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ABSTRACT A sequence of interleaved user transactions in a database system may not be ser:ahzable, t e,  
equivalent to some sequential execution of the individual transactions Using a simple transaction model, it ~s 

shown that recognizing the transaction histories that are serlahzable is an NP-complete problem. Several 

efficiently recognizable subclasses of the class of senahzable histories are therefore introduced; most of these 
subclasses correspond to senahzabdity principles existing in the hterature and used in practice Two new 

principles that subsume all previously known ones are also proposed Necessary and sufficient conditions are 

given for a class of histories to be the output of an efficient history scheduler, these conditions imply that there 
can be no efficient scheduler that outputs all of senahzable histories, and also that all subclasses of senalizable 

histories studied above have an efficient scheduler Finally, it is shown how these results can be extended to far 

more general transaction models, to transactions with partly interpreted functions, and to distributed database 
systems 
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1. Introduct ion 

In m a n y  situations m a n y  users m a y  consul t  and  upda te  a c o m m o n  database .  We can think 

o f  such i ndependen t  user t ransact ions  as sequences  o f  a tomic  da tabase  operat ions ,  inter-  

leaved with c o m p u t a u o n s  that  are local to the user, that  ~s, they  do not  affect  or  d e p e n d  on  

the current  state o f  the database.  It is a funct ion o f  da tabase  m a n a g e m e n t  to hand le  the 

update  and  retrieval requests  made  by the users in such a way  so tha t  the result ing overal l  

process is in some appropr ia te  sense correct. It is general ly  accepted  (see, e.g., [3, 7, 18, 

19]) that  the right not ion  o f  correctness  in this context  is that  o f  serializability. A sequence  

o f  a tomic user upda tes / re t r ieva ls  is called serializable essential ly i f  its overal l  effect is as 

though  the users took turns, in some order,  each execut ing  their  ent i re  t ransact ion  

indwtslbly.  The  s~mplest example  o f  a nonser iahzab le  sequence  is a pr imit ive fo rm o f  a 

"race."  Imagine  two users that  inc rement  a counter  by first sensing its value and  later 

registering an increased one. I f  both  users retrieve the value o f  the counte r  before  e i ther  o f  

t hem has upda ted  ~t, the result ing execut ion  s e q u e n c e - - o r  h:s tory- - i s  not  serializable.  This  

~s because both  possible serial execuuons  o f  these t ransact ions  would  have  resul ted in a 

larger total increment .  Natural ly ,  m u c h  subtler  examples  exist. 

The  appeal  o f  senahzabi l i ty  as a correctness  cr i ter ion Is qui te  easy to justify.  Da tabases  
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are supposed to be faithful models of  parts of  the world, and user transactions represent 

instantaneous changes in the world. Since such changes are totally ordered by temporal 

priority, the only acceptable interleavings of  atomic steps of  different transactions are those 
that are equivalent to some sequential execution of  these transactions. Another way of  

viewing serializability is as a tool for ensuring system correctness. I f  each user transaction 

is correct--i.e., when run by itself, it is guaranteed to map consistent states of  the database 

to consistent s ta tes--and transactions are guaranteed to be intermingled in a serializable 
way, then the overall system is also correct. 

In this paper we consider transactions that consist of  two atomic actions: a retrieval of  

the values of  a set of  database entities--called the read set of  the transaction--followed by 
an update of  the values of  another set of  enti t ies--the write set. This is exactly the kind of  

transactions handled by the system SDD-I  [2, 17]. However, the main reason for consid- 

ering this model here is that it provides a nice framework for understanding and comparing 
very different philosophies of  senalizability that already exist in the literature (e.g., [2, 4, 

7, 19]). Despite its apparent simplicity, it yields a theory of serializability that is rich in 
combinatorial intricacies and raises interesting complexity questions. Since our model is 

the most general common restriction of  the models in the various references cited above, 
our negative results apply verbatim to those models. Furthermore, most of  our positive 

results and characterizations are also easily generalizable to more general situations, 
although their p roofs - -m many cases their very s tatements--would be extremely cumber- 

some. Hence we view our model as a convenient language, of  the right degree of  conceptual 
complexity, for developing and communicating our ideas about serializabihty, rather than 

as a set of  restrictions that enable the proofs of  certain theorems. We formahze our model 

of  transactions in Section 2, where some preliminary results are also proved. 

In Section 3 we prove that the question of  whether a given sequence of  read and write 

operations corresponding to several transactions (called a history) is senalizable is NP- 
complete [l, 9]. This suggests that, most probably, there is no efficient algorithm that 
distingmshes between senalizable and nonserializable histories. 

In Section 4 we study some efficiently recognizable subsets of  the set of  serializable 
histories In other words, we present polynomial-time "heuristics" that approximate the 

NP-complete predicate of  seriallzabihty, in a manner quite reminiscent of  effficlent ap- 
proximations of  NP-complete optimization problems [8, 16]. We show that the two-phase 
locking strategy of [7] and the protocol P3 of  [2] are incommensurate special cases of  two 
more general classes called Q and D S R - - t h e  latter is related to the model of  [19]. These 
two seriahzability principles are therefore very general (and apphcable) new serialization 
methods. We also introduce the class SSR  of  histories that can be serialized without 
reversing the order of  temporally nonoverlapping transactions; it is not known whether 
this class is efficiently recognizable In Section 5 we observe that the quite intricate 

interrelations among these interesting classes are simplified considerably ff some "static" 
restrictions are imposed on the read and write sets. We point out there that the simple 
serializability theory of  [19] is due to such a restriction of  their model. 

For all efficiently recognizable classes of  histories studied in Sections 4 and 5 there is 
also an efficient scheduler, an algorithm, that is, which takes any history and transforms it 
to its closest (according to some appropriate metric) history within the class considered. In 
Section 6 we show that this is no accident, a class of  histories has an efficient scheduler if  
and only if it is efficiently recognizable plus a regularity condition, namely, that its set of  
prefixes is also efficiently recognizable. By this result, the complexity theory developed in 
Sections 3 through 5 ts practically relevant, because the practical question of  the existence 
of an efficient scheduler for a given class of  histories is explicitly linked to the complexity 
properties of  the class. Another imphcatlon is the negative result that, unless ~ = ,A/'~, 
there is no efficient "serializer" of  histories, and hence considering efficient but more 

restrictive schedulers--such as the ones discussed above-- i s  a reasonable alternative. 
Finally, Section 7 concludes our treatment of  the subject. We discuss there a number  of  
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possible extensions of  our results, such as to general (multistep) transactions and distributed 

databases. 

2. Defintttons and Notation 

A history is a quadruple h = (n, ~r, V, S), where n is a positive integer; ~r is a permutat ion 

of the set ~ = {R,, W~, Re, W2 . . . . .  R~, W~}--that is, a one-to-one function ~r:~n 

{ 1, 2 . . . . .  2n ) - - such  that ~r(RJ < ~r(W,) for i = 1, 2 . . . . .  n (a permutat ion ~r is represented 

by (~r-~(l), ~r-1(2) . . . . .  ~r-~(2n))); and finally, S is a function mapping ~ to 2 v, where Vls 

a finite set of  variables. Each pair (R,, W,) will be called a transaction T.  S(R,) will be 

called the read set of T,, and S(t'E) its write set. We shall represent histories in a compact 

way by exhibiting ~r, with the sets S(-)  given in brackets following each element of  ~ .  For  

example, the history h = (3, (R~, Re, W~, R3, We, W3), {x ,y} ,  S), where S(R1) = S(R3) = 

(x}, S(Re) = ~ ,  S(W3) = {y}, and S(W~) = S(We) = {x,y} ,  is represented as 

h = R~[x]R2 W~[x, y]R3[x] We[x, y] W3[y]. 

The set of  all histories is denoted by H. 

We can think of  each transaction T~ as starting with an instantaneous reading of  the 

values in the variables m S(R,), performing a possibly lengthy local computation, and then 

instantaneously recording the results in a different set S(W,) of variables. We do not look 

into the details of  the exact nature of  the local computation. In fact, we view each 

transaction T, as a set of  IS(W,)I uninterpreted I S(R,)l-ary function symbols (fi~ : j  = 

1 . . . . .  IS(W,) 1}. ~r Is the sequence in which these atomic read and write operations take 

place. Thus, a history can be wewed as a special case of  a fork-join parallel  program 

schema m which the local computations involve a number of  local temporary variables t v 

and are executed in parallel with other read-write  operations (see Figure 1). 

The concatenatwn of  two histories h~ = (n, ~r, V, S), he = (m, p, V, T) is a history h i  o ha 

= (n + m, ~, V, P), where P(W,) = S(W,) ff i _< n, and P(I.I'~) = T(I.E-~) for i > 'n.  Similarly, 

P(R,) = S(R,) ff i _< n, and P(R,) = T(R,-~) for t > n. Also z(W,) = ~r(W,) i f  i _< n, and ~(W3 

= p(W,_~) + 2n for i > n, ~'(R3 = ~r(R,) for i _< n, z(R,) = o(R,-~) + 2n for i > n. In other 

words hi o h~ is a juxtaposition of  the two histories, only with the transactions of  h2 renamed. 

Thus, if 

and 

then 

h~ = R~[x]Re[y] We[y]R3 W~[z] W3[y] 

h2 = Ra[x, y]Re[x] W~[y] We[z], 

h, o he = R~[x]Re[y] We[y]R~ W~[z] W3[y]R,[x, y]Rs[x] W,[y] W~[z]. 

We say that two histories hi = (n, ~r, V, S) and h2 = (n, C, V, S) are equivalent (written 

hi -= h2) if and only if  the corresponding schemata are (strongly) equivalent. In other 

words, given any set of  I V[ domains for the variables, any set of  initial values for the 

variables from the corresponding domains, and, furthermore, any interpretation of  the 

funeUonsfij, the values of  the variables are identical after the execution of  both histories. 

Notice that our definmon of  equivalence reqmres that the two histories involve the same 

set of  transactions. Thus hi = R~[y]R2 We[x] W~[x] is not equivalent to he ffi Rl[y] Wl[X], 

despite the fact that their corresponding schemata are equivalent (essentially because Te is 

"dead" in hi). This is a matter of  convenience, and little change to our derivations would 

be necessary in order to broaden equivalence in this sense. 

To give a syntactic characterization of  equivalence, it Is necessary to first introduce some 

terminology. Let h = (n, ~r, V, S) be a history. The augmented version of h is the history/~ 

= (n + 2, ~', V, S), where ~" = (R~+t, Wn+l, ~r, Rn+e, Wn+e) and g(R~) = S(R,), S(W~) = 
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FIG. 1 The history h = Ri[x]R2 W~[x, y]R3[x] W2[x, y] W3[y] viewed as a program schema 

S(W,) for i _< n, and also S(R,+i) -- S(Wn+2) -- ~ ,  S(Wn+I)  --  S(l~n+2) --  V. In other words, 

/~ is h preceded by a transaction that initializes all variables without sensing any, and 

followed by a transacuon that reads the final values of  all the variables, without changing 

them. Suppose that x ~ S(R,). We say that R, reads x f rom Wj in h if W~ is the latest 

occurrence of  a write symbol before R, in ~ such that x E S(W~). Notice that since /~ 

contains Wn+l with S(W,+0 = V, such a write symbol always exists. The definition of  a 

live transaction in h is as follows: 

(a) T,+2 is live in h. 

(b) If  for some hve transaction Tj, Rj reads a variable from W~ in h, then ~ is also live 

inh.  

(c) The only kinds of  live transactions in h are defined by (a) and (b) above. 
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The following is now a simple syntactic characterization of  history equiyalence, essen- 

tially a restatement of  the characterization of  schema equivalence m terms of  Herbrand 

interpretations [14]: 

PROPOSITION 1. Two histories hi = (n, ~r, V, S) and h2 = (n, ~r', V, S) are equivalent tf  

and only if they have the same sets of  live transactions, and a live R~ reads x from W~ m hi if 
and only if R, reads x from Wj in h2. 

One of  the implications of  Proposition 1 is that equivalence of  histories can be decided 

efficiently. The sets of  live transactions can be found in O(n. I VI) time by applying the 

recurslve definition given above, and so can the reads from relation for transactions. Hence 

we have: 

COROLLARY. Equivalence of  histories can be decided in O(n. [ VI) time. 
The main theme of  this paper is the notion of  serializability. A history h = (n, ~r, V, S) 

is sertal if 7r(W,) = ~R,)  + 1 for all i = 1, 2 . . . . .  n; in other words, a history is serial if R, 

immediately precedes W, in it for i = l . . . . .  n. A history h is serializable (notation: h E SR) 
if and only if there is a serial history h8 such that h m hs. In the next section we shall 

present a syntactic characterization of  serializable histories analogous to (and based on) 

Proposition I. 

3. The Complexity of Serializability 

In order to examine the complexity of  the serializability problem, we need first to introduce 

some graph-theoretic terminology. 

Definition 1. Apolygraph I P = (N, A, B) is a digraph (N, A) together with a set B of  

bipaths; that is, pairs of  arcs--not necessarily in A - - o f  the form ((v, u), (u, w)) such that 

(w, v) ~ A. 

Alternatively, a polygraph (N, A, B) can be viewed as a family ~ (N,  A, B) of  digraphs. 

A digraph (N, A ') is in ~(N,  A, B) if and only if A C A ', and, for each bipath (al, a2) E 

B, A '  contains at least one of  al, a2. Polygraphs will be represented schematically as in 

Figure 2(a). Arcs in A will be drawn as ordinary arrows, and pairs of  arcs in B will be 

marked by a circular arc centered on their common node. 

Definition 2. A polygraph (N, A, B) is acyclic If there is an acydic digraph in 

~(N,  A, B). 

For example, the digraph of  Figure 2(b) is both in ~(N,  A, B) and acyclic; it follows that 

(N, A, B) of  Figure 2(a) is acyclic. Notice that for a polygraph (N, A, B) to be acyclic, the 
digraph (N, A) must definitely be acyclic. 

Given any history h = (n, 7r, V, S), we are going to define a polygraph P(h) = 
(N, A, B). N is the set of  live transactions of/~, the augmented version of  h. First, A contains 

the arcs {(Tn+l, v):v E N -- {Tn+l}}, and also the arcs {(v, Tn+2):v E N - {Tn+2}}. Second, 

whenever transaction u reads some variable x from v in h, we add the arc (v, u) in A. 

Furthermore, if for a third transaction w, x is in the write set of  w, then we add the bipath 

((u, w), (w, v)) in B. This concludes the construction of  P(h). 

Intuitively, P(h) captures a partial order that can be interpreted as "happened before" 

and with which any history that is equivalent to h must be consistent. Each arc (v, u) 

means that u read some variable from v and hence must follow it. Also, a bipath ((u, w), 

(w, v)) means that w wntes on the same variable and hence cannot be in between v and u; 

it must either precede v or follow u. This is stated as a lemma: 

LEMMA 1. Two histories hi -- (n, ~r, V, S) and h2 = (n, or', V, S) are equivalent if and only 
if P(hl) and P(h2) are identical. 

PROOF. Both directions follow from Proposition l and the definition of  P(h). [] 
LEMMA 2. A history h = (n, ~r, V, S) without dead transactions is serializable if and only 

if P(h) is acyclic. 
PROOF. I fh  is serializable, there exists a serial history h, such that h -= h~ or, by Lemma 

We resist on this terminology only because it has already become notorious for tts impropriety. 
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1, P(h) = P(hJ However P(hJ = (N, A, B) is acyclic. To see this, let (Ti . . . . .  T,) be ordered 

according to their occurrence m h~. We construct a digraph (N, A ') ~ ~(P(hs)) as follows: 

A '  contains the arcs m A, and for each bipath ((T, T~), (Tj, Tk)) in B we add to A the arc 

(T ,  Tj) if i < j ,  or (T~, Tk) i f j  < k. To show that exactly one of  these must occur, recall that 

in hs, T, reads a variable x E S(V~) from Tk, and hence k < i and not k < j < i. 

Consequently, the above construction yields a &graph (N, A ') in .~(P, A, B). Next, not]ce 

that (N, A ') is acyclic since it is a subgraph of  the total order (T,+i, T1 . . . .  , T,, T,+2). So 

P(h) is also acyclic. 

Now let (N, A ') be an acychc digraph in .~(P(h)). The serial history hs resulting from 

topologically sorting (N, A ') is then eqmvalent to h. This follows from Proposition 1 and 

from the fact that since one of  the two arcs of  each bipath in B is in A ', all transactions m 

he read all variables from the same transaction in h as they do in h~. [ ]  

Unfortunately, the combinatorial  characterization of  serial reproducibili ty shown in 

Lemma 2 does not directly suggest an efficient test. In fact, the theorem below is strong 

evidence that no such test exists. 

THEOREM 1. Testing whether a history h is serializable is NP-complete, even i f  h has no 

dead transactwns. 

In order to proceed with the proof  of  Theorem 1 we first need another lemma. It is well 

known (see [ 1, 9]) that the satisfiability problem of  Boolean formulas in conjuncuve normal 

form with two or three literals in each clause (abbreviated SAT) is NP-complete. We can 

show that a more restricted version of  this problem is still NP-complete, Call a clause 

mixed if  it contains both variables and negations of  variables, and call a formula nonclrcular 

ff at most one of  the occurrences of  each variable ts m a mtxed clause. 

LEMMA 3. SA T is N P-complete even i f  the formulas are restricted to be noncircular. 

PROOF. Consider any instance F of  SAT and a variable x in it. Let m be the number  

of  occurrences of  x m the formula F, and let xl, x2 . . . . .  xm be new variables. We replace x 
in its first occurrence by x~, in its second by .,~2, in its third by x3, etc. Finally, we add the 

clauses (xl V x2) A (xl V Y:2) A (x~ V x3) A (.~2 V £a) A ... , which is the conjunctive normal  

form of  x~ ~ .~2 -= xa ~ .~4 =- .... Repeating this for all variables, we observe that 
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the resulting formula is trivially nonclrcular, and the construction requires only a polyno- 

mml amount of  time. [] 

PROOF Or THEOREM 1. The set of  SR histories is definitely in X ~ ,  since to show that 

h is SR, one only needs to construct a serial history hs (of length not greater than that of  

h) and check by Proposmon 1 that h and hs are equivalent. 

We will show next that a known NP-complete problem, the noncircular SAT problem 

of  Lemma 3 above, reduces to SR-testmg in polynomial  time. 

Given any such formula F, we are going to construct a polygraph P r  = (N, A, B) such 

that PF is acychc if and only If F is satisfiable. We will then show that Pe can be considered 

as P(h) for a suitable history h, without dead transactions. In view of  Lemma 2, this will 

conclude the proof. 

We start from the construcuon o fPF  = (N, A, B). F h a s  m clauses Cx . . . . .  Cm and revolves 

n Boolean variables x~ . . . . .  xn. Each clause C, consists of  three literals h,1 V 2,,2 V ~,a, where 

A:k is either a variable or a negation of  one. N contains the nodes a:, b:, cj for each variable 

x:, and y,k, z,k, k = 1 . . . . .  m, for each clause C with m, literals. For  each variable x: we add 

the arc (a:, b:) to A and the blpath ((b:, Cg), (c:, a:)) to B. For  each clause C,, we add the arcs 

(y,~, z,.k+l) (addmon mod m,) to A. FmaUy, if ~,k = x:, we add the arcs (c:, y,k) and (b:, z,k) 
to A and the blpath ((z,~, y,k), (y,h, b:)) to B. If  h,k = 2:, then we add the arcs (z,k, c:) and 

(y,k, a:) to A, and the btpath ((a:, z,k), (z,~, y,k)) to B. For  example, ff the literal X,k is &, the 

subpolygraph of  Figure 3 wdl appear  in PF. 

Finally, we add to N the nodes no, n ,  and nf, together with the arcs (no, n), (n, n~), and 

(n, nf) for all n E N - {no, n~, nf}, and also the arc (n ,  nf). This concludes the construction 

of  PF. In Figure 4(a) we dlustrate the construction for the Boolean formula 

F = (xl V x2) A (xl V 22 V X3) A (22 V 2a). 

For  s~mphoty, m Figure 4 we have omitted the nodes no and nf. 
We will now argue that PF is acychc if  and only if F is satisfiable. Suppose that PF is 

acyclic. This means that there is an acychc digraph (N, A ') E ~(PF) .  Obviously, for each 

j,  exactly one of  the edges (b:, c:) and (c:, ag) is in A '  Consider the fact that (c:, a:) ~ A '  
means that x: is assigned the value true. We may immediately note that i f  a literal X,k is 

given the value false by this assignment, the correspondmg arc (z,k, y,k) is also in A' ,  since 

otherwise, a cycle of  the form (c:, y,k, b~)--or (z,k, c:, a:) if  X,k = . , t - -wou ld  exist in 

(N, A '). Hence, the only way for (N, A ') not to have a cycle of  the form (za, ya,  z,z . . . . .  y,a) 

is that at least one hteral m each clause is assigned the value true, which means that F is 

satisfiable. 

Conversely, suppose that F is satisfied by some truth assignment T. We will construct an 

acychc digraph (N, A ') ~ ~(PF).  A '  contains all of  A and the arcs (q, aj) if  T(x:) = true, 
(/b, c:) if T(x:) =false,  and the arcs (z,,, y,~) ff T(X,~) =false,  (y,~, ib) ifh,~ = & and T(x:) 
= true, and (a:, Z,k) If ~,:~ = X: and T(x:) = false. Obviously, (N, A ') is m g~(Pe); the claim 

is that it ~s acychc. We first note that since F ~s by hypothesis noncircular, (N, A) is acyclic. 

This ~s because by the constructmn of  A, the clauses containing variables only or negations 
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only correspond to node sets with only incoming or, respectively, only outgoing arcs; node 

sets corresponding to mixed clauses have both incoming and outgoing arcs, but no two 

such node sets are reachable from each other in (N, A) by F's noncirculanty; it follows that 

(N, A) is indeed acyclic. It is easy to check that the arcs in A' - A can harm the dlgraph's 

acyclicity only by introducing a (zn, y,1 . . . . .  y,a) cycle; however, this would mean that some 

clause has no true (under T) literal, and hence T does not satisfy F, a contradiction. In 

Figure 4 we show in broken lines the arcs of  an acyclic digraph in ~(PF); this digraph 

corresponds to the truth assignment T(x]) -- true, T(x2) = false,  T(xa) = false,  which 

sausfies F. 

In order to conclude the proof we need to construct a history h such that P(h) -- Pr. All 

nodes of  PF correspond to distinct transactions. To construct the read and write sets of  the 

transactions (except for no, no, and nr), we start by having all read sets empty and a variable 

xv in the write set of  each transaction v. For each arc (v, u) E A we add a variable xv, to 

the write set of  v and the read set of  u, and for each bipath ((v, u), (u, w)) ~ B we add xwv 

to the write set of  u. Finally, R(no) = 0 ,  W(no) = {xv:v E N} ,  R(nf) = {xuv:(u, v) E A} ,  

R(nc) = {xv:u E N} ,  W(nf) = ~5, W(n~) = {x,o:(u, v) E A}. In order to sketch the 

construction of  h, we represent the read and write operations corresponding to the node v 

of  PF by R(v), W(v) respectively. We use v to stand for R(v) W(v). We start the construction 

of  h from left to right. First, for each clause C, consisting of  just negations we add the 

subhistory h(C,) = yn ... y,m,. Next, for each variable x~ that appears unnegated in the 

mixed clause Ct (i.e., Xtk ffi xj) we add the subhistory h(x~) = R(aj)z,mc~ W(aj)R(bj)yt& W(b~). 

The Z,m part appears only if C, is purely negated and A,m = .fj. Further, ifXm = xj for some 

purely unnegated clause Cp then Ym appears also after ylk. Then follow subhistories 

corresponding to the remaming variables. If xj does not appear unnegated in a mixed 

clause, then we add to h the subhistory h(x~) = R(a~)z,,cj W(aj)R(bj)ytk W(b~). Again, ylk 

appears only if Xth = x~ for some purely unnegated clause Ct, and if x~ also appears in a 

purely negated clause Cp (Apq = Xj), then Zpq comes after Z,m. Finally, we have h(C,) = 

zn ... Z,m, for each purely negated clause C,, and at the end the transaction n,. 
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To argue that  PF = p(h),  first note that  all (Yv, z,,j+~) (mad  m,) arcs are  real ized by  h, and  

that  the subpolygraph  of  F igure  3 is real ized for each xj = ?~,k and  the s y m m e m c  

subpolygraph  for ggj = A,R. Fur thermore ,  it is quite easy to check that  no other  arcs and 

bipaths  are added  by the construction.  Hence PF = P(h), which completes  the p r o o f  of  

Theorem 1. [ ]  

4. Efficwntly Recognizable Classes of  Serializable Histories 

Given  that  SR Is NP-complete ,  it is reasonable  to look for subsets of  SR that  are efficiently 

recognizable.  In this section we s tudy several  such classes of  ser lahzable  histories. 

4.1 THE CLASS DSR. 

Definition 3. Let  hi = (n, ~r, V, S) and  h2 = (n, ~r', V, S) be histories. W e  write that  hi 

h2 whenever  It(a) = ~r'(o) for all o E Z~ except  for two elements  ~rl, o2 ~ ~ with ~r(o~) 

= ~r'(o2) = J, ¢r(oz) -- ~r'(ol) = j + 1 for some 1 _< j <_ n - 1, and  

(a) ol = R,, o2 = R~ for some i, j _< n, or 

(b) ol = R,, o2 = W:, i # j ,  i, j _< n, and  S(R,) f') S(W:) = ~ ,  or  

(c) ol = W,, o[ = W:, t , j  _< n, and S(W,) N S(W:) = f~. 

As an dlustrat ion,  we have that  

R,[x]R2[x] W~[x] W~[y] ~ R~[x]R2[x] W2[y] W~[x] 
~ R~[x]R~[x] W2[y] W~[y] 
~ R2[x] W2[y]g~[x] W~[x], 

because at each step the next history is ob ta ined  f rom the previous one by  switching two 

adjacent  symbols  obeying one of  the condi t ions (a), (b), and  (c) o f  Def in i t ion  3 above.  

The  fol lowing is a direct  consequence of  Proposi t ion l and  the above defini t ion:  

PROPOSITION 2. I f  hi ~ h2, then hi ~ h2. 
Let L be the reflexive-transit ive closure of  ~.  Since ~ is symmetric ,  ~* is an  equivalence 

relat ion that  is, by P roposmon  2, a restr ict ion of  ---. W e  can show that  -* is a p roper  

restriction of  --- by  observing that  for the two histories 

hi = R1R2 W~[x, y] W2[x, z]Ra[x] W3[x] 

and 

we have 

but  

hz = RiR2 Wz[x, z]Ra[x] Wl[x, .y] W3[x] 

hi ~ h2, 

hl ~ h2. 

W e  say that  the his tory h is D-serializable (DSR) if  there is a serial  history hs such that  

h ~ hs. Obviously,  i f  a his tory is DSR, it is cer ta inly SR. 
W e  can associate with a his tory h = (n, It, V, S) a d ig raph  D(h) def ined  as follows: The  

nodes  o f  D(h) are the t ransact ions {T~ . . . . .  Tn} o f  h, and  the pa i r  (T,, T1) is an  arc o f  D(h) 

i f  and  only i f  one of  the fol lowing holds: 

(a) S(R,) N S(Wj) ~ f~ and ~ R , )  < Ir(I4"~), or 

(b) S(W,) f3 S(Rj) ~ f~ and ~r(W,) < 7r(R:), or 

(c) S(W,) f3 S(I4"~) # ~ and  It(W,) < ~ I4,~). 

LEMMA 4. Suppose that for  two histories hi = (n, ~r, V, S) and h2 -- (n, ~r', V, S), D(hl) 

and D(h2) have no cycles of  length 2. Then hi ~" h2 if  and only if  D(hl) ffi D(h2). 

PROOF. It should  be obvious f rom the def ini t ion of  D(h) and the ~ re la t ion that  

whenever  hi ~ h2, also D(hl) = D(h2). Consequent ly ,  hi ,L h~ implies  D(hl)  -- D(h2). 
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For the other direction, assume that D(hl) ffi D(h2). We shall transform h2 to hi by a 

sequence of  ~ transformations as follows: Take the symbol in ~n that is the first symbol in 

hi (i.e., tr-1(1)) and bring it to the first place o f  hz by successively switching it with all 

symbols preceding it in h2; then take w-l(2) and bring it to the second position by switching 

it with all symbols preceding it, except ~r-l(l); and so on, until h2 is transformed to hi. It 

remains to show that all these switchings have been legal ~ transformations. Suppose that 

at some time we had to swatch ol and 02 in a manner not allowed by Definition 3; that as, 

one of  the following holds: 

(a) ol = R~, 02 = I4,~. This means, however, that in hi, W, precedes R~, and hence hi is 

not a history. 

(b) ol -- R~, o~ -- Wj, and S(R,) N S(W~) ~ f~. This would mean, however, that (T~, T~) 

is in D(h2) and (T~, TJ is in D(hl). Since D(hO and D(h2) have no cycles of  length 2, 

we can conclude that D(hl) ~ D(h2). 

(c) A similar argument holds for ol = W~, 02 = Wj, and S(W~) N S(I4'~) # ~.  []  

We can now prove the following theorem. 

THEOREM 2. A history h = (n, ~r, V, S) is DSR if and only if D(h) is acyclic. 
PROOF. Suppose that D(h) is acychc. We can thus sort topologically the set {T1 . . . .  Tn} 

of  nodes of  D(h). Think of  this order as a serial history hs. It is immediate that D(hs) = 
D(h), and hence, by Lemma 4, h ~ hs. It follows that h is DSR. 

For the other direction, assume that h is DSR. We have two cases: 

(a) D(h) has a cycle (T~, Tj, T,) of  length 2. This means that qr(R,) < ~r(W~) < ~r(W,), and 

S(R~) N S(W~) ~ ~, S(W~) N (S(W~) U S(Rj)) ~ ~. It is easy to show that in all histories h' 

for which h ~* h' we will also have ~r'(R,) < ~r'(Wj) < ~ '(WJ, as otherwise h ~ h '  and 

h ~ h',  by Proposition 2. Hence there is no serial history hs such that h ~* hs, a 

contradicUon. 

(b) D(h) has no cycles of  length 2. By Lemma 4, there is a serial history hs such that 

D(h) = D(hs). However, serial histories hs have acyclic D(hs), and hence D(h) is acychc. []  

Theorem 2 suggests that histories that are DSR can be detected efficiently by checking 

D(h) for acyclicity: 

COROLLARY I. Checking whether a history h = (n, ~r, V, S) is DSR can be done in 
O([ V[n 2) time. 

Also, we can rephrase Theorem 2 as follows (compare with Definition 4 below): 

COROLLARY 2. A history h ffi (n, ~, V, S) is DSR if and only if we can find real numbers 

{$1 . . . . .  S~} such that 

(a) I f  S(W,) N S(Rj) ~ ~ and ~ W,) < w(Rj), then S, < Sj; 
(b) I f  S(R~) N s(Ir~) ~ ~ and ~'r(R,) < ~(W~), then S, < S~; 

(c) I f  S(W,) N S(W~) ~ 0 and ~ W,) < ~ Wj), then S~ < Sj. 

4.2 THE CLASS Q. 

Definition 4. A history h = (n, 7r, V, S) is in Q if there exist noninteger, distinct real 

numbers S~, $2 . . . . .  S~ with the following properties: 

(a) ~(R,) < S, < ~W,) .  

(b) I f  S(R,) ~ S(W~) # ~, i ~ j, and ~R~) < ~ W~), then S, < Ss. 

(c) I f  S( WJ ~ S(W~) # ~ and ~ W,) < ~ W~), then S, < S~. 

The real numbers $1 . . . . .  S,  in Definition 4 are called serializabilitypomts. Their intuitive 

meaning is that the history h is the same as though transaction T~ had executed indivisibly 

at the time instance $1 (during which, by (a) above, it was active), transaction T~ at S~, and 

so on. As an illustration, the history 

h = R~[x]~[z] W~[y]R~[z] W~[x] Wily] 

is in the class Q, since the values Sa ffi 3.5, $2 = 2.5, and $3 ffi 4.5 satisfy, as the reader can 

check, the requirements of  the definition. The class Q was independently introduced 

in [22]. 
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THEOREM 3. I f  h Is m Q, then h is DSR 

PROOF. Condmons (b) and (c) of  the definmon of  the class Q above are identical to 

(b) and (c) of Corollary 2 to Theorem 2. Hence it suffices to show that condmon (a) above 

implies condition (a) of  Corollary 2. But this is immediate, because if  ~r(W,) < ~r(Rj) we 

have that S, < ~r(l'V,) < ~r(Rj) < Sj, no matter what S(Rj) and S(W,) are. [ ]  
Given a history h = (n, ~r, V, S) we can construct another digraph D ' ( h ) - - a  superdlgraph 

of  D(h)--with node set again {T1 . . . . .  Tn} and (T,, Tj) an arc if  and only if  one of  the 

foUowmg holds: 

(a) ~r(W,) < ~r(R~). 

(b) or(R,) < ~r(Wj) and S(R,) 0 S(V~) ~ f~. 

(c) ~r(W,) < ~r(I'Ve) and S(W,) N S(Wj) ~ ~3. 

In other words, D'(h) contains all the arcs of  D(h) and possibly some other arcs for the 

cases m which ~r(W,) < ~r(R~) and S(Rj) tq S(W,) = f~. 

THEOREM 4. The history h = (n, ~r, V, S) is in the class Q if and only if D'(h) is acyclic. 

PROOF. Suppose that h E Q, and let S~ . . . . .  Sn be appropriate numbers. Without  loss 

of generahty S~ < $2 < ..- < Sn. We shall show that whenever (T,, Tj) is m D'(h), then 

i < j .  Suppose that i > j; by the definmon of  D'(h) one of  the foUowmg must hold: 

(a) ~r(W,) < ~r(Rj). However, S, < ~r(W,) < ~r(R~) < Sj, which contradicts our assumption 

that $1 < $2 < ... < Sn and i > j.  

(b) ~r(W,) < ~r(14"~) and S(W,) N S(I,I,~) ~ ~3. By (c) of  Definition 4, however, S, < Sj, 

again a contradiction. 

(c) ~r(R,) < ~r(l'l'~) and S(R,) f3 S(14~) ~ ~. Similarly, a contradiction is reached by (b) 

of  Defimtlon 4. 

Consequently, D'(h) is acychc, since it is a subgraph of  a total order. 

For the other direction, suppose that D'(h) is acyclic. We can sort its nodes topologically 

to obtain the order, say, (T1, T2 . . . .  Tn). We can define the real numbers S~, $2 . . . . .  Sn, and 

S~+1 (for convenience) as follows. 

(a) S~+~ = 2n + 1. 

(b) S~ = min{Sj+a, ~I4.~)} - l /(n + 1), j = n, n - 1 . . . . .  1. 

It is clear that the Sj's are distract, increasing, noninteger real numbers, and that they 

satisfy (b) and (c) of  Definmon 4. It suffices thus to prove (a) of  Definition 4, in particular, 

that S, > ~r(R,) for all t. Suppose that, for some i, S, _< ~r(R,). L e t j  be the smallest index, no 

smaller than ~, for which ~r(14,~) < S~+a Thus 

S, = ¢r(l,l,~) - ( j  - i + l ) / (n  + 1) > ~r(/,t,~) - 1. 

Consequently ~r(R,) > rr(Wj) - 1, or ~r(R,) > ~r(l,V~). Hence (T~, T,) ~ A, which contradicts 

the fact that j _> i in the topological sorting of  D'(h) [] 

COROLLARY. Testing whether a history h = (n, ~r, V, S)  is m Q can be done in 0(I V In 2) 
trine. 

4.3 Two-PHASE LOCKING aND THE PROTOCOL P3. A very influential proposal for 

guaranteeing senahzabil i ty of  update systems has been the two-phase locking mechanism 

of  [7], also d~scussed extensively in [4]. Also, the essence of  a qmte different serializability 

principle (which was used in the development of  the SSD-I distributed system [2, 17]) ~s 

captured by the so-called protocol P3 (see [4]). In this subsection we show that these two 

different philosophies of  serializability are reduced, in our model, to two efficiently 

recogmzable incommensurate subsets of  our class DSR. 

The two-phase locking strategy requests and releases actual locks--i .e. ,  mechanisms that 

guarantee exclusive data access--during the execution of  the different operations of  an 

update. The rule that ~s proven sufficient for guaranteeing senalizability is: Never request 

a lock after a lock has been released. We have, therefore, two phases: one during which 

locks may only be requested, followed by one during which locks can only be released. 

The first release of  a lock dehm~ts the two phases. In our model  of  two-step updates the 
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(a) (b) 

Fro. 5 

authors of[4] note that two-phase locking for a history h = (n, ~r, V, S)  essentially amounts 
to divtding the interval from ~R:)  to ~ Wj) into two intervals: one during which no symbol 

with S(Rj) N S(W,) # (3 can exist, followed by one during which no symbol e ~ Xn 

with S(e) N S(Wj) # 0 can exist. This is captured by the following definition: 

Definition 5. A history h = (n, ~r, V, S)  ts two-phase locked (notation: h ~ 2PL) if and 

only if there exist dlstmct nonmteger real numbers l~ . . . . .  In (the loekpoints) such that: 

(a) ~r(R~) < l~ < 0r(W~) for i = 1 . . . . .  n. 

(b) If  S(R,) N S(W~) # ~5, t # j ,  and ~(R,) < ~r(Wj), then I, < Ij. 
(c) If  S( W3 N S(Wj) ~ ~5 and ~ W,) < ~ Wj), then ~ W,) </~. 

To understand Defimtion 5, consider a transaction (R~, Wj) in a history h E 2PL, and its 

lockpoint/1. The intuitive meaning of the lockpoint is the following: During the interval 
[~r(Rj), l:] all variables in S(R~) are "'protected" from writing by other transacuons, by virtue 

of  (b). Also, during the interval [/j, 0r(Wj)] the variables in S(Wj) are protected from 
reading and writing. Conditions (b) and (c) therefore essentially say that the interval 
[lj, ~Wj) ]  overlaps no interval [lk, ~r(Wk)] with S(Wk) N S(Wj) # ~5 and no interval 
lARk), Ik] with S(Wj) 1"3 S(Rk) # ~5. Thus, the second lock is granted before the first is 
released, in accordance with the two-phase locking principle. 

Although Defimtions 4 and 5 differ only slightly in condition (c), the latter is a 
substantial restriction. First, we nonce that 2PL C_ Q. Indeed, if h ~ 2PL then the 
lockpomts li . . . . .  In are automatically valid serializability points S~ . . . . .  Sn m Definition 4. 
To see this, just notice that condition (c) of  Definition 5 (~W,)  < 1j) and (a) (l, < ~W,))  
together imply (c) of  Definition 4 (namely, S, < Sj). To show that the inclusion is proper, 

notice that for the history 

h = Rd~2R3[x]W~[x]W2[y, z]W3[y], 

we have that h E Q (see Figure 5(a) for D'(h)) but h ~ 2PL. The explanation for the latter 

fact is that transacuon 3 has no lockpoint/3, since if it had,/3 should obey/3 < l~ < 4 (by 
(b)) and also/3 > 5 (by (c)). 

We can, however, check very efficiently whether a history h is two-phase locked. Given 
any history h = (n, ~r, V, S)  we define the history h* ffi (2n, ~r*, V, S*), where h* is 
obtained from h by inserting a transaction R~+j, Wn+~ after I¢~ in h fo r j  = 1 . . . . .  n; S*(Rn+~) 
= ~,  and S*(W~+~) = S(B¢). For example, the history h* for h of  the example above is 

h * = RIR2R3[x] WI[X]R4 W4[X] W2[y, z]R~ W~[y, z] W3[y]R 6 W6[y]. 

TH~ORnM 5. For a history h = (n, ~r, V, S), h ~ 2PL if and only if h* ~ Q. 
PROOf. Let {l~ . . . . .  l,) be a set of  distinct, noninteger, real numbers, and let a(j) be the 

number of  positions to the right that the symbol ~r-~(j) was shifted in h*; in other words, 
a(j) = 2-[ {IV, : ~r(W,) < j }  I. Consider the set {S~ . . . . .  S2n}, where S, = l~ + a([l,]) for i _< 
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(a) 

Fie 6 

(b) 

,) 
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n a n d  S, = ~r(W,-n) + a(~r(W,-n)) + ~ for i > n. We claim that (l,} ts an acceptable set of  

lockpomts satisfying Definition 5 if and only if (Sj} is a set of  serializability points 

according to Definition 4. Both &rections follow from the defimtions. The formal deriva- 

tion is omitted. []  

To illustrate the theorem, the history h above is in Q, since D'(h) is acyclic (Figure 5(a)). 

However, it is not in 2PL, because D'(h *) is not acyclic (Figure 5(b)). Naturally, Theorem 

5 yields 

COROLLARY. Testing whether a history h = (n, It, V, S)  is two-phase locked can be done 

in O(n2l V D time. 
We now turn to formalizing and studying in our model the protocol P3 of  [2] and [4]. 

Recall the &graph D(h) defined for any history h in Subsection 4.1; see Figure 6(a) for an 

illustration in the case of  

h -~ Ri[z]R3 W3[xlR2[x] Wi[z]R4 W2[y, z] W4[x]. 

Definition 6. Let CG(h) be the undirected graph corresponding to D(h) (Figure 6(b)). A 

cycle in G(h) is a sequence (T,,, T,~) of  m _> 2 transactions such that [T,,, T,,+,] are edges 

of G(h),j = 1 . . . . .  m - 1, and so is [T, m, T,,]. Notice that all edges are cycles according to 

this definition. A cycle (T~ ...... T,m) is bad If 

IS(Rim) ~J S(Wtm) ] N S(W,l) ~ ~, 

and 

S(RO n S(W,2) ~ ~. 

Notice that in the above definition the first node of  a cycle and the order of  listing of  the 

nodes are important. For example, in Figure 6 (Ti, Tz) is a bad cycle, whereas (Tz, T1) is 

not. Bad cycles are, intuitively, those cycles that can correspond to a direct cycle in D(h') 
for some other history h '  involving the same transactions. 

Definition 6 (continued). Let h = (n, m V, S)  be a history. We say that Tj is a guardian 
of T, if there exists a bad cycle (T,, Tj . . . . .  Tk) in G(h). We say that h obeys" the protocol P3 
(notation h ~ P3) if whenever Tj is a guardian of  T, we do not have ~r(R3 < ~r(Wj) < 

~(W,). 
For example, consider the history h of  Figure 6. The only bad cycle in G(h) (Figure 

6(b)) is (/'1, T2), and hence the guardian relation is simple: just T2 is a guardian of  T~. 

Since ~r(W2) > ~z(Wl), we have that h E / 3 .  

THEOREM 6. Suppose that h = (n, ~r, V, S)  is in 1'3. Then it is also in DSR. 
PROOF. We shall show that h E P3 implies that D(h) is acyclic. Suppose that D(h) has 

a cycle (/'1, T2 . . . . .  Tin), m > 2. Consider the arc (Tj, T~+~) of  D(h)--addition rood m; we 

have three cases: 

(a) S(Wj) N S(Wj+i) # ~ and ~W~) < ~r(Wj+0. 

(b) S(W~) N S(R~+a) # ~ and ~Wj)  < ~R~+,). 

(c) S(Rj) N S(Wj+,) # 0 and ~R~) < ~Wj+i). 

Notice that in both cases (a) and (b) we have that ~r(Wj) < ~Wj+i) and that more than one 

ease may be applicable to the same arc. Case (c) is spht into two subcases: 
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(el) Cases (a) and (c) do not apply to the arc (T~-l, Tj). 

(c2) j -- l, or case (a) or case (c) applies to (T~-i, T~). 

In case (el) we have that Ir(W~-l) < ¢r(Rj) < ~r(B'~+l). In case (c2), however, we notice that 
Tj+i is a guardian of  T~. Consequently, since ~r(R~) < ~Wj+i) we must necessarily have that 

~w~) < ~(w~+l). 
Now consider the operations Oj, j = 1 . . . . .  m, where Oj -- Rj if case (el) is applicable to 

the arc (Tj, Tj+i), and O~ = W~ otherwise. We have shown that ~r(Oj) < ~(Oj+l) for 
j = 1 . . . . .  m (addition mod m) This is a contradiction, since it implies that ~r(Wl) < 
~.(w~). [] 

Theorem 6 implies the following, independently proved in [4]: 
COROLLARY. Histories that obey the protocol P3 are seriahzable. 

Our next result concerns the complexity of  recognizing those histories that obey protocol 
P3. By the definition of  this class, this complexity is determined by the complexity of  

computing the guardian relation among the transactions in a history. We shall show how 
this relation can be computed efficiently. For each transaction T~, let F(T~) be the set of  all 
transactions T, that satisfy S(R~) N S(W~) # 0 .  Thus F(T~) is the set of  all transactions that 

are possibly guardians of  Tj. To determine whether a transaction T, ~ F(Tj) is indeed a 
guardian of  Tj, we delete all edges [T~, Tk] such that S(Wj) A [S(Wk) O S(R~)] = O from 

G(h) and then determine whether T, and Tj are on the same biconnected component of  the 
resulting graph. This can be done in O(n 2) time by the algorithm of  [20]. I f  T, and T~ are 
on the same biconnected component, this means that there is a bad cycle (Tj, T, . . . . .  Tk) in 
G(h), and hence T, is a guardian of Tj; otherwise, it is not. Repeating this for all T/s, we 

get an algorithm of  total complexity O(n2(I V I + n2)). Hence we have 
THEOREM 7. Testing whether a history h -- (n, ~r, V, S) ~ P3 can be done in 

O(n2(I V[ + n2)) time. 

4.4 THE CLASS SSR. Certain histories, though perfectly senalizable, have a curious--  
and, according to some, undesirable--property.  Consider, for example, the history 

h -- R~[x]R2 W2[x]R3 W3[y, z] W~[ y]. 

This history is serializable. However, the only serial history equivalent to h is easily shown 
to be 

hs = R3 Wa[y, Z]Rl[X] Wi[y]R2 W2[x]. 

What  is interesting is that in h transaction 2 has completed execution before transactmn 
3 has started executing, whereas the order in hs has to be the reverse. This phenomenon is 

quite counterintuitive, and It has been thought that perhaps the notion of correctness in 
transaction systems has to be strengthened so as to exclude, besides histories that are not 
serializable, also histories that present this kind of behavior. This leads to the following 

definition: 
Definition 7. A history h = (n, ~r, V, S) is said to be serializable in the strict sense 

(notation: h E SSR), if there is a serial history hs = (n, ~r', V, S)  such that h -~ hs and ~r(W,) 
< ~Rj )  implies ~r'(W,) < ~r'(R~). 

It is not hard to verify that all histories in the class Q satisfy Definition 7. To see this, 
recall that a history h in Q has a set of  serializability points S~ < $2 < ... < Sn, say, such 
that hs = Ri W~ ... R~ W~ ~- h. Now if ~r(W,) < z'(Rj), we have, by the definition of  S~, S, 

< qr(I'I4) < ~Rj )  < S~, and therefore i < j. Hence transactions i and j have the same order 
in hs that they have in h. It follows that Q c SSR. 

Nevertheless, the classes Q and SSR are not the same, as conjectured in [22]. A 
counterexample is 

h = R,[z]R2[z] W2[x, z]Ra[x] WI[x, y] W3[z]R4[y] W,[x]. 

This history is equivalent to the serial history 

hs ---- RI[Z] WI[X, y]R2[z] W2[x, z]Ra[x] Wa[z]R4[T] W4[x] 



Serializabdity of  Concurrent Database Updates 

H 

SR 

DSR 

I0 
i 0  

ol2 

6 
7 • 

o 8  

O 2PL 

e5 °4 

o 3  

FIG 7 FIG 8 

e, I I  

645 

satisfying Definmon 7. However, h is not in Q; to check thts, just notice that the digraph 

D'(h) shown in Figure 7 is not acychc. It is not known whether the class SSR  is efficiently 

recognizable. 

4.5 SUMMARY. The topography of  the set of  all histories H and its subclasses SR, S (the 

serial histories), Q, SSR, DSR, P3, and 2PL is depicted in Figure 8. The inclusions shown 

either follow from the results of  this section or are straightforward. We also show below an 

example of  a history for each of  the 12 regions in this diagram. 

h, = R,[x] W,[x]R2[x] W2[x] 

h2 = R][x]Rz[y] W][x] W2[y] 

ha = R,R2Ra[x] W,[x]W2[y, z] Wa[y] 
h4 = Ri[x]R2 W2[x, y] W~[z]RaWa[y, z] 

h5 = ha ° h4 

h6 = R2[z]R~ W2[x, z]R3[x] Wa[z] W~[x, y]R4[y] W4[x] 

h7 = Ra[x]R] W~[x]R2[y] W2Wa[y] 

h8 = R2[z]Ri[z] W2[x, z]R3[x] Wl[X, y] W3[z]R4[y] W4[x] 

h, = R~Ra Wa[x]R2[x] W][x] W~[x] 

hlo = h7 o h4 

hi1 = h7°h, 

h]2 = R][x]R2[x] Wl[x] W2[x] 

5. Restrictions on the Read and Write Sets 

It turns out that if we impose certain restrictions on the structure of  the map S of  a 

history--i.e., the read and write sets of  the transactions in the history--the topography of  

H (shown in Figure 8 for the general case) is simplified considerably. The most striking 

such result is that of  [19]. A basic assumption in the model of  [19]--which is otherwise 

more general than the present in that it allows more than two steps--is that no database 

entity (or variable) is updated unless it has been previously read. In our model and notation 

this means that S(W~) C S(Rj). What is surprising is that serializability, an NP-complete 

predicate in our model, is efficiently decidable in theirs. We explain this in view of  our 

previous discussion as follows: 

THEOREM 8. Suppose that for  a history h = (n, ~r, V, S )  we have S(W~) .C S(Rj) for  j = 

1 . . . . .  n. Then h is serializable if and only i fh is in DSR. 

PROOF. It suffices to show that if S(al) N S(a2) # ~ and ~r(o]) < ~r(02) for o], 02 E ~n 

such that at least one of  01, a2 is a write symbol, then ~r'(a]) < ~r'(a2) in any history (n, ~r', 

V, S)  equivalent to h. Suppose that a] = Wi, o2 = W2. S(W~) and S(W2) share a variable 

x, which by hypothesis is also in S(R]) and S(R2). Consequently, in h, T2 reads x from 

either Ti or from another transaction which, by the same argument, reads x from another, 
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and so on, up to T1. Now notice that the S(R~) D S(Wj) assumpUon Implies that in any 
serlahzable htstory there can be no dead transactions. Hence, by Proposition 1, in any 

history (n, ~r', V, S) equivalent to h we must also have ~r'(W1) < ~r'(W2). The other two 
cases are settled very similarly. [] 

It turns out that the rest of the classes of histories discussed previously have a 

considerably simpler structure under the assumption that S(W~) C S(R~). We show in 
Figure 9 without proofs the corresponding dmgram. 

Under a different restriction on S, the class SSR coincides with SR: 

THEOREM 9. Suppose that in a history h = (n, ~r, V, S )  there is a subset X = 

{xl, x2 . . . . .  xn} C V such that for  j -- 1, 2 . . . . .  n we have (a) X _C S(R~), (b) xj E S( W,) i f  and 

only if i = j. Then h is senalizable i f  and only f h ~ SSR. 

SKETCH OF PROOF. Imagine that the variable xj is a Boolean signaling whether 

transaction T1 has completed. Therefore, if T~ completed in h before T, started, the same 

must hold in any other htstory equivalent to h. [] 

6. Schedulers o f  Histories 

The practical importance of the classes of histories 2PL and P3 discussed in Section 4 
stems from the fact that they are known to correspond to simple schedulers. A scheduler 

for a class of histories (to be defined formally below) is generally an algorithm that takes 
as an input an arbttrary history--possibly nonserializable--and returns a history which is 
the "closest" to the gwen one among those belonging to the class. If  the class is a subset of 
SR, therefore, the scheduler guarantees that its output Mstory is seriahzable. Such a 
scheduler can be used in the seriahzability component of the database management system. 
Of course, in practice one would expect that a scheduler operates on-hne and is reasonably 

efficient. 
The history-input of the scheduler is the sequence of arriving user requests. The output 

of the scheduler is the actual execution sequence. The basic fact that makes our approach 
very different from previous work on concurrency control which was motivated by 
operating systems (e.g., the notion of determinacy of [6]) is that the supplier of this input 
history is a populaUon of users, each user being unaware of the actions of the others. This 
implies that the order of arrival of these requests has no semantic content whatsoever, and 
therefore the scheduler is not bound to produce an output which is equivalent (or related 
in any prescribed way) to the input. In fact, the operation of the scheduler becomes 
interesting and important exactly when the scheduler must necessarily transform the input 
to an ineqmvalent output, because the input is nonsenalizable, say. 

There are, however, certain performance criteria that the input-output mapping of a 

scheduler should satisfy. For example, a trivial scheduler which guarantees serializabihty 
is the one that outputs only serial histories. This is, however, too restrictive a mechanism 
to be of practical value. Intuitively, the richer the output class, the more powerful the 
scheduler, because a less restnctwe class of histories will require less reshuffling of the 
operations and will cause fewer and shorter unnecessary delays. Ideally, we would like to 
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have a serializer whose output spans all of  SR. Unfortunately, we shall soon see that the 

existence of  such a practically useful device is very improbable.  

Defimtion 8. The metric d(., .) on the set H is defined as follows: 

(a) d((n, or, V, S), (n, p, V, S))  = n - m a x ( j .  7r-l(i) -- p-t(i), I = 1 . . . . .  j } .  

(b) d((m, ~r, V, S),  (n, p, W, T)) = oo if  any one o f m  # n, V #  W, S #  Tholds.  

The d~stance between two histories defined on the same set of  transactions is therefore 

n minus the length of  their longest common prefix. Notice that d(., .) satisfies the metric 

axioms. A variety of  other metrics would suffice for what follows. 

Definition 8 (continued). Let C be a nonempty subset of  H. A scheduler for C is a 

function A c : H ~ C such that 

d(h, At (h))  = min{d(h, h ' ) :  h '  E C}. 

Thus, A c can be thought of  as projecting H onto C under the metric d(., .). Notice that 

At(h)  and h will not be eqmvalent in general. The metric d(., .) requires that Ac leaves 

histories m C intact, and m fact it leaves intact as long prefixes of  arbitrary histories as 

possible. 

Let us restate now the assumptions of  our model of  schedulers: 

(a) A scheduler Ac minimizes the d-distance between its input and its output, This 

intuitively means that the scheduler operates online, and furthermore that it acts in a n  

opttmtstw way: As long as the history seen so far could possibly be extended to a correct 

history (here by "correct history" we mean one that the scheduler, in its limited sophisti- 

cation, recogmzes as correct, or, equivalently, an element of  C = Ac(H)) ,  the scheduler 

does not intervene to rearrange read and write requests. As a corollary, if  the scheduler is 

fed wRh Rs own output, it leaves it intact; it is therefore ldempotent, or a projection. 

This is a quite reasonable assumpuon to make. Although we cannot totally exclude the 

posslbihty of  schedulers that operate otherwise (for example, anticipating future requests 

that will make the history nonseriahzable), all schedulers proposed in the past satisfy this 

assumpuon. Any scheduler implemented by natural constructs such as locks [7, I l] or 

queues has this property. 

(b) Among all histories in C that have the longest possible common prefix with the 

input history, Ac selects any one as its output. Clearly, in practice this choice would be 

made so as to mimm~ze some more refined metric d'. However, the results obtained below 

for our weaker metric d would apply to more relaxed metrics, too. 

We say that Acts  an efficwnt scheduler l fAc  is computable in polynomial  time. Our goal 

m this section Is to understand which classes of  histories have efficient schedulers. It is 

tempting to conjecture that if  a class is in ~, then it has an effioent scheduler. To show 

that this conjecture is not plausible, consider the following: 

Example. Let E = { h o hs : hs is serial, and h -= hs}. Obviously, E can be recogmzed in 

polynomial time; the algorithm involves splitting a given history m two halves, testing 

whether the second half  is serial, and whether the second half  is equivalent to the first. 

However, it as also easy to see that E cannot have any efficient scheduler, unless ~ff i  

Suppose that E has an efficient scheduler AE. Then we could test whether an arbitrary 

history h is senalizable by first computing A E(h o h), and then checking whether AE(h o h) 

starts with h. Smce AE is supposed to leave unchanged as long prefixes of  its input as 

possible, at will alter the first half  of  h o h only ff h is not serializable. Since serializabihty 

is known to be NP-complete, E cannot have an efficient scheduler unless ~ - -  

Our next result essentmlly says that effioently recognizable classes have efficient 

schedulers, unless they are as pathological as our example E above. Let h -- (n, ~r, V, S )  be 

a history, considered now as a string of symbols representing n, V, S and the permutation 

~r. A prefix of h is an imtial segment of  this representatzon, containing the encoding o f  n, 

V, S, as well as an mmal  part of at--i.e., (¢r-~(l), ~r-l(2) . . . . .  ~r-l(j))  for some 0 _<j <_ 2n. 

I f  C is a class of  histories, then PR(C)  is the set of  all prefixes of  all htstories in C. 

THEOREM 10. Let C be a subset of  H. C has an efficient scheduler ~f and only if PR(C)  
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Scheduler A c 

Input. a hnstory h = (n, ~, V, S) 

Output. a history h' = (n, O, V, S) E C such that d(h, h') 
ts the smallest posstble, if such an h' exists 

begin 
if(n, ( ), V, S) ~E PR(C) then return 

comment ( ) ts the empty permutatton, 
else begin 

p ' = ( ) ,  

forj = l . . . .  2n do 

begin 

done .= false, 
f o r t = j , j +  1, ,2ndountildone 
if (n, (p, ~r-lO)), V, S) E PR(C) then 

begin 

done = true, 

interchange *-l(l) and ~-i(j ), 
p .= (p, ~-~(I)),  

end, 

end, 

end, 

return (n, p, V, S); 

end 
FiG 10 

PROOF. Suppose that C has an efficient scheduler Ac. In order to determine whether 

a string g is a prefix of a history h ~ C we may act as follows: We first verify that g 

contains encodmgs of  n, V, and S, together with an initial segment p of  a permutat ion ~r of  

Xn. We then generate a completion ~ of  p by juxtaposing to p the symbols tV~ such that R~ 

but not I4~ ts present in p, and then the strings Rfl.Vj for a l l j ' s  such that neither Rj nor W~ 

appears in p. We  then calculate h' = Ac((n, ~, V, S)).  It is straightforward to see that g is 

a prefix of  h' if  and only if  g ~ PR(C). Thus we can efficiently determine whether g 

PR(C). 

For the other direction, suppose that PR(C) ~ ~. Based on the recognition algorithm for 

PR(C) we design an efficient scheduler Ac, shown in Figure 10. Ac computes Ac(h) -- 

(n, p, V, S )  by determining p element by element. It should be obvious that A c operates as 

prescribed within a time bound of  O(n2C(n, [VD), where C(n, iV[) is the complexity of  

recognizing PR(C). The theorem follows. []  

It is now easy to link the discussion of  Sections 3 and 4 with the existence of  efficient 

schedulers We get two types of  results: 

COROLLARY I. Unless ~ = ~ SR has no efficzent scheduler. 

COROLLARY 2. The classes S, 2PL, P3, Q, DSR have efficient schedulers. 
"PROOF. We have shown that these sets are in # ;  it is usually straightforward to show 

that their sets of  prefixes are also in ~ (this ns not a general property of  ~ ;  there are 

languages in # that have nonrecursive sets of  prefixes). As an illustration, we will sketch 

a proof  that PR(P3) ~ #. First, given an encoding of  n, V, S, and a segment p of  It, we 

compute from S the digraph F of  the guardian relation among { T1 . . . . .  Tn}. We next make 

sure that whenever Tj is a guardian of  T, and p(I4~) is defined, then either p(W3 < p(B'~), 

or p(R,) > p(Wj), or p(R,) is undefined. Finally, we make sure that p can be completed in 

a manner not violating P3. It turns out that this amounts to verifying that the restriction 

of  F to the transactions that are active (i.e., p(Rj) is defined but p(Wj) is not) is acyclic 

(a discussion of  this part follows the proof).  Hence we have an efficient algorithm for 

PR(P3). [] 

We show in Figure 11, wtthout proofs, stylized versions of  efficient schedulers for the 

classes P3 (1 l(a)), 2PL (1 l(b)), and DSR and Q (1 l(c); for Q we also include the two 

statements labeled Q). Besides serializabihty, these algorithms must also guarantee the 

absence of  deadlocks. The issue of  deadlocks appears to be orthogonal to that of  serializ- 
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process l j  
when the deadlock graph with Ta is acychc do output (Rj) 

process Wj 
when Tj is not the guardian of an active transaction do output (W~) 

(a) 

process Rj 
when the deadlock graph wRh Tj is acychc and 

no variable in S(Rj) is read-locked do 

ibegin 
write-lock all variables m S(R~), 
output (R2) 
lend, 

when a process W, with S(W,) N S(Rj) # 0 or z = j has been mmated and 

no variable m S(Wj) - S(Rj) is write-locked do 

ibegin 
write-lock and read-lock all variables m S(Wj); 
un-wnte-lock all variables m S(Rj) - S(Wj), 
lend 

process W~ 
when Rj has terminated do 

ibegin output (Wj), 
unlock all variables m $(Wj), 

iend 

(b) 

process Rj 
declare Lj sequence of symbols m X~ U {f} 
comment L~ contains all R, or W, such that T, is reachable by a path 

from 7) m D (respectively D'), up to this point, 
when the deadlock graph is acychc and 

for no T, # Tk with S(R~) N S(W,) # ~, S(Rj) N S(Wk) # ~ Is W, ~ Lk do 

ibegin 
output (Rj), 
L, = {R,}, 
add Rj to all Lk containing W, with S(Rj) N S(W,) # ~, 

Q" add Rj to all L, contammgf 
iend 

process Wj 
when the deadlock graph contains no arc (T. Tj) do 

ibegin 
output (Wj), 
add Ws to all L~ containing o such that S(Wj) N S(o) # 9, 

Q. addf to  all Lk containing Rs or W~, 
set Lj = ~5, 

lend 

(c) 

Fm 11 
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abili ty,  and,  in  fact, c lever  ser ia l izabi l i ty  m e t h o d s  are k n o w n  to in t roduce  increased  d a n g e r  

o f  deadlocks  o f  the  "c i rcu la r  wa i t ing"  var ie ty  [6, pp. 40-60].  A uni f ied  t r e a t m e n t  o f  

ser ial izabi l i ty  a n d  deadlocks  in a restr ic ted da ta  mode l  is a t t e m p t e d  in  [18]. In  all  cases o f  

in teres t  to us, deadlocks  can  be  p r e v e n t e d  by  tes t ing a dynamica l ly  c h a n g i n g  deadlock  

graph for acyclicity. F o r  example ,  in  two-phase  lockmg dead lock  can  occur  i f  a n u m b e r  o f  

t r ansac t ions  have  each  locked the i r  r ead  set, a n d  are wai t ing  for e ach  o the r  to release the i r  

locks. Hence,  in  this  case the  dead lock  g r a p h  has  var iab les  as nodes  a n d  has  a n  arc f rom 

x to y i f  a n d  on ly  i f  some t r ansac t ion  cur ren t ly  o n  phase  l reads  x a n d  wri tes  y. In  P3 the  

dead lock  g r a p h  is the  res t r ic t ion o f  the  g u a r d i a n  re la t ion  to the  cu r ren t ly  act ive t ransac-  

t i o n s - t h i s  was  m e n t i o n e d  in the  p r o o f  o f  Coro l l a ry  2 to T h e o r e m  10. F ina l ly ,  the  dead lock  

g r a p h  in D S R  (respectively,  Q) has  as nodes  the  act ive t r ansac t ions  a n d  inc ludes  the  arc  
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(T,, Tj) if and only if there is a path from T~ to T~ in D(h)--respectively D'(h)--and S(W~) 

n s(w ) e. 

Our notation in Figure 11 assumes that the process Rj or W~ is initiated as soon as 
corresponding read or write requests arrive. We use constructs such as when (denoting the 
waiting for a condttion) and ibegin...iend (bracketing statements that are to be executed 
indivisibly). It should be obvious that these algorithms can be implemented deterministi- 
cally and efficiently on any-standard model of computation. 

7. Discussion 

We shall consider extensions of our results in three directions: general multistep transac- 
tions, interpreted transactions, and distributed databases. 

7.1 MULTISTEP TRANSACTIONS. We shall briefly discuss how our entire development of 

Sections 2 through 6 can be easily extended to a far more gerteral multistep model of 
transactions. We consider transactions that consist of sequences of steps; each step may 
involve both reading and writing. The values written must be considered as uninterpreted 
functions of all variables read at the present or previous steps of the same transaction. Our 
definition of !iveness now applies to individual steps of transactions. No further modifi- 
cations are necessary for stating the analog of Proposition 1. 

Serializability is obviously NP-complete in this model, as it subsumes ours. Assuming 
that no transaction reads intermediate results'of another or reads two different versions of 
the same variable at two different steps--in which case the history is not serializable-- 
Lemma 2 is also valid. The four serializability principles discussed in Section 4 remain 
virtually unchanged--in fact, two-phase locking was initially proposed for a similar model 
in [7]. For another example, we shall describe in a somewhat more detailed manner the 
generalized P3 class of histories. In the multistep model a step s of a transaction can be an 
(i, j )-guardian of another transaction, where i < j  are steps. This means that s mteracts with 
/--i.e., either its write set includes variables of i or vice-versa--and there is a chain of 
interactions from s toj. If this is the case, s is not allowed to occur between i andj. This P3 
protocol always yields DSR (and hence serializable) histories. For the classes DSR and Q, 
we have similar graphs D(h) and D'(h). An arc (T,, T~) is in D(h) if a step of T, interacts 
with a subsequent step of Tj. For D'(h) it may just be that the last step of T, precedes the 
first step of T~. The acyclicity of D(h) again guarantees serializability and that of D'(h) 
strict serializability. Hence, these remain two most general serializability techniques, 
subsuming two-phase locking and P3, in this general setting, too. 

Finally, it is easy to see that the results of Section 6--the necessary and sufficient 
condition for the existence of efficient schedulers and its corollaries--apply even more 
directly to multistep histories. We hope that the reader is by now convinced that introducing 
general multistep transactions would have resulted in an unmanageably cumbersome 
notation but in very few new important ideas. 

7.2 INTERPRETED TRANSACTIONS. A significant departure from our model would be to 
look more closely into the computations performed by the transactions and exploit their 
details for studying serializability--or correctness, in general. If only syntactic information 
about the transactions is available (e.g., the read and write sets) then serializability can be 
formally proved to be the right concurrency concept [111. if, however, semantics of the 
functions performed, or even the integrity constraints, are known, then it may be the case 
that more liberal concurrency principles than serializability are applicable. An example is 
the correctness theory proposed in [12], where the concurrency control mechanism takes 
into account information about the semantics and integrity constraints supplied by 
correctness proofs of the individual transactions. The extent to which such information is 
helpful is investigated in [11]. 

It is doubtful whether complete semantic information can be used effectively for 
concurrency control. Any reasonably complex domain of interpretation (e.g., arithmetic ) 

would soon make the serializability problem undecidable. There should be, however, ways 
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to use parual semantic reformation in order to improve our understanding of  serializability. 

One possibdlty is to use the fact that two transactions perform precisely the same function; 

one of  the implications ~s that they commute. It is not too hard to see that this adds nothing 

to the model developed thus far. Incidentally, this allows us to extend our original model 

so as to permit multiple occurrences of  a transaction in a history. 

Another poss~bday would be to selectively consider certain very simple transactions to 

be interpreted. A good example of  a very common transaction that performs a well- 

understood function is the copter, a transaction that reads x and later records its value at 

y. Serlalizability becomes trickier. For example the history 

h = Rl[x]R2Ra[x] W2[x] Wa[y]R4[y] W4[x]Rs[x] Ws[z] Wl[Z] 

is not sermhzable in our ordinary sense, but becomes equivalent to the serial history hs -- 
T~TiT2T3T4 once we assume that transactions 3 and 4 are copiers. Proposition 1 becomes 

somewhat more complex in the presence of  copiers. However, it is interesting to note that 

if copiers are restricted not to read variables from other copiers, then the introduction of  

copiers adds no strength to our model, and Proposition 1 and Lemma 2 remain unchanged 

under this assumption. This remark plays an important role in the next topic of  our 

discussion. 

7.3 DISTRmUTED DATABASES. There is a large body of  literature aiming at the under- 

standing of the quite elusive notion of  distributed computing (see, e.g., [13]). Distributed 

databases have inherited some of  the intricactes of  this area [17, 21]. We shall limit our 

&scussion to the case of  two complete copies of  the database in different locations, 

although there are difficulties which first appear in the cases o f  three copies oi" of  selective 

redundancy [5]. A major problem is, what happens when a transaction is run in one 

location, thus changing only one of  the two copies. A simple technique for solving this 

would be to send an update message [2] to the other location as soon as the transaction has 

completed. We have therefore a sequence of  genuine transactions and update messages 

running in the system, and we can thus view the two copies of  the database as a single 

database--think of  the two copies of  the variable x as two variables x~ and x2. 

A difficulty appears when we try to define a history. The distributed nature of  our 

computation, the communication delays and imperfect clocks, make temporal priority-- 

on which our ordinary notion of  history was based--less tangible. The observation here is 

that mistakes in our arrangement of  the events that are due to the above factors preserve 

history equivalence. Hence, we can pu t together a history--the global log of [2]--as long 

as it is consistent with local priorities and arrivals of  messages. Now the update messages 

are in fact just copiers, and they only read variables that were updated by ordinary 

transactions. Hence the last remark of  the previous subsection is applicable, and the 

seriahzability problem has been reduced to the one already studied! Of course, we are not 

just looking for serializability but for the existence of  an equivalent serial history in which 

an update message immediately follows the corresponding transaction. This,however, does 

not change the essence of  the task All our special case results hold with very minor 

modifications. 

What is considerably more complex in the distributed context is the subject of  schedulers. 

There is no obvious neat way to compile syntactic restrictions on the global history into 

distributed algorithms that achieve them. It therefore appears that distributed history 

schedulers must concern themselves with the details of  the underlying model of  distributed 

computation in order to implement the intended serializability principle; the formidable 

algorithms of  [21] and [5] illustrate this point. Nevertheless, it is stall natural to conjecture 

that the more general ideas related to the classes DSR and Q would prove advantageous 
m the d~strlbuted environment as well. 

7.4 OPEN PROBLEMS. We have proposed a formalism for the concurrency control 

problem for databases. There are two aspects o f  this formalism that may limit its 

applicability and must the/'efore be modified in a second attempt. One is our basic 
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assumption, manifested throughout the paper, that the syntactic description of all trans- 

actions to occur in the history is known to the scheduler a priori. It is not clear how to 
remove this assumption and still retain the wealth of  available solutions. One way would 

be to have, following [5], a certain number of prototype transactions--or classes--to one 
of which any arriving transaction can be matched. Another way out would be to adopt 

only transaction-driven concurrency controls. Two-phase locking [7] is an example of such 
a concurrency control, and so would be any other locking scheme. The limitations of such 
approaches are studied in [11]. On the other hand, it is possible that variants of the 

schedulers presented here could also be implemented in a transaction-driven manner. 
Second, our way of evaluating the performance of schedulers is also in need of an 

improvement. We propose only a qualitative measure of the performance of a scheduler-- 

namely, the set of all output histories. This leads to only a partial order of schedulers. This 
was shown to be a reasonable and useful approximation of reality when the goal is to 

derive indicative results or compare general principles of serializability. It is clear, however, 
that a more concrete measure of performance is needed for more practical applications. 

One promising direction would be to somehow count the total number of delays imposed 
on requests--at a first approximation, the number of transaction steps that cannot execute 

immediately upon arrival. This would be a refinement of our measure: our measure, 

roughly speaking, assigns a perfect score to all histories that remain the same and zero 

score to all histories that are changed, however small the change. A more refined measure 
might even put to test some of our assumptions, like the "optimistic scheduler" assumption 
(Section 6): in certain cases It may be preferable to intervene and modify slightly the 

history when seriahzable completion becomes extremely unlikely, although not impossible. 
Naturally, adopting a more concrete measure of performance for schedulers will most 

likely require the introduction of specific and pragmatic details of the particular application, 
and the overall approach may have to be probabilistic. 

By considering only serializability as our notion of correctness we have somehow limited 
our scope. Examples of concurrency control techniques more general than serializability 
can be found in [12] and [10]. They are arrived at by assuming that the scheduler has more 
than syntactic reformation about the transaction system that it handles--e.g., semantic 

reformation or understanding of the integrity constraints. It is pointed out m [11] that 
seriahzability is just one point in the trade-off between information and performance of 
schedulers. However, we feel that there is something natural about the use of syntactic 
information for concurrency control, and the importance of concurrency techniques 
stronger than serializability is of limited practical value. 

Finally, we recall two other problems that are left open here: the complexity of 

recognizing the class SSR, and developing techniques for designing distributed schedulers 
from syntactic specifications. 
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