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1 Introduction

Sequential (or Successive) Quadratic Programming (SQP) is a technique for the solution
of Nonlinear Programming (NLP) problems. It is, as we shall see, an idealized concept,
permitting and indeed necessitating many variations and modifications before becoming
available as part of a reliable and efficient production computer code. In this monograph we
trace the evolution of the SQP method through some important special cases of nonlinear
programming, up to the most general form of problem. To fully understand these devel-
opments it is important to have a thorough grasp of the underlying theoretical concepts,
particularly in regard to optimality conditions. In this monograph we include a simple yet
rigorous presentation of optimality conditions, which yet covers most cases of interest.

A nonlinear programming problem is the minimization of a nonlinear objective function
f(x), x € R", of n variables, subject to equation and/or inequality constraints involving
a vector of nonlinear functions c(x). A basic statement of the problem, useful for didactic
purposes is

minimize  f(x)
xeR"
subject to ¢;(x) <0 i=1,2,...,m. (1.1)

In this formulation, equation constraints must be encoded as two opposed inequality con-
straints, that is ¢(x) = 0 is replaced by ¢(x) < 0 and —c¢(x) < 0, which is usually not
convenient. Thus in practice a more detailed formulation is appropriate, admitting also
equations, linear constraints and simple bounds. One way to do this is to add slack vari-
ables to the constraints, which together with simple bounds on the natural variables, gives

rise to
minimize  f(x)
xeR"
subject to ATx=b
c(x) =0 (1.2)
I<x<u



in which either u; or —[; can be set to a very large number if no bound is present. Alter-
natively one might have

minimize  f(x)

xeR™
X
subject to 1< | ATx | <u (1.3)
c(x)

in which the user can specify an equation by having [; = u;.

There are a number of special cases of NLP which are important in their own right,
and for which there are special cases of the SQP method for their solution. These include
systems of nonlinear equations, unconstrained optimization, and linearly constrained opti-
mization. Understanding the theoretical and practical issues associated with these special
cases is important when it comes to dealing with the general NLP problem as specified
above. A common theme in all these cases is that there are ‘linear’ problems which can
be solved in a finite number of steps (ignoring the effects of round-off error), nonlinear
problems which can usually only be solved approximately by iteration, and Newton meth-
ods for solving nonlinear problems by successive solution of linear problems, obtained by
making Taylor series expansions about a current iterate. This context is underpinned by
a famous theorem of Dennis and Moré [10] which states, subject to a regularity condition,
that superlinear convergence occurs if and only if an iterative method is asymptotically
equivalent to a Newton method. Loosely speaking, this tells us that we can only expect
rapid convergence if our iterative method is closely related to a Newton method. The SQP
method is one realization of a Newton method.

Generally x € IR” will denote the variables (unknowns) in the problem, x* denotes a
(local) solution, x(F) k=1, 2... are iterates in some iterative method, and g(*) for example
denotes the function g(x) evaluated at x*). Likewise g* would denote g(x) evaluated at
x*. It is important to recognise that solutions to problems may not exist, or on the other
hand, there may exist multiple or non-unique solutions. Generally algorithms are only able
to find local minima, and indeed guaranteeing to find a global (best local) minimizer is
impractical for problems of any significant size. A more extensive and detailed coverage of
topics in this monograph can be found for example in Fletcher [13].

2 Newton Methods and Local Optimality

In this section we trace the development of Newton methods from the simplest case of
nonlinear equations, through to the general case of nonlinear programming with equations
and inequalities.



2.1 Systems of n simultaneous equations in n unknowns

In this case the ‘linear’ problem referred to above is the well known system of linear
equations

ATx=b (2.1)

in which A is a given n x n matrix of coefficients and b is a given vector of right hand
sides. For all except the very largest problems, the system is readily solved by computing
factors PAT = LU using elimination and partial pivoting. If A is a very sparse matrix,
techniques are available to enable large systems to be solved. A less well known approach
is to compute implicit factors LPA = U (see for example Fletcher [14]) which can be
advantageous in certain contexts. The system is regular when A is nonsingular in which
case a unique solution exists. Otherwise there may be non-unique solutions, or more usually
no solutions.
The corresponding nonlinear problem is the system of nonlinear equations

r(x)=0 (2:2)

in which r(x) is a given vector of n nonlinear functions. We assume that r(x) is continuously
differentiable and denote the n x n Jacobian matriz by A = Vr! that is A is the matrix
whose columns are the gradients of the component functions in r. If r = A”x — b is in
fact linear then its Jacobian matrix is A, which accounts for the use of AT rather than the
more usual A in (2.1). A Taylor series about the current iterate x*) gives

r(x® +d) = r® 4 AWTd + o(|[d]). (2:3)

Truncating the negligible term in d and setting the left hand side to zero yields the system
of linear equations
AWTY = —p(k), (2.4)

This system forms the basis of the Newton-Raphson (NR) method in which (2.4) is solved
for a displacement d = d®), and x*+1) = x(*) 4 d(¥) hecomes the next iterate.

A solution x* is said to be regular iff A* is nonsingular. Assuming that A is Lipschitz
continuous in a neighbourhood of x*, then the Newton-Raphson method converges locally
(that is if some x(*) is sufficiently close to x*) and the order of convergence is second order,
that is

x40 — x| = O(|fx®) — x*2).

We prove these properties in the next subsection. This property is very desirable, indicating
as it does that the number of significant figures of accuracy doubles on each iteration, in the
limit. Moreover a theorem of Dennis and Moré [10] indicates that if x* is regular then any
sequence {x(®)} converging to x* exhibits superlinear convergence (that is ||x**1) —x*| =
o(||x®) — x*||) if and only if the displacements converge asymptotically to those of the
Newton-Raphson method, in the sense that

k k
d® = dF} + o(lldy ).



We shall see in what follows that many successful methods of optimization (Newton meth-
ods) are derived from the Newton-Raphson method, including the SQP method, which
indicates the fundamental importance of the Dennis and Moré result.

An important class of Newton methods are the so-called quasi-Newton methods in which
A®) is approximated by a matrix BW). Initially B ig arbitrary, and is updated after each
iteration to take advantage of information gained about how r(x) behaves.

Unfortunately this favourable theoretical profile of the NR method is only valid locally
in a neighbourhood of a regular solution. If x(!) is remote from x* then there is no guarantee
of convergence, and indeed A®) can be singular in which case (2.4) usually has no solution
and the method aborts. Modifications of the NR method to promote global convergence
(that is convergence when x(!) is remote from x*) are a subject of much active research
interest, some of which is described later in this monograph.

2.2 Local Convergence of the Newton-Raphson Method
Let x* be a solution of (2.2). Then the following theorem holds.

Theorem Assume that r(x) is continuously differentiable in a neighbourhood of x*, and
that A* is nonsingular. Then there exists a neighbourhood of x* such that if any point
x(¥) is within this neighbourhood, then the Newton-Raphson method converges to x* and
the order of convergence is superlinear.

Proof The conditions of the theorem ensure that (2.3) is valid. Let e®) = x(*) —x* denote
the error in x*). Setting d = —e®) in (2.3) gives

0=r"=rH — ABT® 1 o(|le®). (2.5)

Because A* is nonsingular, there exists a neighbourhood of x* in which (A(x))~! is bounded
above. If x(®) is in this neighbourhood, substituting r*) from (2.4) into (2.5), and multi-

plying through by AR~ gives
0=—d® —e® 4 o(le®]). (2.6)
Then from x* 1 = x(*) 1 d*) and the definition of e, it follows that
e+ — o(fle]). (2.7)
Thus if e*) is sufficiently small, there exists a K and an o € (0, 1) such that
Je® | < a ] (2.8)
for all £ > K. Thus x*) — x* and (2.7) shows that the order of convergence is superlinear.

QED



Corollary If, in addition, the Jacobian matrix A(x) satisfies a Lipschitz condition, then
the order of convergence is second order.
Proof In this case we can write the Taylor series (2.3) in the form

r(x®) +d) =® + AT + O(|d|]?). (2.9)
Following a similar argument to the above, we deduce that
e = o(leM]?) (2.10)

which is the definition of second order convergence. QED

2.3 Unconstrained Optimization

In this case the ‘linear’ problem is that of minimizing a quadratic function of n variables
q(x) = %XTGX +h'x (2.11)

where the Hessian matrix of second derivatives G is symmetric and positive definite. The
corresponding nonlinear problem is to find a local minimizing point x* of a given non-
quadratic function f(x). We refer to the gradient (column) vector of first partial derivatives
of f(x) by g(x) = Vf(x) and the Hessian by G(x) = Vg(x)?. If x* is a local minimizer
of f(x) then clearly it is a minimizer along any line

x(a) = x" + as, s#0
through x*. It follows from this and the chain rule that the slope
df (x())/da|a=0 = g*s =0

for any s. Consequently a necessary condition for x* to be a local minimizer of f(x) is that
g" = 0. Points x which satisfy g(x) = 0 are referred to as stationary points, and include
saddle points and maximizers as well as minimizers. Similarly another necessary condition
for a minimizer is that the second derivative of f(x(a)) at @ = 0 is non-negative, that is
s”G*s > 0 for all s, which is the condition that G* is positive semi-definite. On the other
hand, if both g* = 0 and G* is positive definite, then this is a sufficient condition for x*
to be a local minimizer.

The stationary point condition g(x) = 0 is a system of nonlinear equations that can
be solved by the NR method to find a stationary point of f(x). The Jacobian Vg(x)7 is
just the Hessian G(x). For minimization we are interested in the case that G is positive
definite. In the case of a quadratic function (2.11), g(x) = Gx + h and we solve the
system Gx = —h. In the non-quadratic case, the appropriate regularity condition is
that G* is positive definite, and the NR iteration formula (2.4) becomes G*)d = —g(*).
These linear systems are most efficiently solved using Choleski factors G = LLT. We



refer to this method as the Newton method for minimization. The method inherits all
the favourable local properties of the NR method, described in the previous subsection.
Correspondingly the method must be modified to promote global convergence. There is an
additional issue that not only might G*) be singular, whence the method aborts, but also
G®*) might become indefinite, remote from the solution. In this case the local quadratic
approximating function ¢(d) = %dTG(k)d + g®Td no longer has a minimizer, and the
resulting displacement d(®) obtained by finding the stationary point of q(d) is unlikely to
be useful. Thus the most effective way of promoting global convergence is still a subject
of some interest. In this respect, quasi-Newton methods are of particular interest because
there exist methods of updating a Hessian approximating matrix B®) 50 as to maintain
the property that B®*) is symmetric positive definite.

2.4 Optimization with Linear Equality Constraints

This section is mainly important for the techniques it introduces in regard to handling linear
constraints, which form a major feature of the Quadratic Programming (QP) method that
is the subproblem of the SQP method. The ‘linear’ problem that we consider is the Equality
QP (EQP) problem

minimize  ¢(x) = 3x Gx +hTx
xeR"

subject to ATx =b. (2.12)

In this problem A is an n x m matrix with m < n. The constraints are regular iff rank(A) =
m, which we assume to be the case. When m = n the solution is simply that given by
(2.1) and ¢(x) plays no part. We shall focus therefore on the case that m < n, whence the
equations in (2.12) are under-determined.

We can express the general solution of AT”x = b as

x=x"+7t (2.13)

where x° is a particular solution of ATx = b, Z is an n x (n — m) matrix whose columns
are a basis for the null space of A7, that is null(A”) = {z| ATz = 0}, and t € R"™™
is an arbitrary vector. The Zt term in (2.13) expresses the non-uniqueness of solutions
of ATx = b. Neither x° nor Z are uniquely defined and any valid choice is acceptable,
although there are possible considerations relating to ill-conditioning. There are various
ways of finding a suitable x° and Z. One is to reduce AT to upper echelon form, as
described in any basic linear algebra text, using pivoting to avoid ill-conditioning. More
relevant to QP software is to find any matrix, V say, such that [A|V] is nonsingular,
and also well-conditioned, insofar as that is possible. Denote [A|V]~7 = [V | Z] where
Z has n — m columns. Then it can readily be verified using AT”Y = I, ATZ = 0 and



rank(Z) = n — m that x° = Yb is a particular solution and columns of Z are a basis for
null(AT).

What follows is known as the Null Space Method for solving EQP problems. Simply,
we substitute the general solution (2.13) into the definition of ¢(x), giving a reduced QP

Q(t) = q(x° + Zt) = 1 (x° + Zt)TG(x° + Zt) + hT (x° + Zt).

2
We find a stationary point of Q(t) by applying the condition V{Q(t) = 0, giving rise to
the system of equations
ZT'Gzt = —Z"(h + Gx°) (2.14)

which is solved for t. Then (2.13) defines the solution x*. The solution is a unique minimizer
if and only if ZT'GZ, referred to as the reduced Hessian matriz, is positive definite.

The Null Space Method extends to solve any linear equality constrained problem
(LECP) in which the objective function is non-quadratic, that is

minimize f(x)

subject to ATx =b. (2.15)

Again, we just substitute for x using (2.13) giving a reduced problem

minimize F'(t) = f(x° + Zt).
This is now a non-quadratic unconstrained minimization problem and can be solved by the
methods of the previous subsection.

3 Optimization with Nonlinear Equations

In this section we consider the Equality constrained NLP problem

minimize  f(x)
ENLP x€R"
subject to ¢(x) =0

where in general c(x) is a vector of m nonlinear functions. We assume that these functions
are continuous and continuously differentiable (C') functions of x. In the null space method
we looked for a parametrization of the feasible region which allows us to eliminate the linear
constraints A”x = b, and so solve an unconstrained problem. In this section we seek to
do the same when the constraint manifold is nonlinear. The development of this section
provides an elegant and concise introduction to the concept of so-called Lagrange multipliers
and their relation to the reduced optimization problems seen in the previous section. We
make use of a locally valid nonlinear transformation, which, although computationally
unattractive, does enable us to state necessary optimality conditions, and to derive a
Newton method which is ultimately the basis for the SQP method.



3.1 Stationary points and Lagrange multipliers

In this section we follow the rationale of the null space method and attempt to derive
an equivalent reduced unconstrained optimization problem. In this case however it is
necessary to make a nonlinear transformation of variables, and there exist exceptional
situations in which this is not possible. In order therefore to ensure that our transformation
is well defined, local to a solution x* of the ENLP, we make the reqularity assumption
that the columns of the Jacobian matrix A* are linearly independent, or equivalently that
rank(A*) = m.

Existence and some properties of the transformation are a consequence of the Inverse
Function Theorem, an important result which can be found in texts on real variable calcu-
lus. It may be stated as follows. Let r(x), R” — IR", be a €' nonlinear mapping, and let
x* be such that Vr(x*) is nonsingular. Then open neighbourhoods of x* and r* (= r(x*))
exist within which a @' inverse mapping x(r) is uniquely defined, so that x(r(x)) = x and
r(x(r)) = r. Moreover, derivatives of the mappings are related by

V.x! = (Vyr?)™h (3.1)

In the case of the ENLP above, we choose any fixed matrix V' such that [A*|V] is
nonsingular (this is possible by virtue of the regularity assumption), and consider the

nonlinear mapping r(x) = < Tc(x) > (3.2)
Vix—-x*))’

noting that r(x*) = 0. The Jacobian of the transformation is Vyxr? = [A|V] which is
nonsingular at x*. It follows by virtue of the inverse function therem that a well defined
inverse function x(r) exists in a neighbourhood of x*. We consider the constrained form
of x(r) in which r = ((t)) This defines a function x(t), t € R"™™, for which c(x(t)) = 0,
and so provides a parametrization of the feasible region of the ENLP which is valid local
to x*. Moreover, for any x local to x* there corresponds a unique value of t = V7' (x — x*),
and x = x* corresponds to t = 0. It also follows from (3.1) that

1 yT
Vex(r) = 4V = | 7] (33
say, so that
Vix(t) = 2T and hence 0x;/0tj = z;j. (3.4)

Note that Z is no longer a constant matrix, and the expressions are only valid local to x*,
in contrast to the null space method for handling linear constraints.

We can now state an equivalent reduced unconstrained optimization problem for the
ENLP, that is

minimize F'(t), (3.5)
teR" ™™



where F'(t) = f(x(t)). A stationary point of F'(t) is defined by the condition that V¢ F(t) =

0. By the chain rule
Ox; O 0
=251, 0~ 2

from (3.4), or
Vi=21V,. (3.6)

This result shows how derivatives in the reduced space are related to those in the full space.
Applying these derivatives to F(t) and f(x) at x*, we obtain a stationary point condition
for the ENLP problem

Z*Tg(x*) = 0, (3.7)

where Z* denotes the matrix given by (3.3) when x = x* and A = A*. The vector Z7g is
referred to as the reduced gradient and is zero at a stationary point of the ENLP problem.

There is also an alternative formulation of the stationary point condition that can be
deduced. Arising from (3.3) and the regularity assumption rank(A*) = m, we know that
both A* and Z* have linearly independent columns. The definition of the inverse in (3.3)
implies that A*"' Z* = 0 showing that columns of Z* are in null(A*7). But we might equally
write Z*T A* = 0, showing that columns of A* are in null(Z*T), and indeed provide a basis
for null(Z*T) by virtue of linear independence. Now the stationary point condition (3.7)
states that g* € null(Z*7). Thus we can express g* as a linear combination of basis vectors
for null(Z*T), that is

g =A"A" =) al\. (3.8)
=1

The multipliers A* in the linear combination are referred to as Lagrange multipliers.

Equations (3.7) and (3.8) provide alternative and equivalent statements of the sta-
tionary point conditions for an ENLP problem. They are often referred to as first order
necessary conditions for a local solution of a regular ENLP problem. We can also express
(3.8) as g* € range(A*). These alternative viewpoints of null space and range space for-
mulations pervade much of both the theoretical and computational aspects of quadratic
programming and nonlinear programming, as we shall see below.

Satisfying (3.8) and feasibility provides a method for solving the ENLP, that is find
x*, A* to solve the system of n + m equations

r(x,\) = (g N A)‘) — 0, (3.9)

—C

in the n + m variables x, A\, where g, A and c are functions of x. This is the so-called
method of Lagrange multipliers. However, the system is generally nonlinear in x and may
not be straightforward to solve, as we have seen above. It also can only be expected to
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Figure 1: Illustrating dimension reduction for n = 3

yield stationary points of the ENLP. Equation (3.9) can also be interpreted as finding a
stationary point of a Lagrangian function

L(x,A) = f(x) — ATe(x), (3.10)

since Vx£ = g — AX and VL = —c. The Lagrangian function plays a central role in
both the theoretical and computational aspects of nonlinear programming and the SQP
method.

Lagrange multipliers also have a useful interpretation in terms of the sensitivity of the

10



ENLP to perturbations in the constraints. Consider an ENLP problem
minimize X
inimize  f(x)

subject to c¢c(x) =€ (3.11)

in which the right hand sides of the constraints have been perturbed by an amount €. Let
x(€), A(e) be the solution and multipliers of the perturbed problem, and consider f(x(&)).
Then

df (z(g))/de; = N, (3.12)

showing that \; measures the change of f(x(e)) with respect to a change ¢; in constraint
1, to first order. To prove this result, let the Lagrangian of the perturbed ENLP problem
be

L(x,\¢e) = f(x) = AT(c(x) — ),

and observe that L(x(g), A(e),e) = f(x(e)). Then the chain rule gives

df  dc  oxT oXT oL

by virtue of the stationarity of the Lagrangian function with respect to x and A.

3.2 Second Order Conditions for the ENLP problem

Let x* solve the ENLP and let rank(A*) = m (regularity). Then we have seen that (3.5)
is an equivalent reduced unconstrained minimization problem. Thus, from Section 2.2,
a second order necessary condition is that the Hessian matrix ViF(t) is positive semi-
definite. To relate this to the ENLP, we use equation (3.6) which relates derivatives in the
reduced and full systems. Thus

ViF(t) = Vi(VeF (1) = 2" Vi(g" 2).

When the constraints are linear, such as in (2.15), Z is a constant matrix so we can
differentiate further to get

7'V (g"2) = 2" (Vig")Z = 2"GZ

where G is the Hessian matrix of f(x). Thus the second order necessary condition in
this case is that the reduced Hessian matriz Z¥G*Z is positive semi-definite. Moreover,
ZTg* = 0 and ZTG*Z being positive definite are sufficient conditions for x* to solve (3.5).
For an NELP with nonlinear constraints, Z depends on x and the last differentiation
is not valid. To make progress, we observe that the ENLP is equivalent to the problem
minimize  L£(x, A¥)
xeR™ (313)
subject to ¢(x) =0

11



since f(x) = L(x,A) when c(x) = 0. We now define x(t) as in (3.2), and consider the
problem of minimizing a reduced function F(t) = L£(x(t),A*). Then V{F = 0 becomes
ZTVL = 0, or ZT(g — AX*) = 0. At x*, it follows that Z*Tg* = 0 which is the first
order necessary condition. For second derivatives,

ViF(t) = Vi(VeF(t)T = 27V, ((g — AT 2).
At x*, derivatives of Z are multiplied by g* — A*A* which is zero, so we have
ViF(tY) = Z"Vi((g — AN)) 2| = ZTW* 27,

where

W(x,A) = V2L(x,)\) = V2f(x) — zmj \iV2ei(x) (3.14)

is the Hessian with respect to x of the Lagrangian function, and W* = W (x*, A*). Thus
the second order necessary condition for the regular ENLP problem is that the reduced
Hessian of the Lagrangian function is positive semi-definite. As above, a sufficient condition
is that the reduced Hessian is positive definite and the reduced gradient is zero.

3.3 The SQP method for the ENLP problem

We have seen in (3.9) that a stationary point of a regular ENLP can be found by solving a
system of nonlinear equations. Applying the Newton-Raphson method to these equations
enables us to derive a Newton type method with rapid local convergence properties. First
however we consider solving (3.9) in the case of an EQP problem (2.12). In this case,
g = Gx+hand c = ATx — b, so (3.9) can be written as the system of n + m linear
equations in n + m unknowns

5 16)--0)

Although symmetric, the coefficient matrix in (3.15) is indefinite so cannot be solved by
using Choleski factors. The Null Space Method (2.14) is essentially one way of solving
(3.15), based on eliminating the constraints A”x = b. When G is positive definite, and
particularly when G permits sparse Choleski G = LL” factors to be obtained, it can be
more effective to use the first block equation to eliminate x = G~1(AX — h). Then the
system

ATGT'AXN=b+ ATG™'h (3.16)

is used to determine A, and hence implicitly x. Of course, operations with G~! are carried
out by making triangular solves with the Choleski factor L. This method might be regarded
as the Range Space Method for EQP, in contrast to the Null Space Method described earlier.

12



We now proceed to consider the ENLP problem in the general case of nonlinear con-
straints. In this case we attempt to solve the equations r(x,A) = 0 in (3.9) by the
Newton-Raphson method. First we need the Jacobian matrix of this system, which is
the (n +m) x (n 4+ m) matrix

(%) = i o] (3.17)

where W, defined in (3.14), is the Hessian with respect to x of the Lagrangian function.
The current iterate in the method is the pair of vectors x(*), )\(k), and the iteration formula,
generalising (2.4), is

wE  _A® 7 g YOI
[_A(k:)T 0 ] (5(k)> =-r® = ( o) ) (3.18)

where superscript (k) denotes quantities calculated from x®) and A%, Then updated
values for the next iteration are defined by x(*+1) = x(®) 4 d(*) and A*+1) = \(*) 4 §(k)
These formulae may be rearranged by moving the A®A®) term to the left hand side of

(3.19), giving
WE AW/ qe e
[_A(k)T 0 ] (/\(k—l-l)) = < ) > : (3.19)

This then is a Newton iteration formula for finding a stationary point of an EQP problem.
For rapid local convergence to a stationary point x* with multipliers A*, we require that
the Jacobian matrix

[ W _A*] (3.20)

_A*T 0
is nonsingular.

So where does the SQP method come in? There are two important observations to
make. First, if the constraints in the ENLP problem are regular (rank(A*) = m), and the
ENLP satisfies second order sufficiency conditions (Z*TW*Z* is positive definite), then
it is a nice exercise in linear algebra to show that the matrix (3.20) is nonsingular (see
[13]). Thus the local rapid convergence of (3.19) is assured. Moreover, it also follows
that rank(A®)) = m and ZWTW ) Z(k) is positive definite in a neighbourhood of x*, A*.
Under these conditions, the EQP problem

minimize %dTW(’“)d + dTg*)

EQP®) deR™
subject to ¢ + AKWTd =0

is regular and has a unique local minimizer, which can be found by solving the stationary
point condition (see (3.15)), which for EQP®*) is none other than (3.19). Thus, for finding
a local minimizer of an ENLP problem, it is better to replace the iteration formula (3.19)
by one based on solving EQP(k) for a correction d®*) = d and multiplier vector AL,

13



This correctly accounts for the second order condition required by a local minimizer to an
ENLP problem. In particular, a solution of (3.19) which corresponds to a saddle point of
EQP®) is not accepted. (EQP(k) is unbounded in this situation.) Also EQP®) has a nice
interpretation: the constraints are linear Taylor series approximations about x*) to those
in the ENLP problem, and the objective function is a quadratic Taylor series approxima-
tion about x(®) to the objective function in the ENLP, plus terms in W®*) that account
for constraint curvature. The objective function can equally be viewed as a quadratic
approximation to the Lagrangian function.

To summarize, solving an ENLP in this way may be interpreted as a Sequential EQP
method (SEQP) with the following basic structure

initialize X(l),}\(l)

for k=1,2,... until converged
solve EQP®) giving d®) and multipliers A+
set xk+D) — x(k) 4 q)

end

As with other Newton methods, the method may not converge globally, and EQP®*) may
have no solution, for example it may be unbounded, or possibly infeasible if A®) is rank
deficient. It is therefore essential that extra features are included in any practical imple-
mentation. We return to this subject later in the monograph.

4 Inequality Constraints and Nonlinear Programming

In this section we examine the extra complication caused by having inequality constraints
in the formulation of an optimization problem. As above we discuss ‘linear’ problems which
can be solved in a finite number of steps, and nonlinear problems for which iteration is
required, leading to a general formulation of the SQP method. We also discuss changes to
optimality conditions to accommodate inequality constraints.

4.1 Systems of Inequalities

Corresponding to the development of Section 2.1, the ‘linear’ problem we now consider is
that of a system of linear inequalities

ATx>b (4.1)

in which A is a given n x m matrix of coefficients and b is a given vector of right hand sides.
Usually m > n when there is no objective function present, although in general, m < n
is also possible. Each inequality a;fpx > b; in (4.1) divides IR" into two parts, a feasible
side and an infeasible side, with respect to the inequality. Equality holds on the boundary.
Any n independent such equations define a point of intersection, referred to as a wvertex in
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this context. Usually methods for solving (4.1) attempt to locate a feasible vertex. Each
vertex can be found by solving a system of linear equations as in (2.1). There are only
a finite number of vertices so the process will eventually find a solution, or establish that
none exists. However, there may be as many as (:’Z) vertices, which can be extremely large
for problems of any size. Thus it is important to enumerate the vertices in an efficient way.
This can be done by a modification known as Phase I of the so-called Simplex Method
for Linear Programming, which we describe briefly below (see also [13] for example). An
important saving in this case is that adjacent vertices differ by only one equation, and this
can be used to update matrix factors to gain efficiency.

The corresponding nonlinear problem is the system of nonlinear inequalities

r(x) >0 (4.2)
in which r(x) is a given vector of m nonlinear functions. This problem can be solved by
a Newton type algorithm in which a sequence of linearized subproblems are solved, each
being obtained by a linear Taylor series approximation to ¢(x) about a current iterate x(k),
This just becomes a special case of the SQP method, and we shall defer discussion on it
until later.

In cases when no solution exists to (4.1) or (2.1), it is often of interest to find a ‘best’
solution which minimizes some measure of constraint infeasibility. Exactly what measure
to choose is a decision for the user, and is one which has implications for the type of method
that is possible.

4.2 Optimization with Inequality Constraints
In this case our generic linear problem, which can be solved finitely, is the QP problem

-2

minimize  ¢(x) = ix7Gx + hTx
xe€R™
subject to  ATx > b. (4.3)

In this problem A is an nxm matrix with no restrictions on the value of m. The correspond-
ing nonlinear problem is the NLP problem (1.1). There is also the intermediate stage of a
linearly constrained problem (LCP say) in which the objective function is non-quadratic,
that is
minimize X
inim] f(x)

subject to  ATx > b. (4.4)

As in Section 1, a more general formulation of the QP and NLP problems is often ap-
propriate for practical use, but the simplified form is convenient for introducing the main
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features. An important special case of QP, which can also be solved finitely, is the Linear
Programming (LP) problem, characterized by G = 0 in (4.3).

In this section our main aim is to discuss optimality conditions for an NLP problem.
An important concept is that of an active constraint. The set of active constraints at a
point x is defined by

A(x) = {i|ci(x) = 0} (4.5)

so that i € A(x) indicates that x is on the boundary of constraint i. The set of active
constraints at the solution is denoted by A*. Constraints not in A* have no influence on
the behaviour of the NLP problem, local to a local solution x* of (1.1).
Clearly x* solves the following ENLP problem
minimize  f(x)
xeR"
subject to  ¢;(x) =0 i€ A" (4.6)

Let the gradient vectors aj = V¢, i € A* be linearly independent (regularity). Then from
(3.8) in Section 3.1 there exist multipliers A* such that

m

g =) ajA =) af\i= A"\ (4.7)
i€ A* =1

denoting A7 = 0 for inactive constraints ¢ ¢ A*. Moreover, by virtue of regularity, we can

perturb the right hand side of (4.6) by a sufficiently small amount ¢; > 0, and ¢; = 0,

J # i, and still retain feasibility in (1.1). Then, if ¥ < 0, it follows from (3.12) that

df /de; = A} < 0, which contradicts optimality. Thus

AF >0 (4.8)

for an inequality constraint is also necessary. (The multiplier of an equality constraint can
take either sign.) The convention that the multiplier of an inactive constraint is zero may
also be expressed as

Aici =0 (4.9)

which is referred to as the complementarity condition. If X} > 0 for all active inequality
constraints, then strict complementarity is said to hold. Collectively, feasibility in (1.1),
(3.8), (4.8) for an inequality constraint, and (4.9) are known as KT (Kuhn-Tucker) (or
KKT (Karush-Kuhn-Tucker)) conditions (Karush [31], Kuhn and Tucker [32]). Subject to
a regularity assumption of some kind, they are necessary conditions for a local solution of
(1.1). A point x* which satisfies KT conditions for some A* is said to be a KT point.

A second order necessary conditions that can be deduced from (4.6) is that Z*TW*Z*
is positive semi-definite, where Z* is the null-space basis matrix for (4.6), and W is defined
in (3.14). A sufficient condition is that x* is a KT point, strict complementarity holds,
and Z*TW*Z* is positive definite.
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4.3 Quadratic Programming

Before describing the SQP method, it is important to know how to solve a QP problem
(4.3) that contains inequality constraints. A method with finite termination is the Active
Set Method (ASM), which has features that are favourable in the context of SQP. The
method solves (4.3) by solving a sequence of EQP problems, whilst retaining feasibility
in (4.3), until the correct active set is determined. The method is described in the case
that G is positive definite, all the contraints are inequalities, and there is no degeneracy
(see below). The method is initialized by finding a feasible vertex, x() say, as described
in Section 4.1. We let A denote the current set of active constraints at x(¥). The current
EQP is defined by

minimize %XTGX +hTx

xe€R™
subject to alx =b; i€ A (4.10)

Because x(!) is a vertex, it is in fact the solution of the current EQP defined by A. The
ASM has two major steps.

(1) If x*) solves the current EQP, then find the corresponding multipliers A®). Choose

any i : )\Ek) < 0 (if none exist, then finish with x* = x(*)). Otherwise, remove i

from A and goto step (ii).

(ii) Find the solution, x say, of the current EQP. If x is feasible in the QP problem then
[set x*TD) = %, k = k + 1 and goto step (i)]. Otherwise, set x**+1 as the closest
feasible point to % along the line segment from x*) to %x. Add the index of a newly
active constraint to A. Set k = k+ 1. If | A] = n then goto step (i) else goto step (ii).

The motivation for the algorithm is provided by the observation in Section 4.2 that if
there exists i : Agk) < 0 at the solution of the current EQP, then it is possible to relax
constraint ¢ whilst reducing the objective function. If G = 0 in (4.3) then we have a Linear
Programming (LP) problem, and the ASM is essentially the same as the Simplex method
for LP, although it is not often explained in this way.

Special linear algebra techniques are required to make the method efficient in practice.
Changes to the current active set involve either adding or subtracting one constraint index.
Updates to matrices such as Z and ZTGZ can be performed much more quickly than re-
evaluating the matrices. For large problems, it is important to take advantage of sparsity
in A and possibly G.

There are some complicating factors for the ASM. If the Hessian G is not positive
definite, then it is possible that the EQP obtained by removing ¢ from .4 may be unbounded,
so that x does not exist. In this case an arbitrary choice of feasible descent direction
is chosen, to make progress. If G has negative eigenvalues, then the QP problem may
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have local solutions, and the ASM does not guarantee to find a global solution. Any
solution found by the ASM will be a KT point of the QP problem, but may not be a local
solution unless strict complementarity holds. A more serious complicating factor is that of
degeneracy which refers to the situation where regularity of the active constraints at the
solution of an EQP problem fails to hold. An example would be where there are more
than n active constraints at a feasible vertex. In this case, deciding whether x*) solves
the current EQP, or whether a feasible descent direction exists, is a more complex issue,
although a finite algorithm to decide the issue is possible. Degeneracy is often present in
practical instances of QP problems, and it is important that it is correctly accounted for
in a computer code.

More recently an alternative class of methods has become available for the solution of
LP or QP problems in which G is positive semi-definite. These interior point methods have
the advantage that they avoid the worst case behaviour of ASM and Simplex methods,
in which the number of iterations required to locate the solution may grow exponentially
with n. However, interior point methods also have some disadvantages in an SQP context.

4.4 The SQP Method

We are now in a position to describe the basic SQP method for an NLP (1.1) with inequality
constraints. The method was first suggested in a thesis of Wilson (1960), [47], and became
well known due to the work of Beale [1]. The idea follows simply from the SEQP method
for an ENLP problem, where the equality constraints c(x) = 0 are approximated by
the linear Taylor series ¢®) + A®Td = 0 in the subproblem EQP®*). In an NLP with
inequality constraints c(x) > 0 we therefore make the same approximation, leading to a
QP subproblem with linear inequality constraints ¢*) + A®)Td > 0, that is

deR™

Qp® minimize %dTW(k)d +dTg®)
subject to  ¢®) + AWTq > 0.

The basic form of the algorithm therefore is that described at the end of Section 3.3, with
the substitution of QP for EQP®). To view this method as a Newton-type method, we
need to assume that that strict complementarity A} > 0, i € A* holds at a regular solution
to (1.1). Then, if x(*), A is sufficiently close to x*, A*, it follows that the solution of
EQP®) with active constraints A*, also satisfies the sufficient conditions for QP*). Thus
we can ignore inactive constraints i € A*, and the SQP method is identical to the SEQP
method on the active constraint set A*. Thus the SQP method inherits the local rapid
convergence of a Newton type method under these circumstances.
The progress of the SQP method on the NLP problem
minimize  f(X) = —x1 — 22
x€R?
subject to  c¢1(x) =29 — 23 >0
co(x)=1—-22 —22>0
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is illustrated in Table 1, and has some instructive features. Because the initial multiplier
estimate is zero, and f(x) is linear, the initial W) matrix is zero, and QP is in fact
an LP problem. Consequently, x( has to be chosen carefully to avoid an unbounded
subproblem (or alternatively one could add simple upper and lower bounds to the NLP
problem). The solution of QPW delivers some non-zero multipliers for /\(2), so that W®)
becomes positive definite. The solution of QP2 predicts that constraint 1 is inactive, and
we see that )\53) is zero. This situation persists on all subsequent iterations. For this NLP
problem, the active set is A* = {2}, and we see for k > 3, that the SQP method converges
to the solution in the same way as the SEQP method with the single equality constraint
1 — 2?2 — 23 = 0. The onset of rapid local convergence, characteristic of a Newton method,
can also be observed.

Table 1: A Numerical Example of the SQP Method

N VNS o) )
1 3 1

1 3 1 0 0 3 -3

2 = 2 i 2 —0.173611  —0.284722

3 0.747120 0.686252 0  0.730415  0.128064 —0.029130

4 0.708762 0.706789 0  0.706737  0.204445 —0.001893

5 0.707107 0.707108 0  0.707105  0.207108 —0.28;9 —5

However, the basic method can fail to converge if x*) is remote from x* (it is not as
important to have A®) close to A* because if x® is close to x*, one solution of QP%¥) will
give an accurate multiplier estimate). It is also possible that QP®) has no solution, either
because it is unbounded, or because the linearized constraints are infeasible.

For these reasons, the SQP method is only the starting point for a fully developed
NLP solver, and extra features must be added to promote convergence from remote initial
values. This is the subject of subsequent sections of this monograph. Nonetheless it has
been and still is is the method of choice for many researchers. The success of the method
is critically dependent on having an efficient, flexible and reliable code for solving the QP
subproblem. It is important to be able to take advantage of warm starts, that is, initializing
the QP solver with the active set from a previous iteration. Also important is the ability to
deal with the situation that the matrix W) is not positive semi-definite. For both these
reasons, an active set method code for solving the QP subproblems is likely to be preferred
to an interior point method. However, NLP solvers are still a very active research area,
and the situation is not at all clear, especially when dealing with very large scale NLPs.
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4.5 SLP-EQP Algorithms

An early idea for solving NLP problems is the successive linear programming (SLP) al-
gorithm in which LP subproblem is solved (W(k) =0 in QP(k)). This is able to take
advantage of fast existing software for large scale LP. However, unless the solution of the
NLP problem is at a vertex, convergence is slow because of the lack of second derivative in-
formation. A more recent development is the SLP-EQP algorithm, introduced by Fletcher
and Sainz de la Maza [22], in which the SLP subproblem is used to determine the active set
and multipliers, but the resulting step d is not used. Instead an SEQP calculation using
the subproblem EQP®) in Section 3.3 is made to determine d*). The use of a trust region
in the LP subproblem (see below) is an essential feature in the calculation. The method
is another example of a Newton-type method and shares the rapid local convergence prop-
erties.The idea has proved quite workable, as a recent software product SLIQUE of Byrd,
Gould, Nocedal and Waltz [3] demonstrates.

4.6 Representing the Lagrangian Hessian W ®*)

An important issue for the development of an SQP code is how to represent the Hessian
matrix W®) that arises in the SQP subproblem. As defined in QP¥), it requires evaluation
of all the Hessian matrices of f and ¢;, i = 1, 2,...,m at x*), and their combination using
the multipliers A*). Writing code from which to evaluate second derivatives can be quite
error prone, and in the past, this option has not always been preferred. However, the use
of an exact W*) matrix has been given new impetus through the availability of easy-to-use
automatic differentiation within modelling languages such as AMPL, GAMS and TOMLAB
(see Section 7). In large problems the exact w k) may be a sparse matrix, which provides
another reason to consider this option. On the other hand, it may be that the globalization
strategy requires W) to be positive definite, in which case it will usually not be possible
to use W) directly (except for certain ‘convex’ problems, W can be indefinite, even at
the solution). However, if W) is readily and cheaply available, it is probably best to
make use of it in some way, as this can be expected to keep the iteration count low. There
are various ideas for modifying W®*) to obtain a positive definite matrix. One is to add a
suitable multiple of a unit matrix to W%, Another is to add outer products using active
constraint gradients, as when using an augmented Lagrangian penalty function.
Otherwise, the simplest approach, generically referred to as quasi-Newton SQP, is to
update a symmetric matrix B®*) which approximates W), In this method, B™ is ini-
tialized to some suitable positive definite or semi-definite matrix (often a multiple of the
unit matrix), and B®) is updated after each iteration to build up information about sec-
ond derivatives. A suitable strategy (e.g. Nocedal and Overton [36]) is usually based on

evaluating difference vectors
8 = x(bH1) _ (k) (4.11)
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in x, and

A = o LxFHD AR v £(x®) A®) (4.12)

in the gradient of the Lagrangian function £(x, )\(k)), using the latest available estimate
A®) of the multipliers. Then the updated matrix B+ is chosen to satisfy the secant
condition B+ §E) = (k)

There are many ways in which one might proceed. For small problems, where it is
required to maintain a positive definite B®*) matrix, the BFGS formula (see [13]) might
be used, in which case it is necessary to have J(k)T'y(k) > (. It is not immediately obvious
how best to meet this requirement in an NLP context, although a method suggested by
Powell [40] has been used widely with some success. For large problems, some form of
limited memory update is a practical proposition. The L-BFGS method, Nocedal [35], as
implemented by Byrd, Nocedal and Schnabel [4] is attractive, although other ideas have also
been tried. Another method which permits low costs is the low rank Hessian approximation
B = UUT (Fletcher [15]), where U has relatively few columns. For ENLP, updating the
reduced Hessian matrix M ~ ZTWZ, B=VMVT, using differences in reduced gradients,
is appropriate, essentially updating the Hessian of the reduced objective function F'(t) in
(3.5). However, this idea does not translate easily into the context of NLP with inequality
constraints, due to the change in dimension of M when the number of active constraints
changes.

An intermediate situation for large scale SQP is to update an approximation which
takes the sparsity pattern of W) into account, and updates only the non-sparse elements.
The LANCELOT project (see Conn, Gould and Toint [8] for many references) makes use
of partially separable functions in which B*) is the sum of various low dimensional element
Hessians, for which the symmetric rank one update is used. Other sparsity respecting
updates have also been proposed, for example Toint [44], Fletcher, Grothey and Leyffer
[17], but the coding is complex, and there are some difficulties.

Various important conditions exist regarding rapid local convergence, relating to the
asymptotic properties of WZ or ZTW Z (see [13] for references). Significantly, low storage
methods like L-BFGS do not satisfy these conditions, and indeed slow convergence is oc-
casionally observed, especially when the true reduced Hessian Z*TW*Z* is ill-conditioned.
For this reason, obtaining rapid local convergence when the null space dimension is very
large is still a topic of research interest. Indeed the entire subject of how best to provide
second derivative information in an SQP method is very much an open issue.

5 Globalization of NLP Methods

In this section we examine the transition from Newton type methods with rapid local
convergence, such as the SQP method, to globally convergent methods suitable for incor-
poration into production NLP software. By globally convergent, we refer to the ability to
converge to local solutions of an NLP problem from globally selected initial iterates which
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may be remote from any solution. This is not to be confused with the problem of guaran-
teeing to find global solutions of an NLP problem in the sense of the best local solution,
which is computationally impractical for problems of any size (perhaps >40 variables, say),
unless the problem has some special convexity properties, which is rarely the case outside of
LP and QP. We must also be aware that NLP problems may have no solution, mainly due
to the constraints being infeasible (that is, no feasible point exists). In this case the method
should ideally be able to indicate that this is the case, and not spend an undue amount of
time in searching for a non-existent solution. In practice even this is an unrealistic aim,
akin to that of finding a global minimizer of some measure of constraint infeasibility. What
is practical is to locate a point which is locally infeasible in the sense that the first order
Taylor series approximation to the constraints set is infeasible at that point. Again the
main requirement is that the method should be able to converge rapidly to such a point,
and exit with a suitable indication of local infeasibility. Another possibility, which can be
excluded by bounding the feasible region, is that the NLP is unbounded, that is f(x) is
not bounded below on the feasible region, or that there are no KT points in the feasible
region. Again the software has to recognize the situation and terminate accordingly.

Ultimately the aim is to be able to effectively solve NLP problems created by scientists,
engineers, economists etc., who have a limited background in optimization methods. For
this we must develop general purpose software which is

o Efficient

e Reliable

e Well documented

e Thoroughly tested

o Flexible

e Easy to use, and has
e Large scale capacity.

Efficiency and reliability are self evident, as is being well-documented, Being thoroughly
tested involves monitoring the behaviour on test problems (e.g. CUTE [2]) which encom-
pass a wide range of possible situations, including problems with no solution as referred to
above. Flexibility includes the ability to specify simple bounds, linear constraints, etc., to
take account of sparsity in the formulation, and to be able to make warm starts from the
solution of a previously solved problem. It can also include the flexibility to decide whether
or not to supply second derivatives (indeed some codes have been developed which require
no derivative information to be supplied, but these are very limited in the size of problem
that can be solved, and the accuracy that can be achieved). By easy to use we envisage
issues such as the provision of default parameter values which do not need tuning by the
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user, and access to the software via modelling languages like AMPL, GAMS or TOMLAB.
Large scale capacity is required for the software to make a significant impact: even run
of the mill applications of optimization now have 1000+ variables and/or constraints and
are computationally intractable without the use of sparse matrix techniques, or special
iterative methods such as Conjugate Gradients.

5.1 Penalty and Barrier Functions

From an historical perspective, almost all general purpose NLP solvers until about 1996
aimed to promote global convergence by constructing an auxiliary function from f(x) and
c(x) known variously as a penalty, barrier, or merit function. In the earlier days, the idea
was to apply successful existing techniques for unconstrained minimization to the auxiliary
function, in such a way as to find the solution of the NLP problem. Later, there came the
idea of using the auxiliary function to decide whether or not to accept the step given by
the SQP method, hence the term merit function.
For an ENLP problem, an early idea was the Courant [9] penalty function

p(x;0) = f(x) + soce = f(x) + O'Z where ¢ = c(x), (5.1)

where o > 0 is a parameter. The ¢”c term ‘penalizes’ points which violate the constraints,
and o determines the strength of the penalty. Let a minimizer, x(o) say, of ¢(x; o) be found
by some technique for unconstrained minimization. Then we choose a sequence of values of
o — 00, for example o = {1, 10, 100, ...} and observe the behaviour of x(¢). Under some
assumptions, it can be shown that the NLP solution is given by x* = lim, .. x(0). A
simple modification for the NLP problem is to include terms (min(c;, 0))? in the summation
for any inequality constraints ¢;(x) > 0. In practice the methods are slow as compared
with SQP techniques, and more seriously, suffer serious effects due to ill-conditioning of
the Hessian matrix of ¢ as ¢ — oo.

Another early idea for NLP with inequality constraints was the Frisch [24] log barrier
function

o(x; 1) uZloge ci(x (5.2)

where p > 0 is a parameter. In this case we require x to lie in the interior of the feasible
region where ¢;(x) > 0,7 =1, 2, ..., m, so that the log terms are well defined. Then each
term — log, ¢;(x) approaches +0o as x approaches the boundary of the feasible region, and
creates a ‘barrier’ which prevents iterates from escaping out of the feasible region. The
parameter p determines the extent to which the barrier extends into the interior of the
feasible region. For any fixed value of p we again find x(u) to minimize ¢(x; ). Then
we choose a sequence of values of i — 0, for example u = {1, & i 1(1)0,. .} and observe

the behaviour of x(x). Under some assumptions, it can be shown that x* = lim,, o x ().
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Again the methods are slow and suffer from ill-conditioning of the Hessian. Moreover the
need to find a strictly feasible starting point is usually a difficult problem in its own right.
More recently the log barrier function has been used as a merit function in conjunction
with interior point methods.

5.2 Multiplier Penalty and Barrier Functions

From around 1969 onwards, a more satisfactory class of auxiliary function came into use,
involving an additional parameter A € IR™ which could be interpreted as an estimate of
the Lagrange multiplier vector. For ENLP the Lagrangian function is augmented with a
penalty term giving

o(x; A, o) = f(x) = ATc+ %acTc where c = c(x), (5.3)

sometimes referred to as the augmented Lagrangian function (Hestenes [30], Powell [39]).
We note that
Vx¢p =g — A\ + dAc, (5.4)

so that Vo(x*; A*,0) = 0. Moreover if the local solution is regular and satisfies second
order sufficient conditions then V2¢(x*; A*, ) is positive definite if o is chosen sufficiently
large (see [13]). Thus it is not necessary to drive o to infinity, in contrast to the methods
of the previous subsection, and this avoids the worst effects of the ill-conditioning. Unfor-
tunately A* is not known a-priori, so a sequential minimization technique must be used.
In an outer iteration a sequence of parameters A X* is chosen, whilst in the inner
iteration, a minimizer x(A®) o) of ¢(x; A, 5) is found by means of an unconstrained
minimization technique. The behaviour of x(A¥), o) is observed as A*) changes. If the
iteration is not converging to x*, it may be necessary to increase o at some stage. To
update )\(k), a formula

AEHD = XB) _ (AT A) 1) (5.5)

derived fron the SQP iteration formula (3.19) may be used. For large o this may be

approximated by the scheme
AR Z 2B _ o) (5.6)

see [13].
A multiplier penalty function for the NLP (1.1) with inequality constraints is

=i + 5 loc? if ¢ < \ijo
o(x; A, 0) +Z{ 130 o> Ao (5.7)

suggested by Rockafellar [43]. The piecewise term does not cause any discontinuity in
first derivatives, and any second derivative discontinuities occur away from the solution.
Otherwise its use is similar to that in (5.3) above.
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A multiplier based modification of the Frisch barrier function due to Polyak [38] is

d(x; A, ) = f(x) = p Y Ailoge(ei/p+1), (5.8)
i=1
in which the boundary occurs where ¢; = —u, which is strictly outside the feasible region.

Thus the discontinuity of the Frisch function at the solution x* is moved away into the
infeasible region. We note that
m * *
V(x5 A p) = g T i/jwrl =0

using KT conditions (including complementarity). If the solution x* is regular, and
sufficient conditions hold, with strict complementarity, then it can also be shown that
V2¢(x*; A*, ) is positive definite if p is sufficiently small. Thus a suitable fixed value of
@ > 0 can be found and the worst effects of ill-conditioning are avoided. Both the Rock-
afellar and Polyak functions are used in a sequential manner with an outer iteration in
which A% — X*.

All the above proposals involve sequential unconstrained minimization, and as such,
are inherently less effective than the SQP method, particularly in regard to the rapidity of
local convergence. Errors in A*) are reflected in an errors of similar order in x(A*)), which
is not the case for the SQP method. Many other auxiliary functions have been suggested
for solving NLP or ENLP problems in ways related to the above. In a later section we
shall investigate so-called exact penalty functions which avoid the sequential unconstrained
minimization aspect.

A major initiative to provide robust and effective software with large scale capability
based on the augmented Lagrangian function was the LANCELOT code of Conn, Gould
and Toint (see [8] for references). The code applies to an NLP in the form

minimize f(x)

subject to  ¢(x) =0 (5.9)
1<x<u.

which treats simple bounds explicitly but assumes that slack variables have been added to
any other inequality constraints. In the inner iteration, the augmented Lagrangian function
(5.3) is minimized subject to the simple bounds 1 < x < u on the variables. A potential dis-
advantage of this approach for large scale computation is that the Hessian V2¢(x; )\(k), o)
is likely to be much less sparse than the Hessian W) in the SQP method. To avoid this
difficulty, LANCELOT uses a simple bound minimization technique based on the use of the
preconditioned conjugate gradient method, and solves the subproblem to lower accuracy
when A is inaccurate. It also uses an innovative idea of building the Hessian from a sum
of elementary Hessians through the concept of group partial separability. LANCELOT has
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been successfully used to solve problems with upwards of 10* variables, particularly those
with large dimensional null spaces arising for example from the discretization of a partial
differential equation. It is less effective for problems with low dimensional null spaces and
does not take advantage of any linear constraints.

5.3 Augmented Lagrangians with SQP

A fruitful way to take advantage of linear constraints has been to merge the globalization
aspect of the augmented Lagrangian function with the rapid local convergence of the SQP
method. This was the motivation of the very successful MINOS code of Murtagh and Saun-
ders [34] , which was arguably the first SQP-like NLP solver with large scale capability. In
fact MINOS was influenced by a method due to Robinson [42] which is not an SQP method
in the strict sense described above, but is closely related to it. We describe Robinson’s
method in the context of the NLP problem (1.1). The method generates a sequence of
major iterates x(F), A*) and solves the LCP problem

Lep® minimize f(x) =AY (e(x) —s)
subject to s =c®) 4+ AWT (x — x(*)) > 0,

where s = s(x, xF)) = c¢®) 4 ABT (x — x(*)) is the first order Taylor series approximation
about the current point, and the quantity c(x) —s may be thought of as the deviation from
linearity. The solution and multipliers of LCP®) then become the iterates x(++1), AEHD
for the next major iteration. The method differs from SQP, firstly in that LCP®) cannot
be solved finitely, which is a disadvantage, and secondly that second derivatives are not
required, which is an advantage. Robinson intended that LCP®*) should be solved by a
reduced Hessian quasi-Newton method. If a Taylor expansion of the objective function
in LCP®) about the current point is made, then it agrees with that of SQP®) up to
and including second order terms. Also the method has the same fixed point property as
SQP that if x®), X*) is equal to x*, A\*, then x*, \* is the next iterate, and the process
terminates. Consequently the method has the same rapid local convergence properties as
the SQP method, assuming that the LCP®*) subproblem is solved sufficiently accurately.
However there is no global convergence result available, for example there is no mechanism
to force the iterates x(*) to accumulate at a feasible point.

The MINOS code attempts to mitigate the lack of a global convergence property
by augmenting the objective function in LCP®*) with a squared penalty term. As with
LANCELOT, the method is applicable to an NLP in the form (5.9), and the LCP sub-
problem that is solved on the k-th major iteration is

minimize  f(x) - ABT (c(x) —s) + Lo(c(x) —s)(c(x) —s)

subject to s =c®) + AW (x —x*)) >0
1<x<nu.
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In the original source, MINOS refers to the active set method used to solve this LCP
subproblem, and MINOS/AUGMENTED refers to the major iterative procedure for solving
(5.9). However it is more usual now to refer to the NLP solver by MINOS. The code has
sparse matrix facilities, and also allows ‘linear variables’ to be designated, so allowing the
use of a smaller Hessian approximation. MINOS was probably the first SQP-type code
with the capability to solve large scale problems, and as such has been very successful and
is still in use.

A development of MINOS is the SNOPT code of Gill, Murray and Saunders [25] which
first appeared in about 1992. In place of an LCP subproblem it solves a QP subproblem, but
using an approximate Hessian matrix. Slack variables s are explicitly included, and each
iteration involves the solution of a line search subproblem based on the MINOS augmented
Lagrangian

¢(x.5,A) = f(3) = AT (c(x) ) + 3(c(x) —s)"D(c(x) — 5), (5.10)

where D = diag o; is a diagonal matrix of penalty parameters. The entire triple x(*), (), )
is varied in the line search. Various treatments of the Hessian approximation are possible,
depending for example on the size of the problem. Another difference from MINOS is the
use of ‘elastic mode’ (essentially the [; penalty function of the next subsection) to resolve
significant deviations from infeasibility. It is impossible to do justice to all the features of
the code, and the reader is referred to the comprehensive description in [25], although it
is quite likely that further development of the code has taken place. For NLP problems
in which the null space dimension is not too large, up to 1000 say, SNOPT is currently
amongst the best currently available NLP solvers (see Byrd, Gould, Nocedal and Waltz

3])-

5.4 The [; Exact Penalty Function

The penalty and barrier functions in Sections 5.1 and 5.2 are inherently sequential, that is
the solution of the NLP problem is obtained by a sequence of unconstrained minimization
calculations. It is however possible to construct a so-called exact penalty function, that is
a penalty function of which x*, the solution of the NLP problem, is a local minimizer. It
is convenient here to consider an NLP problem in the form

minimize f(x)

subject to  ¢(x) < 0. (5.11)

The most well known exact penalty function (Pietrzykowski [37], see [13] for more
references) is the Iy ezact penalty function (I;EPF)

$(x;0) = f(x) +olct(X)|h = f(x) +0) ¢l (x), (5.12)
i=1
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where ¢ = max(c;,0) is the amount by which the i—th constraint is violated. The param-

eter o controls the strength of the penalty.

First we consider optimality conditions for a local minimizer of ¢(x, o). The function is
nonsmooth due to the discontinuity in derivative of max(c;,0) at zero, so we cannot refer
to the stationary point condition of Section 2.2. In fact we proceed very much as in Section
4.2, by defining the set of active constraints as in (4.5), and the set of infeasible constraints

Z(x) = {i|ci(x) > 0}. (5.13)

Infeasible constraints are assigned a multiplier A} = 0. Constraints that are neither active
nor infeasible at x* play no part in the conditions and can be ignored. As before we assign
a zero multiplier to them. We observe that if x* minimizes ¢(x, o), then it must solve the
problem

minigize f(x)+0>crci(x)
xeR™
subject to  ¢i(x) <0 i€ A (5.14)

since the penalty term comes only from the infeasible constraints. Therefore if we make
the same regularity assumption that the vectors a}, i € A* are linearly independent, then
the KT conditions for this problem are also necessary for a minimizer of (5.12). Moreover,
if we perturb the right hand side of a constraint i € A in (5.14) by a sufficiently small
g; >0,¢e; =0, j # i, we make constraint ¢ infeasible, but do not change the status of any
other constraints. This causes an increase of g¢; in the penalty term. Moreover the change
in f(x)+0 ) ,c7ci(x) to first order is —\fe;. (The negative sign holds because of the sign
change in (5.11)). Hence the change in ¢(x, o) to first order is €;(c — A}). If A¥ > o then ¢
is reduced by the perturbation, which contradicts the optimality of x* in the I; EPF. Thus
the condition A} < o, ¢ € A" is also necessary. This result tells us that unless the penalty
parameter o is sufficiently large, a local minimizer will not be created. We can therefore
summarize the first order necessary conditions as

m
g* + A*\* :g*+za§‘/\f =0 (5.15)
=1
0<X <o
c; <0=X'=0 i=1,2,...,m. (5.16)

¢;>0= X\ =0

If = can be replaced by < then strict complementarity is said to hold. Second order
necessary conditions are the same as for (5.14), that is Z*TW*Z* is positive semi-definite.
Sufficient are that first order conditions hold, with strict complementarity, and Z*TW*Z*
is positive definite.

We see that these conditions are very similar to those for solving the NLP problem
(1.1). In fact if x* satisfies second order sufficient conditions for a solution of (1.1), and
0 > ||A\*[|co, then x* is also a minimizer of the [ EPF.
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5.5 SQP with the JEPF

The SQP method first came into prominent use when used in conjunction with the [;EPF
in papers by Han [29] and Powell [40]. The vector d¥) generated by the SQP subproblem
QP®) g regarded as a direction of search, and the [{EPF is used as a merit function, so
that the next iterate is x(¥T1) = x(*) 4 o) d*) | with a(*) being chosen to obtain a sufficient
reduction in ¢(x, o). For this to be possible requires that d®) is a descent direction at x*)
for ¢(x, o). If the Hessian W) (or its approximation) is positive definite, it is possible to
ensure that this is the case, if necessary by increasing o. Early results with this technique
were quite promising, when compared with sequential unconstrained penalty and barrier
methods. However the use of a nonsmooth merit function is not without its difficulties. In
particular the discontinuities in derivative cause ‘curved valleys’, with sides whose steepness
depends on the size of ¢. If ¢ is large, the requirement to monotonically improve ¢ on
every iteration can only be achieved by taking correspondingly small steps, leading to slow
convergence. Unfortunately, increasing o to obtain descent exacerbates this situation.

A way round this is the Sequential [; Quadratic Programming (SI;QP) method of
Fletcher [11]. The idea (also applicable to an [, exact penalty function) is to solve a
subproblem which more closely models the [{EPF, by moving the linearized constraints
into the objective function, in an [/ penalty term. Thus the {;QP subproblem is

minimize g®Td + 1dTWw®d + o (c® + ABTa)*+|,
subject to  ||d||leo < p. (5.17)

It it necessary that o is sufficiently large as discussed in Section 5.4, and also below. The
restriction on d is the trust region constraint and p is the trust region radius. Solving
the subproblem ensures descent, and quite strong results regarding global convergence can
be proved by using standard trust region ideas. The use of an [, trust region (a ‘box
constraint’) fits conveniently into a QP type framework.

Even so, there are still some issues to be resolved. Firstly, (5.17) is not a QP in standard
form due to the presence of I; terms in the objective, although it is still a problem that
can be solved in a finite number of steps. Ideally a special purpose {1 QP solver with sparse
matrix capabilities would be used. This would enable an efficient /1 piecewise quadratic
line search to be used within the solver. Unfortunately a fully developed code of this type
is not easy to come by. The alternative is to transform (5.17) into a regular QP by the
addition of extra variables. For example a constraint 1 < c¢(x) < u can be written as
1 <c(x) —v+w < uwhere v>0 and w > 0 are auxiliary variables, and a penalty term
of the form ol||v + w/||1, which is linear in v and w, would then be appropriate. However
2m extra variables need be added, which is cumbersome, and the benefit of the piecewise
quadratic line search is not obtained. A related idea is to use the SLP-EQP idea of Fletcher
and Sainz de la Maza [22], referred to in Section 4.5. In this case an [ LP subproblem would
be used to find an active set and multipliers, followed by an EQP calculation to obtain
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the step d®). As above, the {;LP subproblem can be converted to an LP problem by the
addition of extra variables, and this allows fast large scale LP software to be used.

It is also not easy for the user to choose a satisfactory value of o. If it is chosen too
small, then a local minimizer may not be created, if too large then the difficulties referred
to above become apparent. There is also a possibility of the Maratos effect [33] occurring,
in which, close to the solution, the Newton-type step given by the SQP method increases ¢
and cannot be accepted if monotonic improvement in ¢ is sought.Thus the expected rapid
local convergence is not realised. More recently, ideas for circumventing these difficulties
have been suggested, including second order corrections [12], the watchdog technique [7],
and a non-monotonic line search [27].

6 Filter Methods

Filtter methods were introduced in response to the perceived difficulties in using penalty
function methods for globalization, that is the difficulty of choosing suitable penalty pa-
rameters, the inefficiency of sequential methods, and the slow convergence associated with
monotonic minimization methods, particularly in the case of nonsmooth exact penalty
functions. Along with this is the observation that the basic SQP method is able to quickly
solve a significant proportion of test problems without the need for modifications to in-
duce global convergence. Thus the goal of filter methods is to provide global optimization
safeguards that allow the full SQP step to be taken much more often. In this section
we describe the main ideas and possible pitfalls, and discuss the way in which a global
convergence result for a filter method has been constructed.

A penalty function is an artefact to combine two competing aims in NLP, namely the
minimization of f(x) and the need to obtain feasibility with respect to the constraints.
The latter aim can equivalently be expressed as the minimization of some measure h(c(x))
of constraint violation. For example, in the context of (5.11) we could define h(c) = ||c™||
in some convenient norm. Thus, in a filter method, we view NLP as the resolution of two
competing aims of minimizing f(x) and h(c(x)). This is the type of situation addressed by
Pareto (multi-objective) optimization, but in our context the minimization of h(c(x)) has
priority, in that it is essential to find a Pareto solution that corresponds to a feasible point.
However it is useful to borrow the concept of domination from multi-objective optimization.
Let x*) and x® be two points generated during the progress of some method. We say
that x*) dominates x() if and only if h*®) < K and f*) < . That is to say, there is
no reason to prefer x() on the basis of either measure. Now we define a filter to be a list
of pairs (h(k), f (k)) such that no pair dominates any other. As the algorithm progresses, a
filter is built up from all the points that have been sampled by the algorithm. A typical
filter is shown in Figure 2, where the shaded region shows the region dominated by the
filter entries (the outer vertices of this shaded region). The contours of the [; exact penalty
function would be straight lines with slope —o on this plot, indicating that at least for
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fix)

Figure 2: A Typical Filter Diagram

a single entry, the filter provides a less restrictive acceptance condition than the penalty
function.

6.1 SQP Filter Methods

Filter methods were first introduced in the context of trust region SQP methods in 1997
by Fletcher and Leyffer [18], making use of a subproblem
midni]IFItlize %dTW(k)d +dTg®)
E n
QP™® (p) subject to  ¢® + AWTd > 0.

[dlle < p,
obtained by adding a trust region constraint to QP*). A trust region (see [13]) is a heuristic
aimed at restricting the step size to lie in a region in which there is ‘adequate’ agreement

between the true functions and their Taylor series approximations. The trust region radius
p is adjusted during or after each iteration to achieve this aim.
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A first attempt at a filter algorithm might go as follows. On iteration & = 1 the filter
FW) is empty. On iteration k we solve QP(*)(p) giving a step d and evaluate f = f(x*)+d)
and h = h(c(x® + d)). If the resulting pair (h, f) is acceptable to F*) (that is, it is not
dominated by any of the entries in F (k)), then we update x*) and A) as described in
Section 4.4. We also update the filter, adding the new pair (h, f) and removing any entries
that are dominated by it. Possibly we might also increase the trust region radius. If, on
the other hand, the pair is not acceptable, then we reject it, reduce the trust region radius,
and re-solve QP®*)(p).

There are various ways in which this simple approach can fail, or become unsatisfactory.
One is that unacceptably large violations in the constraints may occur. This is readily
handled by imposing an upper bound U on constraint violations, and initializing F™®) to
(U, —0) (see Figure 2). More serious is the possibility that, if the current point x*) is
infeasible (h*) > 0), and if p is reduced sufficiently in the algorithm, then the constraints of
QpP®*) (p) can become incompatible, and the algorithm stalls. In this case our approach has
been to enter a feasibility restoration phase, in which a different SQP-like algorithm (see
Fletcher and Leyffer [19] for a filter-like approach) is invoked to find a new acceptable point
x(*+1) for which the TR subproblem is solvable. Of course, we cannot predict the effect
on f(x) and we must be prepared for it to increase. Another feature that the algorithm
lacks is any sense of sufficient reduction in either f or h, as is used in other convergence
proofs. For instance we would not like new pairs to become arbitrary close to existing filter
entries, because this might allow convergence to a non-KT point. With this in mind we
strengthen the acceptance condition by adding a filter envelope around the current filter
entries, so as to extend the set of unacceptable points (see Figure 2). Most recently we
use the sloping envelope of Chin [5], Chin and Fletcher [6], in which acceptability of a pair
(h, f) with respect to a filter F is defined by

h < ,th or f < fZ — ’)/h V(hi, fz) e F (6.1)

where 3 and v are constants in (0, 1). Typical values might be § = 0.9 and v = 0.01.
(In earlier work we used f < f; — vh; for the second test, giving a rectangular envelope.
However, this allows the possibility that (h, f) dominates (h;, f;) but the envelope of (h, f)
does not dominate the envelope of (h;, f;), which is undesirable.)

During testing of the filter algorithm, another less obvious disadvantage became ap-
parent. Say the current filter contains an entry (0, f;) where f; is relatively small. If,
subsequently, feasibility restoration is invoked, it may be impossible to find an acceptable
point which is not dominated by (0, f;). Most likely, the feasibility restoration phase then
converges to a feasible point that is not a KT point. We refer to (0, f;) as a blocking entry.
We were faced with two possibilities. One is to allow the removal of blocking entries on
emerging from feasibility restoration. This we implemented in the first code, reported by
Fletcher and Leyffer [18]. To avoid the possibility of cycling, we reduce the upper bound
when a blocking entry is removed. We did not attempt to provide a global convergence
proof for this code, although it may well be possible to do so. Subsequently it became clear

32



that other heuristics in the code were redundant and further work resulted in a related filter
algorithm (Fletcher, Leyffer and Toint [20]) for which a convergence proof can be given. In
this algorithm we resolve the difficulty over blocking by not including all accepted points in
the filter. This work is described in the next section. However, the earlier code proved very
robust, and has seen widespread use. It shows up quite well on the numbers of function
and derivative counts required to solve a problem, in comparison say with SNOPT. Actual
computing times are less competitive, probably because the QP solver used by SNOPT is
more efficient. It has the same disadvantage as SNOPT that it is inefficient for large null
space problems. Otherwise, good results were obtained in comparison with LANCELOT
and an implementation of the /{EPF method.

6.2 A Filter Convergence Proof

In this section an outline is given of the way in which a global convergence proof has been
developed for the trust region filter SQP method. The theory has two aspects: how to
force h®) — 0, and how to minimize f(x) subject to h(c(x)) = 0.

First we review existing trust region SQP convergence theory for unconstrained opti-
mization. At any non-KT point x*) and radius p in QP®*)(p), we define the predicted
reduction

Ag =q(0) — g(d) = —g®Td - 1d"w®d > o (6.2)

and the actual reduction

Af = f® — r(x® 4+ q). (6.3)

As p — 0, and with suitable assumptions, so d — 0, Aq ~ p||g®| and Af/Aq — 1. Tt
follows for sufficiently small p that the inequality

Af > olq (6.4)

is valid. This is referred to as the sufficient reduction condition. In the TR algorithm of
Figure 4 (with the feasibility restoration and filter boxes stripped out) we essentially choose
p¥) as large as possible (within a factor of 2) subject to (6.4) holding. If the gradients g(*)
are accumulating at a value g # 0, then p® is uniformly bounded away from zero, and it
follows that Af*) > cAq®) ~ gp*). Summing over all k shows that f(¥) — —oo which is
a contradiction. Thus the gradients can only accumulate at 0 and any accumulation point
x> is stationary.

We aim to make use of these ideas in an NLP context. However there is a difficulty
when h*) > 0 that Ag < 0 may be possible. This is illustrated by the left hand diagram
of Figure 3. However, with a larger trust region radius, it is possible to have Aq > 0, as
in the right hand diagram. We describe the resulting steps respectively as being either
h-type or f-type, according to whether Ag < 0 or not. Of course, if h*¥) = 0 the resulting
step must be f-type. We construct our TR algorithm such that whilst f-type steps are
being taken, we make no new entries into the filter, and rely to a large extent on the above
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convergence theory. Only h-type steps give rise to a filter entry (we include the use of
feasibility restoration as an h-type step). The resulting algorithm is detailed in Figure 4.
Note that the current pair (h(k), f (k)) is not in the filter, and is only included subsequently
if the algorithm takes an h-type step.

constraint \constraint

trust region

Figure 3: Illustration of h-type and f-type steps

We now turn to examine the way in which the slanting envelope (6.1) operates. If an
infinite sequence of entries are made, then it is a consequence that h(*) — 0 (otherwise
the condition f < f; — vh has the effect of forcing f — —oo: a contradiction). Thus the
convergence proof claims that either

1. The restoration phase converges to a locally infeasible point,
2. The algorithm terminates at a KT point, or

3. There exists a feasible accumulation point that is either a KT point, or the Mangasarian-
Fromowitz constraint qualification (MFCQ) fails.

The proof proceed as follows. The first case corresponds to the situation that the local
approximation to the constraint set is infeasible, and no further progress can be made. So
we only need to examine case 3. If there are an infinite number of h-type iterations, it is
possible to find a subsequence on which h*) — 0 by virtue of (6.1). By taking thinner
subsequences if necessary, we examine the behaviour of iterates in the neighbourhood of
a feasible non-KT point that satisfies MFCQ (a type of regularity condition). Because
MFCQ holds, there exist feasible descent directions and it is shown that the TR algorithm
takes f-type steps in the limit, which is a contradiction.

The only other possibility to consider is that there exists some K such that the algorithm
takes f-type steps for all k > K. We can deduce from (6.1) and the fact that (R(+1), fk+1))
is always acceptable to (h(k), f (k)), that h(*¥) — 0. Then an argument similar to that in
the unconstrained case contradicts the fact that there are feasible descent directions at

34



Initialize with a point x, k =1,
and only (u, —00) in the filter

. enter restoration phase to find

a point x*) acceptable to the filter
such that QP¥) () is compatible
for some p > p° and initialize p = p

initialize p > p°

try to solve QP (p) ~

incompatible

include (), ()
in the filter
(h—type iteration)

k=k+1

solution d

if d = 0 then finish
(KT point)

evaluate f(x®*) 4 d)
and c(x®*) 4+ d)

p/2

is x(®) + d acceptable to | 1O
the filter and (h(®), f(¥))?
yes
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is Af <oAq and
Ag > 07
no
pF) =p d) =d

A¢P) =Aqg AfR) =Af

if Ag®®) < 0 then include
(R), )Y in the filter
(h—type iteration)

Figure 4: A Filter—-SQP Algorithm




any accumulation point. Because MFCQ holds, it follows that the accumulation point is
a KT point. In passing, note that the Corollary to Lemma 1 in [20] contains an error. A
corrected version of the paper can be found on my web site.

6.3 Other filter SQP methods

Another filter SQP algorithm , analysed by Fletcher, Gould, Leyffer, Toint and Wéachter
[16], decomposes the SQP step into a normal and tangential component. The normal step
provides feasibility for the linearized constraints and the tangential step minimizes the
quadratic model in the feasible region. Related ideas are discussed by Gonzaga, Karas and
Varga [26] and Ribiero, Karas and Gonzaga [41]. Wachter and Biegler describe line search
filter methods in [45] and [46]. Chin [5] and Chin and Fletcher [6] consider SLP-EQP
trust region filter methods. Gould and Toint [28] present a non-monotone filter SQP which
extends the non-monotonic properties of filter SQP type algorithms. A review of other
recent developments of filter methods, outwith SQP, but including interior point methods
for NLP, appears in the SIAG/OPT activity group newsletter (March 2007) and can be
accessed in [21].

7 Modelling Languages and NEOS

Solving complex optimization problems that arise in practice has many difficulties. Writing
your own NLP solver is not recommended, as there are many difficulties to be circumvented,
even if you have access to a good QP solver. However, access to a fully developed production
code, e.g. MINOS, LANCELOT, etc., is not the end of the story. The interface between
the requirements of the code, and the features of the problem can be very difficult to set up.
It is usually necessary to provide derivatives of any nonlinear functions, which is prone to
error. Modelling languages have been designed to allow the user to present the problem to
the NLP solver in as friendly a way as possible. The user is able to define constructions in
terms of concepts familiar to the problem. Three languages come to mind, AMPL, GAMS
and TOMLAB. All are hooked up to a number of well known NLP solvers. TOMLAB
is based on MATLAB syntax, the other have their own individual syntax that has to be
learned. Unfortunately all are commercial products.

In this review I shall describe AMPL (A Mathematical Programming Language) which
I have found very flexible and easy to use. A student edition is freely available which
allows problems of up to 300 variables and constraints, and gives access to MINOS and
some other solvers. Access to AMPL for larger problems is freely available through the
so-called NEOS system, described below in Section 7.5.
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7.1 The AMPL Language

AMPL is a high level language for describing optimization problems, submitting them to
a solver, and manipulating the results. An AMPL program has three main parts, the
model, in which the problem constructs are defined, the data which is self evident, and
programming in which instructions for activating a solver, and displaying or manipulating
the results are carried out. A list of model, data and programming commands are prepared
in one or more files and presented to the AMPL system. This processes the information,
evaluates any derivatives automatically, and presents the problem to a designated solver.
Results are then returned to the user. The AMPL system is due to Fourer, Gay and
Kernighan, and is described in the AMPL reference manual [23]. The syntax of AMPL
is concisely defined in the Appendix of [23], and provides an invaluable aid to debugging
an AMPL model. The user is strongly advised to come to terms with the notation that
is used. Other more abridged introductions to AMPL are available, as can be found by
surfing the web.

The main features of an NLP problem are the variables, presented via the keyword var,
the objective, presented via either minimize or maximize, and constraints, presented via
the keyword subject to. These constructions are described using entities introduced by
the keywords param for fixed parameters, and set for multivalued set constructions. An
example which illustrates all the features is to solve the HS72 problem in CUTE. Here the
model is specified in a file hs72.mod. Note that upper and lower case letters are different:
here we have written user names in upper case, but that is not necessary. All AMPL
commands are terminated by a semicolon.

hs72.mod

set ROWS = {1..2};

set COLUMNS = {1..4};

param A {ROWS, COLUMNS};

param B {ROWS};

var X {COLUMNS} >= 0.001;

minimize OBJFN: 1 + sum {j in COLUMNS} x[j];

subject to
CONSTR {i in ROWS}: sum {j in COLUMNS} A[i,3j1/X[j] <= B[il;
UBD {j in COLUMNS}: X[j] <= (5-j)*1le5;

In this model, the sets are just simple ranges, like 1..4 (i.e. 1 up to 4). We could have
shortened the program by deleting the set declaration and replacing ROWS by 1..2 etc.,
in the rest of the program. But the use of ROWS and COLUMNS is more descriptive. The
program defines a vector of variables X, and the data is the matrix A and vector B which
are parameters. Simple lower bounds on the variables are specified in the var statement,
and sum is a construction which provides summation. The constraint CONSTR implements
the system of inequalities Z?:l a;j/x; < b, i =1, 2. Note that indices are given within
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square brackets in AMPL. Constructions like j in COLUMNS are referred to as indexing in
the AMPL syntax. The constraints in UBD define upper bounds on the variables which
depend upon j. Note that the objective function and each set of constraint functions must
be given a name by the user.

The data of the problem is specified in the file hs72.dat. Note the use of tabular
presentation for elements of A and B.

hs72.dat
param A: 1 2 3 4 :=
1 4 2.25 1 0.25
2 0.16 0.36 0.64 0.64;
param B :=
1 0.0401
2 0.010085;

The next stage is to fire up the AMPL system on the computer. This will result in the
user receiving the AMPL prompt ampl:. The programming session to solve HS72 would
proceed as follows.

An AMPL session
ampl: model hs72.mod;
ampl: data hs72.dat;
ampl: let {j in COLUMNS} X[j] := 1;
ampl: solve;
ampl: display OBJFN;
ampl: display X;

The model and data keywords read in the model and data. The keyword let allows
assignment of initial values to the variables, and the display commands initiate output
to the terminal. Output from AMPL (not shown here) would be interspersed between the
user commands. It is also possible to aggregate data and, if required, programming, into
a single hs72.mod file. In this case the data must follow the model, and must be preceded
by the statement data;. One feature to watch out for occurs when revising the model. In
this case, repeating the command model hs72.mod; will add the new text to the database,
rather than overwrite it. To remove the previous model from the database, the command
reset; should first be given.

7.2 Networks in AMPL

AMPL is a most convenient system for modelling networks of diverse kinds (road, gas
supply, work flow, ...). We illustrate some of the useful AMPL constructions in this
section by reference to an electrical power network in which the objective is to minimize
the power generation required to meet the demand on a given network. The model also
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illustrates some other useful AMPL features, notably the use of dependent variables. A toy
system used by electrical engineers is illustrated in Figure 5. It is described in AMPL by

iNORTIE MAIN |

S0UTH

")

Figure 5: A Simple Power Distribution Network

the constructions shown below. Note the use of the keyword union to merge the nodes with
and without power generation. Also observe the use of cross, which indicates all possible
connections between the nodes, and within which indicates that the actual network is a
subset of these. The user is using the convention that power flows from the first node to
the second node (a negative value of flow is allowed and would indicate flow in the opposite
sense). The program also shows the use of dependent parameters and variables. Thus
the parameters ZSQ depend on R and X, and C and D both depend on R, X and ZSQ. It is
necessary that the order in which these statements are given reflects these dependencies.
The true variables in the problem (as shown here) are V, THETA and PG. Additional variables
which depend on these variables, and also the parameters, are PSI and P, as defined by the
expressions which follow the ‘=’ sign. The objective is to minimize the sum of generated
power. Constraints include power balance constraints at consumer nodes and generator
nodes, the latter including a term for constraint generation. Note the use of P[j,i] for
power entering node i and P[i, j] for power exiting node i. The program also provides a
useful illustration of how to supply data for network problems, and the use of the # sign
for including comments. Note also the use of standard functions such as sin and cos in
the expressions. The program shown is only part of the full model, which would include
flow of reactive power, and upper and lower bounds on various of the variables.

7.3 Other useful AMPL features

The following problem is due to Bob Vanderbei (who gives many interesting AMPL pro-
grams: search for vanderbei princeton on Google and click on LOQO). A rocket starts at
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A Power Generation Problem

set CONSUMERS;

set GENERATORS;

set NODES := CONSUMERS union GENERATORS;

set POWERLINES within (NODES cross NODES);

param LOADP {NODES};

param R {POWERLINES};

param X {POWERLINES};

param ZSQ {(i,j) in POWERLINES} = R[i,j]~2+X[i,j]1"2;
param C {(i,j) in POWERLINES} = R[i,j1/ZSQ[i,j];
param D {(i,j) in POWERLINES} = X[i,j1/zSQ[i,jl;

var V {NODES}; # Voltages
var THETA {NODES}; # Phase angles
var PG {NODES};

var PSI {(i,j) in POWERLINES} = THETA[i] - THETA[j];
var P {(i,j) in POWERLINES} = C[i,jl*V[i]~2 +
VIil*V[jI*(D[1,j]*sin(PSI[i,j]) - C[i,jl*cos(PSI[i,jl);

minimize PGEN: sum {i in GENERATORS} PG[i];

subject to EQUALPC {i in CONSUMERS}: sum {(j,i) in POWERLINES} P[j,i]
= sum {(i,j) in POWERLINES} P[i,j] + LOADP[i];
EQUALPG {i in GENERATORS}: PG[i,j] + sum {(j,i) in POWERLINES} P[j,i]
= sum {(i,j) in POWERLINES} P[i,j] + LOADP[i];

data;

set CONSUMERS := LAKE MAIN ELM;

set GENERATORS := NORTH SOUTH;

set POWERLINES := (NORTH,SOUTH) (NORTH,LAKE) (SOUTH,LAKE) (SOUTH,MAIN)
(SOUTH,ELM) (LAKE,MAIN) (MAIN,ELM);

param: R X :=

NORTH SOUTH 0.02 0.06

NORTH LAKE 0.08 0.24

SOUTH LAKE 0.06 0.24

MAIN ELM 0.08 0.24;
param LOADP := NORTH O; SOUTH 0.2, LAKE 0.45, MAIN 0.4, ELM 0.6;
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time ¢t = 0, position z(0) = 0 and velocity v(0) = 0. It must reach position z(7") = 100,
also with velocity v(T') = 0. We shall divide the total time T" into n intervals of length h
and use finite difference approximations

r. 1 —T 1 1 .1
+3 -3 +3 -5
A R and aizilQ 2
h
for velocity and acceleration. The maximum velocity is 5 units and the acceleration must
lie within £1 units. The aim is to minimize the total time 7' = nh. The AMPL program is

V; =

A Rocket Problem

param n > 2;
set vrange = {0.5..n-0.5 by 1}; set arange = {1..n-1};
var x {0..n}; var v {vrange} <= 5; var a {arange} <= 1, >= -1;

var h;

minimize T: nx*h;

subject to
xdiff {i in vrange}: x[i+0.5] - x[i-0.5] = h*v[i];
vdiff {i in arange}: v[i+0.5] - v[i-0.5] = hxali];
x0: x[0] = 0; xn: x[n] = 100;
v0O: v[1.5] = 3xv[0.5]; # Implements vO = 0
vn: v[n-1.5] = 3%v[n-0.5]; # Implements vn = 0

The actual value of n must be supplied in the data section. An alternative implementation
could be made in which v and a are expressed as dependent variables. Things to observe
include the treatment of ranges and the use of by. Also note the use of both upper and
lower bounds on the variables, and the beautifully concise form that AMPL permits.

AMPL can also be very descriptive when applied to finite element discretizations. I
have used the following constructions in the context of a two dimensional p.d.e.

2-D Finite Element Constructions

set NODES;

set DIRICHLET within NODES;

set INTERIOR = NODES diff DIRICHLET;

set TRIANGLES within NODES cross NODES cross NODES;

set EDGES = setof {(i,j,k) in TRIANGLES} (i,j) union
setof {(i,j,k) in TRIANGLES} (j,k) union
setof {(i,j,k) in TRIANGLES} (k,i);

set SHAPE FNS = setof {(i,j,k) in TRIANGLES} (i,j,k) union
setof {(i,j,k) in TRIANGLES} (j,k,i) union
setof {(i,j,k) in TRIANGLES} (k,i,j);

This illustrates the use of three suffix quantities (TRIANGLES), and the selection of all two
suffix entities (EDGES) using setof. Shape functions are elementary functions defined on
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triangles taking the value 1 at one node and 0 at the others. Note also the use of diff for
set difference, and the allowed use of underscore within an identifier.

AMPL contains many more useful constructions which we have not space to mention
here. Purchasing a copy of the manual is essentiall Worthy of mention however is the
existence of an if then else construction. This can be very useful at the programming
stage. It is also allowed within a model but should be used with care, because it usually
creates a nonsmooth function which many methods are not designed to handle. The same
goes for abs and related nonsmooth functions. Another useful feature for creating loops
at the programming stage is the repeat construction.

7.4 Accessing AMPL

Unfortunately the full AMPL system is a commercial product for which a licence fee must
be paid. However there is a student version of AMPL available which is free, but restricted
to no more than 300 variables and constraints. In this section we list the steps needed to
install the student version of AMPL on a unix operating system, as follows

1. connect to www.ampl.com

2. follows the link to download the student edition, following the quick start instruc-
tions

3. choose the architechture
4. download ampl.gz and gunzip it
5. download one or more solvers (e.g. MINOS or SNOPT).

Ideally these files should be stored in a \usr\bin area with symbolic links that enable
them to be called from other directories.

7.5 NEOS and Kestrel

NEOS (Network Enabled Optimization Server) is a system running at the Argonne National
Laboratory that solves optimization problems submitted by anyone, through the medium
of the internet. The simplest way to access NEOS is via email. The following template,
using the solver SNOPT for example, should be sent to neos@mcs.anl.gov, including the
model, data, etc., where indicated.
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NEOS Template for AMPL

<document>
<category>nco</category>
<solver>SNOPT</solver>
<inputMethod>AMPL</inputMethod>

<model><! [CDATA[
Insert Model Here
]1></model>

<data><! [CDATA[
Insert Data Here
]1></data>

<commands><! [CDATA[
Insert Programming Here
11></commands>

<comments><! [CDATA[
Insert Any Comments Here
11></comments>

</document>

An alternative approach is to use the Kestrel interface to NEOS. This enables the re-
mote solution of optimization problems within the AMPL and GAMS modelling languages.
Quoting from the documentation, problem generation, including the run-time detection of
syntax errors, occurs on the local machine using any available modelling language facilities.
Solution takes place on a remote machine, with the result returned in the native modelling
language format for further processing. To use Kestrel, the Kestrel interface must be down-
loaded at step 5 above, using the same process as for downloading the solvers. To initiate a
solve with say SNOPT using Kestrel, the following protocol must be initiated when using
AMPL on the local machine.

Accessing NEOS from the Kestrel interface

ampl: option solver kestrel;
ampl: option kestrel_options "solver=SNOPT";

An advantage of using NEOS from Kestrel (or by email as above) is that the restriction
in size no longer applies. A disadvantage is that the response of the NEOS server can be
slow at certain times of the day.
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