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The Series Product and Its Application to Quantum

Feedforward and Feedback Networks
John Gough and Matthew R. James, Fellow, IEEE

Abstract—The purpose of this paper is to present simple
and general algebraic methods for describing series connections
in quantum networks. These methods build on and generalize
existing methods for series (or cascade) connections by allowing
for more general interfaces, and by introducing an efficient
algebraic tool, the series product. We also introduce another
product, which we call the concatenation product, that is useful
for assembling and representing systems without necessarily
having connections. We show how the concatenation and series
products can be used to describe feedforward and feedback
networks. A selection of examples from the quantum control
literature are analyzed to illustrate the utility of our network
modeling methodology.

Keywords: Quantum control, quantum networks, series, cas-
cade, feedforward, feedback, quantum noise.

I. INTRODUCTION

Engineers routinely use a wide range of methods and

tools to help them analyze and design control systems. For

instance, control engineers often use block diagrams to rep-

resent feedforward and feedback systems, Figure 1. Among

the methods that have been developed to assist engineers are

those concerning the connection of components or subsystems

to form a network. One of the most basic connections is

the series connection, where the output of one component

is fed into the input of another, as in Figure 1. When the

components are (classical, or non-quantum) linear systems, the

connected system can be described in the frequency domain

by a transfer function G(s) = G2(s)G1(s) which is the product

of the transfer functions of the components. The description

can also be expressed in the time domain in terms of the state

space parameters G = (A,B,C,D) (as we briefly review in

section II). The series connection has an algebraic character,

and can be regarded as a product, G = G2⊳G1. Because of new

imperatives concerning quantum network analysis and design,

in particular, quantum feedback control, [24], [25], [18], [23],

[26], [4], [17], [12] the purpose of this paper is to present

simple and general algebraic methods for describing series

connections in quantum networks.

The types of quantum networks we consider include those

arising in quantum optics, such as the optical network shown

in Figure 2. This network consists of a pair of optical cavities

(discussed in subsection III-B) connected in series by a light

beam which serves as an optical interconnect or quantum
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Fig. 1. Series connection of two (classical, or non-quantum) linear systems,
denoted G = G2 ⊳ G1.

“wire”. In this paper (section V) we show how series connec-

tions of quantum components such as this may be described

as a series product G = G2 ⊳G1. This product is defined in

terms of system parameters G = (S,L, H), where H specifies

the internal energy of the system, and I = (S,L) specifies the

interface of the system to external field channels (as explained

in subsection III-D and section IV).

isolator

cavity 1

cavity 2

input beam

optical
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output

beam

mirror

G1

G2

G

Fig. 2. Series connection of two optical cavities via an optical interconnect
(light beam) or quantum “wire”, denoted G = G2⊳G1. Each cavity consists
of a pair of mirrors, one of which is perfectly reflecting (shown solid) while
the other is partially transmitting (shown unfilled). The partially transmitting
mirror enables the light mode inside the cavity to interact with an external
light field, such as a laser beam. The external field is separated into input and
output components by a Faraday isolator. The optical interconnect is formed
when light from the output of one cavity is directed into the input of the
other, here using an additional mirror.

Series (also called cascade) connections of quantum optical

components were first considered in the papers [6], [3], and

certain linear feedback networks were considered in [26]. Our

results extend the series connection results in these works

by including more general interfaces, and by introducing an

efficient algebraic tool, the series product. We also introduce
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another product, which we call the concatenation product

G = G1 ⊞G2, that is useful for assembling and representing

systems without necessarily having connections. Both products

may be used to describe a wide range of open quantum

physical systems (including those with physical variables that

evolve nonlinearly) and networks of such systems (with boson

field interconnects such as optical beams or phonon vibrations

in materials). We believe our modeling framework is of

fundamental system-theoretic interest. The need for general

and efficient methods for describing networks of quantum

components has been recognized to some extent and has begun

to emerge in the quantum optics and quantum information and

computing literature, e.g. [27], [6], [3], [8, Chapter 12], [20,

Chapter 4], [26], [4]. It is expected that an effective quantum

network theory will assist the design of quantum technologies,

just as electrical network theory and block diagram manipula-

tions help engineers design filters, control systems, and many

other classical electrical systems.

Series connections provide the foundation for some impor-

tant developments in quantum feedback control, e.g. [24], [25],

[23], [26], [17], [12], [13]. To illustrate the power and utility

of our quantum network modeling methodology, we analyze

several examples from this literature. The series and concate-

nation products allow us to express these quantum feedback

control and quantum filtering examples in a simple, transparent

way (there are some subtle technical issues in some of the

examples for which we provide explanation and references).

We hope this will help open up some of the quantum feedback

control literature to control engineers, which at present is

largely unknown outside the physics community. A number

of articles and books are available to help readers with the

background material on which the present paper is based.

The papers [26] and [22] provide excellent introductions to

aspects of the quantum models we use. The paper [2] is a

tutorial article written to assist control theorists and engineers

by providing introductory discussions of quantum mechanics,

open quantum stochastic models, and quantum filtering. The

book [8] is an invaluable resource for quantum noise models

and quantum optics, while the book [21] provides a detailed

mathematical treatment of the Hudson-Parthasarathy theory of

the quantum stochastic calculus. The book [19] is a standard

textbook on quantum mechanics.

We begin in section II by discussing an analog of our results

in the context of classical linear systems theory, elaborating

further on the discussion at the beginning of this section. In

section III we provide a review of some example quantum

components (including the cavity mentioned above) and con-

nections. This section includes a brief discussion of quantum

mechanics, introduces examples of parametric representations,

and provides a glimpse of how the general theory can be used.

Open quantum stochastic models are described in more detail

in section IV. The main definitions and results concerning the

concatenation and series products are given in section V; in

particular, the principle of series connections, Theorem 5.5.

In general the series product is not commutative, but we are

able to show how the order can be interchanged by modifying

one of the components, Theorem 5.6. A selection of examples

from the quantum control literature are analyzed in section

VI. The appendices contain proofs of some of the results and

some additional technical material.

Notation. In this paper we use matrices M = {mij} with

entries mij that are operators on an underlying Hilbert space.

The asterisk ∗ is used to indicate the Hilbert space adjoint A∗

of an operator A, as well as the complex conjugate z∗ = x−iy
of a complex number z = x + iy (here, i =

√
−1 and x, y

are real). Real and imaginary parts are denoted Re(z) = (z+
z∗)/2 and Im(z) = −i(z− z∗)/2 respectively. The conjugate

transpose M
† of a matrix M is defined by M

† = {m∗ji}.

Also defined are the conjugate M
♯ = {m∗ij} and transpose

M
T = {mji} matrices, so that M

† = (MT )♯ = (M♯)T .

In the physics literature, it is common to use the dagger †
to indicate the Hilbert space adjoint. The commutator of two

operators A,B is defined by [A,B] = AB − BA. δ(·) is

the Dirac delta function, and δjk is the Kronecker delta. The

tensor product of operators A, B defined on Hilbert spaces H,

G is an operator A ⊗ B defined on the Hilbert space H ⊗ G

(tensor product of Hilbert spaces) defined by (A ⊗ B)(ψ ⊗
φ) = (Aψ) ⊗ (Bφ) for ψ ∈ H, φ ∈ G; we usually follow the

standard shorthand and write simply AB = A ⊗ B for the

tensor product, and also A = A⊗ I and B = I ⊗B.

II. CLASSICAL LINEAR SYSTEMS

As mentioned in the Introduction (section I), it is common

practice in classical linear control theory to perform manipula-

tions of block diagrams. Such manipulations, of course, greatly

assist the analysis and design of control systems. To assist

readers in interpreting the main quantum results concerning

series and concatenation products (section V), we describe

concatenation and series products for familiar classical linear

systems in algebraic terms.

Consider two classical deterministic linear state space mod-

els

ẋj = Ajxj +Bjuj

yj = Cjxj +Djuj (1)

where j = 1, 2. As usual, xj , uj and yj are vectors and Aj ,

Bj , Cj and Dj are appropriately sized matrices. These systems

are often represented by the matrix

Gj =

(

Aj Bj

Cj Dj

)

, (2)

or the transfer function Gj(s) = Cj(sI −Aj)
−1Bj +Dj .

In modeling networks of such systems, one may form the

concatenation product

G = G1 ⊞ G2 =









(

A1 0
0 A2

) (

B1 0
0 B2

)

(

C1 0
0 C2

) (

D1 0
0 D2

)









,

see Figure 3. In terms of transfer functions, the concatenation

of two systems is G(s) = diag{G1(s),G2(s)}. The concatena-

tion product simply assembles the two components together,

without making any connections between them. It is not a

parallel connection.
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Fig. 3. Concatenation product.

Of considerable importance is the series connection, de-

scribed by series product

G = G2 ⊳ G1 =





(

A1 0
B2C1 A2

) (

B1

B2D1

)

(

D2C1 C2

)

D2D1



 ,

see Figure 1. Here the connection is specified by u2 = y1,

and so we require dimu2 =dim y1. In the frequency domain,

the series product is given by the matrix transfer function

product G(s) = G2(s)G1(s). This product describes a series

(or cascade) connection which is fundamental to feedforward

and feedback control.

Notice that both products are defined in terms of system

parameters (state space parameters or transfer function matri-

ces).

III. EXAMPLE COMPONENTS AND CONNECTIONS

A. Some Introductory Quantum Mechanics

Central to quantum mechanics are the notions of observables

X , which are mathematical representations of physical quan-

tities that can (in principle) be measured, and state vectors ψ,

which summarize the status of physical systems and permit

the calculation of expectations of observables. State vectors

may be described mathematically as elements of a Hilbert

space H, while observables are self-adjoint operators on H.

The expected value of an observable X when in state ψ is

given by the inner product 〈ψ,Xψ〉.
A basic example is that of a particle moving in a potential

well, [19, Chapter 14]. The position and momentum of the

particle are represented by observables Q and P , respectively,

defined by

(Qψ)(q) = qψ(q), (Pψ)(q) = −i~ d

dq
ψ(q)

for ψ ∈ H = L2(R). Here, i =
√
−1, ~ = h/2π, h is Planck’s

constant, and q ∈ R represents position values. In following

subsections we use units such that ~ = 1, but retain it in our

expressions in this subsection. The position and momentum

operators satisfy the commutation relation [Q,P ] = i~. The

dynamics of the particle is given by Schrödinger’s equation

i~
d

dt
V (t) = HV (t),

with initial condition V (0) = I , where H = P 2

2m + 1
2mω

2Q2

is the Hamiltonian (here, m is the mass of the particle,

and ω is the frequency of oscillation). The operator V (t) is

unitary (V ∗(t)V (t) = V (t)V ∗(t) = I , where I is the identity

operator, and the asterisk denotes Hilbert space adjoint)—it is

analogous to the transition matrix in classical linear systems

theory. State vectors and observables evolve according to

ψt = V (t)ψ ∈ H, X(t) = V ∗(t)XV (t).

These expressions provide two equivalent descriptions (dual),

the former is referred to as the Schrödinger picture, while

the latter is the Heisenberg picture. In this paper we use the

Heisenberg picture, which is more closely related to models

used in classical control theory and classical probability theory.

In the Heisenberg picture, observables (and more generally

other operators on H) evolve according to

d

dt
X(t) = − i

~
[X(t), H(t)], (3)

where H(t) = V ∗(t)HV (t).
Energy eigenvectors ψn are defined by the equation Hψn =

Enψn for real numbers En. The system has a discrete energy

spectrum En = (n+ 1
2 )~ω, n = 0, 1, 2, . . .. The state ψ0 cor-

responding to E0 is called the ground state. The annihilation

operator

a =

√

mω

2~
(Q+ i

P

2mω
)

and the creation operator a∗ lower and raise energy levels,

respectively: aψn =
√
nψn−1, and a∗ψn =

√
n+ 1ψn+1.

They satisfy the canonical commutation relation [a, a∗] = 1.

In terms of these operators, the Hamiltonian can be expressed

as H = ~ω(a∗a + 1
2 ). Using (3), the annihilation operator

evolves according to

d

dt
a(t) = −iωa(t) (4)

with solution a(t) = e−iωta. Note that also a∗(t) = eiωta∗,
and so commutation relations are preserved by the unitary dy-

namics: [a(t), a∗(t)] = [a, a∗] = 1. Because of the oscillatory

nature of the dynamics, this system is often refereed to as the

quantum harmonic oscillator.

It can be seen that the Hamiltonian H is a key “parameter”

of the quantum physical system, specifying its energy.

B. Optical Cavities

A diagram of an optical cavity is shown in Figures 4,

5, together with a simplified representation. It consists of a

pair of mirrors; the left one is partially transmitting (shown

unfilled), while the right mirror is assumed perfectly reflecting

(shown solid). Between the mirrors a trapped electromagnetic

(optical) mode is set up, whose frequency depends on the

separation between the mirrors. This mode is described by a

harmonic oscillator with annihilation operator a (an operator

acting on a Hilbert space H (as in subsection III-A), called
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the initial space). The partially transmitting mirror affords the

opportunity for this mode to interact with an external free

field, represented by a quantum stochastic process b(t) (to be

discussed shortly). When the external field is in the vacuum

state, energy initially inside the cavity mode may leak out, in

which case the cavity system is a damped harmonic oscillator,

[8].

input beam

beam

output

partially

transmitting

mirror

reflecting

mirror

cavity

isolator

B

B̃

Fig. 4. A cavity consists of a pair of mirrors, one of which is perfectly
reflecting (shown solid) while the other is partially transmitting (shown
unfilled). The partially transmitting mirror enables the light mode inside the
cavity to interact with an external light field, such as a laser beam. The external
field is separated into input and output components by a Faraday isolator.

B

B̃

a

Fig. 5. A simplified representation of the cavity from Figure 4 which omits

the Faraday isolator. It shows input B and output B̃ fields and the cavity mode
annihilation operator a. This representation will be used for the remainder of
this paper.

Quantization of a (free) electromagnetic field leads to an

expression for the vector potential

A(x, t) =

∫

κ(ω)[b(ω)e−iωt+iωx/c + b∗(ω)eiωt−iωx/c]dω,

for a suitable coefficients κ(ω), and annihilation operators

b(ω). Such a field can be considered as an infinite collec-

tion of harmonic oscillators, satisfying the singular canonical

commutation relations

[b(ω), b∗(ω′)] = δ(ω − ω′),

where δ is the Dirac delta function.

An optical signal, such as a laser beam, is a free field

with frequency content concentrated at a very high frequency

ω0 ≈ 1014 rad/sec. The fluctuations about this nominal

frequency can be considered as a quantum stochastic process

consisting of signal plus noise, where the noise is of high

bandwidth relative to the signal. Indeed, a coherent field is

a good, approximate, model of a laser beam, and can be

considered as the sum b(t) = s(t) + b0(t), where s(t) is a

signal, and b0(t) is quantum (vacuum) noise. Such “signal

plus noise” models are of course common in engineering.

The cavity mode-free field system has a natural input-output

structure, where the free field is decomposed as a superposition

of right and left traveling fields. The right traveling field

component is regarded as the input, while the left traveling

component is an output, containing information about the

cavity mode after interaction. The interaction facilitated by

the partially transmitting mirror provides a boundary condition

for the fields. The two components can be separated in the

laboratory using a Faraday isolator. This leads to idealized

models based on rotating wave and Markovian approxima-

tions, where, in the time domain, the input optical field (when

in the ground or vacuum state) is described by quantum white

noise b(t) = b0(t) [8, Chapters 5 and 11], which satisfies the

singular canonical commutation relations

[b(t), b∗(t′)] = δ(t− t′). (5)

In order to accommodate such singular processes, rigorous

white noise and Itō frameworks have been developed, where in

the Itō theory one uses the integrated noise, informally written

B(t) =

∫ t

0

b(s)ds.

The operators B(t) are defined on a particular Hilbert space

called a Fock space, F, [21, sec. 19]. When the field is in the

vacuum (or ground) state, this is the quantum Wiener process

which satisfies the Itō rule

dB(t)dB∗(t) = dt

(all other Itō products are zero). Field quadratures, such as

B(t) + B∗(t) and −i(B(t) − B∗(t)) are each equivalent

to classical Wiener processes, but do not commute. A field

quadrature can be measured using homodyne detection, [8,

Chapter 8].

The cavity mode-free field system can be described by the

Hamiltonian

H = ∆a∗a− i~

∫

k(ω)(a∗b(ω) − b∗(ω)a)dω, (6)

where the first term represents the self-energy of the cavity

mode (the number ∆ is called the “detuning”, and represents

the difference between the nominal external field frequency

and the cavity mode frequency), while the remaining two terms

describe the energy flow between the cavity mode and the

free field (a photon in the free field may be created by a

loss of a photon from the cavity mode, and vice versa). This

Hamiltonian is defined on the composite Hilbert space, the

tensor product H⊗F; the tensor product is not written explicitly

in the expression (6).

The Schrödinger equation for the cavity-free field system is

derived from (6) under certain assumptions [8], and is given

by the Itō quantum stochastic differential equation (QSDE)

dV (t) = {√γadB∗(t) −√
γa∗dB(t)

−γ
2
a∗adt− i∆a∗adt}V (t), (7)

with vacuum input and initial condition V (0) = I , so that

V (t) is unitary. The complete cavity mode-free field system

thus has a unitary model. In the Heisenberg picture, cavity
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mode operators X (operators on the initial space H) evolve

according the quantum Itō equation

dX(t) = −i∆[X(t), a∗(t)a(t)]dt (8)

+
γ

2
(a∗(t)[X(t), a(t)] + [a∗(t), X(t)]a(t))dt

+
√
γdB∗(t)[X(t), a(t)] +

√
γ[a∗(t), X(t)]dB(t).

Here, γ > 0 is a parameter specifying the coupling strength,

and is related an approximation of the function k(ω) in the

Hamiltonian (6). In particular, for X = a, the cavity mode

annihilation operator, we have

da(t) = −(
γ

2
+ i∆)a(t)dt−√

γ dB(t); (9)

cf. (4). The output field B̃(t) is given by

dB̃(t) =
√
γ a(t)dt+ dB(t), (10)

where one can see the “signal plus noise” form of the field.

This is an example of an open quantum system, charac-

terized by the parameters
√
γa and ∆a∗a; the latter being

the cavity mode Hamiltonian (specifying internal energy), and

the former being the operator coupling the cavity mode to

the external field (specifying the interface). These parameters

are operators defined on the initial space H. These parameters

specify a simpler, idealized model employing quantum noise,

in place of the more basic but complicated Hamiltonian (6).

C. Optical Beamsplitters

A beamsplitter is a device that effects the interference of

incoming optical fields A1, A2 and produces outgoing optical

fields Ã1, Ã2, Figure 6. The relationship between these fields

is

Ã1(t) = βA1(t)−αA2(t), Ã2(t) = αA1(t)+βA2(t), (11)

where α and β are complex numbers describing the beamsplit-

ter relations, and they satisfy α∗α + β∗β = 1, α∗β = αβ∗

(here the asterisk indicates the conjugate of a complex num-

ber).

Ã1

�
�

��

✲
✻

✻

A1

A2

Ã2

✲

Fig. 6. Diagram of an optical beamsplitter showing inputs A1, A2 and

outputs Ã1, Ã2 fields.

The initial space is trivial, H = C, the complex numbers;

nevertheless, the Schrödinger equation for the beamsplitter is

dV (t) = {(S − I)dΛ}V (t), (12)

with initial condition V (0) = I , where S is the unitary matrix

defined by (14) below, I is the identity matrix, and Λ is the

matrix of gauge processes

Λ =

(

A11 A12

A21 A22

)

. (13)

Here, Aij describes the destruction of a photon in channel j
and the creation of a photon in channel i. In terms of their

formal derivatives, Aij(t) =
∫ t

0
a∗i (s)aj(s)ds, where Ai(t) =

∫ t

0
ai(s)ds. The self-adjoint processes Ajj are equivalent to

classical Poisson processes when the channels are in coherent

states (signal plus quantum noise). These counting processes

may be observed by a photodetector, [8, Chapters 8 and 11].

This open system is characterized by the unitary parameter

matrix

S =

(

β −α
α β

)

, (14)

which describes scattering among the field channels. The

matrix S specifies the interface for the beamsplitter.

D. Open Quantum Systems

In general, as we shall explain in more detail in section

IV, open quantum systems with multiple field channels are

characterized by the parameter list

G = (S,L, H) (15)

where S is a square matrix with operator entries such that

S
†
S = SS

† = I (recall the notational conventions mentioned

at the end of section I), L is a column vector with operator

entries, and H is a self-adjoint operator. The matrix S is called

a scattering matrix, the vector L is a coupling vector; together,

these parameters specify the interface between the system and

the fields. The parameter H is the Hamiltonian describing the

self-energy of the system. Thus the parameters describe the

system by specifying energies—internal energy, and energy

exchanged with the fields. All operators in the parameter list

are defined on the initial Hilbert space H for the system.

The closed, undamped, harmonic oscillator of subsection

III-A is specified by the parameters

H = ( , , ωa∗a) (16)

(the blanks indicate the absence of field channels), while

the open, damped oscillator (cavity) of subsection III-B has

parameters

C = (I,
√
γ a,∆a∗a). (17)

The beamsplitter, described in subsection III-C has parameters

M = (

(

β −α
α β

)

, 0, 0). (18)

E. Series Connection Example

Consider the feedforward network shown in Figure 7, where

one of the beamsplitter output beams is fed into an optical
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cavity

A1

A2

B2 = B̃2 = Ã2

B̃1

B1 = Ã1

a

Fig. 7. Beam splitter (left) and cavity (right) network.

cavity. From the previous subsections, we see that the quantum

stochastic differential equations describing the network are

da(t) = (−γ
2

+ i∆)a(t)dt−√
γ dB1(t) (19)

Ã1(t) = βA1(t) − αA2(t) (20)

Ã2(t) = αA1(t) + βA2(t) (21)

B1(t) = Ã1(t) (22)

B2(t) = Ã2(t) (23)

dB̃1(t) =
√
γa(t)dt+ dB1(t) (24)

dB̃2(t) = dB2(t). (25)

It can be seen that algebraic manipulations are required to

describe the complete system (in general such manipulations

may be simple in principle, but complicated in practice).

The key motivation for this paper is more efficient algebraic

methods for describing such networks.

We now describe how the parameters for the complete

network may be obtained. We first assemble the field channels

into vectors as follows:

A =

(

A1

A2

)

,B =

(

B1

B2

)

, Ã =

(

Ã1

Ã2

)

, B̃ =

(

B̃1

B̃2

)

.

The beamsplitter acts on the input vector A, and is described

by the parameters M given in equation (18)). Now the

beamsplitter output has two channels, while the cavity has

one channel (described by the parameters C, equation (17)),

and so we augment the cavity to accept a second channel in

a trivial way. This is achieved by forming the concatenation

C ⊞ N, where N = (1, 0, 0) represents a trivial component

(pass-through). The augmented cavity C⊞N can now accept

the output of the beamsplitter, so that the complete network

is described as a series connection as follows:

G = (C ⊞ N) ⊳M. (26)

The definition of the concatenation ⊞ and series ⊳ products

will be explained below in section V (Definitions 5.1 and

5.3, and the principle of series connections, Theorem 5.5). By

applying these definitions, we obtain the network parameters

G =

((

β −α
α β

)

,

( √
γ a
0

)

,∆a∗a

)

. (27)

A schematic representation of the network is shown in Figure

8, which illustrates the important point that components, parts

of components, as well as the complete network, are described

by parameters of the form (15).

G

✲

✲ ✲

✲A1

A2

B̃1

B̃2

Fig. 8. Beam splitter-cavity network representation illustrating the network
model given by (27).

For the purposes of network modeling and design, it can

be useful to perform manipulations of the network to yield

equivalent networks; this, of course, is common practice in

classical electrical circuit theory and control engineering. For

instance, in our example we could move the beam splitter to

the output, but the cavity should be modified (to have two

partially transmitting mirrors) as follows (see Remark 5.7):

G = (C ⊞ N) ⊳M = M ⊳ (C′ ⊞ N
′). (28)

Here, the modified cavity C
′
⊞N

′ (see Figure 9) is described

by the subsystems

C
′ = (I, β∗

√
γ a,∆a∗a) , N

′ = (I,−α∗√γ a, 0) . (29)

modified cavity

B1 = Ã1

A1

A2

B̃2

B̃1

Fig. 9. Equivalent beam splitter and cavity network.

The connections described here so far are unidirectional

field mediated connections. Components interact indirectly via

a quantum field, which acts as a quantum “wire”. One can

also consider bidirectional direct connections, which can be

accommodated by using interaction Hamiltonian terms in the

models. Our emphasis in this paper will be on field mediated

connections, with direct connections readily available in the

modeling framework if required. See subsection V-D.

IV. OPEN QUANTUM STOCHASTIC MODELS

In this section we describe in more detail the open quantum

models of the type encountered in section III. Specifically, we

consider models specified by the parameters G = (S,L, H)
(recall (15)), where

S =







S11 . . . S1n

...
...

...

Sn1 . . . Snn






, L =







L1

...

Ln






,



7

are respectively a scattering matrix with operator entries

satisfying S
†
S = SS

† = I, and coupling vector with operator

entries, and H is a self-adjoint operator called the Hamiltonian

(this parameterization is due to Hudson-Parthasarathy, [15],

and is closely related to a standard form of the Lindblad

generator, given in (33) below). The operators constituting

these parameters are assumed to be defined on an underlying

Hilbert space H, called the initial space. These parameters

specify an open quantum system coupled to n field channels

with corresponding gauge processes:

A =







A1

...

An






, Λ =







A11 . . . A1n

...
...

...

An1 . . . Ann






.

All differentials shall be understood in the Itō sense - that

is, dX (t) ≡ X (t+ dt) − X (t). We assume that these

processes are canonical, meaning that we have the following

non-vanishing second order Itō products: dAj (t) dAk (t)
∗

=
δjkdt, dAjk (t) dAl (t)

∗
= δkldAj(t)

∗, dAj (t) dAkl (t) =
δjkdAl(t) and dAjk (t) dAlm (t) = δkldAjm(t).

If we consider the open system specified by G = (S,L, H)
with canonical inputs, the Schrödinger equation

dV (t) = {tr[(S − I)dΛ] + dA†L (30)

− L
†
SdA − 1

2
L
†
Ldt− iHdt}V (t) ≡ dG(t)V (t)

with initial condition V (0) = I determines the unitary motion

of the system. Equation (30) serves as the definition of the

time-dependent generator dG(t). Given an operator X defined

on the initial space H, its Heisenberg evolution is defined by

X(t) = jt(X) = V (t)
∗
XV (t) (31)

and satisfies

dX(t) = (LL(t)(X(t)) − i[X(t), H(t)])dt

+dA†(t)S†(t)[X(t),L(t)] + [L†(t), X(t)]S(t)dA(t)

+tr[(S†(t)X(t)S(t) −X(t))dΛ(t)]. (32)

In this expression, all operators evolve unitarily according to

(31) (e.g. L(t) = jt(L)) (commutators of vectors and matrices

of operators are defined component-wise), and tr denotes the

trace of a matrix. We also employ the notation

LL(X) =
1

2
L
†[X,L] +

1

2
[L†, X]L

=

n
∑

j=1

(
1

2
L∗j [X,Lj ] +

1

2
[L∗j , X]Lj); (33)

this is called the Lindblad superoperator in the physics liter-

ature (it is analogous to the transition matrix for a classical

Markov chain, or the generator of a classical diffusion pro-

cess). The dynamics is unitary, and hence preserves commu-

tation relations. The output fields are defined by

Ã(t) = V ∗(t)A(t)V (t), Λ̃(t) = V ∗(t)Λ(t)V (t), (34)

and satisfy the quantum stochastic differential equations

dÃ(t) = S(t)dA(t) + L(t)dt

dΛ̃(t) = S
♯(t)dΛ(t)ST (t) + S

♯(t)dA♯(t)LT (t)

+L
♯(t)dAT (t)ST (t) + L

♯(t)LT (t)dt,

where L(t) = jt(L), etc, as above. The output processes also

have canonical quantum Itō products.

In the physics literature, it is common practice to describe

open systems using a master equation (analogous to the

Kolmogorov equation for the density of a classical diffusion

process) for a density operator ρ, a convex combination of

outer products ψψ∗ (here ψ is a state vector). Master equations

can easily be obtained from the parameters G = (S,L, H);
indeed, we have

d

dt
ρ = i[ρ,H(t)] + L′

L(t)(ρ), (35)

where L′
L
(ρ) = L

T ρL♯ − 1
2L

♯
L

T ρ − 1
2ρL

♯
L

T is the adjoint

of the Lindbladian: tr[ρ(t)LL(X)] = tr[L′
L
(ρ) X]. Note that

while the master equation does not depend on the scattering

matrix S, this matrix plays an important role in describing

the architecture of the input channels, as in subsections III-E

and VI-B. We also mention that if an observable of one

or more output channels is continuously monitored, then a

quantum filter (also called a stochastic master equation) for the

conditional density operator can be written down in terms of

the parameters G = (S,L, H); an example of this is discussed

in subsection VI-C, see [2].

Open systems specified by parameters G = (S,L, H)
preserve the canonical nature of the quantum signals. However,

if the inputs are not canonical, one will need to modify the

equations for the unitary, the Heisenberg dynamics, and the

outputs, etc, to accommodate non-canonical correlations; we

do not pursue this matter further here, and in this paper we

will always use canonical quantum signals.

V. THE CONCATENATION AND SERIES PRODUCTS AND

THEIR APPLICATION TO QUANTUM NETWORKS

This section contains the main results of the paper. The

concatenation and series products are defined in subsection

V-A, and applied to a feedback arrangement in Theorem 5.5,

the principle of series connections (subsection V-B). This is

followed in subsection V-C with a specialization to cascade

networks, and a consideration in subsection V-D of reducible

networks. These results are applied to a range of examples in

section VI.

A. Definitions

In this subsection we define two products between system

parameters. It is assumed that both systems are defined on the

same underlying initial Hilbert space, enlarging if necessary

by using a tensor product.

Definition 5.1: (Concatenation product) Given two systems

G1 = (S1,L1, H1) and G2 = (S2,L2, H2), we define their

concatenation to be the system G1 ⊞ G2 by

G1 ⊞ G2 = (

(

S1 0
0 S2

)

,

(

L1

L2

)

, H1 +H2). (36)

The concatenation product is useful for combining distinct

systems, or for decomposing a given system into subsystems. It

does not describe interconnections via field channels, but does

allow for direct connections via the Hamiltonian parameters.
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Systems without field channels are included by employing

blanks; set ( , , H) ⊞ ( , , H ′) := ( , , H +H ′) and more

generally ( , , H)⊞(S′,L′, H ′) = (S′,L′, H ′)⊞( , , H) :=
(S′,L′, H +H ′).

Definition 5.2: (Reducible system) We say that a system

G = (S,L, H) is reducible if it can be expressed as

G = G1 ⊞ G2 (37)

for two systems G1 and G2. In particular, the parameters of

a reducible system have the form

S =

(

S1 0
0 S2

)

, L =

(

L1

L2

)

, H = H1 +H2. (38)

Such decompositions are not unique. Furthermore, if one or

more of the subsystems is reducible, the reduction process may

be iterated to obtain a decomposition G = ⊞jGj .

Definition 5.3: (Series product) Given two systems G1 =
(S1,L1, H1) and G2 = (S2,L2, H2) with the same number

of field channels, the series product G2 ⊳G1 defined by

G2 ⊳G1 = (S2S1,L2 + S2L1,

H1 +H2 +
1

2i
(L†2S2L1 − L

†
1S
†
2L2)).

As will be explained in the following subsection, the series

product specifies the parameters for a system formed by

feeding the output channel of the first system into the input

channel of the second. Both of these products are powerful

tools for describing quantum networks.

Remark 5.4: Let dGj(t) denote the infinitesimal Itō gen-

erators corresponding to parameters Gj = (Sj ,Lj , Hj), for

j = 1, 2 respectively, as constructed in (30). The generator

corresponding to G2 ⊳G1 is then

dG(t) = dG1(t) + dG2(t) + dG2(t)dG1(t). (39)

The last term is to be computed using the Itō table for second

order products of differentials.

B. Feedback

Let us consider a reducible system G = G1 ⊞ G2 (recall

Definition 5.2), where number of channels in the factors is

the same (i.e. dim L1 = dim L2). The setup is sketched in

Figure 10. We investigate what will happen if we feed one of

the outputs, say Ã1 back in as the input A2. Either of the

two diagrams in Figure 11 may serve to describe the resulting

feedback system. Note that the outputs will be different after

the feedback connection has been made.

✲ ✲t

✲ ✲t

1

2
A2 Ã2

A1 Ã1

Fig. 10. Reducible system G1 ⊞ G2 with inputs A1,A2 and outputs

Ã1, Ã2.

We now state our main result applying the series product to

feedback.

1

2

✲ t

✲ ✲t Ã2

A1

A2 = Ã1

1

2

✲ t

✲t Ã2

A1

Fig. 11. Direct feedback system G2 ⊳ G1, with input A1 and output Ã2.

Theorem 5.5: (Principle of Series Connections) The pa-

rameters G2←1 for the feedback system obtained from G1 ⊞

G2 when the output of the first subsystem is fed into the input

of the second is given by the series product G2←1 = G2⊳G1.

A proof of this theorem is given in Appendix B.

C. Cascade

In our treatment of series connections, we nowhere assumed

that the matrix entries commuted, and this of course facilitated

feedback. However, the principle of series connections also

applies to the special case where the subsystems commute, as

in a cascade of independent systems, as shown in Figure 12.
1

To formulate the cascade arrangement, we first consider the

concatenation of the two systems G1 ⊞G2. The system G =
G1 ⊞ G2 is reducible with components Gj .

✲✉ ✲✉

G1 G2

A1 Ã1 = A2 Ã2

Fig. 12. Cascade of independent quantum components, G2 ⊳ G1.

The notion of cascaded quantum systems goes back to

Carmichael [3], who used a quantum trajectory analysis,

and Gardiner [6] who used (scalar) quantum noise mod-

els of the form Gj = (1, Lj , Hj) (no scattering). As a

special case of the series principle, we see that the cas-

caded generator for this type of setup is Gcascade = G2 ⊳
G1 = (1, L1 + L2, H1 +H2 + Im {L∗2L1}). This is entirely

in agreement with Gardiner’s analysis, cf. [8, Chapter 12] with

Lj =
√
γjcj where we have L2←1 =

√
γ1c1 +

√
γ2c and

H2←1 = H1 +H2 + 1
2i

√
γ1γ2 (c∗2c1 − c∗1c2).

We now consider cascade arrangements and ask what hap-

pens if we try to swap the order of the components. Since

the series product is not in general commutative, we cannot

expect to be able to swap the order without, say, modifying

one of the components. We now make this precise as follows.

We say that two systems are parametrically equivalent if

their parameters are identical. This implies that, for the same

1Indeed, the reason we use the term “series” is to indicate that it applies
more generally than to cascades of independent components.
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input, they produce the same internal dynamics and output.

Consider the cascaded systems shown in Figure 13.

=✲✉ ✲✉

G1 G2

✲✉ ✲✉

G
′

2 G1

Fig. 13. Equivalent Systems.

We assume that the initial inputs are canonical in both cases

and ask, for fixed choices of G1 and G2, what we should take

for G
′
2 so that the setups are parametrically equivalent.

Theorem 5.6: The two cascaded systems shown in Figure

13 are parametrically equivalent if and only if

G2 ⊳G1 = G1 ⊳G
′
2. (40)

Furthermore, if (Sj ,Lj , Hj) are the parameters for G1 and

G2 (j = 1, 2), then the parameters (S′2,L
′
2, H

′
2) of G

′
2 are

uniquely determined by

S
′
2 = S

†
1S2S1,

L
′
2 = S

†
1 (S2 − I)L1 + S

†
1L2,

H ′2 = H2 + Im
{

L
†
2 (S2 + I)L1 − L

†
1S2L1

}

. (41)

The proof of this theorem is given in Appendix C.

Remark 5.7: A useful special case of this result is moving

a scattering matrix from the input to the output of a modified

system:

(S,L, H) = (I,L, H) ⊳ (S, 0, 0) = (S, 0, 0) ⊳ (I,S†L, H).
(42)

This is illustrated in subsection III-E. ✷

D. Reducible Networks

Networks can be formed by combining components with

the concatenation and series products. Within this framework,

components may interact directly, or indirectly via fields. This

framework is useful for modeling existing systems, as we have

seen above, as well as for designing new systems.

Let {Gj} be a collection of components, which we may

combine together to form an unconnected system G = ⊞jGj .

The components may interact directly via bidirectional ex-

changes of energy, and this may be specified by a direct

connection Hamiltonian K of the form

K = i
∑

k

(N∗kMk −M∗kNk), (43)

where Mk, Nk are operators defined on the initial Hilbert

space for G. The components may also interact via field

interconnects, specified by a list of series connections

S = {Gj1 ⊳Gk1
, . . . ,Gjn

⊳Gkn
} (44)

such that (i) the field dimensions of the members of each pair

are the same, and (ii) each input and each output (relative to

the decomposition G = ⊞jGj) has at most one connection.

A reducible network N is the system formed from G by

implementing the connections (43) and (44). The parameters

of the network N may be obtained as follows. A series chain

is a system of the form

C = Gjl
⊳Gkl

⊳ · · · ⊳Gjm
⊳Gkm

.

Let C denote the set of maximal-length chains drawn from

the list of series connections (44), and let U denote the set of

components not involved in any series connection. Then the

reducible network is given by

N = (⊞Gk∈U Gk) ⊞
(

⊞Cj∈C Cj

)

⊞ (1, 0,K). (45)

An example of a reducible network is shown in Figure 14.

N

t
t

tt

t

t

t ✲

✲

✛

✲✲

✲

✲

✲✲

✲

✲

✛ ✛

1

2

3

4

1

2

3

4

G

t

Fig. 14. A reducible network N = G1 ⊞ (G4 ⊳ G3 ⊳ G2) formed from
the collection G = G1 ⊞G2 ⊞G3 ⊞G4 of components with connections
specified by the list of series connections S = {G3 ⊳ G2,G4 ⊳ G3}.

Remark 5.8: The examples considered in section VI below

are all important examples of reducible networks that have

appeared in the literature. However, we mention that there

are important examples of quantum networks that are not

reducible. An example of a non-reducible network was consid-

ered by Yanagisawa and Kimura, [26, Fig. 4], which consists

of two systems in a feedback arrangement formed by a beam

splitter, as occurs if in Figure 7 we connect the output B̃1 to

the input A2 (i.e. setting A2 = B̃1). The feedback loop formed

in this way is “algebraic”, and the resulting in-loop field is not

a free field in general. A general theory of quantum feedback

networks, both reducible and non-reducible, is given in [11].

✷

VI. EXAMPLES

In this section we look at a number of examples from the

literature which can be represented by reducible networks.

A. All-Optical Feedback

We consider a simple situation first introduced by Wiseman

and Milburn as an example of all-optical feedback, [25, section

II.B. A]. Referring to Figure 15, vacuum light field A1 is

reflected off mirror 1 to yield an output beam Ã1 which results

from interaction with the internal cavity mode a. This beam is

reflected onto mirror 2, as shown, where it constitutes the input

A2. It is assume that both mirrors have the same transmittivity,
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so that we can model the coupling operators for the two field

channels as L1 = L2 =
√
γ a, where γ is the damping rate.

We may also assume that the light picks up a phase S = eiθ

when reflected by the cavity mirror.

cavity

optical interconnect

mirror 1 mirror 2

A1

Ã1

A2

Ã2

a

Fig. 15. All-optical feedback for a cavity. The feedback path is a light beam
from mirror 1 to mirror 2, both of which are partially transmitting). There is
a phase shift θ along the feedback path.

Before feedback, the cavity is described by

G = (I,

(

L1

L2

)

, 0) = (1, L1, 0) ⊞ (1, L2, 0).

The phase shift between the mirrors is described by the system

(S, 0, 0).

L1

L2

✲ t

✲ ✲t Ã2

A1

t

(S, 0, 0)

L′1

L′2

✲ t

✲ ✲t

Ã2
A1

t

(S, 0, 0)

Fig. 16. Representations of the all-optical feedback scheme of Figure 15 as
reducible networks.

Two equivalent reducible network representations are shown

in Figure 16. From the left diagram in Figure 16, we see that

the closed loop system is described by

Gcl = (1, L2, 0) ⊳ (S, 0, 0) ⊳ (1, L1, 0)

= (S, SL1 + L2,
1

2i
(L∗2SL1 − L∗1S

∗L2)).

Here we have twice applied the formulas (39) given in

Definition 5.3.

Alternatively, we may use our theory of equivalent compo-

nents (Theorem 5.6) to move the phase change (S, 0, 0) to the

very end, as shown in the right diagram in Figure 16. Then

Gcl = (S, 0, 0) ⊳ (1, S∗L2, 0) ⊳ (1, L1, 0)

= (S, SL1 + L2,
1

2i
(L∗2SL1 − L∗1S

∗L2)),

as before. Either way, the closed loop feedback system is

described by Gcl = (Scl, Lcl, Hcl) where

Scl = S ≡ eiθ,

Lcl = SL1 + L2 ≡
(

1 + eiθ
)√

γa,

Hcl = Im {L∗2SL1} ≡ γ sin θ a†a.

From this we obtain the Heisenberg dynamical equation for

the cavity mode

da = −
[

a,
(

1 + eiθ
)√

γa†
]

dA1

−γ
2

(

1 + eiθ
) (

1 + e−iθ
)

adt− iγ sin θ adt

≡ −
(

1 + eiθ
)

(
√
γdA1 + γadt) ,

and the input/output relation, in agreement with [25, eq.

(2.29)],

dÃ2 = eiθdA1 +
(

1 + eiθ
)√

γadt.

B. Direct Measurement Feedback

In the paper [24], Wiseman considers two types of measure-

ment feedback, one involving photon counting, and another

based on quadrature measurement using homodyne detection

(which is a diffusive limit of photon counts). In both cases

proportional feedback involving an electrical current was used.

We describe these feedback situations in the following subsec-

tions using our network theory.

Consider the measurement feedback arrangement shown in

Figure 17, which shows a vacuum input field A, a control

signal c, a photodetector PD, and a proportional feedback gain

k.

feedback gain

✛

✲ ✲

✲

PD

j(t)

control signal photocurrent

input field output field

k

quantum system
A(t)

c(t)
G

Fig. 17. Direct feedback of photocurrent obtained by photon counting using
a photodetector (PD).

Before feedback, the quantum system is described by

G = (1, L,H0 + Fc), (46)

where H0 and F are self-adjoint, and c represent a classical

control variable. The photocurrent j(t) resulting from ideal

photodetection of the output field is given by

“j(t)dt” = dΛ + LdA† + L†dA+ L†Ldt, (47)

where, mathematically, the photocurrent j(t) is the formal

derivative of a field observable (a self-adjoint commutative

jump stochastic process) Λ̃(t) (the output gauge process)
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whose Itō differential is given by the RHS of (47). The

feedback is given by

c(t) = kj(t), (48)

where k is a (real, scalar) proportional gain. The feedback

gain can be absorbed into F , and so we assume k = 1 in

what follows.

An alternative is to again consider the quantum system G

given by (46), but replace the photodetector PD in Figure 17

with a homodyne detector HD.2 The homodyne detector then

produces a photocurrent j(t) given by

“j(t)dt” = dJ(t) = (L(t) + L♯(t))dt+ dA(t) + dA♯(t).

The feedback is given by (48) as above, with feedback gain

absorbed into F , as above. The measurement result J(t) is

a field observable (here a self-adjoint commutative diffusive

process).

In order to describe these types of direct measurement

feedback within our framework, we view the setup before

feedback as being described by

G = (1, L,H0) ⊞ (Sfb, Lfb, Hfb) ≡ G0 ⊞ Gfb.

Here, G0 describes the internal energy of the system and its

coupling to the input field A. The second term, Gfb, describes

the way in which the classical input signal is determined from

a second quantum input field (which will be replaced by the

output Ã when the feedback loop is closed). The idea is that by

appropriate choice of the coupling operator Lfb, the relevant

observable of the field can be selected. In this way, the pho-

todection and homodyne detection measurements are accom-

modated. The singular nature of the feedback signal (which

contains white noise in the homodyne case) means that care

must be taken to describe it correctly. The correct form of the

parameters is given by the Holevo parameterization (Appendix

A, equation (55)) rather than the expression arising from the

implicit-explicit formalism of [24], since the later does not

capture correctly gauge couplings, see Appendix A. We shall

interpret the feedback interaction as being due to a Holevo

generator Kfb(t) = H00t+H01A(t) +H10A
∗(t) +H11Λ(t),

see Appendix A, equation (54). The closed loop system after

feedback is given by the series connection Gcl = Gfb ⊳G0 =
(

Sfb, Lfb + SfbL,H0 +Hfb + Im
(

L∗fbSfbL0

))

.

1) Photon Counting: Here we take Kfb(t) = FΛ(t), so

that Sfb = e−iF , see Appendix A, equation (55). Note that

this coupling picks out the required photon number observable

of the field. We then have Gfb = (e−iF , 0, 0) and so

Gcl = (e−iF , e−iFL,H0).

This is illustrated in Figure 18. The resulting Heisenberg

equation agrees with the results obtained by Wiseman, [24,

eq. (3.44)], which we write in our notation as

dX = (−i[X,H0] + Le−iF L(X))dt+ (eiFXe−iF −X)dΛ

+eiF [X, e−iFL]dA∗ + [L∗eiF , X]e−iF dA. (49)

2An ideal homodyne detector HD takes an input field A and produces a
quadrature, say A+A∗ (real quadrature), thus effecting a measurement. This
is achieved routinely to good accuracy in optics laboratories, [8, Chapter 8].

(Technical aside. Note that if we set E(t) = EΛ(t),
with E self-adjoint, then the Stratonovich equation dV (t) =
−idE(t)◦V (t) ≡ −idE(t)V (t)− i

2dE(t)dV (t) is equivalent

to dV (t) = SfbdΛ(t)V (t) where Sfb =
1− i

2
E

1+ i
2
E

. Therefore the

implicit form [24] is not the Stratonovich form [10].)

S

✲✲

✲ ✲

A

C C̃

ÃLt

Fig. 18. Representation of the direct photocount feedback scheme of Figure
17 as a reducible network.

2) Quadrature Measurement: Here we take Kfb(t) =
F (A∗(t) + A(t)) in which case Gfb = (1,−iF, 0), see

Appendix A, equation (55). The skew-symmetry of −iF
ensures that the coupling selects the desired field quadrature

observable. After feedback, the closed loop system is

Gcl = (1, L− iF,H0 +
1

2
(FL+ L∗F ))

using (39). This is illustrated in Figure 19. The resulting

Heisenberg equation then agrees with [24, eq. (4.21)], which

we write as

dX = (−i[X,H0 +
1

2
(FL+ L∗F )] + LL−iF (X))dt

+[X, (L− iF )]dA∗ + [(L− iF )∗, X])dA. (50)

(Technical aside. Note that for diffusions (that is, no gauge

terms) the Holevo generator and Stratonovich generator coin-

cide: that is, dV (t) = (e−idKfb(t) − 1)V (t) is the same as

dV (t) = −idKfb(t) ◦ V (t), Appendix A.)

M

t

✲✲

✲✲

A

C C̃

ÃL
t

Fig. 19. Representation of the direct homodyne feedback scheme (Figure
17 with HD replacing PD) as a reducible network.

C. Realistic Detection

Consider a quantum system Gq continuously monitored by

observing the real quadrature B̃ + B̃∗ of an output field B̃.

This measurement can ideally be carried out by homodyne

detection, but due to finite bandwidth of the electronics and

electrical noise, this measurement could be more accurately

modeled by introducing a classical system (low pass filter) and

additive noise as shown in Figure 20, as analyzed in [23]. Here,
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B is a vacuum field, I is the output of the ideal homodyne

detector (HD), v is a standard Wiener process, and Y is the

(integral of) the electric current providing the measurement

information.

We wish to derive a filter to estimate quantum system vari-

ables Xq from the information available in the measurement

Y .

Gq

! !!

"

!!

+

+

Yclassical system

I

quantum system HD

B

detection system

v

Gc

!"
#$

Fig. 20. Model of a realistic detection scheme for a quantum system, showing
ideal homodyne detection followed by a classical system (e.g. low pass filter)
and additive classical noise.

The quantum system is given by Gq = (1, Lq, Hq), and the

classical detection system is given by the classical stochastic

equations

dx(t) = f̃(x(t))dt+ g(x(t))dw(t),

dY (t) = h(x(t))dt+ dv(t), (51)

where x(t) ∈ R
n, y(t) ∈ R, f̃ , g are smooth vector fields, h

is a smooth real-valued function, and w and v are indepen-

dent standard classical Wiener processes. As described in the

Appendix D, this classical system is equivalent to a commu-

tative subsystem of Gc = (1, Lc1, Hc) ⊞ (1, Lc2, 0), where

Lc1 = −igT p− 1
2∇T g, Lc2 = 1

2h and Hc = 1
2 (fT p+ pT f).

We represent the system of Figure 20 as a redicible network,

as shown in Figure 21.

Ys
s ✲✲

✲✲

✲

✲

classical system

A2

A1 = B̃

quantum system

B Lc1

Lc2

Gq Gc

Lq
Ã1

Ã2

HD

s

Fig. 21. Representation of the realistic detection scheme of Figure 20 as a
reducible network.

Here, the classical noises are represented as real quadratures

w = A1 + A∗1, v = A2 + A∗2. Note that since Lc1 is skew-

symmetric, only the real quadrature w = A1 +A∗1 = B̃ + B̃∗

affects the classical system (this captures the ideal homodyne

detection). The complete cascade system is

G = ((1, Lc1, Hc) ⊳ (1, Lq, Hq)) ⊞ (1, Lc2, 0) (52)

= (I,

(

L1 + Lc1

Lc2

)

, Hq +Hc +
1

2i
(L∗c1Lq − L∗qLc1))

Applying quantum filtering [1], [2], the unnormalized quan-

tum filter for the cascade system G is

dσt(X) = σt(−i[X,Hq +Hc +
1

2i
(L∗c1Lq − L∗qLc1)]

+L0

@

L1 + Lc1

Lc2

1

A

(X))dt+ σt(L
∗
c2X +XLc2)dy. (53)

Here, X is any operator defined on the quantum-classical

cascade system. For instance, X = Xq ⊗ ϕ, where ϕ is a

smooth real valued function on R
n. In particular, if X = Xq

is a quantum system operator, one can compute the desired

estimate of Xq from πt(Xq) = σt(Xq)/σt(1).
Equation (53) can be normalized, and compared with [23,

eq. (17)]. In the case that the quantum system is a linear

gaussian system, and the filter is a linear system, the complete

filter reduces to a Kalman filter from which the desired

quantum system variables can be estimated.

VII. CONCLUSION

In this paper we have presented algebraic tools for modeling

quantum networks. The tools include a parametric represen-

tation for open quantum systems, and the concatenation and

series products. The concatenation product allows us to form a

larger system from components, without necessarily including

connections. The series product, through the principle of series

connections (Theorem 5.5), provides a mechanism for combin-

ing systems via field mediated connections. We demonstrated

how to model a class of quantum networks, called reducible

networks, using our theory and we illustrated our results by

examining some examples from the literature.

Future work will involve further development of the network

theory described here, and applying the theory to develop

control engineering tools and to applications in quantum

technology, e.g. [16].

APPENDIX

A. Time-Ordered Exponentials in the sense of Holevo

Holevo [14] developed a parameterization of open system

dynamics that is different to the Hudson-Parthasarathy param-

eters G = (S,L,H). Holevo’s parameterization is defined as

follows. Let

K (t) = H00t+H01A(t) +H10A
∗(t) +H11Λ(t), (54)

where {Hαβ} consists of bounded operators with Hαβ =
Hβα, and the indices α, β range from 0 to 1 (here we are

considering a single field channel for simplicity). The time-

ordered exponential with Holevo generator {Hαβ} is the

unitary adapted process U satisfying the quantum stochastic

differential equation

dU (t) =
(

e−idK(t) − 1
)

U (t)

with U (0) = 1, [14], [9]. Expanding the differential

e−idK(t) − 1 we obtain

dU (t) =
∑

n≥1

(−i)n

n!
(dK)

n
U(t).
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Now for a system with parameters G = (S,L,H) we have

dU(t) = {(S − I)dΛ(t) + LdA∗(t) − L∗dA

−(iH +
1

2
L∗L)dt}U(t).

Comparing these expressions, we find that

S = exp (−iH11) , L =
exp (−iH11) − 1

H11
H10,

H = H00 −H01
H11 − sin(H11)

(H11)2
H10. (55)

The relationship between the generating coefficients Hαβ

and the parameters G = (S,L,H) are exactly as occur in the

implicit-explicit formalism of [24], however, this formalism

only coincides with the Stratonovich-Itō correspondence in the

case where H11 = 0 [10].

B. Proof of Theorem 5.5

There are a number of independent derivations of the

series product. For instance it can be derived from a purely

Hamiltonian formalism for quantum networks [11], alterna-

tively Gardiner’s arguments in the Heisenberg picture can be

extended to include the scattering terms [12]. Here we present

a discretization argument for the input/output fields based on

[9]. Rather than considering a continuous noise source, we

take a beam consisting of qubits (spin one-half particles) with

a rate of one qubit every τ seconds. A qubit has the Hilbert

space H = C
2 spanned by a pair of orthogonal vectors e0 and

e1. We define raising/lowering operators σ± for each qubit by

σ+(αe0 + βe1) = αe1 and σ−(αe0 + βe1) = βe0. In our

model of the interaction of a qubit with a given plant, we

shall assume that the interaction is much shorter than τ so

that at most one qubit may interacting with a given plant at

any instant of time. For two plants in cascade, we shall take

them to be separated so that the time of flight of the qubits

is exactly τ seconds. This is purely for convenience and can

be easily relaxed. For definiteness, we assume that each qubit

is prepared independently in the “ground state” e0 and we

denote by σ±k the raising/lowering operators for the kth qubit:

the operators corresponding to different qubits commute, while

we have σ−k σ
+
k + σ+

k σ
−
k = 1,

(

σ+
k

)2
= 0 =

(

σ−k
)2

. At time

tk = kτ (k ∈ N), we take the most recent qubit to interact

with the first system to be the kth qubit, and the most recent

to interact with the second to be the (k − 1)st qubit.

Let us denote the value of x > 0 rounded down to the

nearest whole number by ⌊x⌋ and set

σαβ
τ (k) :=

[

σ+
k√
τ

]α [

σ−k√
τ

]β

where α, β may take the values zero and one and where

[B]
0

= 1, [B]
1

= B for any operator B. In the following,

we shall denote by O (τn) any expression which is norm-

convergent to zero as τ → 0 as fast as τn. The identity

τσα1
τ (k)σ1β

τ (k) = σαβ
τ (k) + O (τ) will be important in

what follows and will correspond to the discrete version of

the second order Itō products. For t > 0 fixed, the processes

Aαβ
τ (t) := τ

⌊t/τ⌋
∑

k=1

σαβ
τ (k)

are well-known approximations to the fundamental processes

Aαβ (t) in the limit τ → 0+, [9].

We shall fix bounded operators Hαβ
j on the jth system such

that Hαβ†
j = Hβα

j and set H(j)
τ (k) = Hαβ

j ⊗ σαβ
τ (k) . We

shall first recall some well known results [9] for the situation

where the qubits interact with only the first system (that is, set

Hαβ
2 = 0). The discrete time evolution is described by unitary

kicks every τ seconds according to Uτ (t) = U⌊t/τ⌋ · · · U2U1

where Uk = exp
{

−iτH(1)
τ (k)

}

. Expanding the exponential

yields Uk = 1 + τGαβ
1 ⊗ σαβ

τ (k) + O
(

τ2
)

with the Gαβ
1

forming the coefficients of the unitary QSDE with parameters

G1 related to H1 =
{

H
(1)
αβ

}

as in Appendix A.

In the limit τ → 0+, the discrete time process Uτ (t)
converges weakly in matrix elements to the solution of the

QSDE

dU (t) = Gαβ
1 ⊗ dAαβ (t) U (t) .

We now turn to the case of a cascaded system. This time the

discrete time dynamics is given by Vτ (t) = V⌊t/τ⌋ · · · V2V1

where Vk = exp
{

−iτH(1)
τ (k) − iτH(2)

τ (k − 1)
}

. Expanding

the exponential now yields

Vk = 1 + τGαβ
1 ⊗ σαβ

τ (k) + τGαβ
2 ⊗ σαβ

τ (k − 1) +O
(

τ2
)

.

with the Gαβ
2 forming the coefficients of the unitary QSDE

with parameters G2 related to H2 as in Appendix A.

To better understand what is going on, we compute

VkVk−1 = 1 + τGαβ
1 ⊗ σαβ

τ (k)

+τ
{

Gαβ
2 +Gαβ

1 +Gα1
2 G1β

1

}

⊗ σαβ
τ (k − 1)

+τGαβ
2 ⊗ σαβ

τ (k − 2) +O
(

τ2
)

.

This may be iterated to give

VkVk−1 · · · Vl =

1 + τ
{

Gαβ
2 +Gαβ

1 +Gα1
2 G1β

1

}

⊗
k−1
∑

j=l

σαβ
τ (k − 1)

+τGαβ
1 ⊗ σαβ

τ (k) + τGαβ
2 ⊗ σαβ

τ (l − 1) +O
(

τ2
)

.

Under the same mode of convergence as before, we obtain

the limit QSDE

dVt = G
(2←1)
αβ ⊗ dAαβ (t) V (t)

where we recognize Gαβ
(2←1) = Gαβ

2 +Gαβ
1 +Gα1

2 G1β
1 as the

coefficients the unitary QSDE with the series product param-

eters G2 ⊳ G1, see (39). Therefore G2←1 ≡ G2 ⊳ G1. The

generalization to multi-dimensional noise is straightforward.

C. Proof of Theorem 5.6

Clearly, if (40) is satisfied, then both cascade systems are

described by the same parameters, which implies that they are

equivalent. Now suppose the two systems are parametrically

equivalent, with S
′
2 undetermined. Now by Definition 5.3 we

may obtain expressions for G2 ⊳G1 and G1 ⊳G
′
2. Equating

the first terms, we have S2S1 = S1S
′
2, and solving for S

′
2 one

obtains S
′
2 = S

†
1S2S1, as in (41). Next, equating the second
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terms gives L2 +S2L1 = L1 +S1L
′
2. This expression can be

solved for L
′
2, as in (41). Similarly, the Hamiltonian term H ′2

in (41) can be found by equating the third terms.

D. Classical Systems as Commutative Quantum Subsystems

In this subsection we explain how to model the classical

system (51), shown in Figure 22, as a commutative subsystem

of a larger quantum system. This representation is used in

subsection VI-C. In equation (51), x(t) ∈ R
n, y(t) ∈ R,

f̃ , g are smooth vector fields, h is a smooth real-valued

function, and w and v are independent standard classical

Wiener processes.

classical system ✲ ✲✲
❄+

+

v

y
w

✒✑
✓✏

Fig. 22. Block diagram of the classical system (51).

To model this classical system, we take the underlying

Hilbert space of the system to be h = L2 (Rn) with qj , pj

being the usual canonical position and momentum observables:

qjψ (x) = Xjψ (x) and pjψ (x) = −i∂jψ (~x). We write q =
(q1, . . . , qn)T , p = (p1, . . . , pn)T , and ∇ = (∂1, . . . , ∂n)T . If

ϕ is a smooth function of x, then we find that, by Itō’s rule,

for ϕt = ϕ(x(t)),

dϕ = Lclassical (ϕ) dt+ gT∇ϕdw, (56)

where Lclassical (ϕ) = fT∇ϕ+ 1
2g

T∇
(

gT∇ϕ
)

is the (classical)

generator of the diffusion process x(t) in (51).

We seek a quantum network representation Gc, as shown

in Figure 23.

Lc1

t

✲✲

✲✲ ✲

classical system

A2

A1

Gc

HD y
Ã2

Ã1

Lc2

t

Fig. 23. Network representation of the classical system (51) shown in Figure
22.

The classical noises are viewed as real quadratures of

quantum noises w = A1 + A∗1, v = A2 + A∗2. Now define

port operators Lc1 = −igT p− 1
2∇T g, Lc2 = 1

2h and internal

Hamiltonian Hc = 1
2

(

fT p+ pT f
)

, where f = f̃ − 1
2 [∇g]g

(the Stratonovich drift) and g are n-vectors whose components

are viewed as functions of q and h = h (q) is viewed as a self-

adjoint observable function of q. We claim that the classical

system (51) behaves as an invariant commutative subsystem

of the open quantum system Gc = (1, Lc1, Hc) ⊞ (1, Lc2, 0).

To verify this assertion, we examine the dynamics. From (31)

we have

dXc = (−i[Xc, Hc] + LLc1
(Xc) + LLc2

(Xc))dt

+[Xc, Lc1](dA
∗
1 + dA1) + [Xc, Lc2](dA

∗
2 − dA2) (57)

Now set Xc = ϕ = ϕ(q), a smooth function of the position

operator. Then (57) gives

dϕ = (−i[ϕ,Hc] + LLc1
(ϕ) + LLc2

(ϕ))dt

+[ϕ,Lc1](dA
∗
1 + dA1) + [ϕ,Lc2](dA

∗
2 − dA2)

= (fT∇ϕ+
1

2
gT∇

(

gT∇ϕ
)

)dt+ gT∇ϕdw, (58)

where, we have used −i[ϕ,Hc] = fT∇ϕ, LLc1
(ϕ) =

1
2g

T∇(gT∇ϕ), LLc2
(ϕ) = 0, [ϕ,Lc1] = gT∇ϕ, and

[ϕ,Lc2] = 0. Hence the classical dynamics (56) is embedded

in the dynamics of the position observable q only in the

quantum system Gq (independent of momentum dynamics).

Note that only the real quadrature of the input field affects

these dynamics, and they are unaffected by the field A2.

Next we look at the outputs. The first output is not of

interest, so we focus on the second one. The output y(t) of

the homodyne detector HD in Figure 23 is

dy = dÃ2 + dÃ∗2 = (Lc2 + L∗c2)dt+ dA2 + dA∗2 = hdt+ dv
(59)

which agrees with (51), as required. The unnormalized quan-

tum filter for Gc is

dσt(Xc) = σt(−i[Xc, Hc] + LLc1
(Xc) + LLc2

(Xc))dt

+σt(L
∗
c2Xc +XcLc2)dy. (60)

When Xc = ϕ, this reduces to

dσt(φ) = σt(Lclassical (ϕ))dt+ σt(hϕ)dy, (61)

which is the usual Duncan-Mortensen-Zakai equation of clas-

sical nonlinear filtering, [5, Chapter 18].
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