude of variations in the solution is

much larger than the magnitude of perturbations in the data.
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In Figure 6 we show the ratio of the error in the solution

to estimate (obtained by xLACON) as functions of k and s.

We see that, for large k and s corresponding to ill-condi-

tioned equations, the error estimate may become pes-

simistic. This conservatism is due to the fact that the error

estimate is based on an analysis that is  pessimistic, and

thus a poor estimate of the solution error is usually due

not to the estimator but rather to the estimated error

bound. At the same time, the numerical experiments show

that generally the condition number estimates are always

of the same order as the true condition numbers.

As in the pole-placement problem, where the choice of

poles may represent  extra freedom, we can use the free-

dom in the choice of the weighting matrices Q, S, R to

optimize other performance criteria to solve an optimized

linear-quadratic control problem.

Problem 3 [32]: Given matrices A ∈ Rn,n, B ∈ Rn,m and a

set P ⊂ C, determine cost matrices Q, S, R such that the

closed-loop system obtained from the solution of the asso-

ciated linear quadratic control problem has eigenvalues

that are contained in P , and at the same time some robust-

ness measure is optimized.

In this section we discussed the sensitivity of the linear

quadratic optimal control problem and, in particular, the

solution obtained from the algebraic Riccati equation. In the

next section we discuss the optimal H∞ control problem.

Suboptimal H∞ Control
For the third  problem we consider the optimal H∞ prob-

lem. Since, in general, it is difficult to compute the optimal

controller, a modified optimal H∞ problem is solved.

Instead of looking for the minimum of the norm of the

transfer function, one determines the infimum of the para-

meter γ for which ‖Tzw‖∞ < γ . The optimal H∞ norm of

the transfer function is thus less than or equal to the mini-

mal γ in the modified problem.

The advantage of the modified problem, however, is

that it is a one-parameter optimization problem. Further-

more, under some extra assumptions, it is easy to classify

when, for a given parameter γ > 0, a controller exists such

that ‖Tzw‖∞ < γ . The computation of such an admissible

controller is usually called the suboptimal H∞ problem.

Consider the following assumptions:

A1) The pair (A, B2) is stabilizable and the pair (A, C2) is

detectable, that is, (AT , C T
2

) is stabilizable.

A2) D22 = 0 and both D12 and D21 have full rank.

A3) The matrix  
[

A − jω I B2

C1 D12

]

has full column rank for all

real ω.

A4) The matrix 
[

A − jω I B1

C2 D21

]

has full row rank for all real

ω.

One furthermore needs the symmetric matrices 

RH(γ ) :=

[

DT
11

DT
12

]

[D11 D12] −

[

γ 2 Im1
0

0 0

]

,

R J(γ ) :=

[

D11

D21

]

[

DT
11 DT

21

]

−

[

γ 2 Ip1
0

0 0

]

. (18)

Let γ0 be the largest value of γ for which RH(γ ) or

R J(γ ) is singular. Then the solvability of the suboptimal

problem is classified by the following theorem.

Theorem 2 [5]: Consider system (3), with RH, R J as in

(18). Under assumptions A1–A4, there exists an internally

stabilizing controller such that the transfer function from

w to z satisfies ‖Tzw‖∞ < γ if and only if the following four

conditions hold.

1) γ > γ0.

2) There exists a positive semidefinite solution XH of

the algebraic Riccati equation associated with the

Hamiltonian matrix

H(γ ) =

[

AH(γ ) GH(γ )

HH(γ ) −AT
H(γ )

]

=

[

A 0

−C T
1

C1 −AT

]

−

[

B1 B2

−C T
1

D11 −C T
1

D12

]

× R−1
H (γ )

[

DT
11

C1 BT
1

DT
12

C1 BT
2

]

.

3) There exists a positive semidefinite solution X J of

the algebraic Riccati equation associated with the

Hamiltonian matrix

Figure 6. Accuracy of the error estimate for a family of 

Riccati equations. The accuracy is reduced for ill-conditioned

equations.
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J(γ ) =
[

AJ(γ ) G J(γ )

HJ(γ ) −AT
J (γ )

]

=
[

AT 0

−B1 BT
1 −A

]

−
[

C T
1 C T

2

−B1DT
11 −B1DT

21

]

× R−1
J (γ )

[

D11 BT
1 C1

DT
21 BT

1 C2

]

.

4) γ 2 > ρ(XH X J) , where ρ(·) denotes the spectral

radius.

The optimal solution of the modified H∞ control prob-

lem is obtained by finding the smallest admissible γ such

that conditions 1--4 in Theorem 2 hold. This formulation of

the problem allows one to compute the suboptimal con-

trollers as well.

As before, to assess the sensitivity, we must first decide

which of the problems (and in which mathematical formu-

lation) we wish to solve. Sensitivity analysis of the optimal

H∞ control problem is still an open problem, and in gener-

al it is not clear how to compute this minimum. Also, for

the suboptimal H∞ control problem the sensitivity is not

completely understood, although progress has been made

in recent years [44], [45].

It should be clear by now that the sensitivity of differ-

ent formulations may differ significantly. It is obvious that

many factors contribute to the distance from this problem

to the nearest problem that does not satisfy assumptions

A1--A4, including the distance to the nearest unstabiliz-

able problem. The current situation is even more compli-

cated, since the method involves a nonlinear optimization

procedure, and hence the problem of computing the sub-

optimal controller may be singular or close to singular for

different values of γ .

The part of the sensitivity analysis that is most com-

plete [46] is that of the suboptimal H∞ control problem,

where for given matrices A, B1, B2, C1, C2, D11, D12, D21,

D22 = 0 and for given γ > γmodopt the sensitivity of the

resulting controller (4) under perturbations δ A,

δB1, . . . , δD21, δD22 = 0, δγ in the data is studied. These

formulas are not presented here, but it should be obvious

that the conditioning of the two Riccati equations for XH and

X J , as well as the distance to singularity of the matrices RH ,

R J , plays a major role. One of the major difficulties is the ill-

conditioning of one or both Riccati equations near the sub-

optimal γ . In Figure 7 we show the conditioning of the Riccati

equations involving XH and X J for a sixth-order system.

With γ going to γ0 = 10.1806399112943, the sensitivity of the

second Riccati equation tends to infinity.  A a consequence,

most optimization methods are not able to determine the

optimal controller.

There are many more numerical difficulties in the com-

putation of the optimal or suboptimal H∞ controller.

These difficulties and their solution are beyond the scope

of this article and is work in progress [44].

Example 13 [44]: Consider the system





A B1 B2

C1 D11 D12

C2 D21 0



 =













−1 0 0 0 1

0 −1 0 0 1

1 0 1
2

0 0

0 1 0 1
2

1

1 1 0 1 0













.

Then (19) becomes

RH(γ ) = R J(γ ) =





1
4

− γ 2 0 0

0 1
4

− γ 2 1
2

0 1
2

1



 .

The positive semidefinite Riccati solution corresponding

to J(γ ) is X J = 0 and the positive semidefinite Riccati solu-

tion corresponding to H(γ ) is

XH =
3

(1 − 1
4
γ −2)4

×







1

2
+

1

3(1 +
√

5)

1

1 +
√

5
−

1

2
1

1 +
√

5
−

1

2

1

6
−

1

(1 +
√

5)(2 +
√

5)






.

As γ approaches its minimal value γmodopt = 1/2 for the

suboptimal H∞ problem, the Riccati solution XH tends to

infinity, RH and R J become singular, and the Hamiltonian

matrix H(γ ) becomes ill-defined. The fourth condition in

Theorem 2 never fails, because ρ(X J XH) = 0 for all

γ > γmodopt.

This example demonstrates that the conditioning of the

suboptimal H∞ control problem can deteriorate near the
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Figure 7. Conditioning of the solutions of the Riccati equa-

tions as a function of γ . The condition number of the second

Riccati equation tends to infinity as γ approaches γ0.
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optimum, and thus an iterative method that approaches

γmodopt must be terminated before the optimum is reached.

Alternative formulations of the suboptimal H∞ control

problem, where these difficulties do not occur, are current-

ly being investigated [44]. In these formulations, Riccati

equations and the inversion of RH, R J are avoided. 

Conclusion and Challenges
We have discussed the sensitivity of certain problems of

linear control theory, including pole assignment, full state-

feedback linear-quadratic control, and H∞ control. We have

demonstrated that the mathematical formulation and the

splitting of the problem into subproblems are essential fac-

tors in the conditioning of these problems. We have shown

that standard approaches implemented in numerical tool-

boxes, which present widely accepted approaches in

numerical control, may face problems due to ill-condition-

ing. Some of these problems can be avoided by reformu-

lating the problem, but several open problems remain.

Another survey article would be required to discuss all

the recent developments in perturbation and error esti-

mates; see the working notes of the SLICOT library

[17] http://www.win.tue.nl/niconet/NIC2/slicot.html and

the recent monograph [7]. Further analysis and software is

needed, in particular, for the following important problems

in control theory:
● solution of general quadratic and fractional-affine

equations
● solution of structured eigenvalue problems arising in

control
● computation of the matrices of the optimal and sub-

optimal controller for some H∞ control problems
● computation of the distance to uncontrollability

(unobservability)
● computation or bounding of the distance  to unsta-

bilizability (undetectability)
● investigation and computation of the sensitivity of

general classes of H∞ control problems.

To assess the accuracy of calculations and to trust

numerical results, such condition and accuracy estimates

should accompany computational procedures and must be

included in the corresponding computer codes. Users

must be aware of possible difficulties accompanying the

computational process and know how to avoid them.

These issues should also become an essential part of the

curriculum for scientists and engineers in learning how to

use and develop modern computational software.
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