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THE SEPARATION PRINCIPLE
FOR IMPULSE CONTROL PROBLEMS

JOSE-LUIS MENALDI

ABSTRACT. In this paper, one shows that the combined problem of optimal impulse
control and filtering, for a stochastic linear dynamic system observed via a noisy
linear channel, can be reduced to two independent problems of impulse control
and filtering, respectively.

1. Introduction. W. M. Wonham [8] showed that the combined problem of
optimal control and filtering, for a stochastic linear dynamic system observed via a
noisy linear channel, can be reduced to two independent problems of stochastic
control and filtering, respectively. This result was improved by M. H. A. Davis [3]
using the concept of Girsanov solutions of stochastic differential equations.

A. Bensoussan and J. L. Lions [1] proved that the same separation principle
holds for stopping time problems.

In all cases, a nondegeneracy on the observation matrix is imposed. This
assumption would rarely be met in practice.

In [5], we showed that the separation principle for stopping time problems holds
even under degeneracy.

Let us also mention the work of J. Szpirglas and G. Mazziotto [7].

The object of this article is to prove that the combined problem of optimal
impulse control and filtering, for a stochastic linear dynamic system observed via a
noisy linear channel, can be reduced to two independent problems of impulse
control and filtering, respectively. In general, the optimal impulse control depends
parametrically on the intensity of channel noise; the result means, however, that
channel noise plays qualitatively the same role as dynamic disturbances in de-
termination of the feedback law.

2. Statement of the problem. Let (2, ¥, P) be a probability space and T be a
positive constant.
Given matrices F(?), G(¢), H(t),0 < t < T, such that

{F(-), G(-) € ([0, T]; RY x RY), @1)

H(-) € ¢([0, T]; RY x R?),
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we denote by y °(¢) the solution of the linear It6 equation
dy°(t) = F(t)y°(Hdt + G()aw(t), O0<t<T,
y°0)=x+¢ x€ERY,
where w(?) is a standard Wiener process in R and { is a Gaussian random variable
with vanishing expectation and covariance matrix P,; § is independent of the
process w(#),0 <t < T.

The current state of the system without control at the instant ¢ is y°(¢), but we
cannot observe the system. The information is provided by the channel output
z°(t) defined by

dz°(t) = H(t)y°(t)dt + dn(t), O0<t<T,
z°(0) =0,
where () is a Wiener process in R” independent of w(f), with vanishing expecta-
tion and covariance matrix R(?) such that

R(-) € C([0, T]; R* X R?),
R(t)y>rl, r>0 Vt€[0,T].

We denote by ', 0 < ¢ < T, the nondecreasing right continuous family of
completed o-algebras generating by the process z°(¥).

An admissible impulse control » is a set {0, §;; . .. ;0, §; ...} where {6,};2,is
an increasing sequence of stopping times with respect to €' convergent to T
0<0,<0,,<T,[0,<t]eZ, 6,>T) and {{}2, is a sequence of random
variables taking values in RY, adapted with respect to {6}, (§: 2>R", & > 0,
Z%_measurable).

Now we define the sequence of diffusion processes with jumps, {y"(£)}5.;,
y™(t) =y"(t,v), t €[0, T), » any admissible impulse control, by the stochastic

22)

(23)

(24)

equation
ay"(t) = F(t)y™(t)dt + G()aw(t), 0,<t<T,
{y"(t) =y D+ 1.4, 0<1<90,! 23)
We have
y"(t) =y'(1) on[0,0,[,Vi>n. (2.6)
Defining
y(,v) = "ﬁ_{go y"(1), O0<t<T, 2.7

the process y(f) = y(t, v), which is right continuous with left limits existing, satisfies
the following stochastic equation:

dy(t) = F(t)y(t)dt + G(t)aw(t) + § £6(t—0)dt, 0<t<T, 238)
i=1 o
y(0)=x+¢,

where 8(¢) is the Dirac measure.

! 15, -, denotes the characteristic function of the set {6, = #}.
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The current state of the system with impulse control » at the instant ¢ is
represented by y(¢), and

y(@) = E{y(0)/Z} (29)
is the information state process; we also have y(0) = x.
We call the impulse process S(¢) the solution of the equation

dB(t) = F(1)B(t)dt + -§1 £6(r —0)dt, O0<t<T,

B(0) = 0.
Clearly, B(?) = B(¢, ») is built in the same way as y(f) by iteration. Notice, the
process B(?) is right continuous with left limits and adapted to the observation ¥'.
Thus, according to the equation (2.2), (2.8), (2.10) we deduce from (2.9)

(2.10)

(1) =E{y°()/Z} + B(0). (211)
We introduce the process &(¢), called the estimation error, given by
e(r) =y°(t) — E{y°(1)/¥}, O0<Kt<T, (2.12)
which is independent of &' and verifies
e(t)=y(H)—y(t), O<t<T. (2.13)
We also define w() by
{dﬁ(t) = R~V2()H()e(f)dt + R~V¥(dn(1), O0<t<T, 2.14)
w(0) =0
which is a standard Wiener process and satisfies the martingale property
w(t) = E{¥(s)/¥}, O0<t<s<T. (2.15)

Then, the assertions (2.10), (2.11) and the R. E. Kalman-R. S. Bucy [4] theory
show that y(?) is the solution of the following stochastic equation

(1) = F()y(t)dt + P(t)H*(£)R ~'/*()aw(t) + § £§6(t—0)dt, 0<t<T,
im]
7(0) = x, (2.16)

where the matrix P(?) is the unique solution of the Riccati equation

{ P'({) = FP + PF* — PH*R"'HP + GG*, 0<t<T?

PO) = P, 2.17)

We also deduce that the estimation error e(f) is the unique solution of the It

equation
{ de(t) = (F — PH*R™'H)edt — PH*R "'dn + Gdw, 0<t<T, 2.18)
e(0) = ¢. .

2 The prime () means time derivative and the star (*) denotes the transpose.
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3. Optimal impulse control. Let f(x, ¢) be a nonnegative, continuous and bounded
function on R" X [0, T] taking values in R,
fE€CG(RY X[0,T]), fix,1)>0Vx€eERY1€[0,T] (3.1)
and let k(£) be a continuous function from R¥ into R such that
k € C(RY), k() k>0, k() > o0 ifl§— oo. 32)

Now, for any admissible impulse control » = {0,,§;...; 6,§;...} and
x € RY we set

J(»)=E { Lrj(y(t), e~ dt + .21 k() g<r e"""}, (33)

where a is a real constant.

We remark that any admissible impulse control » is adapted to the information
state y(#) and not to the current state y(¢).

Our purpose is to characterize the optimal cost

uy(x) = inf{J,(»)/» admissible impulse control } (3.9)
and to obtain a separation principle for an eventual optimal admissible impulse
control.

Let M be the operator
[Me](x) = inf{k(¢) + ¢(x + £)/¢ ERT} (35
and u(x, f) be an arbitrary function satisfying
u € G(RY x[0,T]), u<Mu inR"X[0,T]. (3.6)

The admissible impulse control » = », associated to the function u is defined as
follows. First we select a function £(x, ) verifying

{£ : RV x[0, T] - RY, Borel measurable and bounded such that 37)
[Mu](x, 1) = k(§(x, 1)) + u(x + &(x, 1), 1) Vx ER", ¢t €[0, T].
Next, define §° = 0 and y°(¢) by
{ abz;(();) = F()y°(t)dt + P()H*()R~V*()aw(t), 0<t<T, (.8)
y = Xx.

Wedefiner = {0,, £,;...;0,&; ...} by the formulas
§'+' = inf{r €[ 0", T]/u(5(1), 1) =[ Mu]($ (1), 1)}, i=0,1,..., (39)
g = |0 <Ti=12...,
! T otherwise,
&=¢r"10)60) i=12..., (3.11)
dp(1) = F(2)p'(r)dt + P()H*(2)R ~'/*(£)ai(s),
0,<t<T, i=12..., (312
PO =5 )+ 1,4 0<t<0,.

(3.10)
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Clearly, if there exists a function u verifying (3.6) whose associated admissible
impulse control » is optimal, the separation principle is established. Notice, the fact
that » is optimal shows automatically that §, > T. Moreover, 8, = T for all i > n(w)

almost surely.
Let A(t) be the second order differential operator corresponding to the Itd
equation (3.8),
a2
() = —”2_ R Or e 2. (F)x)i 3 (3.13)
where
[a,()], =1P(t)H*(Y)R ~'())H(:) P(¢). (3.149)

We remark that 4(¢) is usually degenerate. W. M. Wonham [8], M. H. A. Davis
[3], A. Bensoussan and J. L. Lions [1] supposed that the matrices P(f) and H(?) are
nonsingular.

We set

I(x,1) = E{f(x + &(1), 1)} Vx€E€R"1€[0,T], (3.15)

where &(?) is given by (2.18).
We introduce the following quasi-variational inequality. Find u(x, #) such that

u € G(RY x[0,T]), u(x,T)=0Vx €R”,

au .
— 5 tA@u <1 in D(RY X[0, T]),u < MuinRY X[0, T], (3.16)
- A =1 in D ([u < Mu])?
We have the

SEPARATION PRINCIPLE THEOREM. Let the assumptions (2.1), (2.4), (3.1), (3.2) hold.
Then there exists one and only one solution u of the quasi-variational inequality
(3.16). Moreover the admissible impulse control v defined by (3.7)-(3.12), associated
to the function u given by (3.16), is optimal [i.e., uy(x) = J,(»,)].

ProoF. First, using a general result in [6] applied to a degenerate operator
—9/dt + A(¢), we deduce that there exists a solution of problem (3.16).

In order to prove the uniqueness, we denote by z(s) = z,,(s, ), 0 <t < s < T,
x € RV, w € Q, the diffusion associated to the operator —9/3¢ + A(?), i.e.,

dz(s) = F(s)z(s)ds + P(s)H*(s)R~V*(s)dw(s), t<s<T,
z(1) = x.

Now let u(x, f) be an arbitrary solution of (3.16). We set § = 0,,(w), 0 <t < T,

x €RY, » € Q, the first exit time of process z(s) from [u < Mu], i.e.,

0 = inf{s €[ 1, T]/u(z(s), 5) =[ Mu](2(s), 5)}- (3.18)

(3.17)

3 C, denotes the space of continuous and bounded functions, and 9’ is the space of distributions.
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Then, using the fact that the coefficients of the second order terms of operator A(¢)
are constant and that u(x, f) is continuous, we establish by convolution techniques
the following It formulas for each x € RY, ¢ € [0, T:

u(x, t) < E{fT/\" I(z(s)’ S)e-‘"ds + u(z(T/\ ,r)’ T/\T)e—a(T/\f)}
t
Vr > ¢ stopping time,  (3.19)

u(x, 1) = E{ ) ? Uz(s), s)e~ds + u(z(9), 0)e""}. (3.20)

Therefore, as in [6], the properties (3.19), (3.20) imply the uniqueness of the
solution u.
Next, from (3.7)-(3.12) and (3.20), we deduce

u(x, 0) = E[j;r 1I(¥(2), H)e~¥dt + igl k(£,.)l,’<re""'}, (3.21)

and from (2.13), (3.15) we have
E{ [o T 15 @), e dz} = E{ fo T f1(0), e dt}; (3.22)

hence
u(x,0) = J (»), v associated to u. (3.23)
Similarly, using (3.19), we obtain
u(x, 0) = inf{J,(v)/» admissible impulse control}. (3.24)
Then, (3.23) and (3.24) give
u(x, 0) = uy(x), optimal cost (3.4), (3.25)

and the theorem is proved. []

ReMARK 1. If the function f(x, f) is Lipschitz continuous, so is the function
u(x, t). In this case, u is also the maximum solution of a classical quasi-variational
inequality introduced by A. Bensoussan and J. L. Lions [2). O

REMARK 2. This result can be extended for a function k(§, x, ¢) instead of k(§)
appearing in the definition of cost (3.3). Clearly, we can replace the condition
¢ € RY by £ € A, where A is a closed subset of R¥. [

ReEMARK 3. Using the technique presented in this paper, we can improve the
result obtained in [S]. [
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