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Abstract

X-ray microcomputed tomography (X-ray μ-CT) is a rapidly advancing technology that has 

been successfully employed to study flow phenomena in porous media. It offers an alter-

native approach to core scale experiments for the estimation of traditional petrophysical 

properties such as porosity and single-phase flow permeability. It can also be used to inves-

tigate properties that control multiphase flow such as rock wettability or mineral topology. 

In most applications, analyses are performed on segmented images obtained employing a 

specific processing pipeline on the greyscale images. The workflow leading to a segmented 

image is not straightforward or unique and, for most of the properties of interest, a ground 

truth is not available. For this reason, it is crucial to understand how image processing 

choices control properties estimation. In this work, we assess the sensitivity of porosity, 

permeability, specific surface area, in situ contact angle measurements, fluid–fluid interfa-

cial curvature measurements and mineral composition to processing choices. We compare 

the results obtained upon the employment of two processing pipelines: non-local means 

filtering followed by watershed segmentation; segmentation by a manually trained random 

forest classifier. Single-phase flow permeability, in  situ contact angle measurements and 

mineral-to-pore total surface area are the most sensitive properties, as a result of the sen-

sitivity to processing of the phase boundary identification task. Porosity, interfacial fluid–

fluid curvature and specific mineral descriptors are robust to processing. The sensitivity of 

the property estimates increases with the complexity of its definition and its relationship to 

boundary shape.
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1 Introduction

The investigation of multiphase flow phenomena in permeable media is of key interest in 

several research fields including hydrocarbon recovery (Blunt 2017), carbon sequestration 

(Krevor et  al. 2015), catalyst design (Wu et  al. 2005; Lee et  al. 2008), fuel cells (Debe 

2012; Andersson et al. 2016) and battery efficiency improvement (Newman 1995; Sikha 

et al. 2004). There has long been interest in mechanisms underlying physical and chemical 

processes happening at the smallest characteristic length scales controlling flow and trans-

port, the pores and fluid–solid interfacial areas within a system. However, their understand-

ing has been limited by difficulties in observing key fluid and transport properties at the 

small scales of interest, within the opaque porous media.

In this context, the development of laboratory-based X-ray microcomputed tomography 

(X-ray μ-CT) has led to rapid advances (Wildenschild and Sheppard 2013). In recent years, 

X-ray μ-CT has been used in the characterization of rock and fluid flow properties (Blunt 

et al. 2013; Bultreys et al. 2016a, b). This has extended beyond estimates of simple rock 

and single-phase flow properties (pore volume, single-phase flow permeability) to include 

rock mineral composition (Lai et al. 2015), capillary pressure from fluid–fluid interfacial 

curvature (Armstrong et al. 2012; Lin et al. 2018), and the wetting state from fluid interfa-

cial curvature and in situ contact angle measurements (AlRatrout et al. 2018; Andrew et al. 

2014a; Scanziani et al. 2017; AlRatrout et al. 2017).

Imaging and image processing are central to the quality of these observations (Schlüter 

et al. 2014; Iassonov et al. 2009). Rocks are imaged while saturated or partially saturated 

by one or more fluids, e.g. air, water, oil, CO
2
 . The 3D image is a map of greyscale val-

ues proportional to a linear attenuation coefficient codified as a floating point or an inte-

ger number in 16 bits, where the constitutive element is a voxel (three-dimensional pixel). 

Quantitative information is derived from the image by assigning a phase to each voxel 

through a classification procedure called image segmentation. The segmentation procedure 

is often preceded by filtering. The workflow consisting of artefact removal, reconstruc-

tion, filtering and segmentation constitutes the image processing task. This is thus the task 

which defines and builds the 3D dataset on which measurements are performed and simu-

lations are run. Many alternatives are available for any of the steps constituting the image 

processing task. The ideal way to select the best processing pipeline consists in testing 

different variations on synthetic images of the same kind as the one image of interest (Berg 

et al. 2018; Andrew 2018).

The sensitivities of the measurement to the image processing depend on both the pro-

cessing pipeline used and the observation of interest. The sensitivities have been evaluated 

for porosity, single-phase flow permeability and fluid–fluid interfacial curvature (Saxena 

et  al. 2017; Leu et  al. 2014; Armstrong et  al. 2012). A leading challenge in evaluating 

image processing is the acquisition of an independent ground truth measurement of the 

property of interest for benchmarking. Laboratory measured porosity and permeability have 

been used. However, it is challenging to reconcile porosity estimates from μ-CT images 

with those that are experimentally determined by standard laboratory methods. There are 

a number of causes for this including the presence of sub-resolution porosity especially 

in carbonates or clay minerals (Sok et al. 2010; Andrew et al. 2013; Soulaine et al. 2016). 

Leu et al. (2014) have also found it difficult to match at the same time porosity and perme-

ability laboratory measurements with estimates from μ-CT images. In general, transport 

property estimates have also been found sensitive to processing choices (Leu et al. 2014; 

Saxena et al. 2017). The challenge is accentuated for the observation of multiphase flow 
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characteristics for which there are few or no practical independent measurements available 

other than X-ray CT. As a result, it is key to understand these sensitivities to imaging, pro-

cessing and analysis protocols.

The aim of this work is to investigate the role of the image processing pipeline choice 

for the measurement of multiphase flow properties beyond simple binary segmentation of 

the rock medium and estimation of single-phase flow properties. Thus, we evaluate the 

sensitivity of porosity and single-phase flow permeability to image processing as a bench-

mark. We subsequently focus our evaluation on specific surface area (interfacial area 

between the pore space and the rock matrix, divided by rock matrix volume), local three-

phase contact angles, mean fluid–fluid interfacial curvature, and mineral volume fraction 

on five rock samples with distinct pore structures. The analysis of most of these properties 

requires multiclass segmentation, more challenging than standard binary segmentation. We 

compared the results obtained from the employment of two processing pipelines. The more 

widely used pipeline consisted of the sequential use of non-local means filtering (Buades 

et al. 2005) and watershed segmentation (Beucher and Meyer 1993). The second pipeline 

consisted in a machine learning based segmentation tool that eliminates the need of a filter-

ing step, Trainable WEKA Segmentation 3D (TWS) (Arganda-Carreras et al. 2017).

2  Data and Methods

2.1  Datasets

Five rock samples were considered in this study: Bentheimer sandstone, Berea sandstone, 

Ketton limestone, Edwards limestone and Estaillades limestone. For reference, previously 

measured laboratory mineral compositions are reported in Table 1 from Lai et al. (2015) 

and Peksa et al. (2015). We imaged five cylindrical rock samples with diameters of 4 mm 

with an FEI Heliscan microCT. The source voltage and the tube current were 75 kV and 

95 mA , respectively. The attenuated radiation was measured with a flat panel detector of 

2800 × 2800 pixels. The 2D raw images acquired through a helical trajectory were then 

reconstructed employing an iterative back projection algorithm, provided by the instrument 

Table 1  Example mineral 

composition (weight percentage) 

from literature XRD/XRF 

measurements of the five rock 

lithologies considered (Lai 

et al. 2015; Peksa et al. 2015)

Bentheimer Berea Ketton Edwards Estaillades

Dol 0.26 0.2–0.4 0 45.4 0

Ank 0 0.7–1.3 0 0 0

Cal 0.15 1.3–2.9 98.3 47 99.6

Qtz 91.7 70.3–73.1 1.7 7.6 0.4

Or 4.86 13.1–12.6 0 0 0

Ab 0 1.0 0 0 0

An 0 1.5–1.7 0 0 0

Kln 2.5 1.6–2.1 0 0 0

Ill 0 1.7–2.4 0 0 0

Sme 0 1.9–2.3 0 0 0

Chm 0 0.7–1.0 0 0 0

Clc 0 0.3–0.5 0 0 0

Py 0.03 1.7–2.6 0 0 0
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manufacturer. The voxel size obtained was 2.5 μm . The analysis of the role of image pro-

cessing in estimating rock properties was performed on five subvolumes ( 400
3 voxels, i.e. 

1 mm
3 ) extracted from the tomograms of the five rocks. The analysis of the sensitivity of 

mineral topological characterization was only conducted on a subvolume ( 5003 voxels, i.e. 

1.95 mm3 ) extracted from the Berea sandstone because it was the only sample with sig-

nificant mineralogical heterogeneity. The analysis was conducted on subvolumes due to the 

computational requirements of Trainable WEKA Segmentation 3D (TWS).

In order to evaluate the sensitivity of the estimates of contact angle and interfacial 

fluid–fluid curvature, a publicly available image of a trapped decane ganglion from Singh 

and Blunt (2018) was considered. The image was acquired during a drainage-waterflooding 

experiment in a water-wet Ketton limestone sample. Image voxel size was 2 μm . A detailed 

description of the dataset and the protocol of the experiment from which it was obtained is 

provided in Scanziani et al. (2017).

2.2  Image Processing Methods

2.2.1  Image Processing Pipeline 1: Non‑local Means Filtering and Watershed 

Segmentation

The first image processing pipeline used makes use of a filter and segmentation combi-

nation that has been widely used in studies of porous rocks. Filtering options typically 

applied in imaging permeable media are reviewed in Kaestner et al. (2008). While com-

putationally cheap filters such as the median and Gaussian filters typically exhibit good 

performance in reducing white noise and greyscale value outliers, they weaken the contrast 

in the edges between phases. In order to preserve these edges, more sophisticated filter-

ing algorithms have been developed, such as anisotropic diffusion or Bayesian information 

theoretic techniques (Wildenschild and Sheppard 2013). Among the many alternatives, the 

non-local means filtering algorithm has proven to be able to suppress image noise with-

out significantly altering the information content of phase boundaries of an image (Buades 

et  al. 2005; Schlüter et  al. 2014). As a consequence, non-local means algorithms have 

been the preferred filtering choice in many studies in the context of digital rock technol-

ogy (Singh et al. 2016; Alhammadi et al. 2017; Scanziani et al. 2018). For this reason, a 

non-local means algorithm was chosen as the filtering option of interest in this study. The 

implementation available in Thermofisher Avizo Fire 9.5 was employed, choosing a simi-

larity value of 0.3. This value represents a weighting factor assigned to each voxel inside 

the search window during the smoothing procedure. The larger the similarity value, the 

more the image will be smoothed. A value of 0.3 was chosen to avoid oversmoothing, and 

the results of the filtering process were evaluated by visual inspection. In general terms, the 

higher the signal-to-noise ratio in the original greyscale image, the lower is the value of the 

smoothing extent to be chosen.

A review of some of the most common segmentation algorithms can be found in Ias-

sonov et al. (2009). In the past, algorithms based on a global thresholding principle, either 

manual or automatic, were the most widely used segmentation approaches. Iassonov et al. 

(2009) have found their performances inferior to algorithms accounting for spatially vary-

ing image information. Analogously, Schlüter et al. (2014) identified Bayesian Markov ran-

dom field segmentation, watershed segmentation and converging active contour segmenta-

tion to perform better in multiclass classification. As a consequence, in recent years, the 

favoured algorithms are those involving the use of spatially specific statistics such as the 
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gradient in voxel greyscale intensity. However, most of these algorithms are biased by the 

requirement of subjective user inputs (Wildenschild and Sheppard 2013). Leu et al. (2014) 

quantified the sensitivity to the user choice of input parameters of three segmentation algo-

rithms, i.e. global thresholding, hysteresis thresholding and watershed. The use of the latter 

led to the most robust estimates of porosity, permeability and capillary pressure values in 

Berea sandstone.

Considering the positive results obtained from the employment of watershed segmen-

tation and the diffusion of this segmentation algorithm in the community (Andrew et al. 

2014b; Lin et  al. 2018; Alhosani et  al. 2019), we chose to employ the watershed algo-

rithm to segment images filtered by non-local means filtering. The watershed algorithm 

transforms the greyscale values of each pixel or voxel in a greyscale image into a mag-

nitude, sometimes referred to as a height value (Beucher and Meyer 1993). Boundaries 

and seeds of the phases to segment are identified as the regions where the gradient is at a 

maximum or a minimum. The labels for the phases then expand from previously identi-

fied seeds in a way analogous to water filling crevices in a flooding process. In this study, 

watershed segmentation was performed using Thermofisher Avizo Fire 9.5 software. In the 

chosen implementation, the user selects the number of the phases to segment, the gradient 

magnitude defining phase boundaries and the threshold values that define seeds for each 

of the phases selected. These choices are not automated and depend on user preference. 

Therefore, different segmented images would result from different user choices in selecting 

watershed algorithm’s parameters.

2.2.2  Image Processing Pipeline 2: Machine Learning Based Segmentation

Recently, the research community has shown interest in testing machine learning algo-

rithms to segment porous media CT images. Cortina-Januchs et al. (2011) employed three 

unsupervised clustering algorithms, K-means, fuzzy-C-means and self-organizing maps, to 

build the feature vector used to train an artificial neural network, which was eventually 

used to detect solid soil and pore space in CT images. Chauhan et  al. (2016b) extended 

that approach to 3D greyscale values. Moreover, they compared the performances of seven 

machine learning algorithms (either unsupervised and supervised) to segment four μ-CT 

imaged samples, concluding that the use of K-means to guide the construction of the fea-

ture vector dataset for least-square support vector machine led to the best results (Chau-

han et  al. 2016a). Berg et  al. (2018) employed Trainable WEKA Segmentation (TWS) 

(Arganda-Carreras et  al. 2017) and no filtering to segment an artificially generated 2D 

orthogonal image of a Bentheimer sandstone sample. This processing pipeline was found 

to be more accurate and more robust to image noise and artefacts when compared with 

more traditional pipelines involving the sequential use of a filtering and a segmentation 

algorithm. Results shown in Andrew (2018) are in agreement with those of Berg et  al. 

(2018).

In this study, the Trainable WEKA Segmentation 3D (TWS) plugin of the open-source 

image processing software ImageJ, available in its Fiji distribution (Schindelin et al. 2012), 

was employed. The underlying concept to the method consists in the generation of mul-

tiple modalities of the original image by applying nonlinear filters. This step is followed 

by a classification problem based on user generated training data, which are employed to 

train one of the available classifier algorithms. A fast random forest classifier (Supek 2008) 

was chosen among the pool of options available; this a recent more efficient variation of 

random decision forest algorithms (Ho 1994; Breiman 2001). The training of the classifier 
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is performed making use of the data manually labelled by the user, on the basis of the 

features selected. The first step of the process is the selection of the phases to segment. 

The user then manually labels data, assigning selected regions of the images to each of the 

phases chosen. The features of the input image are then computed on the different modali-

ties of the image generated by applying the selected nonlinear filters and feature vectors are 

extracted to train the classifier. In this work, the features selected for the training and the 

classification tasks were the mean and variance of each voxel. Both of these features are 

defined over a cubic region defined in the neighbourhood of each voxel, within a distance, 

ranging from 1 to 8 voxels from the position of the central voxel considered. For each fea-

ture, either mean or variance, and for each length value, a new image is created, where each 

voxel value corresponded to the mean (or variance) calculated over the region of the image 

defined by the length considered. Since machine learning based segmentation has proven 

to be robust to image noise (Berg et al. 2018; Andrew 2018), no filtering was used prior to 

segmentation.

2.3  Estimation of Rock Properties

Porosity, specific surface area and single-phase flow permeability were computed and com-

pared for all the images considered. Porosity was computed as the ratio between the pore 

space and the bulk volume of the image. Specific surface area was defined as the interfacial 

area between the pore space and the rock matrix, divided by rock matrix volume. All the 

volume and area measurements were performed by employing the label analysis toolbox 

available in Thermofisher Avizo 9.5. Single-phase flow permeability was computed run-

ning direct numerical simulations through the connected pore space. A pressure drop of 

1 Pa was imposed, considering two opposite faces of the cubic sample as inlet and out-

let boundaries, respectively. A solver available in openFOAM was employed (Raeini et al. 

2012).

To compare results computed from the images segmented using the two segmentation 

pipelines, we used the percentage difference between two estimates of the same property 

in a dataset,

where x
W

 is the estimate of the pore space property x obtained by employing the watershed 

segmentation, and x
TWS

 is the estimate made by employing Trainable WEKA Segmenta-

tion 3D.

2.4  In Situ Contact Angle and Fluid–Fluid Interfacial Curvature Measurements

The greyscale image of the trapped decane ganglion in a Ketton limestone pore was seg-

mented with the processing pipelines 1 and 2. In order to perform contact angle measure-

ments, the three-phase contact line between decane, brine and rock walls was identified by 

employing the Thermofisher Avizo Fire 9.5 label interface toolbox. We then employed the 

algorithm proposed by Scanziani et al. (2017) to automatically measure the contact angles 

formed by the two fluids sitting on the rock matrix, along that contact line. The parameters 

chosen in the algorithm were the same for both the segmented images analysed.

(1)d
x
=

x
W
− x

TWS

x
W

× 100
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To compute fluid–fluid interfacial mean curvature, the interfacial area between the 

two fluids was identified. In order to exclude from our analysis values of curvature 

measurements performed in regions of the fluid–fluid interface close to rock walls, we 

followed the approach suggested in Singh et al. (2016). A dilation of three voxels was 

performed on the rock matrix label. The dilated rock label image was used to mask 

the three-phase segmented image, to obtain a third image where only fluid labels were 

present. This final image was used to reconstruct the fluid–fluid interface surface by 

means of a marching cube algorithm implemented in Thermofisher Avizo Fire 9.5. The 

reconstructed surface was smoothed (smoothing extent parameter equal to 3) to correct 

for the effect of voxelization of the actual interface shape. Local mean curvature meas-

urements were eventually performed.

2.5  Mineral Topological Characterization

In order to choose the minerals to be segmented in the subsample of the Berea sand-

stone image obtained by X-ray μ-CT, scanning electron microscopy (SEM) was 

employed to aid mineral identification. A second specimen from the same core of the 

one imaged was used to create the SEM imagery. SEM operated in back-scattered elec-

tron (BEC) mode coupled with energy-dispersive X-ray spectroscopy (EDS) allowed 

for the identification of the main mineral groups present.

The 5003 voxels greyscale image was thus processed with the two pipelines assessed 

in this work. SEM + EDS was employed as a qualitative tool to aid the selection of 

the mineral phases to segment in the X-ray μ-CT image. Through SEM + EDS the 

main mineral groups identified were: clay minerals, quartz, feldspar, calcite cementa-

tion and non-specified minerals embedding heavy metal compounds. On the basis of 

SEM + EDS results and previous work by Lai et al. (2015), we chose to segment the 

CT image into six phases: pore space, clay minerals, quartz, feldspar group minerals, 

calcite cementation and others highly attenuating minerals. On the other hand, a closer 

look to the CT greyscale image, revealed that only five of the six phases initially cho-

sen showed clear differences in their average greyscale value. In particular, the grey-

scale values belonging to the grains reconcilable to quartz and feldspar minerals were 

very similar. Therefore, it was chosen to reduce the number of the phases to segment 

to five: pore space, clay minerals, quartz–feldspar minerals, calcite cementation and 

other highly attenuating minerals. Finally, two segmented images were obtained, one 

for each segmentation algorithm employed.

From the two segmented images, volume as well as mineral-to-pore surface areas 

was computed. The volume fractions were computed as the ratio between the total 

volume of each phase to the total bulk volume. Mineral-to-pore surface areas meas-

ured the total surface area that a certain mineral group shared with the pore space. 

The interfaces between each mineral phase and the pore space were thus identified and 

their area was computed by employing Thermofisher Avizo Fire 9.5 software. Finally, 

mineral-to-pore surface area fractions were computed as the ratio between each min-

eral-to-pore surface area and the total surface area shared by the pore space and the 

entire rock matrix. All the area and volume measurements were performed with the 

label analysis package available in Thermofisher Avizo Fire 9.5.
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3  Results and Discussion

3.1  Sensitivity of Porosity, Specific Surface Area and Single‑Phase Flow 

Permeability

Figure  1 shows the greyscale cross sections of the datasets considered for this analysis. 

For each rock, the figure also shows the differential images obtained by subtracting to each 

other the segmented images obtained with the two processing pipelines. Misclassified vox-

els are mainly concentrated in the boundary regions between the pore space and the rock 

matrix.

Figure 2 reports the estimates of porosity, specific surface area and single-phase flow 

permeability, while Table 2 shows the relative differences for each property and each sam-

ple. In all samples but Berea sandstone, porosity estimates show smaller differences com-

pared to other properties. The smallest difference in porosity is observed for Bentheimer 

sandstone, while the largest is observed for the Berea sandstone. Trainable WEKA Seg-

mentation 3D systematically overestimates the fraction of rock matrix compared to the 

watershed segmentation in all samples but Estaillades limestone.

Bentheimer sandstone shows the least variation in the estimates for specific surface area 

and single-phase flow permeability. In contrast, the largest discrepancy in specific surface 

area is observed for Edwards limestone, while Berea sandstone shows the largest difference 

for estimates of single-phase flow permeability. This is consistent with the observed sensi-

tivity for porosity. Our observations that Berea sandstone porosity and single-phase flow 

permeability estimates are very sensitive to image processing are consistent with observa-

tions in Leu et al. (2014).

The relative differences are larger for single-phase flow permeability than porosity and 

specific surface area. In attempt to identify the sources of such large sensitivities for esti-

mates of permeability, a maximum ball extraction (Raeini et al. 2017) was performed on 

each segmented image, and pore and throat radii distributions are obtained. Although the 

shape of the distributions are similar, small shifts towards larger values of pore and throat 

radii distributions are observed when permeability increased. Single-phase flow permeabil-

ity estimates are found sensitive to these changes. These changes may thus strongly affect 

the overall connectivity of the pore space. For reference, Fig. 3 reports the pore and throat 

radii distributions for the two lithologies exhibiting the largest variation in single-phase 

flow permeability estimates, i.e. Berea sandstone and Edwards limestone.

The observation that single-phase flow permeability relative differences are larger than 

those observed for porosity and surface area suggests that the sensitivity of an estimate 

to the image processing pipeline increases with the complexity of the interpretation. An 

analogous conclusion is suggested by the results obtained from the computation of contact 

angle and fluid–fluid interfacial curvature measurements.

3.2  Sensitivity of In Situ Contact Angle and Fluid–Fluid Interfacial Curvature 

Measurements

The three-phase contact lines identified in the two segmented images and their difference 

are shown in Fig. 4. There are significant differences between the segmentation pipelines, 

and contact angle measurements are unsurprisingly dissimilar. The mean and standard 

deviation of the measurements obtained in the two cases are reported in Table 3, while the 
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relative frequency distributions for the contact angle measurements are reported in Fig. 5. 

The difference in the mean and the standard deviation are 5.43° and 3.46°, respectively. 

Moreover, the large difference in the estimated skewness parameter for the two distribu-

tions (Table  3) confirms that the two distributions are distinct. The mean and standard 

Fig. 1  Cross sections of three of the five samples considered for the analysis of pore space properties sensi-

tivity to image processing. The voxel size is 2.5 μm . The rocks are, respectively: a Bentheimer sandstone; b 

Estaillades limestone; c Edwards limestone and the differential images obtained by subtracting the respec-

tive segmented images with the two processing pipelines considered
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Fig. 2  Pore space proper-

ties estimates for the five rock 

samples considered: a Porosity 

( � [−] ); b Specific surface area 

( A
s
[1∕mm] ); c Single-phase 

flow permeability ( K [mD] , 

1 mD = 9.869233 × 10
−16

m
2 ). 

Estimates are shown for both the 

segmentation approaches under 

investigation. The largest differ-

ence in estimates is observed for 

single-phase flow permeability
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Table 2  Percentage difference 

( d
x
 ) of the estimates of porosity 

( � ) specific surface area 

( A
s
 ) and single-phase flow 

permeability (K) obtained from 

images segmented with the two 

processing pipelines considered

d�[%] d
A

s
[%] d

K
[%]

Bentheimer 2.638 4.666 14.473

Berea 25.555 16.497 82.891

Ketton 6.516 − 10.799 34.348

Edwards 9.500 − 26.158 68.422

Estaillades − 14.847 − 14.847 − 58.876

Fig. 3  Comparison of the pore and throat radii distributions for Berea sandstone and Edwards limestone. 

For these samples, Trainable WEKA Segmentation 3D (TWS) segmentation leads to pore and throat radii 

distributions shifted towards smaller values. These changes explain the larger single-phase flow permeabil-

ity estimates obtained from watershed segmented images
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deviation of the contact angle distribution obtained for the TWS segmented image appear 

to be influenced by a few very large contact angle observations. The first possible reason 

for these observations could be that the three-phase contact line identified in the TWS seg-

mented image is less smooth than the one identified in the watershed segmented image. 

The second possibility is the presence of artefacts caused by misidentification of the cor-

rect angle to measure, i.e. the algorithm measured the contact angle on the side of the non-

wetting phase rather than the wetting one. The third, pinning (if present) of the oil–brine 

interface in the roughness of the rock, which was smoothed more by one segmentation 

algorithm than the other.

The measurements we obtained in the watershed segmented image differ from those 

(Scanziani et al. 2017) obtained on the very same dataset, because of the different similar-

ity value chosen for the non-local means filtering and the subjective choice of phase thresh-

olds in applying watershed segmentation. Measurements obtained in the TWS segmented 

image further overestimate the mean contact angle. The mean values obtained in this study 

Fig. 4  Three-phase contact lines were identified in segmented images to measure contact angles: a Volume 

rendering of the segmented trapped decane ganglion; b Contact lines identified in the image processed by 

non-local means filtering and watershed segmentation; c Contact line in the image processed by Trainable 

WEKA Segmentation 3D (TWS); d Differential image of the two contact lines
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Fig. 5  Relative frequency distributions associated with the measurements of contact angle � [◦] and fluid–

fluid interfacial mean curvature � [1∕μm] from the same greyscale image segmented with watershed seg-

mentation and Trainable WEKA Segmentation 3D (TWS)

Table 3  Results of contact angle 

( � ) and fluid–fluid interfacial 

curvature ( � ) measurement, 

computed on the same image 

segmented through two different 

image processing pipelines

Watershed TWS d
x
[%]

Mean � [◦] 41.873 47.301 − 12.964

St.Dev � [◦] 15.299 18.762 − 22.638

Skewness � [◦] 0.397 0.517 − 30.176

Mean � [1∕μm] 0.455 0.494 − 8.617

SD � [1∕μm] 1.178 1.335 − 13.301

Skewness � [1∕μm] 7.595 7.913 − 4.196
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as well as those observed in Scanziani et al. (2017) are consistent with those of a water-wet 

rock.

On the other hand, the differences observed for the measurements of fluid–fluid inter-

facial curvature are much smaller. The difference in the mean value is 0.3 μm
−1 , while the 

difference in standard deviation is 0.15 μm−1 . The relative frequency distributions associ-

ated with local mean curvature measurements (reported in Fig. 5) show agreement, as con-

firmed by the very small difference in their skewness parameter (Table 3). Their shapes are 

similar, with a similar tailing of the distributions with increasing mean curvature.

The outcome of this analysis suggests that interfacial curvature measurement is less 

sensitive to the image processing workflow than the meausurement of contact angle. As 

expected, this is a result of fluid–fluid interfaces being smooth surfaces defined over a 

larger number of voxels as opposed to the three-phase contact lines. On the other hand, 

contact angles are measured close to the point where three different phases meet, so that 

partial volume effects and resolution limits are more important (Leu et  al. 2014; Sou-

laine et  al. 2016; Saxena et  al. 2017). Moreover, additional complications in performing 

the measurement are added by the rock rough edges, which are the regions of an image 

exhibiting the largest variability when segmented, due to various levels of resolvable and 

sub-resolution roughness (AlRatrout et  al. 2018). By comparing the results obtained for 

contact angle measurements and fluid–fluid interfacial curvature, we observe again that the 

sensitivity to the choice of the image processing pipeline increases with the complexity in 

the definition and interpretation of the quantity computed from the images.

3.3  Sensitivity of the Rock Mineralogy Descriptors

The Berea sandstone tomogram was segmented into five phases: pore space, clay minerals, 

quartz–feldspar minerals, calcite cementation, others highly attenuating minerals (Fig. 6). 

Figure 6 also shows that the segmented clay phase can include regions of the rock matrix 

that present sub-resolution porosity, which assume a greyscale intensity similar to that of 

clay minerals due to partial volume effect. The volume renderings of each phase segmented 

are shown in Fig. 7. They visually demonstrate the complexity of the topology of chemical 

heterogeneities in natural porous media.

Table 4 reports the results obtained for the computation of the volume fraction of each 

phase. The sensitivity of these quantities are small compared to what was observed for 

other quantities previously analysed in this study. Analogous results are observed for min-

eral-to-pore surface area fractions (Table 5). On the other hand, a substantial difference is 

observed in the mineral-to-pore surface area estimates (Table 6), with much larger inter-

faces between clay, quartz–feldspar, calcite cementation and the pore space in the image 

segmented by Trainable WEKA Segmentation 3D. This suggests that the interfaces iden-

tified by Trainable WEKA Segmentation 3D are much rougher than those identified by 

watershed algorithm. Such a large variation of the total exposed surface area may have 

significant implications in the context of reactive transport modelling.

This finding suggests once more that the sensitivity to image processing is larger when 

the property of interest is more complex to derive. The sensitivity to image processing 

seems to become more and more relevant when the definition of the property of interest is 

more closely related to phase boundary shape. Indeed, the same has already been observed 

for single-phase flow permeability, where boundary conditions and geometry contribute to 

the description of the interaction between solid walls and the fluid; the same has also been 
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observed for contact angle measurement, which definition relies of the identification of the 

contact line between three different phases.

3.4  Wider Implications

A broad assessment of the results suggests that the sensitivity of the properties of inter-

est increases with the complexity of the interpretation of the observation and also with the 

complexity of the rock structure. Porosity and mineral volume fractions were the properties 

affected the least by the choice of the processing pipeline. We hypothesize that this is a conse-

quence of their definitions: both definitions rely on calculations performed over larger regions 

Fig. 6  Orthogonal slices of the 5003 voxels CT image of a Berea sandstone. Watershed segmentation was 

performed on the non-local means filtered image, while  Trainable WEKA Segmentation 3D (TWS) was 

employed on the greyscale unfiltered one
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Fig. 7  Volume renderings of the 5003 voxels CT image of a Berea sandstone: greyscale images and seg-

mented phases upon employment of non-local means filtering and watershed segmentation

Table 4  Volume fraction of each 

phase in the Berea sandstone 

images segmented employing the 

two image processing pipelines 

under investigation. The volume 

fraction was defined as the ratio 

between the volume of each 

phase to the total volume in the 

image

Watershed [−] TWS [−] d
x
[%]

Pore 0.079 0.081 − 3.136

Clay 0.038 0.039 − 4.546

Quartz–Feldspar 0.771 0.746 3.215

Calcite 0.109 0.123 − 13.397

Others 0.004 0.010 − 140.538
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of the images. This reduces the relative importance of phase boundary identification, a sensi-

tive task of image processing. For similar reasons, if one considers a porous medium filled 

with two fluids, exhibiting a complete wetting/non-wetting situation, we can expect the non-

wetting phase to be less sensitive to image processing because it is mainly located in the centre 

of big pores. The wetting phase, however, is then more affected because resides in pore cor-

ners, small pores and sub-resolution pores.

In situ contact angle estimation relies on the precise identification of both fluid–fluid and 

fluid–solid boundaries, both situated in the most challenging regions of the images. Moreover, 

partial volume effects are significantly amplified by the requirement of a three-phase bound-

ary. As a consequence, the combination of two potential sources of errors may lead to appreci-

ably inconsistent measurements. In the same way, single-phase flow permeability estimation 

suffers from issues related to boundary identification. This is particularly relevant for rocks in 

which smaller throats constitute an important contribution to connectivity. Moreover, although 

we did not investigate the role of voxel size on image segmentation results, it is well known 

that it controls the estimation of petrophysical properties (Combaret et al. 2013a, b). Conse-

quently, we expect quantities whose computation is strongly related to smaller features in the 

images, such as contact angle measurement and single-phase flow permeability, to be sensitive 

to voxel size as well.

4  Conclusions

We presented an assessment and a comparison of the quantitative results obtained from 

X-ray μ-CT images segmented using two different image processing approaches: non-local 

means filtering followed by watershed segmentation; machine learning based segmentation 

Table 5  Surface area fraction of the interface between each mineral and the pore space  (mineral-to-pore 

surface area fraction) calculated in the segmented Berea sandstone images obtained upon employment of 

the two image processing pipelines. Surface area fraction has been defined as the ratio between the surface 

area of the interface shared by each mineral and the pore space and the total surface area of the interface 

shared by the pore space with the whole rock matrix

Watershed [−] TWS [−] d
x
[%]

Clay 0.311 0.308 0.839

Quartz–Feldspar 0.656 0.642 2.092

Calcite 0.031 0.048 − 58.299

Others 0.003 0.002 46.303

Table 6  Surface area of the interface between each mineral and the pore space—mineral-to-pore surface 

area—calculated in the segmented Berea sandstone images obtained with watershed and Trainable WEKA 

Segmentation 3D (TWS)

Watershed [mm
2] TWS [mm

2] d
x
[%]

Clay 16.669 22.041 − 32.224

Quartz–Feldspar 35.195 45.948 − 30.552

Calcite 1.643 3.468 − 111.080

Others 0.176 0.126 28.399
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with a fast random forest classifier (Ho 1994; Breiman 2001). In order to assess the rela-

tive importance of the image processing pipeline selected, diverse datasets and properties 

to compute were considered. In particular, the focus of this work was to extend our under-

standing of sensitivity of image processing to the estimation of multiphase fluid properties 

(in situ contact angle, interfacial curvature) and mineral phase segmentation.

Porosity, specific surface area and single-phase flow permeability were estimated in ten 

two-phase (rock matrix and pore space) segmented images. Single-phase flow permeability 

proved to be the most sensitive property to the processing pipeline chosen.

Contact angles and fluid–fluid interfacial curvature were measured in an image of a 

trapped decane ganglion in a water-wet Ketton limestone pore (Singh and Blunt 2018). 

Measurements of contact angle, while comparable to past studies, were sensitive to image 

processing workflows. On the contrary, measurements of fluid–fluid interfacial curvature 

were less sensitive to image processing workflows.

Four mineral groups and the pore space were segmented in a Berea sandstone. Esti-

mates of volume fractions as well as mineral-to-pore surface area fractions were insensitive 

to image processing workflows. The same was not true for mineral-to-pore surface area, 

which suggests that the choice of the processing pipeline may be particularly relevant for 

reactive transport modelling applications.

The greatest sensitivities in image processing arise in the identification of boundaries 

where partial volume and resolution effects may be significant. Sensitivity increases with 

increasing dependence on boundary identification and decreasing availability of the neces-

sary boundaries in the image.
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