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The Serial Commutator (SC) FFT
Mario Garrido, Member, IEEE, Shen-Jui Huang, Sau-Gee Chen and Oscar Gustafsson, Senior Member, IEEE

Abstract—This paper presents a new type of FFT hardware
architectures called serial commutator (SC) FFT. The SC FFT is
characterized by the use of circuits for bit-dimension permutation
of serial data. The proposed architectures are based on the
observation that in the radix-2 FFT algorithm only half of the
samples at each stage must be rotated. This fact, together with a
proper data management makes it possible to allocate rotations
only every other clock cycle. This allows for simplifying the
rotator, halving the complexity with respect to conventional serial
FFT architectures. Likewise, the proposed approach halves the
number of adders in the butterflies with respect to previous archi-
tectures. As a result, the proposed architectures use the minimum
number of adders, rotators and memory that are necessary for
a pipelined FFT of serial data, with 100% utilization ratio.

Index Terms—Serial Commutator (SC), FFT, Pipelined Archi-
tecture

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most impor-
tant algorithms in signal processing. Many hardware FFT

architectures have been proposed with the aims of speeding
up the calculation of the FFT and reducing the amount of
hardware resources.

Pipelined FFT architectures are the most common ones [1]–
[9]. They process a continuous flow of data using a relatively
small amount of resources. There are two main types of
pipelined FFTs: Serial pipelined FFTs process one sample per
clock cycle, whereas parallel pipelined FFTs process several
samples in parallel per clock cycle.

Parallel FFT architectures have been widely developed.
Nowadays, there exist multi-path delay commutator (MDC)
FFT architectures that use the minimum amount of butterflies
and memory, with 100% utilization ratio [1], as well as an
efficient use of rotators.

Conversely, serial pipelined FFTs have not reached the
efficiency of parallel ones yet. Typical radix-2 single-path
delay feedback (SDF) FFTs [2] have a utilization ratio of 50%
in butterflies and rotators. Other radices such as radix-4 [3],
[4] and radix-22 [2] improve the use of rotators. However,
they do not improve the efficiency of butterflies. Single-delay
commutator (SDC) FFTs [5]–[8] improve the use of butterflies
and rotators at the cost of larger memory. The same happens
to the locally pipelined FFT [9]. Therefore, in all cases there
is a trade-off among butterflies, rotators and memory.
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Fig. 1. Flow graph of a radix-2 DIF FFT.

This paper presents the serial commutator (SC) FFT. The
SC FFT uses a novel data management based on circuits for
bit-dimension permutation of serial data. The resulting SC FFT
is the first one that requires the theoretical minimum amount
of butterflies, rotators and memory with 100% utilization.

The paper is organized as follows. Section II reviews the
FFT algorithm. Section III studies the theoretical boundaries
of the hardware resources. Section IV presents in detail the
SC FFT. Section V shows the case of natural I/O order. Sec-
tion VI compares the proposed architectures to previous ones.
Section VII presents experimental results. Finally, Section VIII
summarizes the main conclusions of the paper.

II. THE FFT ALGORITHM

The N -point DFT of an input sequence x[n] is defined as:

X[k] =

N−1∑
n=0

x [n] Wnk
N , k = 0, 1, . . . , N − 1 (1)

where Wnk
N = e−j

2π
N nk.

In order to compute the DFT efficiently, the FFT based on
the Cooley-Tukey algorithm [10] is most times used. The FFT
reduces the number of operations from O(N2) for the DFT
to O(N logN).

Figure 1 shows the flow graph of a 16-point radix-2 FFT
decomposed according to decimation in frequency (DIF) [11].
The FFT is calculated in a series of n = logρN stages, where
ρ is the base of the radix, r, of the FFT, i.e. r = ρα. In the
figure, the numbers at the input represent the index of the input
sequence, whereas those at the output are the frequencies, k.
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(a)

(b)

Fig. 2. Proposed serial feedforward architectures for the computation of a 16-point radix-2 FFT. (a) DIF. (b) DIT.

At each stage of the graph, s ∈ {1, . . . , n}, butterflies
and rotations are calculated. Specifically, each number, φ, in
between the stages indicates a rotation by:

e−j
2π
N φ (2)

As a consequence, if φ = 0 no rotation must be carried
out. Likewise, rotations by φ ∈ [N/4, N/2, 3N/4] are trivial.
This means that they can be carried out in hardware simply
by interchanging the real and imaginary components and/or
changing the sign of the data.

III. THEORETICAL BOUNDARIES

The serial commutator (SC) FFT is based on a simple
observation. In Figure 1 each stage calculates N complex
additions and N/2 rotations. Therefore, any radix-2 FFT
architecture that processes one sample per clock cycle only
needs a complex adder and half a rotator per stage. This leads
to log2N butterflies and log4N − 1 rotators for the entire
FFT, considering that the last stage does not have a rotator.
These are the theoretical minimum number of resources for
any radix-2 FFT that processes one sample per clock cycle.

Regarding memory, the theoretical minimum N −P [1] for
P -parallel data also holds for serial data where P = 1. Thus,
the minimum memory for a serial FFT is N − 1.

IV. THE SERIAL COMMUTATOR FFT

Figures 2(a) and 2(b) show the proposed serial commutator
FFT for N = 16 points and radix-2, respectively for DIF and
DIT. The architectures consist of n = log2N = 4 stages that
include butterflies, rotators and circuits for data management.
Rotators that carry out trivial rotations are diamond-shaped
whereas general rotators are represented by a circle.

Both butterflies and rotators are marked with 1/2. This
means that they require half of the components in conventional
butterflies and rotators: butterflies only use a real adder and a
real subtracter instead of complex ones, and rotators use two
real multipliers and one adder instead of four real multipliers
and two adders. The half butterfly and half rotator form the
processing element (PE) of the architecture, which is explained
in detail in section IV-A.

The circuits for data permutation are circuits for elementary
bit exchange. These circuits have already been used for the cal-
culation of the bit reversal [12]. However, this is the first time
that this type of circuits are used in an FFT architecture. The
data management of the SC FFT is explained in section IV-B.

A. Processing Element
Figure 3 shows in detail the processing element (PE) used

to calculate the butterflies and rotations of the radix-2 DIF
SC FFT in Fig. 2(a). The processing element for the DIT SC
FFT in Fig. 2(b) is analogous. The only difference is that the
rotator is placed before the butterfly.

The PE is composed by the half butterfly and the half
rotator. The PE does the calculation of a butterfly followed
by a rotator:

Y0 = X0 +X1

Y1 = (X0 −X1)e
jα (3)

with the particularity that the inputs X0 = XR0 + jXI0 and
X1 = XR1 + jXI1, and outputs Y0 = YR0 + YI0 and Y1 =
YR1 + YI1, are provided in consecutive clock cycles.

Table I shows the timing diagram of the PE in Fig. 3. It can
be observed that the butterfly operates first on the real part of
the inputs and then on the imaginary part. The rotator also
multiplexes the calculations in time. This allows for halving
the adders and multipliers in the butterfly and rotator.

B. Data Management
The PE calculates a butterfly and a rotation on pairs of data

that arrive in consecutive clock cycles. In order to fulfill this,
the data management of the SC FFT places samples that must
be operated together in consecutive clock cycles. This happens
at all the stages of the FFT.

Figure 4 shows the data management of the SC FFTs in
Fig. 2. The data management is the same for both DIF and
DIF cases. Each column in Fig. 4 represents the input order
to the corresponding stage. The order of arrival is from top
to bottom. Therefore, x[0] and x[8] are the first and second
inputs to the first stage, respectively. The figure shows that, at
all the stages, consecutive samples are operated together in a
butterfly. This allows for the use of the PE with half of the
resources.
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Fig. 3. Processing element for the calculation of butterflies and rotations of the radix-2 DIF SC FFT.

TABLE I
TIMING DIAGRAM OF THE PROCESSING ELEMENT.

TIME RIN IIN S E F J K ROUT IOUT

0 XR0 XI0

1 XR1 XI1 0 YR0 = XR0 +XR1 ZR = XR0 −XR1 YR0

2 1 YI0 = XI0 +XI1 ZI = XI0 −XI1 YR1 = ZR cosα− ZI sinα YR1 YR0 YI0
3 0 YI1 = ZR sinα+ ZI cosα YR1 YI1

Fig. 6. Proposed 16-point DIF SC FFT with natural I/O order.

Fig. 4. Data management for the 16-point radix-2 DIF SC FFT.

In order to achieved the desired order, the SC FFT uses
circuits for bit-dimension permutations of serial data, as shown
in Fig. 5. These circuits interchange pairs of data delayed
by L clock cycles. In Fig. 4, the first, second and third
stages interchanges data separated 3, 1 and 7 clock cycles,
respectively. These are equal to the lengths of the buffers of
the three first stages in Fig. 2.

In a general case, for a SC FFT of length N , the length and

Fig. 5. Circuit for the elementary bit-exchange of serial dimensions.

delay of the buffers at stages s = 1, . . . , n− 2 is

L = 2n−s−1 − 20, (4)

and L = 2n−1 at stage s = n− 1.
The control of the architecture is simple and obtained

directly from the bits of an n-bit counter cn−1, . . . , c0 that
counts from 0 to N − 1. For a buffer of length L = 2i − 1,
the control signal Si is:

Si = ci OR c0 (5)

The control signals must be delayed according to the pipeline
of the architecture, so that the count starts when the first
sample arrives at the corresponding shuffling circuit.

The total amount of memory for the shuffling circuits can
be obtained by adding the delays at all the stages. This leads
to a total memory of

n−1∑
i=1

2i − 20 = N − n− 1 (6)
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Fig. 7. Data management of a 16-point SC FFT for natural I/O order.

Fig. 8. Input reordering circuit for a natural I/O N -point SC FFT.

By adding the memory included in the processing elements,
the total memory of the architecture is approximately N ,
which is the minimum for an N -point FFT.

As a result, the proposed SC FFT architectures use the
minimum number of components for the butterflies, rotators
and memory, with a utilization of 100%.

V. SC FFT ARCHITECTURES FOR NATURAL I/O

The input and output orders of the SC FFT follow a
sequence that is not in natural order, as shown in Fig. 4. In
order to achieve natural I/O order, shuffling circuits can be
added at the input and output. This is shown in Fig. 6 for a
natural I/O 16-point SC FFT. The data management for the
architecture in Fig. 6 is shown in Fig. 7.

In the general case of a natural I/O N -point SC FFT, the
input reordering circuit only needs to calculate the elementary
bit-exchange σ : xn−1 ↔ x0. As explained in [12], this
permutation requires a shuffling circuit with a buffer of length
L = 2n−1−20 = N/2−1, as shown in Fig. 8. In our example
in Fig. 6 for N = 16 the buffer length of the input reordering
circuit is L = 16/2− 1 = 7.

The output reordering circuit is more complex and re-
quires b(n+ 1)/2c elementary bit-exchanges in series, as
shown in Fig. 9. The first two elementary bit-exchanges
have a buffer length of La = 2n−2 − 20 = N/4 − 1 and
Lb = 2n−1 − 2n−2 = N/4, respectively. The following
b(n− 3)/2c elementary bit-exchanges have a buffer length
Li = 2n−i−2 − 2i for i = 1, . . . , b(n− 3)/2c. In our
example in Fig. 6 for N = 16 the number of elementary
bit-exchanges in series is b(n+ 1)/2c = b(4 + 1)/2c = 2.
Therefore it only includes the permutations with buffer lengths
La = N/4 − 1 = 16/4 − 1 = 3 and Lb = N/4 = 16/4 = 4,
as shown in Fig. 6.

Fig. 9. Output reordering circuit for a natural I/O N -point SC FFT.

In a general case, the shuffling circuits for natural I/O add an
overhead to the total memory of approximately 5N/4, leading
to a total memory of about 9N/4.

VI. COMPARISON AND ANALYSIS

Tables II and III compare pipelined FFT architectures for
serial data. Table II does not impose any specific order of
inputs and outputs, whereas table III compares architectures
for natural I/O order.

In table II, the first column shows the type of architecture.
The second, third and fourth columns show the resources used
by the architecture: rotators, adders and data memory. The last
two columns compares the performance in terms of latency
and throughput. As all the architectures that are compared
process serial data, the throughput of all of them is 1 sample
per clock cycle.

In table II, it can be observed that previous architecture
require the minimum of some of the hardware resources, but
not all of them. Various SDF FFT architecture [2]–[4], [13] use
the minimum amount of rotators and memory. Previous SDC
FFTs [5], [6], [8] achieve the minimum number of adders. And
the locally pipelined FFT [9] achieves the minimum number of
rotators and adders. Finally, the proposed SC FFT is the first
architecture that achieves the minimum amount in all hardware
resources.

For natural I/O order, table III compares previous SDC
architectures to the proposed SC FFT. Compared to [5]–[7] the
proposed architecture reduces the number of rotators by 50%.
Furthermore, up to N = 64 points the memory of the proposed
approach is also smaller than that in [5]–[7]. Compared to [8],
the proposed architecture has less memory for N ≤ 64, and
more for larger N , being the differences small.

VII. EXPERIMENTAL RESULTS

The proposed SC FFT for N = 1024 points and word
length 16 bits has been implemented on ASIC technology
using the library UMC 55 nm process. Table IV compares
the implementation with previous serial FFTs on ASICs.
The proposed architecture improves the clock frequency of
previous designs. At the same time it achieves less area than
previous 2048-point [16] and 256-point [17] SDF FFTs, high
SQNR and low power consumption. In the table, area and
power are normalized to 55 nm and 0.9 V according to [18].

VIII. CONCLUSIONS

This paper has presented the serial commutator (SC) FFT
architecture. This architecture is the first FFT to use circuits
to calculate bit-dimension permutation on serial data. This
creates a data management that allows for using the theoretical
minimum amount of hardware resources for a serial FFT with
100% utilization. Compared to previous designs, the proposed
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TABLE II
COMPARISON OF PIPELINED HARDWARE ARCHITECTURES FOR THE COMPUTATION OF AN N -POINT FFT ON SERIAL DATA.

AREA PERFORMANCE
PIPELINED Complex Complex Complex Latency Throughput

ARCHITECTURE Rotators Adders Data Memory (cycles) (samples/cycle)

SDF Radix-2, [2] 2(log4N − 1) 4(log4N) N N 1

SDF Radix-2, [9] log4N − 1 2(log4N) 4N/3 4N/3 1

SDF Radix-4, [3], [4] log4N − 1 8(log4N) N N 1

SDF Radix-22, [2] log4N − 1 4(log4N) N N 1

SDF Split-radix, [13] log4N − 1 4(log4N) N N 1

SDC Radix-2, [6], [7] 2(log4N − 1) 2(log4N) 3N/2 3N/2 1

SDC Radix-2, [5] 2(log4N − 1) 2(log4N) 3N/2 3N/2 1

SDC Radix-4, [14] log4N − 1 3(log4N) 2N N 1

SDC-SDF Radix-2, [8] log4N − 1 2(log4N) + 1 3N/2 3N/2 1

Proposed SC Radix-2 log4N − 1 2(log4N) N N 1

TABLE III
COMPARISON OF PIPELINED HARDWARE ARCHITECTURES FOR THE COMPUTATION OF AN N -POINT FFT ON SERIAL DATA WITH NATURAL I/O.

AREA PERFORMANCE
PIPELINED Complex Complex Complex Latency Throughput

ARCHITECTURE Rotators Adders Data Memory (cycles) (samples/cycle)

SDC Radix-2, [6], [7] 2(log4N − 1) 2(log4N) 2N 2N 1

SDC Radix-2, [5] 2(log4N − 1) 2(log4N) 2N 2N 1

SDC-SDF Radix-2, [8] log4N − 1 2(log4N) + 1 2N + 1.5 log2N − 1.5 2N 1

Proposed SC Radix-2, even N log4N − 1 2(log4N) 9N/4− 3
√
N/2− 1 2N 1

Proposed SC Radix-2, odd N log4N − 1 2(log4N) 9N/4−
√
2N − 1 2N 1

TABLE IV
COMPARISON OF SERIAL FFTS IMPLEMENTED ON ASICS.

Proposed [15] [16] [17]
FFT Size 1024 64 2048 256

Radix 2 23 22 24

Architecture SC SDF SDF SDF
Word length 16 16 10 -

Technology (nm) 55 180 350 180
Voltage (V) 0.9 - 2.7 1.8
Clk (MHz) 200 166 76 51.5

Area (mm2) 0.15 0.47 7.58 -
Norm. Area 0.15 0.04 0.19 -
Gate Count 134066 - - 173875
SQNR (dB) 55 - 45.3 -
Power (mW) 8.0 29.7 526 -
Norm. Power 8.0 - 9.18 -

SC FFT reduces either the number of rotator, or the number
of adders or the memory of the design. A solution for natural
I/O has also been presented, which offers comparable results to
previous natural I/O FFTs. Finally, experimental results have
been obtained to verify the architecture, leading to small area
and low power consumption.
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