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Abstract—Future-generation healthcare systems will be
highly distributed, combining centralised hospital systems with
decentralised home-, work- and environment-based monitoring
and diagnostics systems. These will reduce costs and injury-
related risks whilst both improving quality of service, and
reducing the response time for diagnostics and treatments
made available to patients. To make this vision possible,
medical data must be accessed and shared over a variety
of mediums including untrusted networks. In this paper, we
present the design and initial implementation of the SERUMS
tool-chain for accessing, storing, communicating and analysing
highly confidential medical data in a safe, secure and privacy-
preserving way. In addition, we describe a data fabrication
framework for generating large volumes of synthetic but
realistic data, that is used in the design and evaluation of
the tool-chain. We demonstrate the present version of our
technique on a use case derived from the Edinburgh Cancer
Centre, NHS Lothian, where information about the effects
of chemotherapy treatments on cancer patients is collected
from different distributed databases, analysed and adapted to
improve ongoing treatments.

Keywords-Medical data, Smart Healthcare, Data Sharing,
Privacy, Security, Personalised Medicine

I. INTRODUCTION

The healthcare systems of the future will be highly decen-

tralised, integrating home-, work- and environment-based

monitoring systems with existing hospital diagnostic sys-

tems. The benefits of integrating such a variety of systems

and information on patients include a reduction of costs and

travel-associated risks while allowing patients to get faster

diagnostics and better medical treatments that more accu-

rately suit their needs. As a consequence, medical data will

need to be collected from a variety of sources and exchanged

in a variety of ways, including over public networks that

cannot be implicitly trusted. At the same time, however,

we have stricter regulations on ownership and handling of

personal data. Transnational standards for data protection,

such as the EU General Data Protection Regulation1, will

need to be combined with local regulations, giving very

strict rules about who is allowed to access (parts of) patient

data. Complying with data protection regulations whilst

facilitating data exchange and analytics in a decentralised

way is a key challenge for future healthcare systems.

In this paper, we describe a methodology and complete

tool-chain that will be developed over the course of the on-

going EU H2020 project SERUMS2 to address safe, secure

and privacy-preserving storage, access, communication and

analysis of the medical data in future-generation smart health

centres. Our main goal is to put patients at the centre of

the future healthcare provision in Europe, enhancing their

personal care and maximising the quality of treatment that

they will receive, whilst ensuring trust in the security and

privacy of their confidential medical data.

To reduce the scope of the paper, we restrict our attention

to a subset of the SERUMS technologies. We propose a

universal format for patient records, to allow a uniform

representation of patient data across different use cases

and describe its implementation. We describe FlexiPass, an

1Information on GDPR can be found at https://gdpr-info.eu/
2Securing Medical Data in Smart Patient-Centric Healthcare Systems

(SERUMS): https://serums-h2020.weebly.com



authentication mechanisms to access these records, together

with the application of blockchain technology to control

permissions, ensuring that only allowed staff have access to

required parts of patient records, and to save the access his-

tory of all records. We describe a novel, privacy-preserving

data analytics mechanism which ensures that the analytics

model itself does not accidentally leak sensitive information.

Finally, we present a data fabrication approach that allows

the generation of synthetic but realistic data, given a strict

format of patient records and dependency rules between

its elements. In the context of the SERUMS project, we

only use generated synthetic data for the development and

verification of our technologies, but we will furthermore

prove formally the closeness of the synthetic and real data.

For illustration, we present one of SERUMS real-world use

cases on predicting toxicity levels of cancer treatments.

II. BACKGROUND

The emergence of Internet-of-Things (IoT) technology is

having a profound effect on the development of modern

healthcare systems. Traditionally healthcare systems were

highly centralised with data relevant to a patient, as well

as the devices used to obtain this data (e.g., blood pressure

monitors, CT scanners), residing in a central location, for

example within a hospital. From a security and privacy

point of view, collecting, storing and processing such data

was relatively simple, since the data only needed to be

communicated over trusted networks. However, as personal

medical devices become cheaper and more prevalent, and

there is an increased realisation of the benefits of integrating

a variety of health data sources for improved healthcare

provision, new significant challenges emerge with sharing

private and confidential data across public networks. In

particular, we need to be able to ensure:

• Trust: Patients must be able to trust that systems operate

as intended and that their data is fully protected.

• Security, Privacy and Anonymity: Systems must operate

efficiently and guarantee the best possible quality of

healthcare, whilst simultaneously providing high lev-

els of security and expectations on data privacy and

anonymity.

• Data Control: Patients must have full control of their

data according to expectation and law, whilst allowing

medical staff data access as required.

• Regulation Compliance: The smart healthcare system

must comply with regulations at various levels, includ-

ing GDPR, local legislation and policy that may at

times conflict with the above goals or other legislation.

SERUMS tackles the above problems by (1) addressing se-

curity and protection of shared medical data across untrusted

networks; (2) integrating personal medical data, coming

from various sources, into coherent and structured smart

patient records; (3) enabling data analytics techniques over

distributed data; and (4) developing authentication and trust

mechanisms that will ensure that only properly authorised

staff have access to (parts of) personal and medical data. At

the same time, we consider world-leading levels of compli-

ance to existing and emerging legal and ethical standards.

III. SERUMS TOOL-CHAIN

Figure 1 gives an overview of the SERUMS tool chain and

the overall process of accessing data across a distributed

healthcare system. The core of it is a centralised data lake

that holds the smart patient records (see Section IV-A).

Note that, while the patient records are centralised, the

data in them may refer to databases distributed inside and

outside of the hospital environment. These records contain

all information about the patients, from static information

such as date of birth, gender and contact information, to

vital information such as weight, body mass index, allergies,

to dynamic information about treatments and examinations.

Some of the data for the records will be collected from

within the healthcare system over trusted networks, while

other may be collected from personal health monitoring

devices, etc. Data sent over untrusted networks must be

secured using data encryption mechanisms.

When staff needs to access patient data, they first log in

to the central healthcare system using secure authentication

mechanisms. In the SERUMS project, our aim is to develop

personalised and adaptive multi-factor user authentication

schemes (see Section IV-D). Once the user logs in, their

access rights are checked using the blockchain backend

which is linked to a distributed blockchain database. Differ-

ent classes of users (e.g. patients, GPs, specialists, insurers)

will have different levels of permissions, according to GDPR

and other legal and ethical regulations. For example, the

patient has full access to their record, while a specialist can

only access parts of the record that are relevant to them. The

blockchain ensures that only authorised agents can access the

data, and depending on permissions, possibly only be part

of the data. The blockchain contains all access rules and

transitions, and keeps a record the data access history. Note,

however, that no actual data is stored in the blockchain.

Once the user is authenticated and the access rights are

checked, the requested data from the smart patient records

data lake is sent back to the user. If the user does not have

full access rights to the record, the data transfer may involve

masking parts of the data, i.e., hiding parts of the record that

the user has no access right to see. The access transaction

itself is stored in the blockchain database.

Finally, different kinds of analysis will need to performed

on patient data. In the SERUMS project, we focus on

deep learning analytics to drive diagnostics and prediction

of treatment outcomes (see the use case in Section V-A).

Since the data referred to from the smart patient records is

distributed, and we assume that some of this data cannot

leave the place where it is stored, the analytics will also

need to be performed in a distributed way. We need to
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Figure 1. The overview of SERUMS tool-chain

make sure that no unsafe information is revealed by the

learning models, as well as to ensure security of the data

communicated between the central patient record database

and the analytics model (which may reside in the cloud).

In this context, our aim is to develop privacy-preserving

distributed deep-learning analytics models for data analysis

(see Section IV-C).

For the purposes of developing, verifying, and testing the

complete SERUMS infrastructure, the SERUMS project will

use synthetic instead of real patient data, to avoid any privacy

and security concerns. Data fabrication (See Section IV-B)

technology allows us to rapidly generate large volumes of

data that is the same in terms of structure as real data, but

which was synthetically generated. The strict format of the

smart patient records, the formally defined rules on possible

values for each field, the relationships between different

fields and the well-formulated data interaction rules, makes

it possible to automate this process.

IV. SERUMS TECHNOLOGIES

A. Smart Patient Records

Good organisation of patient data is essential to the smooth

and correct operation of any health system. Furthermore,

new legislation for privacy and ownership of the data (such

as GDPR) together with a highly-decentralised organisation

of modern health providers impose additional requirements

for health data. Ideally, patient data should be owned by

the patient, and only they have full access to their data.

Other system users, such as specialists, general practitioners

and insurers, are expected to have access to parts of the

data relevant to the services they provide (e.g. diagnostics,

treatment, insurance etc.). In addition to access restrictions,

the distributed nature of health systems means that we cannot

assume that data is stored in one central location. Secure

communication of data across untrusted networks might

be required at any point the patient record is accessed.

To develop a generic infrastructure for safe and secure

communication of distributed medical data, it is highly

desirable for the patient data (including pointers to any data

that resides on remote systems) to be stored in a precise and

machine-readable format.

In the SERUMS technology tool-chain, the Smart Patient

Record represents a central information source for informa-

tion about patients registered in Europe. These records ag-

gregate a complete patient medical history across approved

healthcare providers. The information in a single record in-

cludes both relatively static information (such as name, age,

address, type of insurance, allergies) and highly dynamic

information (such as undergoing treatments, results of scans

and hospital admissions). For each healthcare institution,

smart patient records will reside in a Smart Healthcare Data

Lake. The Smart Patient Record Format represents metadata

that describes the data in the records. We propose a universal

format for patient records that can be used for describing

different use cases within SERUMS and is applicable to

future healthcare systems.

Our universal format is based on the concept of data

vault [16], which consists of hubs (unique business keys),

links (that represent associations between hubs) and satellites

(where attributes of the hubs and links are stored). The

general data vault has unlimited types of hubs, links and

satellites to model real-world data. The SERUMS project has

introduced a more limited type of hub, link and satellite clas-

sification [19] to force a more generalised view of all data



sources. This will support scaling [20] of the data vault. We

propose a Time-Person-Object-Location-Event (T-P-O-L-E)

data vault as a universal smart patient record format, such

that:

• Time: the dates and times of events are stored in

Coordinated Universal Time.

• Person: information about patients is stored using the

concept of ”Golden Nominal”. This type of record is

a single person record with a unique reference to that

person.

• Object: other referable entities that are stored, including

organisations (hospital, bank, medicine suppliers etc.),

physical objects (medicine, bank cards, vehicles, hos-

pital beds), buildings etc.

• Location: described by latitude, longitude and altitude

[18].

• Event: an abstraction of any event or action in the real-

world, including scans, home visits by a doctor and

treatments.

The T-P-O-L-E data vault supports a future-proof design

of the healthcare solution by enabling adding data at any

point with full history capabilities. This model is the basis

for the single-truth records data sharing and processing

engine of the SERUMS project. The solution then uses

advanced security to protect the information in a cross-

country configuration respecting patient consent. This health

record system will be able to support evolving coordinated

services [25]

B. Data Fabrication

IBMs Data Fabrication Platform (DFP) is a web based cen-

tral platform that provides a consistent and organisational-

wide methodology (rule-guided fabrication) for generating

high-quality data for testing, development, and training.

Fabrication of synthetic data consists of two stages - data

modelling and data generation. Furthermore, data modelling

comprises resources and structure definitions, constraint

rules definitions and fabrication configuration definitions.

Input and output resources are standard relational databases

(e.g., DB2, Oracle, PostgreSQL, SQLite), standard file for-

mats (e.g., Flat file, XLS, CSV, XML, JSON) and streaming

via MQTT protocol.

In rule guided fabrication, the database logic is extracted

automatically and is augmented by application logic and

testing logic modelled by the user. The application logic

and the testing logic can be modelled using rules that the

platform provides, but the users can also add new rules.

Once the user requests the generation of a certain amount

of data into a set of test databases, the platform internally

ensures that the generated data satisfies the modelled rules

as well as the internal databases consistency requirements.

The platform can generate data from scratch, inflate existing

databases, move existing data, and transform data from pre-

viously existing resources, such as old test databases or even

Figure 2. Flow of Generating Fabricated Data

production data. The platform provides a comprehensive and

hybrid solution that can create a mixture of synthetic and real

data according to user requirements.

To overcome the shortcomings of existing data gener-

ation techniques, DFP generates data using a proprietary

Constraint Satisfaction Problem (CPS) solver (See Figure 2).

This methodology is generic and does not require access to

real data, making it very safe to use in our setting. Data

fabrication consists of the following steps.

1) The user defines a data project which contains the

structure of the data, the constraint rules and the fabri-

cation configuration. In order to construct a constraint

satisfaction problem for the solver, the platform anal-

yses the table metadata to get the desired properties

(columns data types, referential integrity constraints

etc.).

2) The platform then selects a subset of the relevant

rules and tables using the fabrication configuration,

with possible addition of relevant parent tables and

some default rules (e.g. PK and Unique Column). This

information is used for the construction of a database

table dependency graph. For each table in that graph,

starting at root nodes, structural record dependencies

are built recursively.

3) Based on the dependency graph, the fabrication pattern

is computed where each target table record is assigned

to one of the following fabrication modes: New, Reuse

or Other. Given the patterns, the graph and the rules,

a CSP problem can be created. The problem consists

of variables and rules, and a solution is an assignment

of values to variables that satisfies the rules.

4) Finally, the CSP problem is submitted to the solver,

which produces a desired number of solutions to the

problem and stores them in the appropriate places

(e.g. database, file or stream).



C. Distributed Privacy-Preserving Data Analytics

Machine learning methods such as deep neural networks

have delivered remarkable results in data-analytics for a

wide range of application domains, including healthcare.

However, their training requires large data-sets which might

be containing sensitive information that need to be be pro-

tected from model inversion attack [13] and adversaries with

access to model parameters and knowledge of the training

procedure. This problem is addressed within the framework

of differential privacy [2], [24]. Machine learning algorithms

typically operate on data in the form of a matrix where

e.g. rows correspond to features and columns correspond to

samples. The particular problem in the context of matrix-

valued data is to protect a machine learning algorithm,

under differential privacy framework, from an adversary

who seeks to gain an information about the data from an

algorithm’s output by perturbing the value in an element

of the training data matrix. Despite the fact that random

noise adding mechanism has been widely studied in privacy-

preserving machine learning, there remains the challenge

of studying privacy-utility trade-off for matrix-valued query

functions. Our recent work [17] has suggested a novel

entropy based approach for resolving the privacy-utility

trade-off for real-valued data matrices. The study in [17]

mathematically derives the probability density function of

noise that minimizes the expected noise magnitude together

with satisfying sufficient conditions for (ǫ, δ)−differential

privacy.
1) An Optimal (ǫ, δ)−Differentially Private Noise for

Real-Valued Matrices: Consider a data-set consisting of N
number of samples with each sample having p number of

attributes represented by a matrix Y ∈ R
p×N . A given ma-

chine learning algorithm, training a model using data matrix

Y, can be represented by a mapping, A : R
p×N → M,

where M is the model space.

Definition 1 (A Private Algorithm): Let A+ : Rp×N →
Range(A+) be a mapping defined as

A+ (Y) = A (Y + V) , V ∈ R
p×N (1)

where V is a random noise matrix with fvi
j
(v) being the

probability density function of its (j, i)−th element vij ; vij
and vi

′

j are independent from each other for i 6= i′; and

A(·) is a given mapping representing a machine learning

algorithm.

Definition 2 (d−Adjacency for Data Matrices): Two

matrices Y,Y′ ∈ R
p×N are d−adjacent if for a given d ∈

R+, there exist i0 ∈ {1, 2, · · · , N} and j0 ∈ {1, 2, · · · , p}
such that ∀i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , p},

∣

∣yij − y′ij
∣

∣ ≤
{

d, if i = i0, j = j0
0, otherwise

where yij and y′ij denote the (j, i)−th element of Y and Y′

respectively. Thus, Y and Y′ differ by only one element and

the magnitude of the difference is upper bounded by d.

Definition 3 ((ǫ, δ)−Differential Privacy for A+): The

algorithm A+ (Y) is (ǫ, δ)−differentially private if

Pr{A+ (Y) ∈ O} ≤ exp(ǫ)Pr{A+ (Y′)) ∈ O}+ δ (2)

for any measurable set O ⊆ Range(A+) and for d−adjacent

matrices pair (Y,Y′). Here, Pr{·} is the probability taken

over the randomness used by algorithm.

Result 1 (An Optimal (ǫ, δ)−Differentially Private Noise):

The probability density function of noise that minimise

the expected noise magnitude together with satisfying the

sufficient conditions for (ǫ, δ)−differential privacy of A+

is given as

f∗

vi
j

(v) =

{

δDiracδ(v), v = 0
(1− δ) ǫ

2d
exp(− ǫ

d
|v|), v ∈ R \ {0} (3)

where Diracδ(v) is Dirac delta function satisfying
∫

∞

−∞
Diracδ(v) dv = 1. The optimal value of expected

noise magnitude is given as

Ef∗

v
i
j

[|v|] = (1− δ)
d

ǫ
. (4)

Proof: The proof follows from [17].

2) Differentially Private Distributed Deep Learning: The

post-processing invariant property [10] of differential privacy

allows one to compose a global private deep model from

local private deep models.

Figure 3. A structural representation of the differentially private distributed
learning for deep models.

The distributed form of differentially private deep learning

is represented in Fig. 3 where a privacy wall is inserted

between training data and the globally shared data. The

privacy wall uses noise adding mechanisms to attain dif-

ferential privacy for each participant’s private training data.

Therefore, the adversaries have no direct access to the

training data.

D. Flexible User Authentication

The SERUMS user authentication scheme will go beyond

traditional ”one-size-fits-all” practices towards adopting a

personalised and adaptable multi-factor user authentication

scheme which will be based on a flexible authentication

paradigm, coined FlexPass [5], [8], [14]. A first conceptual

design of the proposed flexible user authentication paradigm

is depicted in Figure 4. Our approach attempts to provide

a new user authentication paradigm that leverages upon

theories in Cognitive Psychology (dual coding, episodic and



semantic memory), which suggest that humans’ episodic and

semantic memories, represented as verbal and visual infor-

mation, can be transformed into memorable and personal

authentication secrets. Such secrets can be semantically

similarly reflected on both textual and graphical password

keys, and accordingly used complimentary based on user

preference (Figure 4) [5]. The paradigm relies on a single,

open-ended, user-selected secret that can be reflected as a

textual key and a graphical key.

Figure 4. Conceptual design of the Flexible User Authentication Paradigm

The FlexPass paradigm extends existing works in

knowledge-based user authentication based on theories of

human cognition with the aim: a) to enhance memorability

through ownership, and prior experience and knowledge

of each single user; and b) to support user authentication

adaptability since users can choose their preferred way to

login based on their needs and context of use. For example,

users that are on the move and interact on their smartphone

might prefer to login with a graphical password, instead of

entering text on a virtual keyboard which is considered a

demanding and time-consuming task [26]. The same user

however, in a different context, e.g., while at home working

on the desktop computer, can choose to login through his

textual password key. Note that in both cases, the user is

only required to recall the same single secret, which can be

reflected differently based on the users preference. Similarly,

older adults might prefer to always login with a graphical

password since they find it easier than textual passwords,

as opposed to younger adults that instead, prefer traditional

textual passwords [22].

Nevertheless, the dual nature of FlexPass embraces new

security vulnerabilities that need to be addressed, i.e., it

introduces a new observational attack since adversaries can

see the set of pictures (user-selected and decoy images)

during login. A brute-force algorithm could use such infor-

mation from the graphical representation to guess the secret.

Aiming to add an additional layer of security, we use a

second factor for authentication through push notifications as

a first step before proceeding to login. In particular, at a first

stage users will be required to approve a push notification

that is realised as an SMS notification including an OTP,

and a mobile application notification. After verifying their

identity, users will login through their preferred user authen-

tication type based on the FlexPass paradigm. Furthermore,

the open-ended nature of the paradigm might affect users

towards misuse strategies. To assure that users will not

create semantically insecure (predictable) grids of images,

automated image tagging technologies and policies need to

be investigated to prevent users unsafe coping strategies.

E. Blockchain

Blockchain is a programmable, distributed ledger with

an immutable history of transactions. For every transaction

consensus has to be reached among the participating organ-

isations (or commonly denoted as nodes) before it can be

written on the ledger. Blockchain is programmable via the

notion of a smart contract that is simply a piece of code, that

is installed and executed within the Blockchain network; the

execution of a smart contract’s function creates a transaction.

Note that the transaction is written on the ledger of each

node concurrently. Consequently, the ledgers are always

synchronised. If a node has some downtime, when it restarts,

it automatically synchronises its ledger to the ledgers of the

rest of the nodes. In addition, a single ledger (of a single

node) cannot be tampered unless the attacker can manage to

concurrently infiltrate at least the majority (if not all) of the

nodes, depending on the consensus protocol used.

In the proposed architecture a blockchain network is

created where every relevant organisation (e.g a hospital)

participates. The user’s permissions that control access for

the SPHR are programmed using smart contracts. This

allows versatility as the rules used to form the permissions

can be updated whenever required. However, due to the

Blockchain’s nature, a single organisation cannot force an

update of these rules as transactions will not be able to

reach consensus and inevitably will not be written on the

ledger. The process flow for setting up access control is

shown in Figure 5. The medical organisation (e.g. hospital)

creates generic smart contracts (access rules) and stores them

in the blockchain (step 1). The Patient also creates custom

smart contracts about their data, which are also stored in

the blockchain (step 2). The patient’s ID is shared with

the doctor (step 3), who then authenticate themselves to

the system (step 4). The Doctor requests access to data

about a patient (step 5). The IDs of the doctor and the

patient are checked against the access rules in the blockchain

(check/audit trail). This results in a request for an access

token from the data vault (step 6). The data vault provides

the access token (step 7) and the response with this token is

sent to the doctor (step 8). The doctor requests data about

the patient from the data vault using the token (step 9) and

the data is afterwards fetched from the vault (step 10).



Figure 5. Process flow for access request

V. EVALUATION

We present an initial evaluation of the SERUMS technolo-

gies presented in Section IV on a use case based on the

Edinburgh Cancer Data Gateway (ECDG).

A. Use Case - Edinburgh Cancer Data Gateway

We are developing a dashboard to help oncologists observe,

monitor, and analyse the condition of their patients over

time. It can also be used to analyse the effect of different

chemotherapy treatments when given to patients with similar

characteristics, and consequently influence future decisions

to improve the well-being and survival rate of patients. Our

ultimate aim is to build a toxicity predictor (Figure 6) to

predict the toxicity of chemotherapy treatments based on

history and feedback from patients. Figure 7 shows the

data structure we use for training the toxicity predictor. We

extracted data for training the machine learning models from

three main databases (i.e., Chemocare, Trak, and Oncology

DB) within the Edinburgh Cancer Centre (ECC). The data

contains the information on treatment cycles, recorded side

effects (here, toxicity level), comorbidities, and various ob-

servations concerning breast cancer patients for three years

(from 2014 to 2016). The extraction has data for 51,661

treatments, of which 13,030 are breast cancer treatments.

There are 933 unique patients, and some patients may have

two or three different treatments/regimes. Each regime has

several cycles ranging from one to more than 50 cycles.

B. Smart Patient Records

The data from the Edinburgh Cancer Gateway (see Table I),

is abstracted out into their data vault structure. For example,

the original form of NDC SMR01 is given in Figure 8. Each

of the columns is examined and classified under one of the

hubs of the TPOLE data vault:

• Time: admission date, discharge date, length of stay;

• Person: sex, age in years, ethnic group,

marital status, postcode; or

Figure 6. Toxicity Predictor for Breast Cancer Treatment

Figure 7. Database Structure for Training the Toxicity Predictor Model

Table name # vars # num # categorical # bool

NDC SMR01 17 3 13 1
NDC SMR06 9 2 7 0
NDC Charlson 20 9 5 6
Chemocare Toxicity 17 14 3 0
Chemocare Treatment 19 8 11 0

Table I
DATABASE TABLES STRUCTURE FROM THE EDINBURGH CANCER

GATEWAY USE CASE.

• Object: main operation a, main operation b,

main condition, other condition 1, other condition 2,

other condition 3, other condition 4.

These are then broken up into smaller subcategories which

will form the satellites of the data vault. In this example,

the Object category can be seen to be made up of two sets:

one containing details about the operations, and the other

containing details about the conditions.



Figure 8. Example of source table

C. Data Fabrication

In order to synthesise data, we must pass database table

definitions and metadata to the DFP. The metadata itself

contains high level information about the data, describing

details about its nature, without revealing any of the actual

values that make up the source data. In addition, we need to

define the rules that the data conforms to, in order to keep the

synthetic data as accurate as possible. This might include,

for example, the range of values that the data takes and

the distribution of these values, as well as any relationships

between different data elements. For instance, we might have

a column with the appointment date. The metadata would

contain the information that it is a date type, the format the

date should be stored in, whether it can be null, etc. The

rules for it might include that it must be greater than the

date of birth for the patient.

For the Edinburgh Cancer Gateway use case, we have

collected many aspects of the metadata including common,

maximum, minimum, and extreme values for each reading.

In addition, we derived the distribution of the data value

measurements and the correlations between the different

values. This profiling can be seen to work to derive the

required rules to fabricate new data. These rules were then

used to synthesise data to be used in the development and

evaluation of the SERUMS tool chain.

D. Blockchain

The blockchain smart contracts will use the hyper-ledger

format and will enable the storage of the preference contract

of the patient, the vault of the current active data transport

contracts and the valid user contracts of the SERUMS data

exchange process.

E. Authentication

The dual nature of the proposed user authentication

scheme allows us to move from ”one-size-fits-all” authenti-

cation schemes to flexible authentication schemes since users

can choose their preferred way to authenticate; either by

entering the textual password or the graphical password that

represents their single secret. Consider a password creation

scenario in which a user chooses a secret derived from his

episodic memory, e.g., Places that we visited in Europe.

In this scenario, the textual password key is based on the

articulation of the secret, e.g., the system will generate a

textual password key PlacesThatWeVisitedInEurope. For the

creation of the graphical password key, the user chooses

pictures illustrating relevant images through search in Web

engines. Other related images from the image search default

to decoy images (in the case of recognition-based graphical

authentication). Both user-selected and decoy images are

finally assigned to the users profile to be used for login.

Users will also be able to choose a single background image

and then draw secret gestures on the image that will be based

on the chosen single secret.

A preliminary evaluation study with 32 volunteers (age

ranging 20-49 (m=33.84; sd=9.43) has been conducted to

investigate likeability aspects and user acceptance of the

proposed paradigm. More details on the prototype designs of

FlexPass and evaluation results are reported in [5]. Partici-

pants interacted with initial prototypes of FlexPass and rated

their experience using a 5-point Likert scale (1: Not at all

5: Absolutely). Example statements included: I would adopt

FlexPass as my main authentication method, FlexPass login

is fast to use, ”Long registration time is bad”, etc. Initial

evaluation results are promising for further development

of the proposed paradigm since most of the participants

are positive to adopt FlexPass as their main authentica-

tion method and they particularly like the flexibility of

switching between textual and pictorial passwords (81.25%).

Furthermore, participants rated FlexPass login process as

memorable (87.5%), easy to use (84.37%), and efficient to

use (68.75%). Nevertheless, given that the new paradigm

adds an additional amount of time in the secret creation

process compared to the current state-of-the-art approach,

participants had mixed opinions with regards to the higher

password creation times (during registration). In particular,

53.13% participants stated that the higher registration times

might negatively affect their opinion about FlexPass, and

21.87% rated that long registration times might prevent them

from using FlexPass.

F. Noise Adding Mechanism for Differential Privacy

The optimal noise adding mechanism to attain differential

privacy is compared with the classical Gaussian mechanism

via quantify the gain (over Gaussian mechanism) achieved

by optimal (ǫ, δ)-differentially private noise in term of

reduction in expected noise magnitude. The ratio of expected

noise magnitude of classical Gaussian mechanism to that of

optimal mechanism is calculated as

R(δ) =
2

(1− δ)
√
π

√

log (1.25/δ). (5)



It is observed in Fig. 9 that noise magnitude reduction factor

is increasingly more pronounced in the high privacy regime

(i.e. low δ), however, also shoots up in the low privacy

regime as δ → 1. The optimal mechanism reduces the noise

magnitude by more than 4 times in the high privacy regime

over the Gaussian mechanism.

VI. RELATED WORK

Smart Patient Records: Unified Medical Language Sys-

tem (UMLS [7]) proposes key terminology, classification

and coding standards, and associated resources to promote

creation of more effective and interoperable biomedical

information systems and services, including electronic health

records. OpenEHR Specification Program [1] provides spec-

ifications and their computable expressions to enable devel-

opment and deployment of open, interoperable and com-

putable patient-centric health information systems.

Generating Synthetic Data: Several studies address

generating data for given queries. Most of these approaches

(e.g. QAGen [6], De La Riva et al. [9] and Emmi et al. [11])

address only subsets of the SQL language as well as a

simple subset of the possible data types of databases. Many

of these works have performance and scalability issues as

well. Adorf and Varendorff [3] propose a scalable solution

that generates data for form-centric applications using an

SMT solver. However, constraint solvers cannot deal with

the variety of data types, such as decimal numbers, calendar

types, and strings, this is also not an ideal solution and

requires workarounds that increase complexity of the overall

system and affect perfromance and quality of results.

Authentication: Recent works have investigated the in-

fluence of specific human, technology and design factors af-

fecting user authentication preference and task performance,

aiming to apply that knowledge in designing usable and

personalised authentication schemes. Nicholson et al. [22]

suggested personalizing the user authentication type based

on age differences; Belk et al. [4] proposed an extensible

authentication framework for personalizing authentication

tasks based on the users’ cognitive processing styles and

abilities; Ma et al. [21] suggested personalizing user authen-

tication types by considering users’ cognitive disabilities;

and Forget et al. [12] proposed an authentication scheme

for enabling users to choose the preferred user authentication

mechanism instead of providing a single authentication type.

Privacy of Medical Analytics: Shade [15], a framework

for Apache Spark that provides strong privacy guarantees

for users, includes two mechanisms - SparkLAP, which

provides Laplacian perturbation based on a user’s query

and SparkSAM, which uses the contents of the database

itself in order to calculate the perturbation. Palanisami et

al. [23] present a privacy-aware data disclosure scheme

that considers group privacy requirements of individuals in

bipartite association graph datasets where even aggregate

information about groups of individuals may be sensitive.

VII. CONCLUSION

In this paper, we have outlined the problems that the

distributed health systems of the future will face in terms

of safe storing and sharing of confidential patient data. We

have also proposed the SERUMS methodology for managing

confidential, distributed medical data, covering all the phases

in its lifetime, from retrieval and storing to end-point data

analytics. Furthermore, we have described the initial versions

of the tools from the SERUMS tool-chain, including new

universal smart patient record format, blockchain for control-

ling access to the health records and recording lineage of the

data, authentication mechanisms for logging in to healthcare

systems and privacy-preserving data analytics techniques.

We have also described Data Fabrication Platform (DFP),

a platform for generating large volumes of synthetic but

realistic medical data that will be used for development

and evaluation of the SERUMS tool-chain. Finally, we have

described its proposed use in the Edinburgh Cancer Gateway

use case that collects and analyses information about effects

of chemotherapy treatments on breast cancer patients, to

predict the outcome of the treatment and improve treatment.
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erating query-aware test databases. In Proceedings of the 2007
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’07, pages 341–352, New York, NY, USA,
2007. ACM.

[7] O. Bodenreider. The Unified Medical Language System
(UMLS): Integrating Biomedical Terminology. Nucleic Acids
Res. 2004 Jan 1;32(Database issue), 2004.



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0

1

2

3

4

5

6

7

R
(

)

(a) High privacy regime.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

R
(

)

(b) Low privacy regime.

Figure 9. Ratio of expected noise magnitude of the classical Gaussian mechanism to that of optimal mechanism for (ǫ, δ)-differential privacy.

[8] A. Constantinides, M. Belk, C. Fidas, and A. Pitsillides.
On the accuracy of eye gaze-driven classifiers for predicting
image content familiarity in graphical passwords. In Proc.
UMAP 2019, pages 201–205. ACM, 2019.
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