
The Serializability of Concurrent Database Updates

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT A sequence of interleaved user transactions in a database system may not be ser:ahzable, t e,
equivalent to some sequential execution of the individual transactions Using a simple transaction model, it ~s

shown that recognizing the transaction histories that are serlahzable is an NP-complete problem. Several

efficiently recognizable subclasses of the class of senahzable histories are therefore introduced; most of these
subclasses correspond to senahzabdity principles existing in the hterature and used in practice Two new

principles that subsume all previously known ones are also proposed Necessary and sufficient conditions are

given for a class of histories to be the output of an efficient history scheduler, these conditions imply that there
can be no efficient scheduler that outputs all of senahzable histories, and also that all subclasses of senalizable

histories studied above have an efficient scheduler Finally, it is shown how these results can be extended to far

more general transaction models, to transactions with partly interpreted functions, and to distributed database
systems

KEY WORDS AND PHRASES database management, concurrent update problem, transactions, senahzabdlty,

schedulers, concurrency control

CR CATEGORIES 4 33, 5 25

1. Introduct ion

In m a n y situations m a n y users m a y consul t and upda te a c o m m o n database . We can think

o f such i ndependen t user t ransact ions as sequences o f a tomic da tabase operat ions , inter-

leaved with c o m p u t a u o n s that are local to the user, that ~s, they do not affect or d e p e n d on

the current state o f the database. It is a funct ion o f da tabase m a n a g e m e n t to hand le the

update and retrieval requests made by the users in such a way so tha t the result ing overal l

process is in some appropr ia te sense correct. It is general ly accepted (see, e.g., [3, 7, 18,

19]) that the right not ion o f correctness in this context is that o f serializability. A sequence

o f a tomic user upda tes / re t r ieva ls is called serializable essential ly i f its overal l effect is as

though the users took turns, in some order, each execut ing their ent i re t ransact ion

indwtslbly. The s~mplest example o f a nonser iahzab le sequence is a pr imit ive fo rm o f a

"race." Imagine two users that inc rement a counter by first sensing its value and later

registering an increased one. I f both users retrieve the value o f the counte r before e i ther o f

t hem has upda ted ~t, the result ing execut ion s e q u e n c e - - o r h:s tory- - i s not serializable. This

~s because both possible serial execuuons o f these t ransact ions would have resul ted in a

larger total increment . Natural ly , m u c h subtler examples exist.

The appeal o f senahzabi l i ty as a correctness cr i ter ion Is qui te easy to justify. Da tabases

Permiss~on to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and Rs
date appear, and notice is given that copying is by permission of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission

Author's address Laboratory for Computer Science, Massachusetts lnst,tute of Technology, 545 Technology
Square, Cambridge, MA 02139

This research was supported by the National Science Foundation under Grants MCS-77-01193 and MCS-77-
05314

A prehmlnary version of Sections 2 and 3 was presented at the Conference for Theoretical Computer Science,
Umvers~ty of Waterloo, Ontario, Canada, July 1977, m a joint paper with P A Bernstem and J B. Rothme
(reference 1151)

© 1979 ACM 0004-541 i/79/1000-063 ! $00 75

Journal of the Assoclauon for Computing Machinery. Vol 26. No 4. October 1979, pp 631-653

632 CHRISTOS H. PAPADIMITRIOU

are supposed to be faithful models of parts of the world, and user transactions represent

instantaneous changes in the world. Since such changes are totally ordered by temporal

priority, the only acceptable interleavings of atomic steps of different transactions are those
that are equivalent to some sequential execution of these transactions. Another way of

viewing serializability is as a tool for ensuring system correctness. I f each user transaction

is correct--i.e., when run by itself, it is guaranteed to map consistent states of the database

to consistent s ta tes--and transactions are guaranteed to be intermingled in a serializable
way, then the overall system is also correct.

In this paper we consider transactions that consist of two atomic actions: a retrieval of

the values of a set of database entities--called the read set of the transaction--followed by
an update of the values of another set of enti t ies--the write set. This is exactly the kind of

transactions handled by the system SDD-I [2, 17]. However, the main reason for consid-

ering this model here is that it provides a nice framework for understanding and comparing
very different philosophies of senalizability that already exist in the literature (e.g., [2, 4,

7, 19]). Despite its apparent simplicity, it yields a theory of serializability that is rich in
combinatorial intricacies and raises interesting complexity questions. Since our model is

the most general common restriction of the models in the various references cited above,
our negative results apply verbatim to those models. Furthermore, most of our positive

results and characterizations are also easily generalizable to more general situations,
although their p roofs - -m many cases their very s tatements--would be extremely cumber-

some. Hence we view our model as a convenient language, of the right degree of conceptual
complexity, for developing and communicating our ideas about serializabihty, rather than

as a set of restrictions that enable the proofs of certain theorems. We formahze our model

of transactions in Section 2, where some preliminary results are also proved.

In Section 3 we prove that the question of whether a given sequence of read and write

operations corresponding to several transactions (called a history) is senalizable is NP-
complete [l, 9]. This suggests that, most probably, there is no efficient algorithm that
distingmshes between senalizable and nonserializable histories.

In Section 4 we study some efficiently recognizable subsets of the set of serializable
histories In other words, we present polynomial-time "heuristics" that approximate the

NP-complete predicate of seriallzabihty, in a manner quite reminiscent of effficlent ap-
proximations of NP-complete optimization problems [8, 16]. We show that the two-phase
locking strategy of [7] and the protocol P3 of [2] are incommensurate special cases of two
more general classes called Q and D S R - - t h e latter is related to the model of [19]. These
two seriahzability principles are therefore very general (and apphcable) new serialization
methods. We also introduce the class SSR of histories that can be serialized without
reversing the order of temporally nonoverlapping transactions; it is not known whether
this class is efficiently recognizable In Section 5 we observe that the quite intricate

interrelations among these interesting classes are simplified considerably ff some "static"
restrictions are imposed on the read and write sets. We point out there that the simple
serializability theory of [19] is due to such a restriction of their model.

For all efficiently recognizable classes of histories studied in Sections 4 and 5 there is
also an efficient scheduler, an algorithm, that is, which takes any history and transforms it
to its closest (according to some appropriate metric) history within the class considered. In
Section 6 we show that this is no accident, a class of histories has an efficient scheduler if
and only if it is efficiently recognizable plus a regularity condition, namely, that its set of
prefixes is also efficiently recognizable. By this result, the complexity theory developed in
Sections 3 through 5 ts practically relevant, because the practical question of the existence
of an efficient scheduler for a given class of histories is explicitly linked to the complexity
properties of the class. Another imphcatlon is the negative result that, unless ~ = ,A/'~,
there is no efficient "serializer" of histories, and hence considering efficient but more

restrictive schedulers--such as the ones discussed above-- i s a reasonable alternative.
Finally, Section 7 concludes our treatment of the subject. We discuss there a number of

Seriahzabihty o f Concurrent Database Updates 633

possible extensions of our results, such as to general (multistep) transactions and distributed

databases.

2. Defintttons and Notation

A history is a quadruple h = (n, ~r, V, S), where n is a positive integer; ~r is a permutat ion

of the set ~ = {R,, W~, Re, W2 R~, W~}--that is, a one-to-one function ~r:~n

{ 1, 2 2n) - - such that ~r(RJ < ~r(W,) for i = 1, 2 n (a permutat ion ~r is represented

by (~r-~(l), ~r-1(2) ~r-~(2n))); and finally, S is a function mapping ~ to 2 v, where Vls

a finite set of variables. Each pair (R,, W,) will be called a transaction T. S(R,) will be

called the read set of T,, and S(t'E) its write set. We shall represent histories in a compact

way by exhibiting ~r, with the sets S(-) given in brackets following each element of ~ . For

example, the history h = (3, (R~, Re, W~, R3, We, W3), {x ,y} , S), where S(R1) = S(R3) =

(x}, S(Re) = ~ , S(W3) = {y}, and S(W~) = S(We) = {x,y} , is represented as

h = R~[x]R2 W~[x, y]R3[x] We[x, y] W3[y].

The set of all histories is denoted by H.

We can think of each transaction T~ as starting with an instantaneous reading of the

values in the variables m S(R,), performing a possibly lengthy local computation, and then

instantaneously recording the results in a different set S(W,) of variables. We do not look

into the details of the exact nature of the local computation. In fact, we view each

transaction T, as a set of IS(W,)I uninterpreted I S(R,)l-ary function symbols (fi~ : j =

1 IS(W,) 1}. ~r Is the sequence in which these atomic read and write operations take

place. Thus, a history can be wewed as a special case of a fork-join parallel program

schema m which the local computations involve a number of local temporary variables t v

and are executed in parallel with other read-write operations (see Figure 1).

The concatenatwn of two histories h~ = (n, ~r, V, S), he = (m, p, V, T) is a history h i o ha

= (n + m, ~, V, P), where P(W,) = S(W,) ff i _< n, and P(I.I'~) = T(I.E-~) for i > 'n. Similarly,

P(R,) = S(R,) ff i _< n, and P(R,) = T(R,-~) for t > n. Also z(W,) = ~r(W,) i f i _< n, and ~(W3

= p(W,_~) + 2n for i > n, ~'(R3 = ~r(R,) for i _< n, z(R,) = o(R,-~) + 2n for i > n. In other

words hi o h~ is a juxtaposition of the two histories, only with the transactions of h2 renamed.

Thus, if

and

then

h~ = R~[x]Re[y] We[y]R3 W~[z] W3[y]

h2 = Ra[x, y]Re[x] W~[y] We[z],

h, o he = R~[x]Re[y] We[y]R~ W~[z] W3[y]R,[x, y]Rs[x] W,[y] W~[z].

We say that two histories hi = (n, ~r, V, S) and h2 = (n, C, V, S) are equivalent (written

hi -= h2) if and only if the corresponding schemata are (strongly) equivalent. In other

words, given any set of I V[domains for the variables, any set of initial values for the

variables from the corresponding domains, and, furthermore, any interpretation of the

funeUonsfij, the values of the variables are identical after the execution of both histories.

Notice that our definmon of equivalence reqmres that the two histories involve the same

set of transactions. Thus hi = R~[y]R2 We[x] W~[x] is not equivalent to he ffi Rl[y] Wl[X],

despite the fact that their corresponding schemata are equivalent (essentially because Te is

"dead" in hi). This is a matter of convenience, and little change to our derivations would

be necessary in order to broaden equivalence in this sense.

To give a syntactic characterization of equivalence, it Is necessary to first introduce some

terminology. Let h = (n, ~r, V, S) be a history. The augmented version of h is the history/~

= (n + 2, ~', V, S), where ~" = (R~+t, Wn+l, ~r, Rn+e, Wn+e) and g(R~) = S(R,), S(W~) =

634 CHRISTOS H. PAPADIMITRIOU

start)

I
tl I .o- X I

t22 ~" f2l I
t23 ~" f22

()

J x "~- t12
y .o- tl 3

I
I t3l ~- X I

t
I x ",- t22]

y ~ t23

+
I Y'~-t32 I

I

I

tl5~ fl2 (tit

I

FIG. 1 The history h = Ri[x]R2 W~[x, y]R3[x] W2[x, y] W3[y] viewed as a program schema

S(W,) for i _< n, and also S(R,+i) -- S(Wn+2) -- ~ , S(Wn+I) -- S(l~n+2) -- V. In other words,

/~ is h preceded by a transaction that initializes all variables without sensing any, and

followed by a transacuon that reads the final values of all the variables, without changing

them. Suppose that x ~ S(R,). We say that R, reads x f rom Wj in h if W~ is the latest

occurrence of a write symbol before R, in ~ such that x E S(W~). Notice that since /~

contains Wn+l with S(W,+0 = V, such a write symbol always exists. The definition of a

live transaction in h is as follows:

(a) T,+2 is live in h.

(b) If for some hve transaction Tj, Rj reads a variable from W~ in h, then ~ is also live

inh.

(c) The only kinds of live transactions in h are defined by (a) and (b) above.

Serializability of Concurrent Database Updates 635

The following is now a simple syntactic characterization of history equiyalence, essen-

tially a restatement of the characterization of schema equivalence m terms of Herbrand

interpretations [14]:

PROPOSITION 1. Two histories hi = (n, ~r, V, S) and h2 = (n, ~r', V, S) are equivalent tf

and only if they have the same sets of live transactions, and a live R~ reads x from W~ m hi if
and only if R, reads x from Wj in h2.

One of the implications of Proposition 1 is that equivalence of histories can be decided

efficiently. The sets of live transactions can be found in O(n. I VI) time by applying the

recurslve definition given above, and so can the reads from relation for transactions. Hence

we have:

COROLLARY. Equivalence of histories can be decided in O(n. [VI) time.
The main theme of this paper is the notion of serializability. A history h = (n, ~r, V, S)

is sertal if 7r(W,) = ~R,) + 1 for all i = 1, 2 n; in other words, a history is serial if R,

immediately precedes W, in it for i = l n. A history h is serializable (notation: h E SR)
if and only if there is a serial history h8 such that h m hs. In the next section we shall

present a syntactic characterization of serializable histories analogous to (and based on)

Proposition I.

3. The Complexity of Serializability

In order to examine the complexity of the serializability problem, we need first to introduce

some graph-theoretic terminology.

Definition 1. Apolygraph I P = (N, A, B) is a digraph (N, A) together with a set B of

bipaths; that is, pairs of arcs--not necessarily in A - - o f the form ((v, u), (u, w)) such that

(w, v) ~ A.

Alternatively, a polygraph (N, A, B) can be viewed as a family ~ (N, A, B) of digraphs.

A digraph (N, A ') is in ~(N, A, B) if and only if A C A ', and, for each bipath (al, a2) E

B, A ' contains at least one of al, a2. Polygraphs will be represented schematically as in

Figure 2(a). Arcs in A will be drawn as ordinary arrows, and pairs of arcs in B will be

marked by a circular arc centered on their common node.

Definition 2. A polygraph (N, A, B) is acyclic If there is an acydic digraph in

~(N, A, B).

For example, the digraph of Figure 2(b) is both in ~(N, A, B) and acyclic; it follows that

(N, A, B) of Figure 2(a) is acyclic. Notice that for a polygraph (N, A, B) to be acyclic, the
digraph (N, A) must definitely be acyclic.

Given any history h = (n, 7r, V, S), we are going to define a polygraph P(h) =
(N, A, B). N is the set of live transactions of/~, the augmented version of h. First, A contains

the arcs {(Tn+l, v):v E N -- {Tn+l}}, and also the arcs {(v, Tn+2):v E N - {Tn+2}}. Second,

whenever transaction u reads some variable x from v in h, we add the arc (v, u) in A.

Furthermore, if for a third transaction w, x is in the write set of w, then we add the bipath

((u, w), (w, v)) in B. This concludes the construction of P(h).

Intuitively, P(h) captures a partial order that can be interpreted as "happened before"

and with which any history that is equivalent to h must be consistent. Each arc (v, u)

means that u read some variable from v and hence must follow it. Also, a bipath ((u, w),

(w, v)) means that w wntes on the same variable and hence cannot be in between v and u;

it must either precede v or follow u. This is stated as a lemma:

LEMMA 1. Two histories hi -- (n, ~r, V, S) and h2 = (n, or', V, S) are equivalent if and only
if P(hl) and P(h2) are identical.

PROOF. Both directions follow from Proposition l and the definition of P(h). []
LEMMA 2. A history h = (n, ~r, V, S) without dead transactions is serializable if and only

if P(h) is acyclic.
PROOF. I fh is serializable, there exists a serial history h, such that h -= h~ or, by Lemma

We resist on this terminology only because it has already become notorious for tts impropriety.

636 CHRISTOS H. PAPADIMITRIOU

Vl v 2

v 3

v 4 v 5

Vl ~, v2

v 5

v 5

u 6 v 7 v 6 v 7

(a) (b)

FIG 2

1, P(h) = P(hJ However P(hJ = (N, A, B) is acyclic. To see this, let (Ti T,) be ordered

according to their occurrence m h~. We construct a digraph (N, A ') ~ ~(P(hs)) as follows:

A ' contains the arcs m A, and for each bipath ((T, T~), (Tj, Tk)) in B we add to A the arc

(T , Tj) if i < j , or (T~, Tk) i f j < k. To show that exactly one of these must occur, recall that

in hs, T, reads a variable x E S(V~) from Tk, and hence k < i and not k < j < i.

Consequently, the above construction yields a &graph (N, A ') in .~(P, A, B). Next, not]ce

that (N, A ') is acyclic since it is a subgraph of the total order (T,+i, T1 , T,, T,+2). So

P(h) is also acyclic.

Now let (N, A ') be an acychc digraph in .~(P(h)). The serial history hs resulting from

topologically sorting (N, A ') is then eqmvalent to h. This follows from Proposition 1 and

from the fact that since one of the two arcs of each bipath in B is in A ', all transactions m

he read all variables from the same transaction in h as they do in h~. []

Unfortunately, the combinatorial characterization of serial reproducibili ty shown in

Lemma 2 does not directly suggest an efficient test. In fact, the theorem below is strong

evidence that no such test exists.

THEOREM 1. Testing whether a history h is serializable is NP-complete, even i f h has no

dead transactwns.

In order to proceed with the proof of Theorem 1 we first need another lemma. It is well

known (see [1, 9]) that the satisfiability problem of Boolean formulas in conjuncuve normal

form with two or three literals in each clause (abbreviated SAT) is NP-complete. We can

show that a more restricted version of this problem is still NP-complete, Call a clause

mixed if it contains both variables and negations of variables, and call a formula nonclrcular

ff at most one of the occurrences of each variable ts m a mtxed clause.

LEMMA 3. SA T is N P-complete even i f the formulas are restricted to be noncircular.

PROOF. Consider any instance F of SAT and a variable x in it. Let m be the number

of occurrences of x m the formula F, and let xl, x2 xm be new variables. We replace x
in its first occurrence by x~, in its second by .,~2, in its third by x3, etc. Finally, we add the

clauses (xl V x2) A (xl V Y:2) A (x~ V x3) A (.~2 V £a) A ... , which is the conjunctive normal

form of x~ ~ .~2 -= xa ~ .~4 =- Repeating this for all variables, we observe that

Senalizabthty of Concurrent Database Updates 637

~aj bj
FIG 3

the resulting formula is trivially nonclrcular, and the construction requires only a polyno-

mml amount of time. []

PROOF Or THEOREM 1. The set of SR histories is definitely in X ~ , since to show that

h is SR, one only needs to construct a serial history hs (of length not greater than that of

h) and check by Proposmon 1 that h and hs are equivalent.

We will show next that a known NP-complete problem, the noncircular SAT problem

of Lemma 3 above, reduces to SR-testmg in polynomial time.

Given any such formula F, we are going to construct a polygraph P r = (N, A, B) such

that PF is acychc if and only If F is satisfiable. We will then show that Pe can be considered

as P(h) for a suitable history h, without dead transactions. In view of Lemma 2, this will

conclude the proof.

We start from the construcuon o fPF = (N, A, B). F h a s m clauses Cx Cm and revolves

n Boolean variables x~ xn. Each clause C, consists of three literals h,1 V 2,,2 V ~,a, where

A:k is either a variable or a negation of one. N contains the nodes a:, b:, cj for each variable

x:, and y,k, z,k, k = 1 m, for each clause C with m, literals. For each variable x: we add

the arc (a:, b:) to A and the blpath ((b:, Cg), (c:, a:)) to B. For each clause C,, we add the arcs

(y,~, z,.k+l) (addmon mod m,) to A. FmaUy, if ~,k = x:, we add the arcs (c:, y,k) and (b:, z,k)
to A and the blpath ((z,~, y,k), (y,h, b:)) to B. If h,k = 2:, then we add the arcs (z,k, c:) and

(y,k, a:) to A, and the btpath ((a:, z,k), (z,~, y,k)) to B. For example, ff the literal X,k is &, the

subpolygraph of Figure 3 wdl appear in PF.

Finally, we add to N the nodes no, n , and nf, together with the arcs (no, n), (n, n~), and

(n, nf) for all n E N - {no, n~, nf}, and also the arc (n , nf). This concludes the construction

of PF. In Figure 4(a) we dlustrate the construction for the Boolean formula

F = (xl V x2) A (xl V 22 V X3) A (22 V 2a).

For s~mphoty, m Figure 4 we have omitted the nodes no and nf.
We will now argue that PF is acychc if and only if F is satisfiable. Suppose that PF is

acyclic. This means that there is an acychc digraph (N, A ') E ~(PF) . Obviously, for each

j, exactly one of the edges (b:, c:) and (c:, ag) is in A ' Consider the fact that (c:, a:) ~ A '
means that x: is assigned the value true. We may immediately note that i f a literal X,k is

given the value false by this assignment, the correspondmg arc (z,k, y,k) is also in A' , since

otherwise, a cycle of the form (c:, y,k, b~)--or (z,k, c:, a:) if X,k = . , t - -wou ld exist in

(N, A '). Hence, the only way for (N, A ') not to have a cycle of the form (za, ya, z,z y,a)

is that at least one hteral m each clause is assigned the value true, which means that F is

satisfiable.

Conversely, suppose that F is satisfied by some truth assignment T. We will construct an

acychc digraph (N, A ') ~ ~(PF). A ' contains all of A and the arcs (q, aj) if T(x:) = true,
(/b, c:) if T(x:) =false, and the arcs (z,,, y,~) ff T(X,~) =false, (y,~, ib) ifh,~ = & and T(x:)
= true, and (a:, Z,k) If ~,:~ = X: and T(x:) = false. Obviously, (N, A ') is m g~(Pe); the claim

is that it ~s acychc. We first note that since F ~s by hypothesis noncircular, (N, A) is acyclic.

This ~s because by the constructmn of A, the clauses containing variables only or negations

638 CHRISTOS H. PAPADIMITR1OU

C2 O 2

/ \ x "x -. _//I~/// '\ \'-- \\ "'

/ / / / \ I \ \ \ \
/ / / \ J I \ \

! x / / z22 ~--J..--.,.6 yzz \ \ !

y12 ~ -3 .4Z lz ./ \ ~w,2~-~,
\ \ / ~ / Y31 / L31 \ \ / \ / /

/ \ /
\ X I \ I I
x \ / \ / I

\ \ ~Yll ..q/Y21 Z2x' ~ ,ct~z32 / /
~. Z 3 \ .,'L~ z . "~,, is& /

_ K "~\ , / i \ 21 r z 3 ~ ' , , t - 1 , /
" " " \ .,>" ;\\ Y32

\\.~V" \ I \\ ~

b I a~ " ~ I

,J3
Fro. 4

only correspond to node sets with only incoming or, respectively, only outgoing arcs; node

sets corresponding to mixed clauses have both incoming and outgoing arcs, but no two

such node sets are reachable from each other in (N, A) by F's noncirculanty; it follows that

(N, A) is indeed acyclic. It is easy to check that the arcs in A' - A can harm the dlgraph's

acyclicity only by introducing a (zn, y,1 y,a) cycle; however, this would mean that some

clause has no true (under T) literal, and hence T does not satisfy F, a contradiction. In

Figure 4 we show in broken lines the arcs of an acyclic digraph in ~(PF); this digraph

corresponds to the truth assignment T(x]) -- true, T(x2) = false, T(xa) = false, which

sausfies F.

In order to conclude the proof we need to construct a history h such that P(h) -- Pr. All

nodes of PF correspond to distinct transactions. To construct the read and write sets of the

transactions (except for no, no, and nr), we start by having all read sets empty and a variable

xv in the write set of each transaction v. For each arc (v, u) E A we add a variable xv, to

the write set of v and the read set of u, and for each bipath ((v, u), (u, w)) ~ B we add xwv

to the write set of u. Finally, R(no) = 0 , W(no) = {xv:v E N} , R(nf) = {xuv:(u, v) E A} ,

R(nc) = {xv:u E N} , W(nf) = ~5, W(n~) = {x,o:(u, v) E A}. In order to sketch the

construction of h, we represent the read and write operations corresponding to the node v

of PF by R(v), W(v) respectively. We use v to stand for R(v) W(v). We start the construction

of h from left to right. First, for each clause C, consisting of just negations we add the

subhistory h(C,) = yn ... y,m,. Next, for each variable x~ that appears unnegated in the

mixed clause Ct (i.e., Xtk ffi xj) we add the subhistory h(x~) = R(aj)z,mc~ W(aj)R(bj)yt& W(b~).

The Z,m part appears only if C, is purely negated and A,m = .fj. Further, ifXm = xj for some

purely unnegated clause Cp then Ym appears also after ylk. Then follow subhistories

corresponding to the remaming variables. If xj does not appear unnegated in a mixed

clause, then we add to h the subhistory h(x~) = R(a~)z,,cj W(aj)R(bj)ytk W(b~). Again, ylk

appears only if Xth = x~ for some purely unnegated clause Ct, and if x~ also appears in a

purely negated clause Cp (Apq = Xj), then Zpq comes after Z,m. Finally, we have h(C,) =

zn ... Z,m, for each purely negated clause C,, and at the end the transaction n,.

Sertalizability o f Concurrent Database Updates 639

To argue that PF = p(h), first note that all (Yv, z,,j+~) (mad m,) arcs are real ized by h, and

that the subpolygraph of F igure 3 is real ized for each xj = ?~,k and the s y m m e m c

subpolygraph for ggj = A,R. Fur thermore , it is quite easy to check that no other arcs and

bipaths are added by the construction. Hence PF = P(h), which completes the p r o o f of

Theorem 1. []

4. Efficwntly Recognizable Classes of Serializable Histories

Given that SR Is NP-complete , it is reasonable to look for subsets of SR that are efficiently

recognizable. In this section we s tudy several such classes of ser lahzable histories.

4.1 THE CLASS DSR.

Definition 3. Let hi = (n, ~r, V, S) and h2 = (n, ~r', V, S) be histories. W e write that hi

h2 whenever It(a) = ~r'(o) for all o E Z~ except for two elements ~rl, o2 ~ ~ with ~r(o~)

= ~r'(o2) = J, ¢r(oz) -- ~r'(ol) = j + 1 for some 1 _< j <_ n - 1, and

(a) ol = R,, o2 = R~ for some i, j _< n, or

(b) ol = R,, o2 = W:, i # j , i, j _< n, and S(R,) f') S(W:) = ~ , or

(c) ol = W,, o[= W:, t , j _< n, and S(W,) N S(W:) = f~.

As an dlustrat ion, we have that

R,[x]R2[x] W~[x] W~[y] ~ R~[x]R2[x] W2[y] W~[x]
~ R~[x]R~[x] W2[y] W~[y]
~ R2[x] W2[y]g~[x] W~[x],

because at each step the next history is ob ta ined f rom the previous one by switching two

adjacent symbols obeying one of the condi t ions (a), (b), and (c) o f Def in i t ion 3 above.

The fol lowing is a direct consequence of Proposi t ion l and the above defini t ion:

PROPOSITION 2. I f hi ~ h2, then hi ~ h2.
Let L be the reflexive-transit ive closure of ~. Since ~ is symmetric , ~* is an equivalence

relat ion that is, by P roposmon 2, a restr ict ion of ---. W e can show that -* is a p roper

restriction of --- by observing that for the two histories

hi = R1R2 W~[x, y] W2[x, z]Ra[x] W3[x]

and

we have

but

hz = RiR2 Wz[x, z]Ra[x] Wl[x, .y] W3[x]

hi ~ h2,

hl ~ h2.

W e say that the his tory h is D-serializable (DSR) if there is a serial history hs such that

h ~ hs. Obviously, i f a his tory is DSR, it is cer ta inly SR.
W e can associate with a his tory h = (n, It, V, S) a d ig raph D(h) def ined as follows: The

nodes o f D(h) are the t ransact ions {T~ Tn} o f h, and the pa i r (T,, T1) is an arc o f D(h)

i f and only i f one of the fol lowing holds:

(a) S(R,) N S(Wj) ~ f~ and ~ R ,) < Ir(I4"~), or

(b) S(W,) f3 S(Rj) ~ f~ and ~r(W,) < 7r(R:), or

(c) S(W,) f3 S(I4"~) # ~ and It(W,) < ~ I4,~).

LEMMA 4. Suppose that for two histories hi = (n, ~r, V, S) and h2 -- (n, ~r', V, S), D(hl)

and D(h2) have no cycles of length 2. Then hi ~" h2 if and only if D(hl) ffi D(h2).

PROOF. It should be obvious f rom the def ini t ion of D(h) and the ~ re la t ion that

whenever hi ~ h2, also D(hl) = D(h2). Consequent ly , hi ,L h~ implies D(hl) -- D(h2).

640 CHRISTOS H. PAPADIMITRIOU

For the other direction, assume that D(hl) ffi D(h2). We shall transform h2 to hi by a

sequence of ~ transformations as follows: Take the symbol in ~n that is the first symbol in

hi (i.e., tr-1(1)) and bring it to the first place o f hz by successively switching it with all

symbols preceding it in h2; then take w-l(2) and bring it to the second position by switching

it with all symbols preceding it, except ~r-l(l); and so on, until h2 is transformed to hi. It

remains to show that all these switchings have been legal ~ transformations. Suppose that

at some time we had to swatch ol and 02 in a manner not allowed by Definition 3; that as,

one of the following holds:

(a) ol = R~, 02 = I4,~. This means, however, that in hi, W, precedes R~, and hence hi is

not a history.

(b) ol -- R~, o~ -- Wj, and S(R,) N S(W~) ~ f~. This would mean, however, that (T~, T~)

is in D(h2) and (T~, TJ is in D(hl). Since D(hO and D(h2) have no cycles of length 2,

we can conclude that D(hl) ~ D(h2).

(c) A similar argument holds for ol = W~, 02 = Wj, and S(W~) N S(I4'~) # ~. []

We can now prove the following theorem.

THEOREM 2. A history h = (n, ~r, V, S) is DSR if and only if D(h) is acyclic.
PROOF. Suppose that D(h) is acychc. We can thus sort topologically the set {T1 Tn}

of nodes of D(h). Think of this order as a serial history hs. It is immediate that D(hs) =
D(h), and hence, by Lemma 4, h ~ hs. It follows that h is DSR.

For the other direction, assume that h is DSR. We have two cases:

(a) D(h) has a cycle (T~, Tj, T,) of length 2. This means that qr(R,) < ~r(W~) < ~r(W,), and

S(R~) N S(W~) ~ ~, S(W~) N (S(W~) U S(Rj)) ~ ~. It is easy to show that in all histories h'

for which h ~* h' we will also have ~r'(R,) < ~r'(Wj) < ~ '(WJ, as otherwise h ~ h ' and

h ~ h', by Proposition 2. Hence there is no serial history hs such that h ~* hs, a

contradicUon.

(b) D(h) has no cycles of length 2. By Lemma 4, there is a serial history hs such that

D(h) = D(hs). However, serial histories hs have acyclic D(hs), and hence D(h) is acychc. []

Theorem 2 suggests that histories that are DSR can be detected efficiently by checking

D(h) for acyclicity:

COROLLARY I. Checking whether a history h = (n, ~r, V, S) is DSR can be done in
O([V[n 2) time.

Also, we can rephrase Theorem 2 as follows (compare with Definition 4 below):

COROLLARY 2. A history h ffi (n, ~, V, S) is DSR if and only if we can find real numbers

{$1 S~} such that

(a) I f S(W,) N S(Rj) ~ ~ and ~ W,) < w(Rj), then S, < Sj;
(b) I f S(R~) N s(Ir~) ~ ~ and ~'r(R,) < ~(W~), then S, < S~;

(c) I f S(W,) N S(W~) ~ 0 and ~ W,) < ~ Wj), then S~ < Sj.

4.2 THE CLASS Q.

Definition 4. A history h = (n, 7r, V, S) is in Q if there exist noninteger, distinct real

numbers S~, $2 S~ with the following properties:

(a) ~(R,) < S, < ~W,) .

(b) I f S(R,) ~ S(W~) # ~, i ~ j, and ~R~) < ~ W~), then S, < Ss.

(c) I f S(WJ ~ S(W~) # ~ and ~ W,) < ~ W~), then S, < S~.

The real numbers $1 S, in Definition 4 are called serializabilitypomts. Their intuitive

meaning is that the history h is the same as though transaction T~ had executed indivisibly

at the time instance $1 (during which, by (a) above, it was active), transaction T~ at S~, and

so on. As an illustration, the history

h = R~[x]~[z] W~[y]R~[z] W~[x] Wily]

is in the class Q, since the values Sa ffi 3.5, $2 = 2.5, and $3 ffi 4.5 satisfy, as the reader can

check, the requirements of the definition. The class Q was independently introduced

in [22].

Senahzability o f Concurrent Database Updates 641

THEOREM 3. I f h Is m Q, then h is DSR

PROOF. Condmons (b) and (c) of the definmon of the class Q above are identical to

(b) and (c) of Corollary 2 to Theorem 2. Hence it suffices to show that condmon (a) above

implies condition (a) of Corollary 2. But this is immediate, because if ~r(W,) < ~r(Rj) we

have that S, < ~r(l'V,) < ~r(Rj) < Sj, no matter what S(Rj) and S(W,) are. []
Given a history h = (n, ~r, V, S) we can construct another digraph D ' (h) - - a superdlgraph

of D(h)--with node set again {T1 Tn} and (T,, Tj) an arc if and only if one of the

foUowmg holds:

(a) ~r(W,) < ~r(R~).

(b) or(R,) < ~r(Wj) and S(R,) 0 S(V~) ~ f~.

(c) ~r(W,) < ~r(I'Ve) and S(W,) N S(Wj) ~ ~3.

In other words, D'(h) contains all the arcs of D(h) and possibly some other arcs for the

cases m which ~r(W,) < ~r(R~) and S(Rj) tq S(W,) = f~.

THEOREM 4. The history h = (n, ~r, V, S) is in the class Q if and only if D'(h) is acyclic.

PROOF. Suppose that h E Q, and let S~ Sn be appropriate numbers. Without loss

of generahty S~ < $2 < ..- < Sn. We shall show that whenever (T,, Tj) is m D'(h), then

i < j . Suppose that i > j; by the definmon of D'(h) one of the foUowmg must hold:

(a) ~r(W,) < ~r(Rj). However, S, < ~r(W,) < ~r(R~) < Sj, which contradicts our assumption

that $1 < $2 < ... < Sn and i > j.

(b) ~r(W,) < ~r(14"~) and S(W,) N S(I,I,~) ~ ~3. By (c) of Definition 4, however, S, < Sj,

again a contradiction.

(c) ~r(R,) < ~r(l'l'~) and S(R,) f3 S(14~) ~ ~. Similarly, a contradiction is reached by (b)

of Defimtlon 4.

Consequently, D'(h) is acychc, since it is a subgraph of a total order.

For the other direction, suppose that D'(h) is acyclic. We can sort its nodes topologically

to obtain the order, say, (T1, T2 Tn). We can define the real numbers S~, $2 Sn, and

S~+1 (for convenience) as follows.

(a) S~+~ = 2n + 1.

(b) S~ = min{Sj+a, ~I4.~)} - l /(n + 1), j = n, n - 1 1.

It is clear that the Sj's are distract, increasing, noninteger real numbers, and that they

satisfy (b) and (c) of Definmon 4. It suffices thus to prove (a) of Definition 4, in particular,

that S, > ~r(R,) for all t. Suppose that, for some i, S, _< ~r(R,). L e t j be the smallest index, no

smaller than ~, for which ~r(14,~) < S~+a Thus

S, = ¢r(l,l,~) - (j - i + l) / (n + 1) > ~r(/,t,~) - 1.

Consequently ~r(R,) > rr(Wj) - 1, or ~r(R,) > ~r(l,V~). Hence (T~, T,) ~ A, which contradicts

the fact that j _> i in the topological sorting of D'(h) []

COROLLARY. Testing whether a history h = (n, ~r, V, S) is m Q can be done in 0(I V In 2)
trine.

4.3 Two-PHASE LOCKING aND THE PROTOCOL P3. A very influential proposal for

guaranteeing senahzabil i ty of update systems has been the two-phase locking mechanism

of [7], also d~scussed extensively in [4]. Also, the essence of a qmte different serializability

principle (which was used in the development of the SSD-I distributed system [2, 17]) ~s

captured by the so-called protocol P3 (see [4]). In this subsection we show that these two

different philosophies of serializability are reduced, in our model, to two efficiently

recogmzable incommensurate subsets of our class DSR.

The two-phase locking strategy requests and releases actual locks--i .e. , mechanisms that

guarantee exclusive data access--during the execution of the different operations of an

update. The rule that ~s proven sufficient for guaranteeing senalizability is: Never request

a lock after a lock has been released. We have, therefore, two phases: one during which

locks may only be requested, followed by one during which locks can only be released.

The first release of a lock dehm~ts the two phases. In our model of two-step updates the

642 CHRISTOS H. PAPADIMITRIOU

(a) (b)

Fro. 5

authors of[4] note that two-phase locking for a history h = (n, ~r, V, S) essentially amounts
to divtding the interval from ~R:) to ~ Wj) into two intervals: one during which no symbol

with S(Rj) N S(W,) # (3 can exist, followed by one during which no symbol e ~ Xn

with S(e) N S(Wj) # 0 can exist. This is captured by the following definition:

Definition 5. A history h = (n, ~r, V, S) ts two-phase locked (notation: h ~ 2PL) if and

only if there exist dlstmct nonmteger real numbers l~ In (the loekpoints) such that:

(a) ~r(R~) < l~ < 0r(W~) for i = 1 n.

(b) If S(R,) N S(W~) # ~5, t # j , and ~(R,) < ~r(Wj), then I, < Ij.
(c) If S(W3 N S(Wj) ~ ~5 and ~ W,) < ~ Wj), then ~ W,) </~.

To understand Defimtion 5, consider a transaction (R~, Wj) in a history h E 2PL, and its

lockpoint/1. The intuitive meaning of the lockpoint is the following: During the interval
[~r(Rj), l:] all variables in S(R~) are "'protected" from writing by other transacuons, by virtue

of (b). Also, during the interval [/j, 0r(Wj)] the variables in S(Wj) are protected from
reading and writing. Conditions (b) and (c) therefore essentially say that the interval
[lj, ~Wj)] overlaps no interval [lk, ~r(Wk)] with S(Wk) N S(Wj) # ~5 and no interval
lARk), Ik] with S(Wj) 1"3 S(Rk) # ~5. Thus, the second lock is granted before the first is
released, in accordance with the two-phase locking principle.

Although Defimtions 4 and 5 differ only slightly in condition (c), the latter is a
substantial restriction. First, we nonce that 2PL C_ Q. Indeed, if h ~ 2PL then the
lockpomts li In are automatically valid serializability points S~ Sn m Definition 4.
To see this, just notice that condition (c) of Definition 5 (~W,) < 1j) and (a) (l, < ~W,))
together imply (c) of Definition 4 (namely, S, < Sj). To show that the inclusion is proper,

notice that for the history

h = Rd~2R3[x]W~[x]W2[y, z]W3[y],

we have that h E Q (see Figure 5(a) for D'(h)) but h ~ 2PL. The explanation for the latter

fact is that transacuon 3 has no lockpoint/3, since if it had,/3 should obey/3 < l~ < 4 (by
(b)) and also/3 > 5 (by (c)).

We can, however, check very efficiently whether a history h is two-phase locked. Given
any history h = (n, ~r, V, S) we define the history h* ffi (2n, ~r*, V, S*), where h* is
obtained from h by inserting a transaction R~+j, Wn+~ after I¢~ in h fo r j = 1 n; S*(Rn+~)
= ~, and S*(W~+~) = S(B¢). For example, the history h* for h of the example above is

h * = RIR2R3[x] WI[X]R4 W4[X] W2[y, z]R~ W~[y, z] W3[y]R 6 W6[y].

TH~ORnM 5. For a history h = (n, ~r, V, S), h ~ 2PL if and only if h* ~ Q.
PROOf. Let {l~ l,) be a set of distinct, noninteger, real numbers, and let a(j) be the

number of positions to the right that the symbol ~r-~(j) was shifted in h*; in other words,
a(j) = 2-[{IV, : ~r(W,) < j } I. Consider the set {S~ S2n}, where S, = l~ + a([l,]) for i _<

Serializability of Concurrent Database Updates

(a)

Fie 6

(b)

,)
643

n a n d S, = ~r(W,-n) + a(~r(W,-n)) + ~ for i > n. We claim that (l,} ts an acceptable set of

lockpomts satisfying Definition 5 if and only if (Sj} is a set of serializability points

according to Definition 4. Both &rections follow from the defimtions. The formal deriva-

tion is omitted. []

To illustrate the theorem, the history h above is in Q, since D'(h) is acyclic (Figure 5(a)).

However, it is not in 2PL, because D'(h *) is not acyclic (Figure 5(b)). Naturally, Theorem

5 yields

COROLLARY. Testing whether a history h = (n, It, V, S) is two-phase locked can be done

in O(n2l V D time.
We now turn to formalizing and studying in our model the protocol P3 of [2] and [4].

Recall the &graph D(h) defined for any history h in Subsection 4.1; see Figure 6(a) for an

illustration in the case of

h -~ Ri[z]R3 W3[xlR2[x] Wi[z]R4 W2[y, z] W4[x].

Definition 6. Let CG(h) be the undirected graph corresponding to D(h) (Figure 6(b)). A

cycle in G(h) is a sequence (T,,, T,~) of m _> 2 transactions such that [T,,, T,,+,] are edges

of G(h),j = 1 m - 1, and so is [T, m, T,,]. Notice that all edges are cycles according to

this definition. A cycle (T~ T,m) is bad If

IS(Rim) ~J S(Wtm)] N S(W,l) ~ ~,

and

S(RO n S(W,2) ~ ~.

Notice that in the above definition the first node of a cycle and the order of listing of the

nodes are important. For example, in Figure 6 (Ti, Tz) is a bad cycle, whereas (Tz, T1) is

not. Bad cycles are, intuitively, those cycles that can correspond to a direct cycle in D(h')
for some other history h ' involving the same transactions.

Definition 6 (continued). Let h = (n, m V, S) be a history. We say that Tj is a guardian
of T, if there exists a bad cycle (T,, Tj Tk) in G(h). We say that h obeys" the protocol P3
(notation h ~ P3) if whenever Tj is a guardian of T, we do not have ~r(R3 < ~r(Wj) <

~(W,).
For example, consider the history h of Figure 6. The only bad cycle in G(h) (Figure

6(b)) is (/'1, T2), and hence the guardian relation is simple: just T2 is a guardian of T~.

Since ~r(W2) > ~z(Wl), we have that h E / 3 .

THEOREM 6. Suppose that h = (n, ~r, V, S) is in 1'3. Then it is also in DSR.
PROOF. We shall show that h E P3 implies that D(h) is acyclic. Suppose that D(h) has

a cycle (/'1, T2 Tin), m > 2. Consider the arc (Tj, T~+~) of D(h)--addition rood m; we

have three cases:

(a) S(Wj) N S(Wj+i) # ~ and ~W~) < ~r(Wj+0.

(b) S(W~) N S(R~+a) # ~ and ~Wj) < ~R~+,).

(c) S(Rj) N S(Wj+,) # 0 and ~R~) < ~Wj+i).

Notice that in both cases (a) and (b) we have that ~r(Wj) < ~Wj+i) and that more than one

ease may be applicable to the same arc. Case (c) is spht into two subcases:

644 ¢HRISTOS H. PAPAD1MITRIOU

(el) Cases (a) and (c) do not apply to the arc (T~-l, Tj).

(c2) j -- l, or case (a) or case (c) applies to (T~-i, T~).

In case (el) we have that Ir(W~-l) < ¢r(Rj) < ~r(B'~+l). In case (c2), however, we notice that
Tj+i is a guardian of T~. Consequently, since ~r(R~) < ~Wj+i) we must necessarily have that

~w~) < ~(w~+l).
Now consider the operations Oj, j = 1 m, where Oj -- Rj if case (el) is applicable to

the arc (Tj, Tj+i), and O~ = W~ otherwise. We have shown that ~r(Oj) < ~(Oj+l) for
j = 1 m (addition mod m) This is a contradiction, since it implies that ~r(Wl) <
~.(w~). []

Theorem 6 implies the following, independently proved in [4]:
COROLLARY. Histories that obey the protocol P3 are seriahzable.

Our next result concerns the complexity of recognizing those histories that obey protocol
P3. By the definition of this class, this complexity is determined by the complexity of

computing the guardian relation among the transactions in a history. We shall show how
this relation can be computed efficiently. For each transaction T~, let F(T~) be the set of all
transactions T, that satisfy S(R~) N S(W~) # 0 . Thus F(T~) is the set of all transactions that

are possibly guardians of Tj. To determine whether a transaction T, ~ F(Tj) is indeed a
guardian of Tj, we delete all edges [T~, Tk] such that S(Wj) A [S(Wk) O S(R~)] = O from

G(h) and then determine whether T, and Tj are on the same biconnected component of the
resulting graph. This can be done in O(n 2) time by the algorithm of [20]. I f T, and T~ are
on the same biconnected component, this means that there is a bad cycle (Tj, T, Tk) in
G(h), and hence T, is a guardian of Tj; otherwise, it is not. Repeating this for all T/s, we

get an algorithm of total complexity O(n2(I V I + n2)). Hence we have
THEOREM 7. Testing whether a history h -- (n, ~r, V, S) ~ P3 can be done in

O(n2(I V[+ n2)) time.

4.4 THE CLASS SSR. Certain histories, though perfectly senalizable, have a curious--
and, according to some, undesirable--property. Consider, for example, the history

h -- R~[x]R2 W2[x]R3 W3[y, z] W~[y].

This history is serializable. However, the only serial history equivalent to h is easily shown
to be

hs = R3 Wa[y, Z]Rl[X] Wi[y]R2 W2[x].

What is interesting is that in h transaction 2 has completed execution before transactmn
3 has started executing, whereas the order in hs has to be the reverse. This phenomenon is

quite counterintuitive, and It has been thought that perhaps the notion of correctness in
transaction systems has to be strengthened so as to exclude, besides histories that are not
serializable, also histories that present this kind of behavior. This leads to the following

definition:
Definition 7. A history h = (n, ~r, V, S) is said to be serializable in the strict sense

(notation: h E SSR), if there is a serial history hs = (n, ~r', V, S) such that h -~ hs and ~r(W,)
< ~Rj) implies ~r'(W,) < ~r'(R~).

It is not hard to verify that all histories in the class Q satisfy Definition 7. To see this,
recall that a history h in Q has a set of serializability points S~ < $2 < ... < Sn, say, such
that hs = Ri W~ ... R~ W~ ~- h. Now if ~r(W,) < z'(Rj), we have, by the definition of S~, S,

< qr(I'I4) < ~Rj) < S~, and therefore i < j. Hence transactions i and j have the same order
in hs that they have in h. It follows that Q c SSR.

Nevertheless, the classes Q and SSR are not the same, as conjectured in [22]. A
counterexample is

h = R,[z]R2[z] W2[x, z]Ra[x] WI[x, y] W3[z]R4[y] W,[x].

This history is equivalent to the serial history

hs ---- RI[Z] WI[X, y]R2[z] W2[x, z]Ra[x] Wa[z]R4[T] W4[x]

Serializabdity of Concurrent Database Updates

H

SR

DSR

I0
i 0

ol2

6
7 •

o 8

O 2PL

e5 °4

o 3

FIG 7 FIG 8

e, I I

645

satisfying Definmon 7. However, h is not in Q; to check thts, just notice that the digraph

D'(h) shown in Figure 7 is not acychc. It is not known whether the class SSR is efficiently

recognizable.

4.5 SUMMARY. The topography of the set of all histories H and its subclasses SR, S (the

serial histories), Q, SSR, DSR, P3, and 2PL is depicted in Figure 8. The inclusions shown

either follow from the results of this section or are straightforward. We also show below an

example of a history for each of the 12 regions in this diagram.

h, = R,[x] W,[x]R2[x] W2[x]

h2 = R][x]Rz[y] W][x] W2[y]

ha = R,R2Ra[x] W,[x]W2[y, z] Wa[y]
h4 = Ri[x]R2 W2[x, y] W~[z]RaWa[y, z]

h5 = ha ° h4

h6 = R2[z]R~ W2[x, z]R3[x] Wa[z] W~[x, y]R4[y] W4[x]

h7 = Ra[x]R] W~[x]R2[y] W2Wa[y]

h8 = R2[z]Ri[z] W2[x, z]R3[x] Wl[X, y] W3[z]R4[y] W4[x]

h, = R~Ra Wa[x]R2[x] W][x] W~[x]

hlo = h7 o h4

hi1 = h7°h,

h]2 = R][x]R2[x] Wl[x] W2[x]

5. Restrictions on the Read and Write Sets

It turns out that if we impose certain restrictions on the structure of the map S of a

history--i.e., the read and write sets of the transactions in the history--the topography of

H (shown in Figure 8 for the general case) is simplified considerably. The most striking

such result is that of [19]. A basic assumption in the model of [19]--which is otherwise

more general than the present in that it allows more than two steps--is that no database

entity (or variable) is updated unless it has been previously read. In our model and notation

this means that S(W~) C S(Rj). What is surprising is that serializability, an NP-complete

predicate in our model, is efficiently decidable in theirs. We explain this in view of our

previous discussion as follows:

THEOREM 8. Suppose that for a history h = (n, ~r, V, S) we have S(W~) .C S(Rj) for j =

1 n. Then h is serializable if and only i fh is in DSR.

PROOF. It suffices to show that if S(al) N S(a2) # ~ and ~r(o]) < ~r(02) for o], 02 E ~n

such that at least one of 01, a2 is a write symbol, then ~r'(a]) < ~r'(a2) in any history (n, ~r',

V, S) equivalent to h. Suppose that a] = Wi, o2 = W2. S(W~) and S(W2) share a variable

x, which by hypothesis is also in S(R]) and S(R2). Consequently, in h, T2 reads x from

either Ti or from another transaction which, by the same argument, reads x from another,

646 CHRISTOS H. PAPADIMITRIOU

H

SR =- DSR

Q~SSR
2PL

P3F-1

FIG 9

and so on, up to T1. Now notice that the S(R~) D S(Wj) assumpUon Implies that in any
serlahzable htstory there can be no dead transactions. Hence, by Proposition 1, in any

history (n, ~r', V, S) equivalent to h we must also have ~r'(W1) < ~r'(W2). The other two
cases are settled very similarly. []

It turns out that the rest of the classes of histories discussed previously have a

considerably simpler structure under the assumption that S(W~) C S(R~). We show in
Figure 9 without proofs the corresponding dmgram.

Under a different restriction on S, the class SSR coincides with SR:

THEOREM 9. Suppose that in a history h = (n, ~r, V, S) there is a subset X =

{xl, x2 xn} C V such that for j -- 1, 2 n we have (a) X _C S(R~), (b) xj E S(W,) i f and

only if i = j. Then h is senalizable i f and only f h ~ SSR.

SKETCH OF PROOF. Imagine that the variable xj is a Boolean signaling whether

transaction T1 has completed. Therefore, if T~ completed in h before T, started, the same

must hold in any other htstory equivalent to h. []

6. Schedulers o f Histories

The practical importance of the classes of histories 2PL and P3 discussed in Section 4
stems from the fact that they are known to correspond to simple schedulers. A scheduler

for a class of histories (to be defined formally below) is generally an algorithm that takes
as an input an arbttrary history--possibly nonserializable--and returns a history which is
the "closest" to the gwen one among those belonging to the class. If the class is a subset of
SR, therefore, the scheduler guarantees that its output Mstory is seriahzable. Such a
scheduler can be used in the seriahzability component of the database management system.
Of course, in practice one would expect that a scheduler operates on-hne and is reasonably

efficient.
The history-input of the scheduler is the sequence of arriving user requests. The output

of the scheduler is the actual execution sequence. The basic fact that makes our approach
very different from previous work on concurrency control which was motivated by
operating systems (e.g., the notion of determinacy of [6]) is that the supplier of this input
history is a populaUon of users, each user being unaware of the actions of the others. This
implies that the order of arrival of these requests has no semantic content whatsoever, and
therefore the scheduler is not bound to produce an output which is equivalent (or related
in any prescribed way) to the input. In fact, the operation of the scheduler becomes
interesting and important exactly when the scheduler must necessarily transform the input
to an ineqmvalent output, because the input is nonsenalizable, say.

There are, however, certain performance criteria that the input-output mapping of a

scheduler should satisfy. For example, a trivial scheduler which guarantees serializabihty
is the one that outputs only serial histories. This is, however, too restrictive a mechanism
to be of practical value. Intuitively, the richer the output class, the more powerful the
scheduler, because a less restnctwe class of histories will require less reshuffling of the
operations and will cause fewer and shorter unnecessary delays. Ideally, we would like to

Serializability o f Concurrent Database Updates 647

have a serializer whose output spans all of SR. Unfortunately, we shall soon see that the

existence of such a practically useful device is very improbable.

Defimtion 8. The metric d(., .) on the set H is defined as follows:

(a) d((n, or, V, S), (n, p, V, S)) = n - m a x (j . 7r-l(i) -- p-t(i), I = 1 j } .

(b) d((m, ~r, V, S), (n, p, W, T)) = oo if any one o f m # n, V # W, S # Tholds.

The d~stance between two histories defined on the same set of transactions is therefore

n minus the length of their longest common prefix. Notice that d(., .) satisfies the metric

axioms. A variety of other metrics would suffice for what follows.

Definition 8 (continued). Let C be a nonempty subset of H. A scheduler for C is a

function A c : H ~ C such that

d(h, At (h)) = min{d(h, h ') : h ' E C}.

Thus, A c can be thought of as projecting H onto C under the metric d(., .). Notice that

At(h) and h will not be eqmvalent in general. The metric d(., .) requires that Ac leaves

histories m C intact, and m fact it leaves intact as long prefixes of arbitrary histories as

possible.

Let us restate now the assumptions of our model of schedulers:

(a) A scheduler Ac minimizes the d-distance between its input and its output, This

intuitively means that the scheduler operates online, and furthermore that it acts in a n

opttmtstw way: As long as the history seen so far could possibly be extended to a correct

history (here by "correct history" we mean one that the scheduler, in its limited sophisti-

cation, recogmzes as correct, or, equivalently, an element of C = Ac(H)) , the scheduler

does not intervene to rearrange read and write requests. As a corollary, if the scheduler is

fed wRh Rs own output, it leaves it intact; it is therefore ldempotent, or a projection.

This is a quite reasonable assumpuon to make. Although we cannot totally exclude the

posslbihty of schedulers that operate otherwise (for example, anticipating future requests

that will make the history nonseriahzable), all schedulers proposed in the past satisfy this

assumpuon. Any scheduler implemented by natural constructs such as locks [7, I l] or

queues has this property.

(b) Among all histories in C that have the longest possible common prefix with the

input history, Ac selects any one as its output. Clearly, in practice this choice would be

made so as to mimm~ze some more refined metric d'. However, the results obtained below

for our weaker metric d would apply to more relaxed metrics, too.

We say that Acts an efficwnt scheduler l fAc is computable in polynomial time. Our goal

m this section Is to understand which classes of histories have efficient schedulers. It is

tempting to conjecture that if a class is in ~, then it has an effioent scheduler. To show

that this conjecture is not plausible, consider the following:

Example. Let E = { h o hs : hs is serial, and h -= hs}. Obviously, E can be recogmzed in

polynomial time; the algorithm involves splitting a given history m two halves, testing

whether the second half is serial, and whether the second half is equivalent to the first.

However, it as also easy to see that E cannot have any efficient scheduler, unless ~ff i

Suppose that E has an efficient scheduler AE. Then we could test whether an arbitrary

history h is senalizable by first computing A E(h o h), and then checking whether AE(h o h)

starts with h. Smce AE is supposed to leave unchanged as long prefixes of its input as

possible, at will alter the first half of h o h only ff h is not serializable. Since serializabihty

is known to be NP-complete, E cannot have an efficient scheduler unless ~ - -

Our next result essentmlly says that effioently recognizable classes have efficient

schedulers, unless they are as pathological as our example E above. Let h -- (n, ~r, V, S) be

a history, considered now as a string of symbols representing n, V, S and the permutation

~r. A prefix of h is an imtial segment of this representatzon, containing the encoding o f n,

V, S, as well as an mmal part of at--i.e., (¢r-~(l), ~r-l(2) ~r-l(j)) for some 0 _<j <_ 2n.

I f C is a class of histories, then PR(C) is the set of all prefixes of all htstories in C.

THEOREM 10. Let C be a subset of H. C has an efficient scheduler ~f and only if PR(C)

648 CHRISTOS H. PAPADIMITRIOU

Scheduler A c

Input. a hnstory h = (n, ~, V, S)

Output. a history h' = (n, O, V, S) E C such that d(h, h')
ts the smallest posstble, if such an h' exists

begin
if(n, (), V, S) ~E PR(C) then return

comment () ts the empty permutatton,
else begin

p ' = () ,

forj = l 2n do

begin

done .= false,
f o r t = j , j + 1, ,2ndountildone
if (n, (p, ~r-lO)), V, S) E PR(C) then

begin

done = true,

interchange *-l(l) and ~-i(j),
p .= (p, ~-~(I)),

end,

end,

end,

return (n, p, V, S);

end
FiG 10

PROOF. Suppose that C has an efficient scheduler Ac. In order to determine whether

a string g is a prefix of a history h ~ C we may act as follows: We first verify that g

contains encodmgs of n, V, and S, together with an initial segment p of a permutat ion ~r of

Xn. We then generate a completion ~ of p by juxtaposing to p the symbols tV~ such that R~

but not I4~ ts present in p, and then the strings Rfl.Vj for a l l j ' s such that neither Rj nor W~

appears in p. We then calculate h' = Ac((n, ~, V, S)). It is straightforward to see that g is

a prefix of h' if and only if g ~ PR(C). Thus we can efficiently determine whether g

PR(C).

For the other direction, suppose that PR(C) ~ ~. Based on the recognition algorithm for

PR(C) we design an efficient scheduler Ac, shown in Figure 10. Ac computes Ac(h) --

(n, p, V, S) by determining p element by element. It should be obvious that A c operates as

prescribed within a time bound of O(n2C(n, [VD), where C(n, iV[) is the complexity of

recognizing PR(C). The theorem follows. []

It is now easy to link the discussion of Sections 3 and 4 with the existence of efficient

schedulers We get two types of results:

COROLLARY I. Unless ~ = ~ SR has no efficzent scheduler.

COROLLARY 2. The classes S, 2PL, P3, Q, DSR have efficient schedulers.
"PROOF. We have shown that these sets are in # ; it is usually straightforward to show

that their sets of prefixes are also in ~ (this ns not a general property of ~ ; there are

languages in # that have nonrecursive sets of prefixes). As an illustration, we will sketch

a proof that PR(P3) ~ #. First, given an encoding of n, V, S, and a segment p of It, we

compute from S the digraph F of the guardian relation among { T1 Tn}. We next make

sure that whenever Tj is a guardian of T, and p(I4~) is defined, then either p(W3 < p(B'~),

or p(R,) > p(Wj), or p(R,) is undefined. Finally, we make sure that p can be completed in

a manner not violating P3. It turns out that this amounts to verifying that the restriction

of F to the transactions that are active (i.e., p(Rj) is defined but p(Wj) is not) is acyclic

(a discussion of this part follows the proof). Hence we have an efficient algorithm for

PR(P3). []

We show in Figure 11, wtthout proofs, stylized versions of efficient schedulers for the

classes P3 (1 l(a)), 2PL (1 l(b)), and DSR and Q (1 l(c); for Q we also include the two

statements labeled Q). Besides serializabihty, these algorithms must also guarantee the

absence of deadlocks. The issue of deadlocks appears to be orthogonal to that of serializ-

Serializabili ty o f Concurrent Database Updates

process l j
when the deadlock graph with Ta is acychc do output (Rj)

process Wj
when Tj is not the guardian of an active transaction do output (W~)

(a)

process Rj
when the deadlock graph wRh Tj is acychc and

no variable in S(Rj) is read-locked do

ibegin
write-lock all variables m S(R~),
output (R2)
lend,

when a process W, with S(W,) N S(Rj) # 0 or z = j has been mmated and

no variable m S(Wj) - S(Rj) is write-locked do

ibegin
write-lock and read-lock all variables m S(Wj);
un-wnte-lock all variables m S(Rj) - S(Wj),
lend

process W~
when Rj has terminated do

ibegin output (Wj),
unlock all variables m $(Wj),

iend

(b)

process Rj
declare Lj sequence of symbols m X~ U {f}
comment L~ contains all R, or W, such that T, is reachable by a path

from 7) m D (respectively D'), up to this point,
when the deadlock graph is acychc and

for no T, # Tk with S(R~) N S(W,) # ~, S(Rj) N S(Wk) # ~ Is W, ~ Lk do

ibegin
output (Rj),
L, = {R,},
add Rj to all Lk containing W, with S(Rj) N S(W,) # ~,

Q" add Rj to all L, contammgf
iend

process Wj
when the deadlock graph contains no arc (T. Tj) do

ibegin
output (Wj),
add Ws to all L~ containing o such that S(Wj) N S(o) # 9,

Q. addf to all Lk containing Rs or W~,
set Lj = ~5,

lend

(c)

Fm 11

649

abili ty, and, in fact, c lever ser ia l izabi l i ty m e t h o d s are k n o w n to in t roduce increased d a n g e r

o f deadlocks o f the "c i rcu la r wa i t ing" var ie ty [6, pp. 40-60]. A uni f ied t r e a t m e n t o f

ser ial izabi l i ty a n d deadlocks in a restr ic ted da ta mode l is a t t e m p t e d in [18]. In all cases o f

in teres t to us, deadlocks can be p r e v e n t e d by tes t ing a dynamica l ly c h a n g i n g deadlock

graph for acyclicity. F o r example , in two-phase lockmg dead lock can occur i f a n u m b e r o f

t r ansac t ions have each locked the i r r ead set, a n d are wai t ing for e ach o the r to release the i r

locks. Hence, in this case the dead lock g r a p h has var iab les as nodes a n d has a n arc f rom

x to y i f a n d on ly i f some t r ansac t ion cur ren t ly o n phase l reads x a n d wri tes y. In P3 the

dead lock g r a p h is the res t r ic t ion o f the g u a r d i a n re la t ion to the cu r ren t ly act ive t ransac-

t i o n s - t h i s was m e n t i o n e d in the p r o o f o f Coro l l a ry 2 to T h e o r e m 10. F ina l ly , the dead lock

g r a p h in D S R (respectively, Q) has as nodes the act ive t r ansac t ions a n d inc ludes the arc

650 CHRISTOS H. PAPADIMITRIOU

(T,, Tj) if and only if there is a path from T~ to T~ in D(h)--respectively D'(h)--and S(W~)

n s(w) e.

Our notation in Figure 11 assumes that the process Rj or W~ is initiated as soon as
corresponding read or write requests arrive. We use constructs such as when (denoting the
waiting for a condttion) and ibegin...iend (bracketing statements that are to be executed
indivisibly). It should be obvious that these algorithms can be implemented deterministi-
cally and efficiently on any-standard model of computation.

7. Discussion

We shall consider extensions of our results in three directions: general multistep transac-
tions, interpreted transactions, and distributed databases.

7.1 MULTISTEP TRANSACTIONS. We shall briefly discuss how our entire development of

Sections 2 through 6 can be easily extended to a far more gerteral multistep model of
transactions. We consider transactions that consist of sequences of steps; each step may
involve both reading and writing. The values written must be considered as uninterpreted
functions of all variables read at the present or previous steps of the same transaction. Our
definition of !iveness now applies to individual steps of transactions. No further modifi-
cations are necessary for stating the analog of Proposition 1.

Serializability is obviously NP-complete in this model, as it subsumes ours. Assuming
that no transaction reads intermediate results'of another or reads two different versions of
the same variable at two different steps--in which case the history is not serializable--
Lemma 2 is also valid. The four serializability principles discussed in Section 4 remain
virtually unchanged--in fact, two-phase locking was initially proposed for a similar model
in [7]. For another example, we shall describe in a somewhat more detailed manner the
generalized P3 class of histories. In the multistep model a step s of a transaction can be an
(i, j)-guardian of another transaction, where i < j are steps. This means that s mteracts with
/--i.e., either its write set includes variables of i or vice-versa--and there is a chain of
interactions from s toj. If this is the case, s is not allowed to occur between i andj. This P3
protocol always yields DSR (and hence serializable) histories. For the classes DSR and Q,
we have similar graphs D(h) and D'(h). An arc (T,, T~) is in D(h) if a step of T, interacts
with a subsequent step of Tj. For D'(h) it may just be that the last step of T, precedes the
first step of T~. The acyclicity of D(h) again guarantees serializability and that of D'(h)
strict serializability. Hence, these remain two most general serializability techniques,
subsuming two-phase locking and P3, in this general setting, too.

Finally, it is easy to see that the results of Section 6--the necessary and sufficient
condition for the existence of efficient schedulers and its corollaries--apply even more
directly to multistep histories. We hope that the reader is by now convinced that introducing
general multistep transactions would have resulted in an unmanageably cumbersome
notation but in very few new important ideas.

7.2 INTERPRETED TRANSACTIONS. A significant departure from our model would be to
look more closely into the computations performed by the transactions and exploit their
details for studying serializability--or correctness, in general. If only syntactic information
about the transactions is available (e.g., the read and write sets) then serializability can be
formally proved to be the right concurrency concept [111. if, however, semantics of the
functions performed, or even the integrity constraints, are known, then it may be the case
that more liberal concurrency principles than serializability are applicable. An example is
the correctness theory proposed in [12], where the concurrency control mechanism takes
into account information about the semantics and integrity constraints supplied by
correctness proofs of the individual transactions. The extent to which such information is
helpful is investigated in [11].

It is doubtful whether complete semantic information can be used effectively for
concurrency control. Any reasonably complex domain of interpretation (e.g., arithmetic)

would soon make the serializability problem undecidable. There should be, however, ways

Serializability of Concurrent Database Updates 651

to use parual semantic reformation in order to improve our understanding of serializability.

One possibdlty is to use the fact that two transactions perform precisely the same function;

one of the implications ~s that they commute. It is not too hard to see that this adds nothing

to the model developed thus far. Incidentally, this allows us to extend our original model

so as to permit multiple occurrences of a transaction in a history.

Another poss~bday would be to selectively consider certain very simple transactions to

be interpreted. A good example of a very common transaction that performs a well-

understood function is the copter, a transaction that reads x and later records its value at

y. Serlalizability becomes trickier. For example the history

h = Rl[x]R2Ra[x] W2[x] Wa[y]R4[y] W4[x]Rs[x] Ws[z] Wl[Z]

is not sermhzable in our ordinary sense, but becomes equivalent to the serial history hs --
T~TiT2T3T4 once we assume that transactions 3 and 4 are copiers. Proposition 1 becomes

somewhat more complex in the presence of copiers. However, it is interesting to note that

if copiers are restricted not to read variables from other copiers, then the introduction of

copiers adds no strength to our model, and Proposition 1 and Lemma 2 remain unchanged

under this assumption. This remark plays an important role in the next topic of our

discussion.

7.3 DISTRmUTED DATABASES. There is a large body of literature aiming at the under-

standing of the quite elusive notion of distributed computing (see, e.g., [13]). Distributed

databases have inherited some of the intricactes of this area [17, 21]. We shall limit our

&scussion to the case of two complete copies of the database in different locations,

although there are difficulties which first appear in the cases o f three copies oi" of selective

redundancy [5]. A major problem is, what happens when a transaction is run in one

location, thus changing only one of the two copies. A simple technique for solving this

would be to send an update message [2] to the other location as soon as the transaction has

completed. We have therefore a sequence of genuine transactions and update messages

running in the system, and we can thus view the two copies of the database as a single

database--think of the two copies of the variable x as two variables x~ and x2.

A difficulty appears when we try to define a history. The distributed nature of our

computation, the communication delays and imperfect clocks, make temporal priority--

on which our ordinary notion of history was based--less tangible. The observation here is

that mistakes in our arrangement of the events that are due to the above factors preserve

history equivalence. Hence, we can pu t together a history--the global log of [2]--as long

as it is consistent with local priorities and arrivals of messages. Now the update messages

are in fact just copiers, and they only read variables that were updated by ordinary

transactions. Hence the last remark of the previous subsection is applicable, and the

seriahzability problem has been reduced to the one already studied! Of course, we are not

just looking for serializability but for the existence of an equivalent serial history in which

an update message immediately follows the corresponding transaction. This,however, does

not change the essence of the task All our special case results hold with very minor

modifications.

What is considerably more complex in the distributed context is the subject of schedulers.

There is no obvious neat way to compile syntactic restrictions on the global history into

distributed algorithms that achieve them. It therefore appears that distributed history

schedulers must concern themselves with the details of the underlying model of distributed

computation in order to implement the intended serializability principle; the formidable

algorithms of [21] and [5] illustrate this point. Nevertheless, it is stall natural to conjecture

that the more general ideas related to the classes DSR and Q would prove advantageous
m the d~strlbuted environment as well.

7.4 OPEN PROBLEMS. We have proposed a formalism for the concurrency control

problem for databases. There are two aspects o f this formalism that may limit its

applicability and must the/'efore be modified in a second attempt. One is our basic

652 CHRISTOS H. PAPADIMITRIOU

assumption, manifested throughout the paper, that the syntactic description of all trans-

actions to occur in the history is known to the scheduler a priori. It is not clear how to
remove this assumption and still retain the wealth of available solutions. One way would

be to have, following [5], a certain number of prototype transactions--or classes--to one
of which any arriving transaction can be matched. Another way out would be to adopt

only transaction-driven concurrency controls. Two-phase locking [7] is an example of such
a concurrency control, and so would be any other locking scheme. The limitations of such
approaches are studied in [11]. On the other hand, it is possible that variants of the

schedulers presented here could also be implemented in a transaction-driven manner.
Second, our way of evaluating the performance of schedulers is also in need of an

improvement. We propose only a qualitative measure of the performance of a scheduler--

namely, the set of all output histories. This leads to only a partial order of schedulers. This
was shown to be a reasonable and useful approximation of reality when the goal is to

derive indicative results or compare general principles of serializability. It is clear, however,
that a more concrete measure of performance is needed for more practical applications.

One promising direction would be to somehow count the total number of delays imposed
on requests--at a first approximation, the number of transaction steps that cannot execute

immediately upon arrival. This would be a refinement of our measure: our measure,

roughly speaking, assigns a perfect score to all histories that remain the same and zero

score to all histories that are changed, however small the change. A more refined measure
might even put to test some of our assumptions, like the "optimistic scheduler" assumption
(Section 6): in certain cases It may be preferable to intervene and modify slightly the

history when seriahzable completion becomes extremely unlikely, although not impossible.
Naturally, adopting a more concrete measure of performance for schedulers will most

likely require the introduction of specific and pragmatic details of the particular application,
and the overall approach may have to be probabilistic.

By considering only serializability as our notion of correctness we have somehow limited
our scope. Examples of concurrency control techniques more general than serializability
can be found in [12] and [10]. They are arrived at by assuming that the scheduler has more
than syntactic reformation about the transaction system that it handles--e.g., semantic

reformation or understanding of the integrity constraints. It is pointed out m [11] that
seriahzability is just one point in the trade-off between information and performance of
schedulers. However, we feel that there is something natural about the use of syntactic
information for concurrency control, and the importance of concurrency techniques
stronger than serializability is of limited practical value.

Finally, we recall two other problems that are left open here: the complexity of

recognizing the class SSR, and developing techniques for designing distributed schedulers
from syntactic specifications.

ACKNOWLEDGMENTS. Many lllummating discussions with Phil Bernstein have influenced
this work Also, we acknowledge helpful discussions with H. T. Kung, Dan Rosenkrantz,
Jim Rothnie, and Jeff Ullman, and careful reading of the manuscript by Marco Casanova

and an anonymous referee.

REFERENCES

! AHO, A V, HOPCROFT, J E, AND ULLMAN, J D The Design and Analysts of ComputerAlgoruhms Addison-

Wesley, Reading, Mass, 1974

2 BERNSTEIN, P A, GOODMAN, N , ROTHNIE, J B, AND PAPADIMITRIOU, C H Analysts of senahzablhty of

SDD-I' a system of distributed databases ~the fully redundant case). 1EEE Trans. on Software Eng SE-4, 3
(May 1978), 154--168

3 BERNSTEIN, P A, PAPADIMITRIOU, C H., AND ROTHNIE, J B Resolving certain concurrent update problems

without locking an abstract Proc IEEE Workshop on OS and DBMS, Chicago, lU, 1977

4 BERNSTE1N, P A, AND SHIPMAN, D W A formal model of concurrency control mechamsms for database

systems Proc 1978 Berkeley Workshop on Distributed Databases and Comptr Networks, Berkeley, Callf,

Sept 1978, pp 189-205,

Sertahzabdity o f Concurrent Database Updates 653

5 BERNSTEIN, P A, SHIPMAN, D W, ROTHNIE, J B, AND GOODMAN, N The concurrency control mechanism

of SDD-I a system for distributed databases (the general case) TR CCA-77-09, Computer Corporation of

America, Cambridge, Mass, 1977

6 COFEMAN, E G, AND DENNING, P Operating Systems Theory Prentice-Hall, Englewood Cliffs, N J., 1973.

7 ESWARAN, K P, GRAY, J N, LORIE, R A, AND TRAIGER, 1 L The notions of consistency and predicate locks

in a database system, Comm ACM 19, 11 (Nov 1976), 624-633

8 GAREY, M R, AND JOHNSON, D S Computers and lntractabthty A Guide to the Theory of NP-Completeness
Freeman, San Francisco, 1979

9 KARP, R M Reducibihtles among combinatorial problems In Complexay of Computer Computa.ons, R E
Miller and J W Thatcher, Eds, Plenum Press, New York, 1972, pp 85-103

10 KUNG, H T, AND LEHMAN, P L A concurrent database problem binary search trees, an abstract. Proc 4th

Int Conf on Very Large Databases, West Berlin, Germany, 1978, p 498 (Full paper to appear in ACM
Trans Data Base Syst)

11 KUNG, H T, AND PAPADIMITRIOU, C H An optimality theory of concurrency control for databases. Proc

1979 SIGMOD Conf, Boston, Mass., May, 1979

12 LAMPORT, L Towards a theory of correctness for multi-user data base systems. TR CA-7610-0712, Massa-

chusetts Computer Associates, 1976

13 LAMPORT, L Time, clocks and ordering of events in a distributed system TR CA-7603-2911, Massachusetts

Computer Associates, 1976

14 LUCKHAM, D C, PARK, D M R, AND PATERSON, M S, On formalized computer programs J Comptr. Syst
Scl 4, 3 (1970), 220-249

15 PAPADIMITRIOU, C H, BERNSTEIN, P A, AND ROTHNIE, J B Computational problems related to database

concurrency control Proc Conf on Theor Comptr Sci, U of Waterloo, Ontario, Canada, 1977.

16 PAPADIMITRIOU, C H, AND STEIGLITZ, K Combinatorial Opnmlzanon Algorithms. (In preparation)

17 ROTHNIE, J B, AND GOODMAN, N An overview of the preliminary design ofSSD-I: a system of distributed

databases Proc 1977 Berkeley Workshop on Distributed Data Management and Comptr. Networks,

Berkeley, Cahf, May 1977

18 SILBERSCHATZ, A, AND KEDEM, Z Consistency in hierarchical database systems (To appear in J. ACM.)
19 STEARNS, R C, LEwis, P M, AND ROSENKRANTZ, D J Concurrency control for database systems Proc. 16th

Conf Found Comptr Sct, 1976, pp 19-32

20 TARJAN, R E Depth-first search and linear graph algorithms SLam J Comptg 1, 2 (1973), 146-160.

21 THOMAS, R H A solution to the update problem for multiple copy databases which uses distributed control

TR 3340, Bolt, Beranek and Newman, Cambridge, Mass, 1976

22 WONG, W Analysis of senahzable logs Unpubhshed manuscript, Harvard University, Cambridge, Mass,

1978

RECEIVED AUGUST 1978, REVISED MARCH 1979

Journal of the Association for Computing Machinery, Vol 26, No 4, October 1979

