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The Sequence of Radii of the Apollonian Packing

By David W. Boyd

Abstract. We consider the distribution function N(x) of the curvatures of the disks in the

Apollonian packing of a curvilinear triangle. That is, N(x) counts the number of disks in the

packing whose curvatures do not exceed x. We show that log N(x)/log x approaches the limit

S as x tends to infinity, where 5 is the exponent of the packing.

A numerical fit of a curve of the form y = Ans to the values of AT(lOOOn) for n =

1,2,..., 6400 produces the estimate S <*> 1.305636 which is consistent with the known bounds

1.300197 <5< 1.314534.

1. Introduction. Let Tbe a curvilinear triangle bounded by three mutually tangent

circles. The Apollonian or osculatory packing of T is a sequence of disks [Dn] all

contained in T and such that, for each n, Dn has the largest radius of all disks

contained in r\(Z), U ••• UZ)„_1).

The exponent of the packing was defined by Melzak [7] to be

(1) S = inf{i: 2'-<«>} =sup{r: 2r„' = oo},

where rn denotes the radius of D„. In [1], [2] we developed an algorithm which, for

any real k > 0, produces bounds a(k) < S < ¡li(k) which converge to S as k -» oo.

This produced the numerical bounds 1.300197 < S < 1.314534. In [3], the methods

of [1] were used to show that S is the Hausdorff dimension of the residual set of the

packing.

In [8], Melzak described a computer experiment in which the first 19660 disks of

the packing were generated. A curve of the form fin) — Ans was fitted to the

computed function Num(rc) = #{Dk: rk > (1000«)'}, giving 5= 1.306951 as a

heuristic estimate for S. This experiment has been repeated by the author on a

number of occasions. In our most recent computation, we generated 41,694,859 disks

obtaining the estimate 5 « 1.305636. This is described more fully in Section 7 of this

paper.

As Wilker [9] pointed out, the success of such experiments suggests that if

Nix) = #{n: r~x < x), then it may be true that

(2) lim log7V(x)/logx = 5',
X-* 00

or equivalently that

(3) lim logr„/log/i = -l/S.
n— oo
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As is well known, this does not follow from (1). What does follow from (1), without

using any geometrical facts, is that

(4) limsup logA^xVlogx = S
JC—OO

and

(5) lim sup log /"„/log n = -l/S.
n— oo

But, if r„ is simply required to be a decreasing sequence of positive numbers, one can

prescribe the lim inf of these expressions in an arbitrary way consistent with (4) or

(5). Wilker [9, p. 122] gives such examples as well as an investigation of the

relationships between the exponent and many other measures of the rate of conver-

gence of numerical series.

The purpose of this paper is to show how the methods of [1] can be used to prove

(2) and (3). Thus, for any e > 0, we will show that there are constants Aie) and 5(e)

so that

(6) A(e)xs-f <Nix)<B(e)xs+e.

We do not know whether or not Nix)x's converges as x -» oo. The experimental

results described in Section 7 suggest that this may be false and that perhaps a

relationship such as Nix) ~ Axsi\ogix/B))T might be more appropriate. It is not

known, either, whether or not 2 r„5 = oo, and it does not appear that this can be

answered by the methods of [1].

It is worth mentioning that my motivation for examining this question was a

problem posed by Coxeter [5], which asks one to find the radius of the smallest circle

into which disks of radius 1/n in = 1,2,...) can all be packed. A rather elegant

proof that the answer is 3/2 would be to show that the disks in a certain Apollonian

packing have radii satisfying r~x < 3n. (See [4] for a more elementary solution.) The

methods of this paper can be used to provide effective estimates of this sort, but the

numerical details are considerable.

2. A Result from the Theory of Numerical Series. Since we will be using (4) here,

we give a proof. The result is also proved in [9]. The proof of (5) then follows by

observing that n i-> l/rn and x>-> Nix) are essentially inverse functions.

To prove (4), one observes that, if t > S, then 2 r'n = Ait) < oo. Thus

x~'N{x)<    2    r¿<A{t).
n^N(x)

Taking logarithms and letting x -> oo and then t l S shows that

lim sup log N( x )/log x *£ S.

On the other hand, if the inequality were strict, then partial summation would show

that 2 r'n converges for some t < S contrary to the definition of S.

To prove (2) then, we need only prove that

(7) lim inf \ogNix)/logx^ S.
A — X

3. A Basic Inequality. We follow the notation of [1], [2], [3] to which we refer the

reader for more details. As usual, if a disk D has radius r, then we call k = 1/r the

curvature of D. Let Tia, b, c) be the curvilinear triangle bounded by three mutually
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externally tangent circles with curvatures a, b, c satisfying 0 «5 a < b «s c and b > 0.

The Apollonian packing of Tia, b, c) will be denoted by Pia, b, c). We can index

these disks in a consistent way by a parameter a which is a vector of arbitrary length

(including 0) with components 1, 2, or 3. We denote the curvature of the ath disk by

kia; a, b, c). The proof of Lemma 1 of [1] then gives

(8) bkia; 0,1,1) < kia; a, b, c) < (a + c)kia; 0,1,1).

4. The Necklace Decomposition. As in [1], we decompose Tia,b,c) into the

disjoint union of an infinite number of disks and curvilinear triangles. This decom-

position appears to have been first used in [6] in a proof that the Apollonian packing

is complete.

Let A0, B0, C0 denote the sides of Tia, b, c) and let C„ be the disk tangent to A0,

BQ, C„_| for « = 1,2,... . Similarly, define An and Bn, (so Ax = Bx = C,). Let

c„ = gnia, b, c) be the curvature of C„, so that gnib, c, a) and gnic a, b) are the

curvatures of An and Bn, respectively.

For notational convenience, write

2 Fia, b, c) = Fia, b, c) + Fia, c, b) + Fib, a, c) + Fib, c, a)

(9)
+ Fic,a,b) + Fic,b,a),

and use a similar notation for unions. Then Tia, b, c) may be decomposed as

follows:

00 oc

(10) Tia,b,c) = C] U U (A„UBnUCn)U U   U r(a, c,„ c„ + 1),
n = 2 S,    n=\

where, in the last term, it should be understood that c„ denotes the function

g„(a, b, c).

In particular, then

oc

(11) P(a,b,c)D U   U Pia,c„,c„+X).
s,    n=l

Now, define

(12) N(a,b,c; x) = # {k(a; a, b,c) ^ x}.

Then (11) gives the inequality

00

(13) AT(fl,è,c;x)ï*2   2 Nia,ca,cñ+X;x).
S,   n=l

5. A Partial Iteration of (13). We shall use (13) together with (8) to extract

information about Nix) = yV(0,1,1; x). As (8) shows, it suffices to consider the

particular choice (a, b, c) = (0,1,1) in order to prove (4) for all (a, b, c).

From (8), we deduce that

(14) Nia, b,c; x) > Ni0,l,l; x/ ia + c)) = Nix/ (a + c)),

since each a for which &(a; 0,1,1) < x/ia + c) has kia; a, b, c) < x.
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Introducing a parameter k > 0 as in [1], we deduce from (13) and (14) that

(15) Nia,b,c,x)>2( 2 Nia,cn,cn+X;x)+   2 N{x/ (a + c„+1))).
S,    * C„<K („*< '

We will now iterate (15) until we reach a level at which c„ > k for all n so that no

terms of the form Nia,c„,cn+X; x) will appear. The most straightforward way to

describe this is to introduce operators Z)(k; a, b, c) defined recursively by

(16) D(n\a,b,c) = 2   I F>Ík; a, c„,c„+x) + 2   2 £(a + c„+i),
Sj   i„<K S3   c„s«

where Eid) denotes the dilation operator defined by

(17) iEid)N)ix) = Nix/d).

The argument of Lemma 4 of [1] shows that, after at most/? steps, where 4p+]b > k,

the recursion (16) leads to an expression of D(k; a,b,c) as a sum of dilation

operators.

Let us denote Z)(k; 0,1,1) by Dík). Then, from (15), (16), and (17), we deduce

that, for any k > 0,

(18) Nix)»iDiic)N)ix).

Since all of the terms in the series for Dík)N are positive, there is no problem with

convergence.

6. The Main Result. We now are in a position to prove the following

Theorem. Let Nix) denote the number of disks in the Apollonian packing of

Tia, b, c) which have curvatures at most x. Let S be the exponent of the packing. Then

(19) lim log/V(x)/logx = 5.
.Y-»00

Proof. We need only prove (19) for (a, b, c) = (0,1,1), as observed above. The

operator £>( k ) of Section 5 may be explicitly expressed in terms of dilation operators

as

oo

(20) D(k)=   2 £(0.
m=\

say, where dm is a certain sequence of real numbers (actually integers) satisfying

dm > 1 for all m. We may assume that [dm) has been arranged in nondecreasing

order.

Define

(2i) g(«;0= I d-'.
»i=i

By the results of [1], the series converges for / > 1/2 and defines the function

gm(K; 0,1, 1, t) (for S2> k) referred to in Theorem 1 of [1]. Thus, there is a number

a(k) satisfying

(22) g(K;\(K)) = l

and furthermore

(23) lim\(K) = 5.
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Now, let / < X(k) so that g(ic; t) > 1, and let M be chosen so that

M

(24) ldm<>\.
m=\

From ( 18) and (20), we have

M

(25) Nix) >  S N(x/dm).
m=\

We claim that there is a constant A = Ait) so that Nix) > Ax'. To prove this, we

first remark that there is certainly an x0 for which Nix0) > 0, since Nix) -> oo. Let

xx — dMx0, and define

(26) A =    min   #(x)jc~',
.y0«S.y*Sa-,

so certainly Nix) > Ax' for x0 < jc <jc,. Now define xn = i/f*-'jc, for « = 2,3.

Suppose that we have shown that Nix) > Ax' for x0 =£ a: « *„_,, for some « > 2.

Let xn_, < x *£ x„. Then, for fc = 1,... ,M, we have x/dk > xx/dM = x0, while

x/dk < x„/í/i = x„_|. Thus, applying (24) and (25), we have

(27) Nix)>  ^ Aix/dJ>Ax'   Ux„^<x<xH.
m=\

This completes an inductive proof that Nix) > Ax' for all x ** x0.

From this, we deduce that

(28) lim inf log #(jc)/logx >/.
jt-»oo

Since t < \(k) is arbitrary and since à(k) -> S as « -> oo, (7) follows from (28).

Combined with (4), this proves the Theorem.

7. Experimental Estimates of S. The method used by Melzak [8] to estimate S was

to compute #(1000«) for « = 1,... ,20 and to fit a curve of the form Ans to these

values by least squares. The theorem of Section 6 lends some support to this

technique but it does not rigorously justify it since the theorem is, after all, an

asymptotic result.

In our adaptation of the method of [8], we choose initial curvatures a, b, c so that

all of a, b, c, and d=a + b + c + 2%/ab + be + ca are integers, id is the curvature

of the circle touching the sides of Tia, b, c).) Then all of the curvatures in the

packing are integers and can be generated by linear recurrence relations, see, e.g., [2].

Thus no square roots need be taken, and we remain in the realm of integer

arithmetic.

We compute v(«) = #'(1000«) for «= l,...,K, where N~ix) denotes #{«:

r~x < x}. Clearly N'ix) has the same asymptotic behavior as Nix). For example, if

•K — 6400, the computation of these values took 6 minutes on an Amdahl 470 V/8

computer. One can then fit a curve An" to yin) for « = 1,...,K, by a variety of

methods. The next table shows the values of A and 5 obtained by fitting log y(«) to

log(/4«s) for «= 1,...,K, using linear least squares. The column "disks" gives

#~(1000Ä'), the total number of disks generated. In all cases (a, b,c, d) = (0,1,4,9).
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Table

KA                    s disks

200          446.063 1.306194 451,730

400           446.487 1.305935 1,116,800

800           446.678 1.305841 2,759,717

1600           446.769 1.305801 6,822,351

3200           446.898 1.305749 16,867,636

6400          446.992 1.305717 41,694,859

This data suggests that S » 1.3057. The fact that the fitted s decrease with K

indicates that a curve of the form Axsilogix/B))' might be more appropriate, where

B = Jab + be + ca, say, is a factor included to preserve the scale invariance.

Another reasonable criterion would be to choose A and s to minimize the sum

*Z i yin) — An8)2. This leads to a pair of equations linear in A and thus to a

nonlinear equation for s. Solving numerically gives the values A = 447.285 and

s = 1.305636. The fit of Ans to v(«) is better in a number of ways than that obtained

by the method described above: the maximum difference \yin) — Ans\ is smaller

and the sign of yin) — Ans changes more often. For example, if Ax = 446.992 and

i, = 1.3057169, then >>(«) — Axns> is negative for all « in the range 5652 < n =£ 6400,

while if A2 = 447.285 and s2 = 1.305636, then yin) — A2nSl changes sign over 100

times in this interval.

If one fits log yin) to \ogiAns) using only the values of « which satisfy 3200 < «

« 6400, then one obtains A — 447.622 and s = 1.305548, again suggesting that the

values given in the above table overestimate S.

In summary, it appears that S is roughly 1.3056, with the last digit being

somewhat questionable.
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