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THE SEPARATION PRINCIPLE

FOR IMPULSE CONTROL PROBLEMS

JOSÉ-LUIS MENALDI

Abstract. In this paper, one shows that the combined problem of optimal impulse

control and filtering, for a stochastic linear dynamic system observed via a noisy

linear channel, can be reduced to two independent problems of impulse control

and filtering, respectively.

1. Introduction. W. M. Wonham [8] showed that the combined problem of

optimal control and filtering, for a stochastic linear dynamic system observed via a

noisy linear channel, can be reduced to two independent problems of stochastic

control and filtering, respectively. This result was improved by M. H. A. Davis [3]

using the concept of Girsanov solutions of stochastic differential equations.

A. Bensoussan and J. L. Lions [1] proved that the same separation principle

holds for stopping time problems.

In all cases, a nondegeneracy on the observation matrix is imposed. This

assumption would rarely be met in practice.

In [5], we showed that the separation principle for stopping time problems holds

even under degeneracy.

Let us also mention the work of J. Szpirglas and G Mazziotto [7].

The object of this article is to prove that the combined problem of optimal

impulse control and filtering, for a stochastic linear dynamic system observed via a

noisy linear channel, can be reduced to two independent problems of impulse

control and filtering, respectively. In general, the optimal impulse control depends

parametrically on the intensity of channel noise; the result means, however, that

channel noise plays qualitatively the same role as dynamic disturbances in de-

termination of the feedback law.

2. Statement of the problem. Let (fí, ÇF, P) be a probability space and T be a

positive constant.

Given matrices F(t), G(t), H(t), 0 < / < T, such that

JF(.),GX-)eC([0,r];R"xR"),

{#(•)£ C([0,T];RNX Rp),
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440 JOSÉ-LUIS MENALDI

we denote byy°(t) the solution of the linear Itô equation

dy°(t) = F(t)y°(t)dt + G(t)dw(t),       0 < t < T,
(2.2)

y°(0) = x + S,       x G R",

where w(t) is a standard Wiener process in RN and f is a Gaussian random variable

with vanishing expectation and covariance matrix P0; f is independent of the

process w(t), 0 < t < T.

The current state of the system without control at the instant t is y°(t), but we

cannot observe the system. The information is provided by the channel output

z°(t) defined by

dz°(t) = H(t)y°(t)dt + dn(t),       0<t<T,

z°(0) = 0, (    >

where 17(f) is a Wiener process in R^ independent of w(t), with vanishing expecta-

tion and covariance matrix R(t) such that

ÍA(-)eC([0,r];R'xR'),

[R(t)>rl,       r>0   V/G[0, T}. '

We denote by %', 0 < t < T, the nondecreasing right continuous family of

completed a-algebras generating by the process z°(t).

An admissible impulse control v is a set {9X, £,; . . . ;9¡, £; .. . } where {0,}J1, is

an increasing sequence of stopping times with respect to 2? convergent to T

(0 < 0, < 9i+x < T, [9¡ <t]G T, 9¡ -> T) and {£,}°1, is a sequence of random

variables taking values in R+, adapted with respect to {9¿)fL\ (£,: ^ ~* ̂ N> &■ ** ft

Z" -measurable).

Now we define the sequence of diffusion processes with jumps, { y "(*)}"_ 1,

v"(f) = y"(/, p), / £ [0, T], r any admissible impulse control, by the stochastic

equation

dy"(t) - F(t)y"(t)dt + G(i)oV(0,       9n < t < T,

yn(t) -y-'(') + U-A.      0 <*<*..» (2.5)

We have

Defining

7"(0 = v'(0   on [0, 0„[ , V/ > «. (2.6)

y(f, *) = lim yn(t),       0 < t < T, (2.7)

the processy(t) = y(t, v), which is right continuous with left limits existing, satisfies

the following stochastic equation:

dy(t) = F(t)y(t)dt + G(t)dw(t) + 2  $«(* - *,)*>       0 < t < T,
i-1 \¿-°)

y(0) -x + S,

where S(t) is the Dirac measure.

' li:i_, denotes the characteristic function of the set {0„ — t).
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The current state of the system with impulse control v at the instant / is

represented by y(r), and

y(t) = E{y(t)/%'} (2.9)

is the information state process; we also have.y(0) = x.

We call the impulse process ß(t) the solution of the equation

dß(t) = F(t)ß(t)dt + 2 m* - O,)*,       0<t<T,
i-l (•¿•1U)

0(0) = o.

Clearly, ß(t) = ß(t, v) is built in the same way as y(t) by iteration. Notice, the

process ß(t) is right continuous with left limits and adapted to the observation 2?.

Thus, according to the equation (2.2), (2.8), (2.10) we deduce from (2.9)

y(t) = F{y°(t)/Z'}+ß(t). (2.11)

We introduce the process e(t), called the estimation error, given by

<t) = y°(t) - E{y°(t)/<£},       0 < t < T, (2.12)

which is mdependent of 27 and verifies

e(t) = y(t) - y(t%       0 < t < T. (2.13)

We also define w(t) by

Í aw(t) = R-l/2(t)H(t)e(t)dt + R'.l/2(t)dn(t),       0 < t < T,      „ {4)

[w(0) = 0

which is a standard Wiener process and satisfies the martingale property

w(t) = E{w(s)/^},       0 <t <s <T. (2.15)

Then, the assertions (2.10), (2.11) and the R. E. Kalman-R. S. Buey [4] theory

show thaty(t) is the solution of the following stochastic equation

ay(t) = F(t)y(t)dt + P(t)H*(t)R ~l/2(t)dw(t) + f  £«(' - 8,)dt,    0 < t < T,
¿-i

y(0) = x, (2.16)

where the matrix P(t) is the unique solution of the Riccati equation

Í P'(t) = FP+ PF* - PH*R~lHP + GG*,       0 < t < T,2 .

[ HO) = p0-

We also deduce that the estimation error e(t) is the unique solution of the Itô

equation

Í de(t) = (F- PH*R-lH)edt - PH*R-ldr¡ + Gdw,       0 < t < T,     (      .

I «(o) = r.

' The prime O means time derivative and the star (*) denotes the transpose.
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3. Optimal impulse control. Let/(x, t) be a nonnegative, continuous and bounded

function on R* X [0, T] taking values in R,

/ G C6(R" X [0, T]),       fix, t) > 0 Vx G R", t G [0, T], (3.1)

and let &(£) be a continuous function from R+ into R such that

k G C(R^),       k(£) >k0>0,       k(£) ̂ oo    if III ̂  oo. (3.2)

Now, for any admissible impulse control   v = {9X, £,; . . . ; 9¡, £; . . .}   and

x G R^ we set

Jx(v) = ¿?| Jf   /(>,(/), 0^-"' dt + 2  *te)lâ<7-«_,-lj> (3-3)

where a is a real constant.

We remark that any admissible impulse control v is adapted to the information

state y(t) and not to the current state y(t).

Our purpose is to characterize the optimal cost

uo(x) = 'm^{Jxi.v)/v admissible impulse control} (3.4)

and to obtain a separation principle for an eventual optimal admissible impulse

control.

Let M be the operator

[M<f>](x) = inf{A:(0 + <f>(x + £)/£ G R^} (3.5)

and u(x, t) be an arbitrary function satisfying

u G C^R" X [0, T]),       u <Mu   in R* X [0, 7"]. (3.6)

The admissible impulse control p «■ px associated to the function u is defined as

follows. First we select a function |(x, t) verifying

(3.7)
f £: R" X [0, T] -+ R+, Borel measurable and bounded such that

[ [Mu](x, t) = k(Ç(x, t)) + u(x + |(x, t), t)   Vx G R", t G [0, T].

Next, define 9° = 0 and^°(0 by

dy°(t) = F(t)y°(t)dt + P(t)H*(t)R ~l/2(t)aw(t),       0 < t < T,     .    .
«o/r* (3-8).y (fi) = x.

We define v = (0,, £,; . . . ; 0„ £,; . . . } by the formulas

0' + 1 = inf{/ <=[§', r]/u(j?''(0, /) =[Mu](y'(t), t)},       i = 0, 1, . . .,     (3.9)

H-Í*   ifö'<r,/=i,2,..., (310)
[ 7"    otherwise,

¿,=Cv'-'(0M),     ' = i.2. (3.11)

a>"(i) = F(0j'(í)^ + P(0#*(0*_l/2(0^(')>

9i<t<T,       i=\, 2, ...,       (3.12)

/'(') =/-'(>)+ !<,.-,£,      0<i <0,..
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Clearly, if there exists a function u verifying (3.6) whose associated admissible

impulse control v is optimal, the separation principle is established. Notice, the fact

that v is optimal shows automatically that 0, -» T. Moreover, 9¡ = T for all i > n(u)

almost surely.

Let A(t) be the second order differential operator corresponding to the Itô

equation (3.8),

A(t) = -  2    %to-¿r - 2   (#t>)*)i¿ + «, (3.13)
i,j-\ OXjOXj       ,._, ox,

where

[«^k -lp{t)H*(t)R-l(t)H(t)Ht). (3.14)

We remark that A(t) is usually degenerate. W. M. Wonham [8], M. H. A. Davis

[3], A. Bensoussan and J. L. Lions [1] supposed that the matrices P(t) and H(t) are

nonsingular.

We set

l(x, t) = E{f(x + e(r), 0}    v* e^.'e [0, T], (3.15)

where e(t) is given by (2.18).

We introduce the following quasi-variational inequality. Find u(x, t) such that

u G C^R" X [0, r]),        u(x, T) = 0 Vx G R",

~Y + A(t)u<l   in^R" X[0, T]),u < Mu inRN X [0, T],   p 16)

9« .       .       ̂ .,r

Yt+ A(t)u = l   in ^'([u<Mu]).3

We have the

Separation Principle Theorem. Let the assumptions (2.1), (2.4), (3.1), (3.2) hold.

Then there exists one and only one solution u of the quasi-variational inequality

(3.16). Moreover the admissible impulse control v defined by (3.7)—(3.12), associated

to the function u given by (3.16), is optimal [i.e., m0(x) = Jx(vx)].

Proof. First, using a general result in [6] applied to a degenerate operator

— d/dt -+- A(t), we deduce that there exists a solution of problem (3.16).

In order to prove the uniqueness, we denote by z(s) = zxl(s, a), 0 < t < s < T,

x G R^, ioESI, the diffusion associated to the operator —d/dt + A(t), i.e.,

Í dz(s) = F(s)z(s)ds + P(s)H*(s)R-1/2(s)aw(s),       t < s < T,    ^ 1?)

[ z(t) = x.

Now let u(x, f) be an arbitrary solution of (3.16). We set 9 = 9xt(u), 0 < t < T,

x G R^, os G ß, the first exit time of process z(s) from [u < Mu], i.e.,

9 = inf{í G[i, T]/u(z(s), s) =[Mu](z(s), s)}. (3.18)

3 Cb denotes the space of continuous and bounded functions, and sil' is the space of distributions.
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Then, using the fact that the coefficients of the second order terms of operator A(t)

are constant and that u(x, t) is continuous, we establish by convolution techniques

the following Itô formulas for each x G R", t G [0, T]:

u(x,t) <E{fTATl(z(s),s)e-»ds + u(z(TAt), rAr)«-^*1)

Vt > / stopping time,        (3.19)

u(x, t) = EM" ¡(z(s), s)e~asds + u(z(9), 9)e-aBV (3.20)

Therefore, as in [6], the properties (3.19), (3.20) imply the uniqueness of the

solution u.

Next, from (3.7)-(3.12) and (3.20), we deduce

u(x, 0) = eÍ fjl(y(t), t)e-"dt + f  *«,)l«<r*~"*}. (3-21)

and from (2.13), (3.15) we have

E{fjl(y(t),t)e-"dt] = £{/rAKO»0* ""•*}; (3-22)

hence

u(x, 0) = Jx(v),       v associated to u. (3.23)

Similarly, using (3.19), we obtain

u(x, 0) = inf[Jx(v)/v admissible impulse control}. (3.24)

Then, (3.23) and (3.24) give

u(x, 0) = u0(x),   optimal cost (3.4), (3.25)

and the theorem is proved.    □

Remark 1. If the function fix, t) is Lipschitz continuous, so is the function

u(x, t). In this case, u is also the maximum solution of a classical quasi-variational

inequality introduced by A. Bensoussan and J. L. Lions [2].    □

Remark 2. This result can be extended for a function k(£, x, t) instead of k(£)

appearing in the definition of cost (3.3). Clearly, we can replace the condition

£ G R+ by £ G A, where A is a closed subset of R*.   □

Remark 3. Using the technique presented in this paper, we can improve the

result obtained in [5].    □
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